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a b s t r a c t 

There are relatively few works dealing with conformal prediction for multi-task learning issues, and this 

is particularly true for multi-target regression. This paper focuses on the problem of providing valid (i.e., 

frequency calibrated) multi-variate predictions. To do so, we propose to use copula functions for inductive 

conformal prediction, and illustrate our proposal by applying it to deep neural networks and random 

forests. We show that the proposed method ensures efficiency and validity for multi-target regression 

problems on various data sets. 
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. Introduction 

The most common supervised task in machine learning is to 

earn a single-task, single-output prediction model. However, such 

 setting can be ill-adapted to some problems and applications. 

On the one hand, producing a single output can be undesir- 

ble when data is scarce and when producing reliable, possibly 

et-valued predictions is important (for instance in the medical do- 

ain where examples are very hard to collect for specific targets, 

nd where predictions are used for critical decisions). Such an is- 

ue can be solved by using conformal prediction approaches [1] . It 

as initially proposed as a transductive online learning approach 

o provide set predictions (in the classification case) or interval 

redictions (in the case of regression) with a statistical guarantee 

epending on the probability of error tolerated by the user, but 

as then extended to handle inductive processes [2] . On the other 

and, there are many situations where there are multiple, possibly 

orrelated output variables to predict at once, and it is then natu- 

al to try to leverage such correlations to improve predictions. Such 

earning tasks are commonly called Multi-task in the literature [3] . 

Most research work on conformal prediction for multi-task 

earning focuses on the problem of multi-label prediction [4,5] , 

here each task is a binary classification one. Conformal prediction 

or multi-target regression has been less explored, even though it 

an be quite useful in practice, for instance to accurately predict 

he localization of an object in 2D [6] or of a drone in 3D [7] . Only
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n few studies deal with conformal prediction for multi-target re- 

ression : Kuleshov et al. [8] provide a theoretical framework to 

se conformal predictors within manifold (e.g., to provide a mono- 

imensional embedding of the multi-variate output), while Neeven 

nd Smirnov [9] use a straightforward multi-target extension of a 

onformal single-output k -nearest neighbor regressor [10] to pro- 

ide weather forecasts. However, this latter essentially verifies va- 

idity (i.e., having well-calibrated outputs) for each individual tar- 

et. Recently, we proposed a simple method to have an approxi- 

ate validity for the multi-variate prediction [11] , that generally 

rovided overly conservative results. 

In this paper, we propose a new conformal prediction method 

tted to multi-target regression, that makes use of copulas [12] (a 

ommon tool to model dependence between multi-variate random 

ariables) to provide valid multi-variate predictions. The interest of 

uch a framework is that it remains very easy to apply while link- 

ng multi-variate conformal predictions to the theoretically sound 

ramework that are copulas. Experiments also show that it works 

uite well, and allows to improve upon previous heuristics [11] . 

Section 2 provides a general overview of our problem: a brief 

ntroduction to conformal prediction and multi-target regression 

ill be presented in Sections 2.1 and 2.2 , before raising the prob- 

ematic of applying conformal prediction to the multi-target re- 

ression setting in Section 2.3 . We will then present our setting 

n Section 3 : we will first recall the needed basic principles and 

heorems of copulas in Section 3.1 , before detailing our conformal 

ulti-target approach in Section 3.2 . The experiments and their re- 
ults are described in Section 4 . 

https://doi.org/10.1016/j.patcog.2021.108101
http://www.ScienceDirect.com
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. Inductive conformal prediction (ICP) for multi-target 

egression 

This section recalls the basics of inductive conformal regression 

nd multi-target regression, before introducing the issues we will 

ackle in this paper. 

.1. Inductive conformal regression 

In regression tasks, conformal prediction is a method that pro- 

ides a statistical guarantee to the predictions by giving an in- 

erval prediction instead of a point prediction in the regression 

ase. By statistical guarantee, it is meant that the set-valued pre- 

ictions cover the true value with a given frequency, i.e., they 

re calibrated. It was first introduced as a transductive online 

earning approach [13] and then adapted to the inductive frame- 

ork [2] where one uses a model induced from training examples 

o get conformal predictions for the new instances. The two desir- 

ble features in conformal regressors are (a) validity , i.e. the error 

ate does not exceed ε for each chosen confidence level 1 − ε, and 

b) efficiency , meaning prediction intervals are as small as possible. 

Let � z 1 = (x 1 , y 1 ) , z 2 = (x 2 , y 2 ) , . . . , z n = (x n , y n ) � be the

uccessive pairs of an object x i ∈ X and its real-valued label y i ∈ R ,

hich constitute the observed examples. Assuming that the under- 

ying random variables are exchangeable (a weaker condition than 

.i.d.), we can predict y n +1 ∈ R for any new object x n +1 ∈ X by fol-

owing the inductive conformal framework. 

The first step consists of splitting the original data set Z = 

 z 1 , . . . , z n � into a training set Z tr = � z 1 , . . . , z l � and a cal-

bration set Z cal = � z l+1 , . . . , z n � , with | Z cal | = n − l. Then, an

nderlying algorithm is trained on Z tr to obtain the non-conformity 

easure A l , a measure that evaluates the strangeness of an ex- 

mple compared to other examples of a bag, called the non- 

onformity score. Hence, we can calculate the non-conformity 

core αk for an example z k compared to the other examples in the 

ag � z 1 , . . . , z l � with αk = A l (� z 1 , . . . , z l � , z k ) . 

By computing the non-conformity score αi for each example z i 
f Z cal using this equation, we get the sequence αl+1 , . . . , αn . When 

aking a prediction for a new example x n +1 , we use the under- 

ying algorithm to associate to any possible prediction ˆ y its non- 

onformity score α ˆ y 
n +1 

, and calculate its p-value which indicates the 

roportion of less conforming examples than z n +1 , with: 

p( ̂  y n +1 ) = 

|{ i = l + 1 , . . . , n, n + 1 : αi ≥ α ˆ y 
n +1 

}| 
n − l + 1 

. (1) 

The final step before producing the conformal prediction con- 

ists of choosing the significance level ε ∈ (0 , 1) to get a prediction

et with a confidence level of 1 − ε, which is the statistical guar- 

ntee of coverage of the true value y n +1 by the interval prediction 

ˆ 
 n +1 such that 

ˆ 
 n +1 = { ̂  y n +1 ∈ R : p( ̂  y n +1 ) > ε} . 

The most basic non-conformity measure in a regression setting 

s the absolute difference between the actual value y i and the pre- 

icted value ˆ y i by the underlying algorithm. The non-conformity 

core is then calculated as follows: 

i = | y i − ˆ y i | . (2) 

The sequence of non-conformity scores αl+1 , . . . , αn for all ex- 

mples in Z cal are obtained and sorted in descending order. Then, 

e compute the index of the (1 − ε) -percentile non-conformity 

core αs , based on the chosen significance level ε, such as: 

 (| y i − ˆ y i | ≤ αs ) ≥ 1 − ε. (3) 

Finally, the prediction interval for each new example x n +1 , 

hich covers the true output y n +1 with probability 1 − ε is cal- 
2 
ulated as: 

ˆ 
 n +1 = [ ̂  y n +1 − αs , ̂  y n +1 + αs ] . (4) 

The drawback of this standard non-conformity measure is that 

ll prediction intervals are equally sized ( 2 αs ) for a given con- 

dence level. Adopting a normalized non-conformity measure in- 

tead provides personalized individual bounds for each new ex- 

mple by scaling the standard non-conformity measure with σi , a 

erm that estimates the difficulty of predicting y i . This means that 

sing a normalized non-conformity measure gives a smaller predic- 

ion interval for “easy” examples, and a bigger one for “hard” ex- 

mples. Thus, two distinct examples with the same αs calculated 

y (2) will have two different interval predictions depending on 

heir difficulty. In this case, the normalized non-conformity score 

s as follows: 

i = 

| y i − ˆ y i | 
σi 

. (5) 

hus, we have: 

 

( | y i − ˆ y i | 
σi 

≤ αs 

)
≥ 1 − ε, (6) 

hich becomes an equality if the method is perfectly calibrated. 

or a new example x n +1 , the prediction interval becomes : 

ˆ 
 n +1 = 

[
ˆ y n +1 − αs σn +1 , ̂  y n +1 + αs σn +1 

]
. (7) 

The value σi can be defined in various ways. A popular ap- 

roach proposed by Papadopoulos and Haralambous [14] consists 

f training a small neural network to estimate the error of the un- 

erlying algorithm by predicting the value μi = ln (| y i − ˆ y i | ) . In this

ase, the non-conformity score is defined as: 

i = 

| y i − ˆ y i | 
exp (μi ) + β

, (8) 

here β ≥ 0 is a sensitivity parameter. With the significance level 

, we have: 

 

( | y i − ˆ y i | 
exp (μi ) + β

≤ αs 

)
≥ 1 − ε. (9) 

or a new example x n +1 , the prediction interval is: 

ˆ 
 n +1 = 

[
ˆ y n +1 − αs ( exp (μn +1 ) + β) , ̂  y n +1 + αs ( exp (μn +1 ) + β) 

]
. 

(10) 

Other approaches use different algorithms to normalize the 

on-conformity scores, such as regression trees [15] and k -nearest 

eighbors [10] . Before introducing the problem of multi-target re- 

ression, let us first note that, assuming that our method is well- 

alibrated and that | y i − ˆ y i | /σi is associated to a random variable 

, (6) can be rewritten as 

 (Q ≤ αs ) = 1 − ε := F Q (αs ) , (11) 

hich will be instrumental when dealing with copulas and multi- 

ariate outputs later on. Also note that this means that specifying 

 confidence ε uniquely defines a value αs . 

.2. Multi-target regression (MTR) 

In multi-target regression, the feature space X is the same as 

n standard regression, but the target space Y ⊂ R 

m is made of 

 real-valued targets. This means that observations are i.i.d pairs 

x i , y i ) drawn from a probability distribution on X × Y , where each

nstance x i ∈ X is associated to an m dimensional real-valued target 

 i = (y 1 
i 
, . . . , y m 

i 
) ∈ Y . The usual objective of multi-target regression

s then to learn a predictor h : X → Y , i.e. to predict multiple out-

uts based on the input features characterizing the data set, which 
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1 Note that there may be multiple choices for such individual levels. Here we will 

fix them to be equal for simplicity. 
eneralizes standard regression. There are two distinct approaches 

o treat MTR called algorithm adaptation and problem transforma- 

ion methods. 

For algorithm adaptation approaches, standard single-output re- 

ression algorithms are extended to the multi-target regression 

roblem. Many models were adapted to the MTR problem, such as 

upport Vector Regressors [16] , regression trees [17] , kernel meth- 

ds [18] and rule ensembles [19] . 

In problem transformation , one usually decomposes the initial 

ulti-variate problems into several simpler problems, thus allow- 

ng the use of standard classification or regression methods with- 

ut the need for an adaptation that can be tricky or computation- 

lly costly. A prototypical example of such a transformation is the 

haining method [20] , where one predicts each target sequentially, 

sing the output and predictions of previous targets as inputs for 

he next one, thus capturing some correlations between the tar- 

ets. 

As our goal here is not to produce a new MTR method, but 

ather to propose a flexible means to make their predictions re- 

iable through conformal prediction, we will not make a more de- 

ailed review of those methods. The reader interested in different 

ethods can consult for instance [20] . We will now detail how 

onformal prediction and MTR can be combined. Let us just men- 

ion that exploiting the possible relationships allow in general to 

mprove performances of the methods [21,22] . 

.3. Inductive conformal prediction for multi-target regression 

As said before, previous studies about conformal MTR focused 

n providing valid and efficient inferences target-wise [9] , thus po- 

entially neglecting the potential advantages of exploiting target 

elations. Our main goal in this paper is to provide an easy con- 

ormal MTR method allowing to do so. 

Within the MTR setting, we have a multi-dimensional out- 

ut { Y 1 , . . . , Y m } (we will use superscripts to denote the di-

ensions, and subscripts to denote sample indices) with Y j ∈ 

 , j ∈ { 1 , . . . , m } the different individual real-valued m targets. Let

ˆ  
j 

n +1 
, ̂  y 

j 

n +1 be respectively the lower and upper bounds of the in- 

erval predictions given by the non-conformity measure for each 

arget Y j given a new instance x n +1 . We define the hyper-rectangle 

 ̂

 y n +1 ] as the following Cartesian product: 

 ̂

 y n +1 ] = ×m 

j=1 [ ̂  y 
j 

n +1 
, ̂  y 

j 

n +1 ] . (12) 

This hyper-rectangle forms the volume 
∏ m 

j=1 ( ̂  y 
j 

n +1 − ˆ y 
j 

n +1 
) to 

hich a global prediction y n +1 of a new example x n +1 should be- 

ong in order to be valid, i.e. each single prediction y 
j 
n +1 

for each 

ndividual target Y j should be between the bounds ˆ y 
j 

n +1 
, ̂  y 

j 

n +1 of its 

nterval prediction. With this view, the objective of the conformal 

rediction framework for MTR in the normalized setting is to sat- 

sfy a global significance level εg required by the user such that: 

 (y n +1 ∈ [ ̂ y n +1 ]) ≥ 1 − εg . (13) 

This probability can also be written as follows: 

 (y 1 n +1 ∈ [ y 1 n +1 , y 
1 
n +1 

] , . . . , y m 

n +1 ∈ [ y m 

n +1 , y 
m 

n +1 
]) 

 P 

( | y 1 n +1 − ˆ y 1 n +1 | 
σ 1 

n +1 

≤ α1 
s , . . . , 

| y m 

n +1 − ˆ y m 

n +1 | 
σ m 

n +1 

≤ αm 

s 

)
≥ 1 − εg . (14) 

Thus, we need to find the individual non-conformity scores 
1 
s , . . . , α

m 

s , defined for instance by target-wise confidence levels 

j , such that we ensure a global confidence level 1 − εg . Extend- 

ng (11) and considering the random variables Q 

j = | y j − ˆ y j | /σ j , 

j ∈ { 1 , . . . , m } , we get: 

 (Q 

1 ≤ α1 
s , . . . , Q 

m ≤ αm 

s ) ≥ 1 − εg . (15) 
3 
hould we know the joint distribution in (15) , and therefore the 

ependence relations between target predictions, it would be rela- 

ively easy to get the individual significance levels 1 ε j associated 

o the individual non-conformity scores α j 
s such that we satisfy 

he chosen confidence level 1 − εg . Yet, such a joint distribution is 

sually unknown. The next section proposes a simple and efficient 

ethod to do so, leveraging the connection between (15) and cop- 

las. Before doing that, note again that under the assumption that 

e are well calibrated, we can transform (15) into 

 (α1 
s , . . . , α

m 

s ) = 1 − εg , (16) 

here F denotes here the joint cumulative distribution induced by 

 . 

. Copula-based conformal multi-target regression 

This section introduces our approach to obtain valid or better 

onformal prediction in the multi-variate regression setting. We 

rst recall some basics of copulas and refer to Nelsen [12] for a 

ull introduction, before detailing how we apply them to confor- 

al approaches. 

.1. Overview on copulas 

A copula is a mathematical function that can describe the 

ependence between multiple random variables. The term “cop- 

la” was first introduced by Sklar [23] in his famous theorem, 

hich is one of the fundamentals of copula theory, now known 

s Sklar’s theorem. However, these tools have already been used 

efore, as for instance in Fréchet’s paper [24] and Höffding’s 

ork [25,26] (reprinted as [27] ). Copulas are popular in the sta- 

istical and financial fields [28] , but they are nowadays more and 

ore used in other domains as well, such as hydrology [29] , 

edicine [30] , and machine learning [31] . 

Let Q = (Q 

1 , . . . , Q 

m ) be an m -dimensional random vector com-

osed of the random variables Q 

1 , . . . , Q 

m . Let its cumulative dis- 

ribution function (c.d.f.) be F = F Q : R 

m → [0 , 1] . This c.d.f. carries

wo important pieces of information: 

• The c.d.f. of each random variable Q 

j s.t. F j (q j ) = P (Q 

j ≤ q j ) ,

for all j ∈ { 1 , . . . m } . 
• The dependence structure between them. 

The objective of copulas is to isolate the dependence structure 

rom the marginals Q 

j by transforming them into uniformly dis- 

ributed random variables U 

j and then expressing the dependence 

tructure between the U 

j ’s. In other words, an m -dimensional cop- 

la C : [0 , 1] m → [0 , 1] is a c.d.f. with standard uniform marginals.

t is characterized by the following properties: 

1. C is grounded, i.e. if u j = 0 for at least one j ∈ { 1 , . . . , m } , then

C(u 1 , . . . , u m ) = 0 . 

2. If all components of C are equal to 1 except u j for all u j ∈ [0 , 1]

and j ∈ { 1 , . . . , m } , then C(1 , . . . , 1 , u j , 1 , . . . , 1) = u j . 

3. C is m -increasing, i.e., for all a , b ∈ [0 , 1] m with a ≤ b : 

�(a , b ] C = 

∑ 

j∈{ 0 , 1 } m 
(−1) 

∑ m 
k =1 j k C(a j 1 

1 
b 1 − j 1 

1 
, . . . , a j m m 

b 1 − j m 
m 

) ≥ 0 . 

The last inequality simply ensures that the copula is a well- 

efined c.d.f. inducing non-negative probability for every event. 

he idea of copulas is based on probability and quantile transfor- 

ations [32] . Using these latter, we can see that all multivariate 

istribution functions include copulas and that we can use a mix- 

ure of univariate marginal distributions and a suitable copula to 
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Table 1 

Archimedean copula families. 

Family Generator φ(t) θ range Strict Lower Upper 

Gumbel [34] (− ln t) θ θ ≥ 1 Yes 	 M

Clayton [35] 1 
θ
(t −θ − 1) θ ≥ −1 θ ≥ 0 W M

Frank [36] − ln 

(
e −θt −1 
e −θ −1 

)
θ ∈ R Yes W M
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roduce a multivariate distribution function. This is described in 

klar’s theorem [23] as follows: 

heorem 3.1 (Sklar’s theorem) . For any m -dimensional cumulative 

istribution function (c.d.f.) F with marginal distributions F 1 , . . . , F m 

, 

here exists a copula C : [0 , 1] m → [0 , 1] such that: 

 (q ) = F (q 1 , . . . , q m ) = C(F 1 (q 1 ) , . . . , F m 

(q m )) , q ∈ R 

m . (17)

f F j is continuous for all j ∈ { 1 , . . . , m } , then C is unique. 

Denoting the pseudo inverse of F j as F ← 

j 
[32] , we can get 

rom (17) that 

(u ) = C(u 

1 , . . . , u 

m ) = F (F ← 

1 (u 

1 ) , . . . , F ← 

m 

(u 

m )) . (18)

here are a few noticeable copulas, among which are: 

• the product copula: 	(u ) = 

∏ m 

j=1 u 
j ; 

• the Fréchet-Höffding upper bound copula 2 : M(u ) = 

min 1 ≤ j≤m 

{ u j } ; 
• the Fréchet-Höffding lower bound copula 3 : W (u ) = 

max { ∑ m 

j=1 u 
j − m + 1 , 0 } . 

While the product copula corresponds to classical stochastic in- 

ependence, the Fréchet-Höffding bound copulas play an impor- 

ant role as they correspond to extreme cases of dependence [33] . 

ndeed, any m -dimensional copula C is such that W (u ) ≤ C(u ) ≤
(u ) , u ∈ [0 , 1] m . 

Another important class of copulas are so-called Archimedean 

opulas, which are based on generator functions φ of specific 

inds. More precisely, a continuous, strictly decreasing, convex 

unction φ : [0 , 1] → [0 , ∞ ] satisfying φ(1) = 0 is known as an

rchimedean copula generator. It is known as a strict generator if 

(0) = ∞ . The generated copula is then given by 

(u 

1 , . . . , u 

m ) = φ[ −1] (φ(u 

1 ) + . . . + φ(u 

m )) . (19)

Table 1 provides examples and details of three one parameter 

rchimedean copula families [32] , which are particularly conve- 

ient in estimation problems (being based on a single parameter). 

.2. Copula-based conformal multi-target regression 

Let us now revisit our previous problem of finding the signifi- 

ance levels ε j for each target so that the hyper-rectangle predic- 

ion [ ̂ y ] covers the true value with confidence 1 − εg . Let us first

onsider (16) . Following Sklar’s theorem, we have 

 (α1 
s , . . . , α

m 

s ) = C(F 1 (α
1 
s ) , . . . , F m 

(αm 

s )) 

= C(1 − ε1 , . . . , 1 − εm ) 

= 1 − εg 

here the second line is obtained from (6) . Clearly, if we knew the

opula C, then we could search for values ε j providing the desired 

lobal confidence. 

A major issue is then to obtain or estimate the copula mod- 

lling the dependence structure between the targets and their con- 

dence levels. As copulas are classically estimated from multi- 

ariate observations, a simple means that we will use here is 
2 M is a copula for all m ≥ 2 . 
3 W is a copula if and only if m = 2 . 

m

4 
o estimate them from the non-conformity scores generated from 

he calibration set Z cal . Namely, if α j 
i 

is the non-conformity score 

orresponding to the jth target of the z i example of Z cal for i ∈
 l + 1 , . . . , n } , we simply propose to estimate a copula C from the

atrix 

 = 

⎡ 

⎣ 

α1 
l+1 

α2 
l+1 

. . . 

. . . 
. . . 

α1 
n αm 

n 

⎤ 

⎦ . (20) 

.3. On three specific copulas 

We will now provide some details about the copulas we per- 

ormed experiments on. They have been chosen to go from the one 

equiring the most assumptions to the one requiring the least as- 

umptions. 

.3.1. The independent copula 

The Independent copula means that the m targets are consid- 

red as being independent, with no relationship between them. It 

s a strong assumption, but it does not require any estimation of 

he copula. In this case, (15) becomes: 

(F 1 (α
1 
s ) , . . . , F m 

(αm 

s )) = 

m ∏ 

j=1 

F j (α
j 
s ) = 

m ∏ 

j=1 

P (Q 

j ≤ α j 
s ) 

≥
m ∏ 

j=1 

(1 − ε j ) = 1 − εg , 

f we assume that all ε1 , . . . , εm equal the same value εt , then: 

m 

 

j=1 

(1 − ε j ) = (1 − εt ) 
m = 1 − εg . 

hus, we simply obtain 

t = 1 − m 
√ 

1 − εg . (21) 

his individual significance level εt is then used to calculate the 

ifferent non-conformity scores α j 
s for each target in the multi- 

arget regression problem for the Independent copula. 

.3.2. The Gumbel copula 

The Gumbel copula is a member of the Archimedean copula 

amily which depends on only one parameter, and in this sense is 

 good representative of parametric copulas. It comes down to ap- 

lying the generator function φ(F j (α
j 
s )) = (− ln F j (α

j 
s )) 

θ and its in- 

erse φ[ −1] (F j (α
j 
s )) = exp −(F j (α

j 
s )) 

1 /θ to (19) , resulting in the ex- 

ression 

 

θ
G (F 1 (α

1 
s ) , . . . , F m 

(αm 

s )) = exp −
( 

m ∑ 

j=1 

(
− ln F j (α

j 
s ) 

)θ

) 1 /θ

. (22) 

n this case, we need to estimate the parameter θ . Since the 

arginals F j (α
j ) are unknown, we also need to estimate them. In 

ur case, we will simply use the empirical c.d.f. induced by the 

on-conformity scores α j 
i 

of matrix A . An alternative would be to 

lso assume a parametric form of the F j , but this seems in contra- 

iction with the very spirit of non-conformity scores. In particu- 

ar, we will denote by ˆ F j the empirical cumulative distribution such 

hat 

ˆ 
 j (β) = 

|{ α j 
i 

: α j 
i 

≤ β, i ∈ { l + 1 , . . . , n }}| 
n − l 

, β ∈ R . 

The parameter θ can then be estimated from matrix A using the 

aximum Pseudo-Likelihood Estimator [37] with a numerical opti- 

ization, for instance by using the Python library “copulae”4 . Once 
4 https://pypi.org/project/copulae/ 

https://pypi.org/project/copulae/
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5 In the case of the Gumbel copula, we use a Maximum Pseudo-Likelihood Esti- 

mator with a numerical optimization using the BFGS algorithm 
his is obtained, we then get for a particular choice of ε j that 

 

ˆ θ
G = exp −

( 

m ∑ 

j=1 

(
− ln (1 − ε j ) 

) ˆ θ

) 1 / ̂ θ

(23) 

= exp −
( 

m ∑ 

j=1 

(
− ln F j (α

j 
s ) 

) ˆ θ

) 1 / ̂ θ

(24) 

And we can search for values ε j that will make this equation 

qual to 1 − εg , using the estimations ˆ F j . The solution is especially 

asy to obtain analytically if we consider that ε1 = . . . = εm = εt , 

s we then have that 

t = 1 − (1 − εg ) 
1 / θ

√ 

m , 

nd one can then obtain the corresponding non-conformity scores 
1 
s , . . . , α

m 

s by replacing F j by ˆ F j . 

We chose this particular family of Archimedean copulas be- 

ause its lower bound is the Independent copula (as seen in 

able 1 ). We can easily verify this by taking ˆ θ = 1 . Thus, we can

apture independence if it is verified, and otherwise search in the 

irection of positive dependence. One reason for such a choice is 

hat previous experiments [11] indicate that the product copula 

ives overly conservative results. 

.3.3. The empirical copula 

Parametric copulas, as all parametric models, have the advan- 

age of requiring less data to be well estimated, while having the 

ossibly important disadvantage that they induce some bias in the 

stimation, that is likely to grow as the number of target increases. 

he Empirical copula presents a non-parametric way of estimating 

he marginals directly from the observations [38,39] . It is defined 

s follows [37] : 

 E (u ) = 

1 

n − l 

n ∑ 

i = l+1 

1 u i ≤u = 

1 

n − l 

n ∑ 

i = l+1 

m ∏ 

j=1 

1 
u j 

i 
≤u j 

, u ∈ [0 , 1] m , 

(25) 

here 1 A is the indicator function of event A , and the inequalities 

 i ≤ u for i ∈ { l + 1 , . . . , n } need to be understood component-wise.

 i are the pseudo-observations that replace the unknown marginal 

istributions, which are defined as: 

 i = (u 

1 
i , . . . , u 

m 

i ) = ( ̂  F 1 (α
1 
i ) , . . . , ˆ F m 

(αm 

i )) , i ∈ { l + 1 , . . . , n } , 
(26) 

here distributions ˆ F j are defined as before. Simply put, the Em- 

irical copula corresponds to consider as our joint probability the 

mpirical joint cumulative distribution. We then have that 

 E (F 1 (α
1 
s ) , . . . , F m 

(αm 

s )) = 

1 

n − l 

n ∑ 

i = l+1 

m ∏ 

j=1 

1 
u j 

i 
≤F j (α

j 
s ) 

. (27) 

sing that F j (α
j 
s ) = 1 − ε j , we can then search for values of ε j ,

j = 1 , . . . , m that will make (27) equal to 1 − εg . Note that in this

ase, even assuming that ε1 = . . . = εm = εt will require an algo- 

ithmic search, which is however easy as C E is an increasing func- 

ion, meaning that we can use a simple dichotomic search. 

. Evaluation 

In this section, we describe the experimental setting (underly- 

ng algorithm, data sets and performance metrics) and the results 

f our study. 
5 
.1. Experimental setting 

We choose to work with a deep Neural Network (NN) and a 

andom Forest (RF) as the underlying algorithms, and compare 

etween the three copula functions to show that adding copulas 

o the non-conformity measures works with any underlying algo- 

ithm. However, our approach can be easily adapted to any multi- 

ariate regression model. 

To compute the non-conformity scores over the calibration set, 

e use the normalized non-conformity score given by (8) as de- 

cribed in [14] , and predict μi = ln (| y i − ˆ y i | ) simultaneously for all

argets by a single multivariate multi-layer perceptron. In this case, 

i represents the estimation of the underlying algorithm’s error. As 

entioned before, the approach can be adapted to any conformal 

egression approach. 

Experiments are conducted on normalized data with a mean of 

 and a standard deviation of 1, with a 10-fold cross validation 

o avoid the impact of biased results, and with a calibration set 

qual to 10% of the training examples for all data sets. We take the 

alue β = 0 . 1 for the sensitivity parameter and do not optimize it 

hen calculating the normalizing coefficient μi . After getting the 

roper training data (X tr , Y tr ) , calibration data (X cal , Y cal ) and test

ata (X ts , Y ts ) for each fold, we follow the steps described below: 

1. Train the underlying algorithm (NN or RF) on the proper train- 

ing data (X tr , Y tr ) . The Neural Network’s architecture is com- 

posed of a first dense layer applied to the input with “selu”

activation (scaled exponential linear units [40] ), three hidden 

dense layers with dropouts and “selu” activation, and a final 

dense layer with m outputs and a linear activation. The Random 

Forest is trained for each target alone using Python sklearn’s 

implementation, then each target is predicted independently to 

get the results. 

2. Predict ˆ Y cal and 

ˆ Y ts for calibration and test data respectively us- 

ing the underlying algorithm. 

3. Train the normalizing multi-layer perceptron on the proper 

training data (X tr , μtr = ln (| Y tr − ˆ Y tr | ) , corresponding to the er- 

ror estimation of the underlying algorithm. The normalizing 

MLP consists of three hidden dense layers with “selu” activa- 

tion and dropouts and a final dense layer with m outputs for 

predicting all targets simultaneously. This approach was chosen 

since it proved to be more effective than a single target ap- 

proach that we experimented in a previous work [11] . 

4. Predict μcal and μts for calibration and test data respectively 

using the normalizing MLP. 

5. If needed, get an estimation 

5 of the copula C from the matrix A 

of calibration non-conformity scores. 

6. For each global significance level εg : 
• Get the individual significance level ε j = εt for j ∈ { 1 , . . . , m }

and calculate αs = { α1 
s , . . . , α

m 

s } for all targets using cal- 

ibration data, according to the methods mentioned in 

Section 3.3 . 
• Get the interval predictions for the test data with: [

ˆ Y ts − αs ( exp (μts ) + β) , ̂  Y ts + αs ( exp (μts ) + β) 
]
. (28) 

emark 4.1. We choose ε j = εt for j ∈ { 1 , . . . , m } as we have no

ndication that individual targets should be treated with different 

egree of cautiousness. However, since copulas are functions from 

0 , 1] m to [0,1], there is in principle no problem in considering dif- 

erent confidence degrees for different tasks, if an application calls 

or it. How to determine and elicit such degrees is however, to our 

nowledge, an open question. 



S. Messoudi, S. Destercke and S. Rousseau Pattern Recognition 120 (2021) 108101 

Fig. 1. Results for music origin. 

Table 2 

Information on the used multi-target regression data sets. 

Names Examples Features Targets 

music origin [41] 1059 68 2 

indoor loc [42] 21049 520 3 

scpf [43] 1137 23 3 

sgemm [44] 241600 14 4 

rf1 [43] 9125 64 8 

rf2 [43] 9125 576 8 

scm1d [43] 9803 280 16 

scm20d [43] 8966 61 16 
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The implementation was done using Python and Tensor- 

ow. The copula part of our experiments was based on the 

ook [37] and the Python library “copulae”. The code used for this 

aper is available in Github 6 . 

We use eight data sets with different numbers of targets and 

arying sizes. They are summarized in Table 2 . 

.2. Results 

This section presents the results of our experiments, investigat- 

ng in particular the validity and efficiency of the proposed ap- 

roaches. Figures 1 and 2 detail these results for “music origin”

nd “sgemm”. The figures for all other data sets can be found 

n Appendix A . 

To verify the validity of each non-conformity measure, we cal- 

ulate the accuracy of each one and compare it with the calibra- 

ion line. This line represents the case where the error rate is ex- 

ctly equal to εg for a confidence level 1 − εg , which is the desired 

utcome of using conformal prediction. In multi-target regression, 

he accuracy is computed based on whether the observation y be- 

ongs to the hyper-rectangle [ ̂ y ] or not depending on the signifi- 

ance level εg . Thus, a correctly predicted example must verify that 

ll its individual predictions y i for each individual target Y i is in its 

orresponding individual interval predictions. Concretely, for each 

onsidered confidence level εg and test example x ∈ X ts , we obtain 

 prediction [ ̂ y ] εg . From this, we can compute the empirical valid- 

ty as the percentage of times that [ ̂ y ] εg contains the true observed 

alue, i.e., ∑ 

(x,y ) ∈ Z ts 1 y ∈ [ ̂ y ] εg 

| Z ts | . 
6 https://github.com/M-Soundouss/CopulaConformalMTR 

v

6 
oing it for several values of εg , we obtain a calibration curve that 

hould be as close as possible to the identity function. 

The results of the error rate or accuracy curves are shown in 

ub-figures (a) for the Neural Network and (b) for the Random 

orest of each Figs. 1 and 2 . The curves correspond to the Inde-

endent, Gumbel and Empirical multivariate non-conformity mea- 

ures. The results clearly show that the best performance is ob- 

ained by using the Empirical copula, where the model is well cal- 

brated. For most of the studied data sets, the Empirical copula ac- 

uracy curve is almost perfectly aligned with the calibration line, 

nd thus almost exactly valid. This is due to the fact that Empiri- 

al copula functions use non-parametric estimate of the marginals 

ased on the observations, which enables the model to better 

dapt to the dependence structure of each data set. This depen- 

ence structure is neglected when using an Independent copula- 

ased non-conformity measure, since the m targets are treated as 

f they were independent, and so the link between them is not 

xploited when computing εt . This also means that the difference 

etween the Empirical and the Independent copula-based non- 

onformity measures is bigger when there is a strong dependence 

etween the non-conformity scores, and is an indication of the 

trength of this dependence. For instance, we can deduce that the 

argets are strongly related for “sgemm” by the big gap between 

he Independent and Empirical accuracy curves ( Fig. 2 .a and 2 .b). 

or the Gumbel copula, the accuracy curve is generally closer to 

he calibration line than the one for the Independent copula. This 

upports the existence of a dependence structure between the tar- 

ets, since the lower bound of the Gumbel copula is the Indepen- 

ent copula, which means that if the targets were in fact indepen- 

ent, the two curves would perfectly match. This can be seen in 

ig. 1 .a and 1 .b for “music origin”, where the accuracy curves al- 

ost overlap all the time, meaning that the targets are likely to 

e independent. These conclusions concerning the empirical effi- 

iency are the same for both underlying algorithms, which sug- 

ests that the difference regarding the validity performance mainly 

omes from the chosen copula-based non-conformity measure. 

From the empirical validity results, we also noticed that the 

mpirical copula non-conformity measure can be slightly invalid 

ometimes ( Fig. A.6 .a and A.6 .b for “scpf”). We explain this by the

ewer number of examples, in which case one could use a more 

egularized form than the Empirical copula. However, when a lot 

f examples are available (for instance, more than 20 0 0 0 0 obser- 

ations for “sgemm”), the validity curve of the Empirical copula 

https://github.com/M-Soundouss/CopulaConformalMTR
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Fig. 2. Results for sgemm. 

Fig. 3. Results for music origin for different calibration data sizes. 
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on-conformity measure is perfectly aligned with the calibration 

ine, meaning that this measure is exactly valid ( Fig. 2 .a and 2 .b). 

In single-output regression, efficiency is measured by the size 

f the intervals, and a method is all the more efficient as predicted 

ntervals are small. To assess efficiency in multi-target regression, 

e can simply compute the volume of the obtained predictions 

 ̂

 y ] εg , after (12) . For each experiment, we then compute the me-

ian value of those hyper-rectangle volumes (for the estimation to 

e robust against very large hyper-rectangles). 

Efficiency results are shown in sub-figure c for all data sets for 

g = 0 . 1 . They show that, for each underlying algorithm, the Inde-

endent copula has a bigger median hyper-rectangle volume com- 

ared to the Gumbel and Empirical copulas, especially in those 

ases where the existence of a dependence structure is confirmed 

y the calibration curves. This is due to the fact that using an 

ndependent copula ignores the dependence between the non- 
7 
onformity scores, which leads to an over-estimation of the global 

yper-rectangle error. This impact is avoided when using the Em- 

irical copula because it takes advantage of the dependence struc- 

ure to construct better interval predictions. Another remark con- 

erning efficiency is that the box plots for Empirical copula are 

ighter than the other two, which shows that the values are ho- 

ogeneous on all folds compared to the Independent copula for 

nstance, where the variation is much more visible. When compar- 

ng between the underlying algorithms, we can see that the Neu- 

al Network gives tighter volumes for “sgemm” ( Fig. 2 c), whereas 

he Random Forest gives better results for “music origin” ( Fig. 1 a). 

e can explain this by the fact that “sgemm” has more data, and 

he strong dependence structure is taken into consideration when 

raining the Neural Network that is trained on all targets simulta- 

eously, as opposed to the Random Forest that is trained on each 

arget individually. 
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Fig. 4. Results for indoor loc for different calibration data sizes. 

Table 3 

Validity (average gap between the empirical validity curve and the calibration line in percentage) summarized re- 

sults for all data sets. 

Independent Gumbel Empirical 

NN RF NN RF NN RF 

music origin 2 . 19 ± 4 . 89 3 . 32 ± 4 . 68 −0 . 93 ± 4 . 66 0 . 17 ± 4 . 93 −1 . 41 ± 4 . 84 −0 . 56 ± 5 . 14 

indoor loc 3 . 77 ± 1 . 11 3 . 89 ± 1 . 56 1 . 8 ± 1 . 16 1 . 09 ± 1 . 39 0 . 03 ± 1 . 13 0 . 12 ± 1 . 4 

scpf 22 . 33 ± 4 . 79 18 . 56 ± 4 . 32 15 . 6 ± 4 . 7 11 . 57 ± 5 . 01 −3 . 47 ± 4 . 87 0 . 48 ± 5 . 79 

sgemm 25 . 14 ± 0 . 84 28 . 07 ± 0 . 4 3 . 06 ± 0 . 68 1 . 99 ± 0 . 39 −0 . 14 ± 0 . 39 −0 . 15 ± 0 . 39 

rf1 6 . 01 ± 1 . 44 4 . 99 ± 1 . 28 2 . 98 ± 1 . 38 1 . 98 ± 1 . 33 −0 . 4 ± 1 . 49 −0 . 34 ± 1 . 48 

rf2 5 . 78 ± 2 . 68 4 . 94 ± 1 . 76 3 . 08 ± 2 . 37 1 . 98 ± 1 . 89 −0 . 3 ± 1 . 6 0 . 24 ± 1 . 68 

scm1d 14 . 77 ± 2 . 84 14 . 58 ± 2 . 89 10 . 66 ± 2 . 67 9 . 79 ± 2 . 84 −0 . 57 ± 1 . 85 −0 . 79 ± 2 . 3 

scm20d 14 . 44 ± 2 . 06 14 . 97 ± 2 . 02 10 . 52 ± 2 . 33 9 . 39 ± 2 . 1 −1 . 16 ± 2 . 01 −1 . 54 ± 2 . 09 

Table 4 

Efficiency (hyper-rectangle median volume for εg = 0 . 1 ) summarized results for all data sets. 

Independent Gumbel Empirical 

NN RF NN RF NN RF 

music origin 4 . 02 1 ± 1 . 54 1 2 . 47 1 ± 1 . 18 1 3 . 27 1 ± 1 . 5 1 2 . 07 1 ± 1 . 1 1 3 . 08 1 ± 1 . 46 1 1 . 81 1 ± 7 . 82 

indoor loc 1 . 31 −1 ± 7 . 77 −2 4 . 76 −1 ± 7 −1 1 . 15 −1 ± 7 . 95 −2 4 . 13 −1 ± 6 . 02 −1 1 . 03 −1 ± 7 . 65 −2 4 . 26 −1 ± 6 . 5 −1 

scpf 1 . 03 11 ± 3 . 02 11 8 . 72 10 ± 2 . 06 11 1 . 02 11 ± 3 . 02 11 7 . 56 10 ± 2 . 08 11 1 . 12 7 ± 2 . 05 7 5 . 71 6 ± 1 . 54 7 

sgemm 7 . 97 −4 ± 4 . 81 −4 1 . 75 −2 ± 2 . 58 −3 2 . 47 −4 ± 1 . 45 e −4 7 . 48 −3 ± 7 . 91 −4 2 . 17 −4 ± 1 . 25 −4 7 . 4 −3 ± 8 . 15 −4 

rf1 7 . 19 −3 ± 1 . 23 −2 5 . 64 −5 ± 4 . 87 −5 5 . 15 −3 ± 9 . 11 −3 3 . 56 −5 ± 3 . 44 −5 4 . 49 −3 ± 9 . 23 −3 2 . 81 −5 ± 1 . 67 −5 

rf2 2 . 17 −3 ± 2 . 89 −3 2 . 67 −4 ± 3 . 54 −4 1 . 67 −3 ± 2 . 45 −3 1 . 42 −4 ± 1 . 71 −4 1 . 52 −3 ± 2 . 42 −3 1 . 42 −4 ± 1 . 71 −4 

scm1d 1 . 08 5 ± 1 . 04 5 1 . 72 5 ± 1 . 66 5 1 . 67 4 ± 1 . 33 4 2 . 11 4 ± 1 . 58 4 2 . 31 3 ± 1 . 93 3 3 . 43 3 ± 2 . 27 3 

scm20d 2 . 18 6 ± 4 . 26 6 5 . 77 6 ± 5 . 38 6 2 . 14 5 ± 2 . 88 5 1 . 02 6 ± 7 . 3 5 2 . 73 4 ± 2 . 58 4 2 . 01 5 ± 1 . 06 5 

We note X Y the value X × 10 Y . 
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The empirical validity and hyper-rectangle median volume re- 

ults are summarized in Tables 3 and 4 . The validity simply pro- 

ides the average difference between a perfect calibration (the 

dentity function) and the observed curve for each copula. This 

eans, in particular, that a negative value indicates that the ob- 

erved frequency is in average below the specified confidence de- 

ree. 

The numbers confirm our previous observations on the graphs, 

s the average gap is systematically higher for the Independent 
8 
opula and lower for the Empirical one, with Gumbel in-between. 

e can however notice that while the Empirical copula provides 

he best results, it is also often a bit under the calibration line, in- 

icating that if conservativeness is to be sought, one should maybe 

refer the Gumbel copula. These outcomes are the same for both 

N and RF, without one algorithm being overall better than the 

ther. About the same conclusions can be given regarding effi- 

iency, with the Empirical copula giving the best results and the 

ndependent one the worst. 
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To complete our experiments and analyze the sensitivity of our 

pproach to the size of the calibration set, we conducted the same 

xperiments on two datasets, where we retained only 1% and 5% 

f the whole data set: “indoor loc” which has a lot of examples 

21049) and “music origin” which has fewer examples (1059). We 

nly used Neural Networks as the underlying algorithm with the 

mpirical and Gumbel copulas non-conformity measures to com- 

are between them. Figures 3 and 4 show the results for both 

atasets. 

Results clearly show that with fewer examples for “music ori- 

in”, the Empirical non-conformity measure is often invalid and 

lso unstable (has larger variability) with 1% of the examples as 

alibration data ( Fig. 3 a). This can also be seen in the difference of

ariance between values for the empirical validity, with 10% hav- 

ng more homogeneous values as compared to 5% and 1% respec- 

ively. Using the Gumbel copula, which is semi-parametric, helps 

o attenuate the effect, with more consistent results even for 1% 

 Fig. 3 b). For “indoor loc”, the impact of the percentage of data

sed is insignificant, since the validity curves overlap for 10%, 5% 

nd 1% of data used for calibration, mainly because 1% of the 

hole data set is still quite large (about 200 samples, to be com- 

ared with the 10 samples of “music origin”). This is the case for 

oth Empirical and Gumbel copulas, giving the same results as ear- 

ier in Fig. A.5 a, i.e. the Empirical copula being exactly valid and 

etter than the Gumbel copula. 

. Conclusion and discussion 

In this paper, we provided a quite easy and flexible way to ob- 

ain valid conformal predictions in a multi-variate regression set- 

ing. We did so by exploiting a link between non-conformity scores 

nd copulas, a commonly used tool to model multi-variate distri- 

ution. 

Experiments on various data sets for a small choice of repre- 

entative copulas show that the method indeed allows to improve 

pon the naive independence assumption for different underlying 

lgorithms (Neural Networks and Random Forests). Those first re- 

ults indicate in particular that while parametric, simple copulas 
Fig. A.5. Results fo

9 
ay provide valid results for some data sets, more complex copu- 

as may be needed in general to obtain well calibrated predictions, 

ith the cost that good estimations of such copulas require a lot 

f calibration data. 

As future lines of work, we would like to explore further the 

exibility of our framework, for instance by adapting it to the 

icher conformal predictive distributions [45] , by exploring the 

ossibility of using vines [46] to model complex dependencies, or 

y proposing protocols allowing to obtain εg from different individ- 

al, user-defined confidence degrees, taking up on our Remark 4.1 . 

e also would like to directly learn a cost function that takes into 

onsideration validity and efficiency [47] for a multi-target regres- 

ion problem, possibly by using the hyper-rectangle volume as a 

arameter to define εt values that give us the smallest volume for 

he same validity. 

Finally, while we mostly focused on multi-variate regression in 

he present paper, it would be interesting to try to extend the 

urrent approach to other multi-task settings, such as multi-label 

roblems. A possibility could be to make such problems continu- 

us, as proposed for instance by Liu [31] . 
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ppendix A. Validity and efficiency figures 

This appendix contains the figures for empirical validity 

nd hyper-rectangle median volume for all remaining data sets 

 Figs. A .7–A .10 ). 
r indoor loc. 
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Fig. A.6. Results for scpf. 

Fig. A.7. Results for rf1. 

Fig. A.8. Results for rf2. 
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Fig. A.9. Results for scm1d. 

Fig. A.10. Results for scm20d. 
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