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Extended Abstract

Many real-world networks are shaped by a tension between homophilic similarity—entities
connect when they are geometrically or semantically close—and heterophilic complementarity,
where links form between dissimilar yet synergistic nodes. While similarity produces triangle-
rich structures [1-4], complementarity favors quadrangles and local bipartivity [5—7]. Most
existing latent-space models capture only one of these principles.

We introduce the generalized random geometric graph (GRGG), a flexible latent-space for-
malism on compact isotropic manifolds (e.g. the d-sphere). In GRGGs, each node i is assigned
a random position x; € S¢ and edges are governed by distance-based edge energies. Two com-
mon and useful energies capture the similarity-complementarity dichotomy:
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where g;; is the geodesic distance, gmax the diameter of the space, and f(-) a non-decreasing
function (e.g. log). The first energy recovers the standard random geometric graph assumption
that nearby nodes connect, while the second encodes complementarity by linking antipodal
(maximally distant) points. Energies are mapped to edge couplings ©(g;;) via a sigmoidal,
Fermi-Dirac form, yielding a maximum-entropy ensemble in which (u,f3) control expected
degree and sharpness of transition. The resulting edge probability takes the form

1
pij - 1+e®(8ij)7
yielding a maximum-entropy ensemble. For instance, for ©(g;;) = B (€& — ) this recovers
the familiar Fermi-Dirac distribution arising as the edge probability function in the degree-
homogeneous soft RGG model:
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In the GRGG framework, multiple energies (layers) can be combined, with the final edge prob-
ability given by a noisy-OR across layers:
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This construction generalizes many classical models: Erdds-Rényi graphs, hard and soft ran-
dom geometric graphs, and hyperbolic graphs with fitness all arise as special cases (see Fig. 1a).

To illustrate the usefulness of the GRGG framework above, we define a new similarity-
complementarity random geometric graph (SCRGG) model, which combines two GRGG lay-
ers: one driven by similarity (connecting nearby nodes) and one driven by complementarity
(connecting nearly antipodal nodes). The relative average degree contributed by each layer
controls whether the resulting network is dominated by triangle-rich or quadrangle-rich motifs
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(see Fig. 1b). Further introducing hidden-variable fitness terms yields scale-free networks in
the hyperbolic limit [4].

We study the properties of the SCRGG and its behavior as the relative density of similarity-
versus complementarity-driven layers changes, effectively interpolating between triangle-rich
and quadrangle-rich relational patterns. Additionally, we use the SCRGG in a series of syn-
thetic link-prediction experiments that show regimes where homophily-based algorithms per-
form well (when edges from the similarity layers dominate), while complementarity-aware
rules outperform when quadrangles are prevalent. In summary, the GRGG formalism and its
SCRGG instantiation provide a tractable, maximum-entropy framework that interpolates be-
tween similarity and complementarity. This offers both theoretical insight into motif-level pat-
terns in graphs and a tunable benchmark for evaluating algorithms in regimes where real-world
networks often lie.
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Figure 1: Schematic summary of the GRGG model. (a) Space of possible models that can
be seen as special cases in the GRGG framework. (b) Geometric logic of the similarity and
complementarity layers.



