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ABSTRACT

We present a novel on-policy algorithm for solving stochastic optimal control
(SOC) problems. By leveraging the Girsanov theorem, our method directly com-
putes on-policy gradients of the SOC objective without expensive backpropagation
through stochastic differential equations or adjoint problem solutions. This ap-
proach significantly accelerates the optimization of neural network control policies
while scaling efficiently to high-dimensional problems and long time horizons.
We evaluate our method on classical SOC benchmarks as well as applications
to sampling from unnormalized distributions via Schrödinger-Föllmer processes
and fine-tuning pre-trained diffusion models. Experimental results demonstrate
substantial improvements in both computational speed and memory efficiency
compared to existing approaches.

1 INTRODUCTION

Stochastic Optimal Control (SOC) problems (Mortensen, 1989; Fleming & Rishel, 2012) arise across
sciences and engineering, from traditional domains like finance and economics (Pham, 2009; Fleming
& Stein, 2004; Aghion & Howitt, 1992) and robotics (Theodorou et al., 2011; Pavlov et al., 2018)
to emerging applications in sampling complex distributions and simulating rare events (Zhang &
Chen, 2022; Holdijk et al., 2023; Hartmann et al., 2013; 2017; Ribera Borrell et al., 2024). Their
goal is to optimize a cost function by adding an adjustable drift (the control) to a reference stochastic
differential equation (SDE).

While low-dimensional SOC problems can be solved using standard numerical methods for the
Hamilton-Jacobi-Bellman equation, these approaches fail in high dimensions. This has motivated
recent deep learning (DL) solutions (Han & E, 2016; Han et al., 2018; Huré et al., 2020; Domingo-
Enrich et al., 2023; Germain et al., 2021; Hu & Lauriere, 2024) that parameterize the control using
neural networks and optimize it via stochastic gradient descent on the SOC objective, evaluated using
controlled SDE solutions. This Neural SDE approach (Tzen & Raginsky, 2019; Li et al., 2020), though
conceptually simple, requires differentiating through SDE solutions—making it computationally
expensive and limiting scalability.

One alternative uses the Girsanov theorem to compute the SOC objective via expectations over a
reference process with a control independent from the one being optimized. However, this introduces
an exponential weighing factor whose high variance (when the reference control differs significantly
from the actual control) again limits scalability.

We propose a new approach based on expressing the gradient of the SOC objective exactly through
expectations over the controlled process (on-policy evaluation) without differentiating through process
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solutions (simulation-free). This result, first derived by Yang & Kushner (1991), avoids exponential
weighing factors. We show this gradient can be computed via automatic differentiation of an
alternative objective by selectively detaching parameters from the computational graph.

Specifically, our main contributions are:

• We propose an on-policy algorithm for solving generic SOC problems via deep learning that
scales to scenarios where Neural SDE methods are computationally intractable. Our approach uses
on-policy evaluation of gradients without requiring differentiation through SDE solutions.

• We show how to apply our approach to construct Föllmer processes between a point mass and an un-
normalized target distribution, enabling sampling from this target and computing its normalization
constant.

• We also show how to fine-tune diffusion-based generative models by solving an SOC problem that
transforms an initial sampling SDE into one that samples from a tilted distribution weighted by a
reward function.

• Through numerical experiments, we demonstrate significant reductions in computational time and
memory usage compared to methods requiring SDE solution differentiation, such as Neural SDE
approaches.

1.1 RELATED WORK

Deep learning approaches to SOC have evolved along several directions. Han & E (2016) pioneered
learning feedback control functions for high-dimensional problems, inspiring algorithms for backward
SDEs and PDEs (Han et al., 2018). Alternative approaches include the algorithms proposed in Ji et al.
(2020), dynamic programming methods (Huré et al., 2021; 2020), and stochastic optimal control
matching (Domingo-Enrich et al., 2023) based on iterative diffusion optimization (Nüsken & Richter,
2023). These methods either use off-policy learning with high-variance estimators or require costly
differentiation through SDE solutions.

The gradient formula we use was originally proposed in Yang & Kushner (1991) in the context
of sensitivity analysis in finance (Pham, 2009; Fleming & Stein, 2004; Aghion & Howitt, 1992),
with generalizations in Gobet & Munos (2005). While referenced in recent DL works (Mohamed
et al., 2020; Li et al., 2020; Lie, 2021; Domingo-Enrich et al., 2023; Ribera Borrell et al., 2024;
Domingo-Enrich, 2024), it has not been fully exploited algorithmically. Our approach also connects
to Reinforcement Learning (Quer & Borrell, 2024; Domingo-Enrich et al., 2024; Domingo-Enrich,
2024), resembling a continuous-time version of the REINFORCE algorithm (Williams, 1992; 1988;
Sutton et al., 1999).

For Föllmer processes (Föllmer, 1986), several deep learning methods have been proposed (Huang
et al., 2021; Jiao et al., 2021; Vargas et al., 2023b). The Path Integral Sampler (PIS) (Zhang & Chen,
2022) is closest to our approach, as it performs on-policy minimization of the same SOC objective.
However, PIS requires differentiating through controlled processes, while our approach avoids this
costly step.

Generative models based on diffusion can be fine-tuned by modifying their drifts based on reward
functions (Fan et al., 2024; Clark et al., 2024; Uehara et al., 2024). This task can be formulated as a
SOC problem (Domingo-Enrich et al., 2024). Our method offers an efficient solution when the base
distribution is a point-mass.

2 METHODS

2.1 PROBLEM SETUP

We consider the stochastic optimal control (SOC) problem:

min
u∈U

J(u) with J(u) = E[J (u,Xu)], (1)

in which, for a generic process X = (Xt)t∈[0,T ],

J (u,X) =

∫ T

0

(
1
2 |ut(Xt)|2 + ft(Xt)

)
dt+ g(XT ), (2)
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and Xu = (Xu
t )t∈[0,T ] is the solution to the SDE

dXu
t = (bt(X

u
t ) + σtut(X

u
t )) dt+ σtdWt, Xu

0 ∼ µ0. (3)
In these equations, Xu

t ∈ Rd is the system state, E denotes expectation over the law of Xu,
u : [0, T ]× Rd → Rd is a closed-loop Markovian control that belongs to some set U of admissible
controls to be specified later, f : [0, T ] × Rd → Rd is the state cost, g : Rd → Rd is the terminal
cost, b : [0, T ]× Rd → Rd is the base drift, σ : [0, T ] → Rd × Rd is the volatility matrix, which we
assume invertible and independent of the state Xu

t , (Wt)t∈[0,T ] is a Wiener process taking values
in Rd, and µ0 is some probability distribution on Rd for the initial state.

We are interested in solving (1) in situations where the set of admissible controls U is a rich parametric
class, for example made of deep neural networks (DNN). We denote functions in the class by uθ,
where θ ∈ Θ collectively denotes the parameters to be adjusted, e.g. the weights if we use a DNN.

2.2 REFORMULATION WITH GIRSANOV THEOREM

The key challenge in solving the SOC problem (1) is that a vanilla calculation of the objective’s
gradient requires to differentiate Xu since it depends on the control u: this requires costly back-
propagation through the solutions of the SDE (3). We propose a method to compute the gradient
of (1) that avoids this expensive step and refer to it as a simulation-free method.

To this end, we first use the Girsanov theorem to reformulate the problem so that the control u appears
explicitly in the objective:
Lemma 1. Given a reference control v ∈ U , the objective in (1) can be expressed as

J(u) = E [J (u,Xv)M(u, v)] , (4)
where Xv = (Xv

t )t∈[0,T ] solves the SDE (3) with u replaced by v, M(u, v) is the Girsanov factor

M(u, v) = exp

(
−
∫ T

0

(vt(X
v
t )− ut(X

v
t )) · dWt −

1

2

∫ T

0

|vt(Xv
t )− ut(X

v
t )|

2
dt

)
, (5)

and the expectation E in (4) is taken over the law of Xv .

The result follows directly from the Girsanov change of measure formula between the law of Xu and
Xv . For a proof, see e.g. Karatzas & Shreve (1991).

Expression (4) presents J(u) as an off-policy objective, making u explicit since the process Xv is
independent of this control. This eliminates the need to differentiate through state process trajectories
when computing gradients. However, empirically evaluating J(u) and its gradient using (4) with
finite samples from Xv yields estimators whose variance depends heavily on the reference control v.
This suggests keeping v close to u. Next we show that we can use (4) to evaluate the gradient using
the controlled process itself.

2.3 GRADIENT COMPUTATION

Our method builds on a gradient formula for parametrized controls u = uθ, originally derived in Yang
& Kushner (1991) and also presented in Ribera Borrell et al. (2024):
Proposition 1. Let uθ with θ ∈ Θ be a parametric realization of a control in U and denote
L(θ) ≡ J(uθ) the objective (1) viewed as a function of θ. Then

∂θL(θ) = E

[∫ T

0

uθ
t (X

θ
t ) · ∂θuθ

t (X
θ
t )dt

]
+ E

[
J (uθ, Xθ)

∫ T

0

∂θu
θ
t (X

θ
t ) · dWt

]
(6)

where ∂θu
θ
t (X

θ
t ) denotes ∂θu

θ
t (x) evaluated at x = Xθ

t and Xθ = (Xθ
t )t∈[0,T ] ≡ (Xuθ

t )t∈[0,T ]

solves the SDE
dXθ

t =
(
bt(X

θ
t ) + σtu

θ
t (X

θ
t )
)
dt+ σtdWt, Xθ

0 ∼ µ0, (7)
and the expectation E in (6) is taken over the law of Xθ.

For completeness, we give the proof of this proposition in Appendix A. Expression (6) eliminates
the need to differentiate through state trajectories (Xθ

t )t∈[0,T ]. While it requires an invertible,
control-independent volatility σt, the formula can be extended to control-dependent volatilities using
Malliavin calculus (Gobet & Munos, 2005).
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Algorithm 1 Simulation-Free On-Policy Training
1: Initialize: n walkers, K time steps, model parameters θ for uθ, gradient descent optimizer
2: repeat
3: Set θ̄ = stopgrad(θ)
4: Randomize time grid: t1, . . . , tK ∼ Uniform(0, T )
5: Add t0 = 0, tK = T , and sort such that 0 = t0 < t1 < · · · < tK−1 < tK = T
6: Set ∆tk = tk+1 − tk
7: for each walker i = 1, . . . , n do
8: Set xi

0 ∼ µ0

9: for k = 0, . . . ,K − 1 do
10: ∆W i

k =
√
∆tk ζ

i
k, where ζik ∼ N(0, Id)

11: xi
tk+1

= xi
tk

+ uθ̄
tk
(xi

tk
)∆tk + σtk∆W i

k

12: end for
13: Ai

K =
∑K

k=1
1
2 |u

θ
tk
(xi

tk
)|2∆tk

14: B̄i
K =

∑K
k=1

(
1
2 |u

θ̄
tk
(xi

tk
)|2 + ftk(x

i
tk
)
)
∆tk

15: Ci
K =

∑K
k=1 u

θ
tk
(xi

tk
) ·∆W i

k
16: end for
17: Compute: L̂n(θ, θ̄) = n−1

∑n
i=1

[
Ai

K +
(
B̄i

K + g(xi
tK )
)
Ci

K

]
.

18: Compute ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

and take a step of gradient descent to update θ.
19: until converged

2.4 ALTERNATIVE OBJECTIVE FOR IMPLEMENTATION

Equation (6) can be implemented to directly estimate the gradient of the objective L(θ) = J(uθ) by
estimating the expectation empirically over an ensemble of independent realizations of the SDE (7).
Alternatively, we can use automatic differentiation of an alternative objective (Ribera Borrell et al.,
2024; Domingo-Enrich, 2024):
Proposition 2. We have

∂θL(θ) = ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

, (8)
where we defined

L̂(θ, θ̄) = E

[∫ T

0

1
2 |u

θ
t (X

θ̄
t )|2dt

]
+ E

[
J (uθ̄, X θ̄)

∫ T

0

uθ
t (X

θ̄
t ) · dWt

]
(9)

in which X θ̄ = (X θ̄
t )t∈[0,T ] solves (7) with uθ replaced by uθ̄ and the expectation E in (6) is taken

over the law of X θ̄.

The proof of this proposition is immediate by direct calculation so we omit it for the sake of brevity.

The gradient ∂θL̂(θ, θ̄)
∣∣
θ̄=θ

can be computed via automatic differentiation by using θ̄ = stopgrad(θ).
This avoids differentiating through X̄ ≡ X θ̄ while maintaining an on-policy objective. The expecta-
tion can be estimated empirically using samples from the SDE (7), as detailed in Algorithm 1.

2.5 APPLICATION TO SAMPLING VIA CONSTRUCTION OF A FÖLLMER PROCESS

By definition, the Föllmer process that samples a given target probability distribution µ is the process
(Y u

t )t∈[0,1] that uses the optimal control u obtained by solving

min
u∈U

E
∫ 1

0

1
2 |ut(Y

u
t )|2dt (10)

where
dY u

t = ut(Y
u
t )dt+ dWt, Y u

0 ∼ δ0, Y u
1 ∼ µ. (11)

This problem is a special case of the Schrödinger bridge problem (Léonard, 2014) when the base
distribution is the Dirac delta distribution δ0, i.e. the point mass at x = 0.
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While the minimization problem in (10) differs from a standard SOC problem (1) due to its terminal
condition Y u

t=1 ∼ µ, it can be reformulated as a SOC problem (Léonard, 2014; Chen et al., 2014)—an
insight exploited by Zhang & Chen (2022). The connection is as follows:
Proposition 3. Assume that µ is absolutely continuous with respect of the Lebesgue measure and let
its probability density function be ρ(x) = Z−1e−U(x) where U : Rd → R is a known potential and
Z =

∫
Rd e

−U(x)dx < ∞ is an unknown normalization factor. Consider the SOC problem using the
objective

J(u) = E
[∫ 1

0

1
2 |ut(X

u
t )|2dt− 1

2 |X
u
1 |2 + U(Xu

1 )]

]
, (12)

where (Xu
t )t∈[0,T ] solves the SDE

dXu
t = ut(X

u
t )dt+ dWt, Xu

t=0 ∼ δ0. (13)

Then the process (Xu
t )t∈[0,1] obtained by using the optimal control minimizing (12) in the SDE (13)

is the Föllmer process that satisfies Xu
t=1 ∼ µ.

We omit the proof of this proposition since it is a special case of Proposition 5 established below.

Our approach can solve the SOC problem in Proposition 3, providing a simulation-free imple-
mentation of the Path Integral Sampler (PIS) (Zhang & Chen, 2022). Section 3 demonstrates the
computational advantage of our approach through examples.

Since we replaced the terminal constraint in SDE (13) with a terminal cost in (12), Xu
t=1 ∼ µ is

not guaranteed for suboptimal controls. However, as noted in Zhang & Chen (2022), we can still
compute unbiased expectations over µ for any control through Girsanov reweighting:
Proposition 4. Consider the process (Xu

t )t∈[0,T ] obtained by solving the SDE (13) with any (not
necessary optimal) control u. Then, given any suitable test function h : Rd → R, we have∫

Rd

h(x)µ(dx) = Z−1E [h(Xu
T )M(u)] , Z =

∫
Rd

e−U(x)dx = E [M(u)] , (14)

where we defined

M(u) = (2π)d/2 exp

(
−
∫ 1

0

1
2 |ut(X

u)|2dt−
∫ 1

0

ut(X
u
t ) · dWt +

1
2 |X

u
1 |2 − U(Xu

1 )

)
. (15)

In addition M(u) = Z iff u is the optimal control minimizing the SOC problem with objective (12).

We also omit the proof of this proposition since it is a special case of Proposition 6 established below.

2.6 APPLICATION TO FINE-TUNING

The approach in Section 2.5 can be adapted to fine-tune generative models. Suppose that the drift b in
the SDE

dYt = bt(Yt)dt+ σtdWt, Y0 ∼ δ0, (16)
has been tailored in such a way that Yt=T ∼ ν where ν is a given probability distribution. Learning
such a b can for instance be done using the framework of score-based diffusion models (Song et al.,
2021) or stochastic interpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023) tailored to
building Föllmer processes (Chen et al., 2024). Assume that we would like to fine-tune this diffusion
so that it samples instead the probability distribution

µ(dx) = Z−1er(x)ν(dx), Z =

∫
Rd

er(x)ν(dx), (17)

obtained by tilting ν by the reward function r : Rd → R (assuming that this tilted measure is
normalizable, i.e. Z < ∞). Such problems arise in the context of image generation where they have
received a lot of attention lately. Our next result shows that it can be cast into a SOC problem.
Proposition 5. Consider the SOC problem (1) with zero running cost, f = 0, and terminal cost set
to minus the reward function, g = −r, in the objective (10). Assume also that the drift b and the
volatility σ used in the SDE (3) are the same as those used in the SDE (16) that guarantees that
Yt=T ∼ ν. Then the solutions of the SDE (3) solved with the optimal u minimizing this SOC problem
and Xu

t=0 = 0 are such that Xu
t=T ∼ µ.
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The proof of this proposition is given in Appendix A. Note that Proposition 3 follows from Proposi-
tion 5 as a special case if we set bt(x) = 0, σt = 1, and T = 1, in which case ν = N(0, Id), and we
can set r(x) = −U(x) + 1

2 |x|
2 to target µ(dx) = Z−1e−U(x)dx.

The SOC problem in Proposition 5 can again be solved in a simulation-free way using our approach,
thereby offering a simple alternative to the Adjoint Matching method proposed in Domingo-Enrich
et al. (2024). Since in practice the learned control will be imperfect, we will need to reweigh the
samples to get unbiased estimates of expectations over them. It can be done using this result:

Proposition 6. Let Xu solve SDE (3) starting from the initial condition Xu
t=0 = 0 with an arbitrary

(not necessarily optimal) u and with the drift b and the volatility σ that guarantee that the solutions
the SDE (3) satisfy Yt=T ∼ ν. Then given any suitable test function h : Rd → R, we have∫

Rd

h(x)µ(dx) = Z−1E [h(Xu
T )Mr(u)] , Z =

∫
Rd

er(x)ν(dx) = E [Mr(u)] (18)

where we defined

Mr(u) = exp

(
−
∫ T

0

1
2 |ut(X

u)|2dt−
∫ T

0

ut(X
u
t ) · dWt + r(Xu

T )

)
(19)

and the expectation is taken over the law of Xu. In addition, Mr(u) = Z iff u is the optimal control
specified in Proposition 5.

The proof of this proposition is given in Appendix A. Proposition 4 follows from Proposition 6 as a
special case if we set bt(x) = 0, σt = 1, T = 1, and r(x) = −U(x) + 1

2 |x|
2.

3 EXPERIMENTS

We test our method on two applications: sampling from unnormalized distributions via Schrödinger-
Föllmer processes and fine-tuning pre-trained diffusion models. In Appendix C, we also report the
performance of our approach on classical SOC benchmarks involving linear Ornstein-Ulhenbeck
processes with linear and quadratic costs, that are amenable to exact solution for benchmarking.

3.1 SAMPLING FROM AN UNNORMALIZED DISTRIBUTION

We test our method on Neal’s funnel distribution in d = 10 dimensions, which can be sampled
by solving the SOC problem formulated in Sec.2.5. The distribution is defined by x0 ∼ N(0, σ0)
and x1:9|x0 ∼ N(0, ex0 Id). Previously examined by Zhang & Chen (2022) using the Path Integral
Sampler (PIS), this distribution becomes exponentially difficult to sample as σ0 increases: negative
x0 values produce exponentially small spreads in x1:9, while positive values yield exponentially large
spreads. We examine cases with σ0 = 1 and σ0 = 3.

Following Zhang & Chen (2022), we parameterize the control as

uθ
t (x) = NNθ

1(t, x) + NNθ
2(t)×∇ log ρ(x),

where ∇ log ρ(x) is the score of the funnel distribution density. For each network NNθ
1 and NNθ

2,
we encode the scalar t into 128 dimensions using Fourier positional encoding, process it through
two fully connected layers with 64 hidden units, and separately process x through a two-layer MLP
to obtain 64-dimensional features. The concatenated features feed into a three-layer network for
the final output. To increase difficulty, the last linear layers of both networks are initialized to zero,
yielding uθ

t (x) = 0 initially. Optimization uses Adam (Kingma, 2014) with learning rate 5 · 10−3.

3.2 FINE-TUNING ON THE φ4 MODEL

We sample the φ4 model in d = 2 spacetime dimensions, a statistical lattice field theory where
field configurations φ ∈ RL×L represent the lattice state (L denotes spatiotemporal extent). This
model poses sampling challenges due to its phase transition from disorder to full order, during which
neighboring sites develop strong correlations in sign and magnitude Vierhaus (2010); Albergo et al.
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Algorithm MMD ↓
Our Method 0.043± 0.001
PIS (Zhang & Chen, 2022) 0.048± 0.001
FAB (Midgley et al., 2022) 0.032± 0.000
GMMVI (Arenz et al., 2022) 0.031± 0.000
DDS (Vargas et al., 2023a) 0.172± 0.031
AFT (Arbel et al., 2021) 0.159± 0.010
CRAFT (Arbel et al., 2021) 0.115± 0.003
CMCD-KL (Nusken et al., 2024) 0.095± 0.003
NETS-AM 0.041± 0.001
(Albergo & Vanden-Eijnden, 2025)

Table 1: Funnel Distribution Example: Performance of our method measured by MMD (Maximum
Discrepancy Distance) from the true distribution. Benchmarking is quoted from comparative results
of Blessing et al. (2024) and Albergo & Vanden-Eijnden (2025) for reproducibility. Following
Blessing et al. (2024), we compute the maximum mean discrepancy (MMD) between 10000 samples
from the model and 10000 samples from the target and compare to the numbers reported by Blessing
et al. (2024) and Albergo & Vanden-Eijnden (2025).

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Figure 1: Funnel distribution example (σ = 1): The samples from the funnel distribution (left
panel), Path Integral Samplers (middle panel) and our method (right panel). To plot the samples of the
ten-dimensional funnel distribution in 2D, we use the independence of its coordinates {x1, · · · , x9},
squeeze these nine dimensions into one coordinate, and keep the first dimension x0.

(2019). Using the framework from Sec. 2.6, we fine-tune a Gaussian distribution to match the fully
ordered φ4 model.

The φ4 model is specified by the following probability density function (PDF)

ρ(φ) = Z−1e−E(φ) (20)

where Z =
∫
RL×L e−E(φ)dφ is a normalization constant and E is an energy function defined as

E(φ) =
1

2
α
∑
a∼b

|φ(a)− φ(b)|2 + 1

2
β
∑
a

|φ(a)|2 + 1

4
γ
∑
a

|φ(a)|4. (21)

where a, b ∈ [0, . . . , L− 1]2 denote the discrete positions on a 2-dimensional lattice of size L× L,
a ∼ b denotes neighboring sites on the lattice, and we assume periodic boundary conditions; α > 0 ,
β ∈ R and γ > 0 are parameters. We will sample PDF (20) by fine-tuning a reference SDE whose
time t = 1 solutions sample the Gaussian PDF

ρ0(φ) = Z−1
0 e−E0(φ),

where Z0 =
∫
RL×L e−E0(φ)dφ and

E0(φ) =
1

2
α
∑
a∼b

|φ(a)− φ(b)|2 + 1

2
β0

∑
a

|φ(a)|2, (22)

with α > 0 as in (21) and β0 > 0. Writing E0(φ) =
1
2φ

TC−1φ shows that ρ0(φ) is a zero-mean
Gaussian with covariance C (see Appendix B). Thus, solutions to

dφ0
t = C−1/2dWt, φ0

t=0 = 0 (23)
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Figure 2: Top Panel: Histograms of the average magnetization of 10000 lattice configurations,
sampled with the trained control of our method, the vanilla method, Langevin dynamics with E(φ),
and the reference PDF ρ0(φ). We use samples obtained by running Langvein dynamics with the
target potential E(φ) as the ground-truth. (See Appendix B for more details about how to sample
with Langevin dynamics). Note that the results of our method is closer to the Langevin target than the
vanilla method, which has adopts a much smaller model and fails to capture the statistics. Bottom
Panel: The empirical loss function over GPU compute time. Our method enables a much larger model
under the same memory budget and therefore presents a much better learning curve as compared to
the vanilla method.

satisfy φ0
t=1 ∼ ρ0(φ), and we take it as reference process to fine-tune.

Specifically, we consider the solution u to the optimal control problem with the objective

min
u

E

[
1

2

∫ 1

0

∑
a

|u(t, a, φu
t )|2dt+ U(φu

T )

]
, (24)

where φu
t (a) solves the SDE

dφu
t (a) = C−1(a)u(t, a, φu

t )dt+ C−1/2(a)dWt(a) (25)

with φu
t=0(a) = 0, U(φu

T ) = E(φu
T )− E0(φ

u
T ) and T = 1. By Proposition 3, if we use the optimal

control in (44), we have that φu
t=1(a) samples the PDF (20).

Numerical Results: We tested various setups and report the results of some of them here. With
the same setup as described in Albergo & Vanden-Eijnden (2025), we choose L = 16, α = 2.0, β =
−2.0, γ = 3.2 so that the lattice system is at the phase transition and in the ordered phase.

Compared to the experiments done in 3.1, this fine-tuning task has a much higher dimensionality and
therefore requires more expressive neural networks for effective training. For such situations, the
vanilla method no longer scales efficiently. We performed experiments comparing our method to the
vanilla method while maintaining the same memory constraints. Our method significantly reduces
memory usage compared to the vanilla approach, which relies on storing the entire computational
graph during SDE integration. This reduction allows our method to train models with a much larger
number of parameters, resulting in superior performance. The results of these experiments are
summarized in Figure 2.

4 CONCLUSION

We have introduced a simulation-free on-policy approach to SOC problems: we simulate trajectories
using the actual control but detach this control for the computational graph when computing the
gradient of the objective. This yields an efficient, scalable method for training deep neural networks
to learn feedback controls, outperforming traditional vanilla approaches. We demonstrated its
effectiveness across SOC and sampling applications, including Föllmer processes and diffusion
model fine-tuning.

8



Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All experiments done in this work rely on simply feed-forward neural networks, and can be done
locally on a single GPU. Details for the network sizes are given in each experimental subsection.

ACKNOWLEDGEMENTS

We thank Michael Albergo, Joan Bruna, and Carles Domingo-Enrich for helpful discussions. EVE is
supported by the National Science Foundation under Awards DMR1420073, DMS-2012510, and
DMS-2134216, by the Simons Collaboration on Wave Turbulence, Grant No. 617006, and by a
Vannevar Bush Faculty Fellowship.

REFERENCES

Philippe Aghion and Peter Howitt. A model of growth through creative destruction. Econometrica,
60(2):323–351, 1992.

M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative models for markov chain
monte carlo in lattice field theory. Phys. Rev. D, 100:034515, Aug 2019. doi: 10.1103/PhysRevD.
100.034515. URL https://link.aps.org/doi/10.1103/PhysRevD.100.034515.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Michael S. Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler, 2025.
URL https://arxiv.org/abs/2410.02711.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions, 2023. URL https://arxiv.org/abs/2303.08797.

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport monte carlo. In
International Conference on Machine Learning, pp. 318–330. PMLR, 2021.

Oleg Arenz, Philipp Dahlinger, Zihan Ye, Michael Volpp, and Gerhard Neumann. A unified per-
spective on natural gradient variational inference with gaussian mixture models. arXiv preprint
arXiv:2209.11533, 2022.

Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann. Be-
yond elbos: A large-scale evaluation of variational methods for sampling. arXiv preprint
arXiv:2406.07423, 2024.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, and Eric
Vanden-Eijnden. Probabilistic forecasting with stochastic interpolants and föllmer processes, 2024.
URL https://arxiv.org/abs/2403.13724.

Yongxin Chen, Tryphon Georgiou, and Michele Pavon. On the relation between optimal transport
and schrödinger bridges: A stochastic control viewpoint, 2014. URL https://arxiv.org/
abs/1412.4430.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In The Twelfth International Conference on Learning Representations,
2024.

Carles Domingo-Enrich. A taxonomy of loss functions for stochastic optimal control, 2024. URL
https://arxiv.org/abs/2410.00345.

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky TQ Chen. Stochastic
optimal control matching. arXiv preprint arXiv:2312.02027, 2023.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control,
2024. URL https://arxiv.org/abs/2409.08861.

9

https://link.aps.org/doi/10.1103/PhysRevD.100.034515
https://arxiv.org/abs/2410.02711
https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2403.13724
https://arxiv.org/abs/1412.4430
https://arxiv.org/abs/1412.4430
https://arxiv.org/abs/2410.00345
https://arxiv.org/abs/2409.08861


Published as a conference paper at ICLR 2025

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control, volume 1.
Springer Science & Business Media, 2012.

Wendell H Fleming and Jerome L Stein. Stochastic optimal control, international finance and
debt. Journal of Banking & Finance, 28(5):979–996, 2004. ISSN 0378-4266. doi: https:
//doi.org/10.1016/S0378-4266(03)00138-9. URL https://www.sciencedirect.com/
science/article/pii/S0378426603001389.

H Föllmer. Time reversal on wiener space. Stochastic Processes—Mathematics and Physics, pp.
119–129, 1986.

Maximilien Germain, Huyên Pham, and Xavier Warin. Neural networks-based algorithms for
stochastic control and PDEs in finance. Machine Learning And Data Sciences For Financial
Markets: A Guide To Contemporary Practices, 2021.

Emmanuel Gobet and Rémi Munos. Sensitivity analysis using itô–malliavin calculus and martingales,
and application to stochastic optimal control. SIAM Journal on control and optimization, 43(5):
1676–1713, 2005.

Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. arXiv
preprint arXiv:1611.07422, 2016.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Carsten Hartmann, Ralf Banisch, Marco Sarich, Tomasz Badowski, and Christof Schütte. Characteri-
zation of rare events in molecular dynamics. Entropy, 16(1):350–376, 2013.

Carsten Hartmann, Lorenz Richter, Christof Schütte, and Wei Zhang. Variational characterization
of free energy: Theory and algorithms. Entropy, 19(11), 2017. ISSN 1099-4300. doi: 10.3390/
e19110626. URL https://www.mdpi.com/1099-4300/19/11/626.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths, 2023. URL
https://arxiv.org/abs/2207.02149.

Ruimeng Hu and Mathieu Lauriere. Recent developments in machine learning methods for stochastic
control and games. To appear in Numerical Algebra, Control and Optimization (arXiv preprint
arXiv:2303.10257), 2024.

Jian Huang, Yuling Jiao, Lican Kang, Xu Liao, Jin Liu, and Yanyan Liu. Schrödinger-Föllmer
sampler: sampling without ergodicity. arXiv preprint arXiv:2106.10880, 2021.

Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear
pdes. Mathematics of Computation, 89(324):1547–1579, 2020.

Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algo-
rithms for stochastic control problems on finite horizon: convergence analysis. SIAM Journal on
Numerical Analysis, 59(1):525–557, 2021.

Shaolin Ji, Shige Peng, Ying Peng, and Xichuan Zhang. Three algorithms for solving high-
dimensional fully coupled fbsdes through deep learning. IEEE Intelligent Systems, 35(3):71–84,
2020.

Yuling Jiao, Lican Kang, Yanyan Liu, and Youzhou Zhou. Convergence analysis of Schrödinger-
Föllmer sampler without convexity. arXiv preprint arXiv:2107.04766, 2021.

Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2 edition, 1991. ISBN 0-387-97655-8.

10

https://www.sciencedirect.com/science/article/pii/S0378426603001389
https://www.sciencedirect.com/science/article/pii/S0378426603001389
https://www.mdpi.com/1099-4300/19/11/626
https://arxiv.org/abs/2207.02149


Published as a conference paper at ICLR 2025

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
transport. Discrete & Continuous Dynamical Systems-A, 34(4):1533–1574, 2014.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud. Scalable gradients
and variational inference for stochastic differential equations. In Symposium on Advances in
Approximate Bayesian Inference, pp. 1–28. PMLR, 2020.

Han Cheng Lie. Fréchet derivatives of expected functionals of solutions to stochastic differential
equations, 2021. URL https://arxiv.org/abs/2106.09149.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020. URL
http://jmlr.org/papers/v21/19-346.html.

Richard E Mortensen. Stochastic optimal control: Theory and application (robert f. stengel), 1989.

Nikolas Nusken, Francisco Vargas, Shreyas Padhy, and Denis Blessing. Transport meets variational
inference: Controlled monte carlo diffusions. In The Twelfth International Conference on Learning
Representations: ICLR 2024, 2024.

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional hamilton-jacobi-bellman pdes using
neural networks: perspectives from the theory of controlled diffusions and measures on path space,
2023. URL https://arxiv.org/abs/2005.05409.

NG Pavlov, S Koptyaev, GV Lihachev, AS Voloshin, AS Gorodnitskiy, MV Ryabko, SV Polonsky,
and ML Gorodetsky. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser
diodes. Nature Photonics, 12(11):694–698, 2018.

Huyên Pham. Continuous-time stochastic control and optimization with financial applications,
volume 61. Springer Science & Business Media, 2009.

Jannes Quer and Enric Ribera Borrell. Connecting stochastic optimal control and reinforcement
learning, 2024. URL https://arxiv.org/abs/2211.02474.

Enric Ribera Borrell, Jannes Quer, Lorenz Richter, and Christof Schütte. Improving control based
importance sampling strategies for metastable diffusions via adapted metadynamics. SIAM Journal
on Scientific Computing, 46(2):S298–S323, 2024. doi: 10.1137/22M1503464.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
https://arxiv.org/abs/2011.13456.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Evangelos Theodorou, Freek Stulp, Jonas Buchli, and Stefan Schaal. An iterative path integral
stochastic optimal control approach for learning robotic tasks. IFAC Proceedings Volumes, 44(1):
11594–11601, 2011.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian
models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
diffusion models as entropy-regularized control, 2024.

11

https://arxiv.org/abs/2106.09149
http://jmlr.org/papers/v21/19-346.html
https://arxiv.org/abs/2005.05409
https://arxiv.org/abs/2211.02474
https://arxiv.org/abs/2011.13456
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf


Published as a conference paper at ICLR 2025

Ramon Van Handel. Stochastic calculus, filtering, and stochastic control. Course notes., URL
http://www. princeton. edu/rvan/acm217/ACM217. pdf, 14, 2007.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. arXiv preprint
arXiv:2302.13834, 2023a.

Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D Lawrence, and Nikolas
Nüsken. Bayesian learning via neural schrödinger–föllmer flows, 2023b.

Ingmar Vierhaus. Simulation of ϕ4 theory in the strong coupling expansion beyond the Ising Limit.
PhD thesis, Humboldt University of Berlin, 07 2010.

Ronald J. Williams. Toward a theory of reinforcement-learning connectionist systems. Technical
Report NU-CCS-88-3, Northeastern University, College of Computer Science, 1988.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Jichuan Yang and Harold J. Kushner. A monte carlo method for sensitivity analysis and parametric
optimization of nonlinear stochastic systems. SIAM Journal on Control and Optimization, 29(5):
1216–1249, 1991. doi: 10.1137/0329064.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In International Conference on Learning Representations, 2022.

A PROOFS OF PROPOSITIONS 1, 5 AND 6

Proof of Proposition 1. Equation (6) follows from (4) by a direct calculation in which we first
evaluate the gradient of the objective L(θ) = J(uθ) with the fixed reference control v, which gives:

∂θL(θ) = E

([∫ T

0

uθ
t (X

v
t ) · ∂θuθ

t (X
v
t )dt

]
M(uθ, v)

)

+ E

[(∫ T

0

(
1
2 |u

θ
t (X

θ
t )|2 + ft(X

θ
t )
)
dt+ g(Xv

T )

)

×

(∫ T

0

∂θu
θ
t (X

v
t ) · dWt +

∫ T

0

(vt(X
v
t )− uθ(Xv

t )) · ∂θuθ
t (X

v
t ) · dWt

)
M(uθ, v)

]
.

(26)
Because (26) holds for any v, we can now evaluate it at v = uθ. Since M(uθ, uθ) = 1, this
gives (6).

Proof of Proposition 5. It is well-known (Léonard, 2014; Chen et al., 2014) that the SOC problem
specified in the proposition can be cast into solving the pair of partial differential equations

∂tµt = −∇ · (btµt)−∇ · (Dt∇ϕtµt) +
1
2∇ · (Dt∇µt), µ0 = δ0 (27)

∂tϕt = −bt · ∇ϕt − 1
2∇ϕt ·Dt∇ϕt − 1

2∇ · (Dt∇ϕt), ϕT = r (28)

where Dt = DT
t = σtσ

T
t , µt is the distribution of Xu

t , and the potential ϕt gives the optimal control
via ut = σT

t ∇ϕt. We also know that the distribution νt of Yt solves the Fokker-Planck equation

∂tνt = −∇ · (btνt) + 1
2∇ · (Dt∇νt), ν0 = δ0 (29)

We will prove that Xu
T ∼ µ by establishing that µt(dx) = Z−1eϕt(x)νt(dx) since this will imply

that µT = µ because νT = ν by definition and ϕT = r by construction, so that µT = Z−1eϕT νT =

12
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Z−1erν = µ. Let µ̂t(dx) = Z−1eϕt(x)νt(dx). Then we have

∂tµ̂t = Z−1
(
∂tϕte

ϕtνt + eϕt∂tνt
)
,

−∇ · (btµ̂t) = Z−1
(
−eϕt∇ · (btνt)− bt · ∇ϕte

ϕtνt
)
,

−∇ · (Dt∇ϕtµ̂t) = Z−1
(
−eϕt∇ · (Dt∇ϕtνt)− eϕt∇ϕt ·Dt∇ϕtνt

)
= Z−1

(
−eϕt∇ · (Dt∇ϕt)νt − eϕt∇ϕt ·Dt∇νt − eϕt∇ϕt ·Dt∇ϕtνt

)
,

1
2∇ · (Dt∇µ̂t) = Z−1

(
1
2e

ϕt∇ · (Dt∇νt) + eϕt∇ϕt ·Dt∇νt

+ 1
2e

ϕt∇ϕt ·Dt∇ϕtνt +
1
2e

ϕt∇ · (Dt∇ϕt)νt
)
.

(30)

Inserting these expressions in the left-hand side and the right-hand side of (27) and using (29), several
terms cancel we are left with

∂tϕte
ϕtνt = −bt · ∇ϕte

ϕtνt − 1
2∇ϕt ·Dt∇ϕte

ϕtνt − 1
2e

ϕt∇ · (Dt∇ϕt)νt. (31)

If we divide both sides of this equation by eϕtνt, we recover (28). This shows that µ̂t(dx) =
Z−1eϕt(x)νt(dx) is indeed a solution to the PDE (27). To show that it is the solution, it remains to
establish that it satisfies the initial condition in (27). To this end, notice first that, since ν0 = δ0, we
have

µ̂0(dx) = Z−1eϕ0(x)ν0(dx) = Z−1eϕ0(0)δ0(dx) (32)

Second, since µ̂t satisfies (27), we must have
∫
Rd µt(dx) = 1 for all t ∈ [0, 1]. As a result, we

conclude that eϕ0(0) = Z, which means that µ̂0 = δ0 = µ0. Since the solution pair (µt, ϕt) to (27)-
(28) is unique, we must have µt = µ̂t = Z−1eϕtνt and hence µT = Z−1eϕT νT = Z−1erν.

Note that it is key that µ0 = ν0 = δ0 (more generally δx0
for some x0 ∈ Rd). If the base distribution

used to generate initial data in the SDEs (3) and (16) are not atomic at x = 0, the statement of
Proposition 5 does not hold anymore, because the second equality in (32) fails. That is, our framework
only allows to fine-tune generative models that use a Dirac delta distribution as base distribution.

Proof of Proposition 6. By direct application of Girsanov theorem, we have

EXu [h(Xu
T )Mr(u)] = EY

[
h(YT )e

r(YT )
]
=

∫
Rd

h(x)er(x)ν(dx), (33)

where Yt solves (16) and we used YT ∼ ν to get the second equality. Multiplying both sides of (33)
by Z−1 we deduce

Z−1EXu [h(Xu
T )Mr(u)] = Z−1

∫
Rd

h(x)er(x)ν(dx) =

∫
Rd

h(x)µ(dx), (34)

which gives the first equation in (18). Setting h = 1 in (33) we deduce that

EXu [Mr(u)] =

∫
Rd

er(x)ν(dx) = Z (35)

which gives the second equation in eq. (18). To establish that Mr(u) = Z iff u is the optimal control
minimizing the SOC problem specified in Proposition 5, notice that Xu

T ∼ µ iff u is this optimal
control. Assuming that this is the case, the first equation in eq. (18) implies that

EXu [h(Xu
T )] = Z−1EXu [h(Xu

T )Mr(u)] (36)

for all suitable test function h. This can only hold if Mr(u) = Z.

B FOURIER REPRESENTATION OF THE φ4 MODEL

We define the discrete Fourier transform with the following:

φ̂(k) = L−d/2
∑
a

e2iπk·a/Lφ(a) ⇔ φ(a) = L−d/2
∑
k

e−2iπk·a/Lφ̂(k) (37)
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where a, k ∈ [0, . . . , L− 1]d, we can write the energy (22) as

E0(φ) = Ê0(φ̂) ≡
1

2

∑
k

M̂(k)|φ̂(k)|2, M̂(k) = 2α

(
d−

∑
ê

cos(2πk · ê/L)

)
+ β0, (38)

where ê denotes the d basis vectors on the lattice. Therefore ρ0 is a Gaussian density with covariance∫
RLd

φ(a)φ(b)ρ0(ϕ)dϕ = C(a− b), C(a) = L−d/2
∑
k

e−2iπk·a/LM̂−1(k). (39)

Let the inverse discrete Fourier transform defined by

φ0
t (a) = L−d/2

∑
k

e−2iπk·a/Lφ̂0
t (k) (40)

where φ0
t (k) solves

dφ̂0
t (k) = M̂−1/2(k)dŴt(k), φ̂0

t=0(k) = 0 (41)

in which Ŵ is the Fourier transform of a Wiener process W with covariance E[Wt(a)dWs(b)] =
δa,b min(t, s). Then φ0

t=1 ∼ ρ0. Let also

U(φ) =
1

2
(β − β0)

∑
a

|φ(a)|2 + 1

4
γ
∑
a

|φ(a)|4

= Û(φ̂) =
1

2
(β − β0)

∑
k

|φ̂(k)|2 + 1

4
γ
∑
a

∣∣∣∣∣L−d/2
∑
k

e−2iπk·a/Lφ̂(k)

∣∣∣∣∣
4 (42)

where φ and φ̂ are Fourier transform pairs as defined in (37): the last term can be implemented via∑
a(ifft(φ̂))

4(a). Then, we can derive the Fourier representation of the optimal control problem with
objective (24) and controlled process (25):

min
û

E[
1

2

∫ 1

0

∑
k

|û(t, k, φ̂u
t )|2dt+ Û(φ̂u

T )] (43)

where φ̂u
t (k) solves the controlled process

dφ̂u
t (k) = M̂−1(k)û(t, k, φ̂u

t )dt+ M̂−1/2(k)dŴt(k), φ̂u
t=0(k) = 0 (44)

Then by Proposition 3, if we use the optimal control in (25), we have that

φu
t=1(a) = L−d/2

∑
k

e−2iπk·a/Lφ̂u
t=1(k) (45)

sample the PDF (20).

Sampling using the Langevin SDE: To obtain the ground-truth samples from the φ4 model, one
option is to use the SDE

dφ̂t(k) = −M̂(k)φ̂t(k)dt− (β − β0)φ̂t(k)dt− γφ̂3
t (k)dt+

√
2dŴt(k). (46)

where we denote

φ̂3
t (k) = L−d/2

∑
a

e2iπk·a/L

(
L−d/2

∑
k

e−2iπk·a/Lφ̂t(k)

)3

(47)

which can be implenemted via fft((ifft(φ̂t))
3). This SDE may be quite stiff, however, a problem that

can be alleviated by changing the mobility and using instead

dφ̂t(k) = −φ̂t(k)dt−(β−β0)M̂
−1(k)φ̂t(k)dt−γM̂−1(k)φ̂3

t (k)dt+
√
2M̂−1/2(k)dŴt(k). (48)

The discretized version of this equation reads

φ̂tn+1(k) = φ̂tn(k)−∆tn

(
φ̂tn(k) + (β − β0)M̂

−1(k)φ̂tn(k) + γM̂−1(k)φ̂3
tn(k)

)
+
√
2∆tnM̂

−1/2(k)η̂n(k),
(49)

where η̂n is the Fourier transform of ηn ∼ N(0, Id).
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Figure 3: Linear Ornstein-Uhlenbeck Example: Our method outperforms the vanilla method in
terms of convergence rate measured by the squared L2 error (top panel) and the training loss (bottom
panel).

Model Memory Cost (GB) Back-Prop Runtime (s)

Our Method 0.962 ±0.001 0.003 ±0.000

Vanilla Method 2.590 ±0.001 0.177 ±0.006

Table 2: Linear Ornstein-Uhlenbeck Example: Comparison between our method and the vanilla
method in terms of the GPU memory usage and runtime for one back-propagation pass. Here, we use
a mini-batch size of 5k and 256 time steps.

C ADDITIONAL NUMERICAL EXAMPLES

C.1 LINEAR ORNSTEIN-UHLENBECK EXAMPLE

We consider the SOC problem in (1) with f = 0, g(x) = γ ·x, σt = σ = cst, λ = 1 and bt(x) = Ax,
where γ ∈ Rd and σ,A ∈ Rd ×Rd. This example was proposed by Nüsken & Richter (2023) and its
optimal control can be calculated analytically:

u∗
t (x) = −σ⊤

0 exp(A⊤(T − t))γ.

We set d = 20 with initial samples X0 ∼ N (0, 1
2 Id). The control ut(x) is parameterized using a

fully connected MLP with 4 layers of 128 hidden dimensions, initialized using PyTorch defaults.
Optimization uses Adam (Kingma, 2014) with learning rate 3 · 10−4 and cosine annealing. For com-
parison, we implement the vanilla method requiring SDE differentiation under identical conditions.
Performance is evaluated using the squared L2 error between learned and true controls.

E =

∫ T

0

E
[
|ut(X

∗
t )− u∗

t (X
∗
t )|

2
]
dt (50)

where X∗ is generated with the optimal control u∗ and the expectation is estimated via Monte-Carlo
sampling over 256 trajectories.

The numerical results are shown in Figure 3 . Compared with the vanilla method, our method achieves
comparable accuracy faster and at lower memory cost (see Table 2 for a detailed comparison in terms
of memory cost and computational time).

C.2 QUADRATIC ORNSTEIN-UHLENBECK EXAMPLE

Next, we consider a more complicated case where the SOC objective includes a quadratic running
cost: f(x) = xTPx, g(x) = xTQx, bt(x) = Ax, σt = σ0, where P,Q,A ∈ Rd × Rd. This type of
SOC problems are often referred to as linear quadratic regulator (LQR) and they have closed-form
analytical solution (Van Handel, 2007, Chapter 7):

u∗
t (x) = −2σ⊤

0 Ftx,
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Model Memory Cost (GB) Back-Prop Runtime (s)

Our Method 1.260 ±0.001 0.0034 ±0.0003

Vanilla Method 3.590 ±0.001 0.195 ±0.003

Table 3: Quadratic Ornstein-Uhlenbeck Example: Comparison between our method and the vanilla
method in terms of the GPU memory usage and runtime for one back-propagation pass. Here, we use
a mini-batch size of 512 and 256 time steps.
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Figure 4: Quadratic Ornstein-Uhlenbeck Example: L2
2 error in terms of the number of training

iterations (left panel) and the GPU compute time (right panel).

where Ft solves the Riccati equation

dFt

dt
+A⊤Ft + FtA− 2|σ⊤

0 Ft|2 + P = 0

with the final condition FT = Q. We consider this example investigated by Domingo-Enrich et al.
(2023) with the following configuration:

d = 400, A = I , P = I , Q = 0.5I , σ0 = I , λ = 1, T = 10, X0 ∼ N(0, 1
2 I).

However, compared to Domingo-Enrich et al. (2023), we scale the dimensions from d = 20 to
d = 400 and time horizon from T = to T = 10, significantly increasing the task complexity. The
neural network parameterization and initialization for ut(x) follow Sec. C.1. Table 3 compares
memory consumption and computational cost between our method and the vanilla approach, while
Figure 4 contrasts their L2 accuracy and training time. With equal computation time, our method
achieves better L2 accuracy and maintains identical learning curves but with faster execution. Notably,
our method demonstrates superior scalability as it converges in under 3 hours (< 10000 seconds)
while the vanilla approach requires over 14 hours (> 50000 seconds).
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