
Under review as a conference paper at ICLR 2024

AN ATTENTION-BASED APPROACH FOR BAYESIAN OP-
TIMIZATION WITH DEPENDENCIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is a sample-efficient method for optimizing black-
box problems that are expensive to evaluate. The canonical BO is conducted
in search spaces where hyperparameters are independent and the dimension of
configurations remains fixed. However, different algorithms typically require their
own distinct hyperparameters in practice, thereby yielding a hierarchical search
space structure. Such a nested configuration challenges the direct application of
Bayesian optimization, as it obscures the independence assumptions made in the
standard Bayesian optimization formulation. In this paper, we propose a structure-
aware embedding and an attention-based Deep Kernel Gaussian Process to capture
the response surface in such conditional search spaces. By endowing the surrogate
model with context on the conditional structure, our approach facilitates Bayesian
optimization in navigating nested hyperparameter configurations. Empirical results
on both a tree-structured simulation benchmark and several real-world benchmarks
demonstrate that our proposed approach improves the efficacy and efficiency of
BO in conditional search spaces.

1 INTRODUCTION

Bayesian Optimization (BO) (Mockus et al., 1978; Balandat et al., 2020) is a powerful and efficient
global optimizer for expensive black-box functions, which has gained increasing attention in AutoML
systems and achieved great success in a number of practical application fields in recent years (Calandra
et al., 2016; González et al., 2015; Lizotte et al., 2007; Martinez-Cantin et al., 2007). Considering
a black-box function f : χ → R defined on a search space χ, BO aims to find the global optimal
configuration

x∗ = argmin
x∈χ

f(x). (1)

The sequential Bayesian optimization procedure contains two key steps: (1) BO seeks a probabilistic
surrogate model to capture the distribution of the black-box f given n noisy observations yi =
f(xi) + ϵ, i ⊂ 1, ..., n, ϵ ∼ N (0, σ). (2) Suggest the next query xn+1 by maximizing an exploit-
explore trade-off acquisition function α(x). The most common choice of the surrogate models is
Gaussian Process (GP) (Snoek et al., 2012; Seeger, 2004) due to its generality and good uncertainty
estimation. As to acquisition functions, the common choice for GP-based BO is the Expected
Improvement (EI) (Mockus, 1994), which balances the exploration and exploitation and provides a
theoretical regret bound.

In the traditional BO setting, the search space χ is flat where the configuration has the same dimensions
and similar structure 1: x ∈ χ ⊂ Rd, where d is the dimension. However, in many practical
machine learning scenarios, such as Combined Algorithm Selection and Hyperparameter optimization
(CASH) problem (Thornton et al., 2013; Levesque et al., 2017), the search space χ is hierarchical
and consists of multiple subspaces with different structure of configurations and even different
dimensions. In such a setting, the hierarchical space can be decomposed into a series of flat subspaces:
χ = χ1∪χ2∪...∪χn and configurations in the same subspace has the same structure: xi ∈ χi ⊂ Rdi

.

1In this paper, we define the structure of a configuration, which contains two aspects: 1. dependencies
between every pair of hyperparameters; 2. semantic information of each hyperparameter, e.g. the hyperparameter
"learning rate" has similar semantic information in XGBoost and DNN models.

1

Under review as a conference paper at ICLR 2024

A straightforward strategy is to build separate surrogate models for each subspace independently.
However, this approach requires considerable search cost as it treats each subspace as isolated.
Additionally, it fails to leverage potential relationships between subspaces, which could provide useful
information to guide the optimization. Nguyen et al. (2020) utilize Thompson Sampling (Thompson,
1933; Snoek et al., 2014), a bandits method which has theoretical regret bound, to helps connecting
both multi-arm bandit and BO in a unified framework. However, it still suffers from the inefficiency
of separate GP models and needs more observations to guarantee performance.

Recent works have proposed using variational autoencoders (VAEs) to transform structured, high-
dimensional optimization problems into continuous, low-dimensional spaces that are more amenable
to Bayesian optimization techniques (Kusner et al., 2017; Lu et al., 2018; Tripp et al., 2020; Grosnit
et al., 2021; Maus et al., 2022). However, these existing methods do not readily extend to search spaces
containing both categorical and numerical hyperparameters in a complex, structured relationship. In
this paper, we concentrate on building a more powerful and general surrogate model for applying BO
in such complex structured but not high-dimensional spaces.

Some recent works (Jenatton et al., 2017; Ma & Blaschko, 2020b) propose to regard the hierarchical
spaces as a tree and model the black-box object function through decision trees. Specifically, Jenatton
et al. (2017) proposed to separately build a GP model on each flat subspace and introduced a
weight vector to integrate the GPs linearly. Another work (Ma & Blaschko, 2020b) assumed that
the performance of configurations on different subspaces is independent and proposed an additive
covariance function to capture the global response surface of the objective function. However, both
works ignore the dependencies of the hyperparameters in configurations and have limitations in
practical application due to their linear and additive assumptions.

In this paper, we propose an elegant attention-based BO framework to directly capture the global
response surface in the hierarchical search space by a single Deep Kernel Gaussian Process (DKGP)
surrogate model. Specifically, we provide a general attention-based encoding method, which can
embed the semantics and dependencies information into the configurations sampled from different
subspaces. Then we project the configurations from different subspaces into a unified latent space,
where the configurations can be comparable and modeled by any standard kernel functions, such as
Matérn 5/2 (M52) and squared exponential (SE) kernel function. Our attention-based encoder can
deal with variable-length input sequences and capture the global relationships among hyperparameters
in a specific configuration. In the acquisition stage, our proposed method can optimize the acquisition
function in each flat subspace which could provide batch quires for evaluation.

In conclusion, our contributions can be summarized as follows:

1) Structure-aware embeddings. We provide a general encoding method for preserving the se-
mantic and dependency information of each hyperparameter in a configuration, leveraging the prior
relationships among hyperparameters during modeling the response surface.

2) A Unified latent space for configurations with different structures. With the structure-aware
embeddings, we propose a novel attention-based encoder, which is able to capture global relationships
among hyperparameters and project the variable-length configurations into a unified latent space.

3) An Efficient BO framework with deep kernel learning. Following the idea of deep kernel
learning, we utilize our proposed structure-aware embeddings and attention-based encoder to learn
a deep kernel for directly capturing the global response surface in the hierarchical space using a
single GP. Instead of the state-of-the-art work (Ma & Blaschko, 2020b), our approach relaxes the
assumption of the objective function and becomes more general for practical AutoML applications.
Moreover, our proposed BO framework can achieve parallel searching and improve efficiency when
handling the black-box functions which are very expensive to evaluate.

4) Strong Performance on multiple benchmarks. We conduct experiments on a standard tree-
structured simulation benchmark, a Neural Architecture Search (NAS) benchmark which is similar
to Tan et al. (2019), and several real-world OpenML benchmarks. The experimental results demon-
strate the efficiency and efficacy of our proposed approach.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

2.1 BAYESIAN OPTIMIZATION FOR CONDITIONAL SEARCH SPACE

Sequential Model-based Algorithm Configuration (SMAC) (Hutter et al., 2011) and Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011) are two early BO methods that can deal with multi-
family problems. SMAC utilizes random forest instead of GP as the surrogate model and imputes the
inactive dimensions with default values to deal with the conditional space. However, the imputed
dimensions would lead to higher-dimension problems and reduce the efficiency during optimization.
TPE models two densities to estimate whether the response of a configuration is good or not, which is
naturally structure-free and can be directly applied to multi-family problems. However, it ignores the
relationship between dimensions and requires more observations to capture the densities effectively.

Compared to SMAC and TPE, GP-based BO gives better uncertainty estimation and shows higher
sample efficiency in practical applications. The most straightforward way to leverage GP to solve
multi-family problems is building an independent GP in each subspace, however, which totally
ignores the meta information that can be shared between different subspaces. Jenatton et al. (2017)
proposed a semi-parametric GP method that captures the relationship of GPs via a weight vector.
Although the idea of the weight vector can establish a mechanism for sharing information between
multiple Gaussian processes, the assumption of linear relationships will limit the effectiveness and
generalization of this method. Following this work, Ma & Blaschko (2020b) proposed an Add-Tree
covariance function to capture the global response surface of f using a single GP. It gives an additive
assumption on the objective function that each vertex of the tree-structure search space is independent,
which would be invalid when there are relationships between the hyperparameters in these vertexes.
Moreover, the similarity of configurations is only built on their sharing vertexes, which totally ignores
the non-shared hyperparameters between configurations during the similarity modeling and could not
capture the global meta-features of a configuration.

2.2 DEEP KERNEL LEARNING FOR GAUSSIAN PROCESS

The standard approach to fit GPs is to optimize the parameters of the handcrafted kernel function,
however, which would lead to sub-optimal performances due to the false assumptions (Cowen-Rivers
et al., 2022). The idea of deep kernel learning (Wilson et al., 2016) is to learn the kernel function
using a neural network ϕ to transform the configuration x to a latent representation that serves as the
input of the kernel, which facilitates learning the kernel in a suitable space. Specifically, the kernel
function is shown as:

kdeep(x, x
′
|θ, ω) = k(ϕ(x, ω), ϕ(x

′
, ω)|θ), (2)

where ω represents the weights of the deep neural network ϕ and θ represents the parameters of the
handcrafted kernel function, e.g., Matérn 5/2 function. All these parameters can be jointly estimated
by maximizing the marginal likelihood (Wistuba & Grabocka, 2021).

2.3 ATTENTION

In the field of Natural Language Processing (NLP), the transformer model (Vaswani et al., 2017) is a
pioneering work, which uses the attention module to model the global relationship between different
words in a sequence, such as a sentence and paragraphs. In many later practices and papers, the
effectiveness of the attention module was verified and applied in many fields (Lin et al., 2022). For
an input sequence of N words, the dk-dimensional embeddings of words plus the corresponding
positional embeddings are fed into a stacked attention module. In the attention mechanism, the packed
matrix representation of the query Q ∈ RN×dk , the key K ∈ RN×dk and the value V ∈ RN×dk

are fused through Attention(Q,K,V) = softmax
(

QK⊤
√
Dk

)
V = AV. The attention matrix A

contains the similarity between each pair of words, which makes the output feature of a word a fusion
of the feature of each word in the whole sequence. In this paper, this mechanism is employed to
model the relationship among hyperparameters in a tree-structured search space, where the sampled
configuration can be viewed as a sequence of hyperparameters.

3

Under review as a conference paper at ICLR 2024

algorithm

XGBoost

sigmoid

booster C kernel

SVM

alpha

lambda

linear polyrbf

gamma gammagamma

poly

n_estimators

……

subsample

gbtree gblinear

Figure 1: An example of the tree-structured search space for the tabular classification tasks, which
contains two popular algorithms and their distinct hyperparameters. When the kernel is linear for the
SVM model, the shaded box indicates that there are no hyperparameters in this case.

3 CONDITIONAL SEARCH SPACE MODELING

In black-box optimization applications, possibly, there is a conditional structure in the search space.
Given a task with the corresponding datasets, we need to choose the best algorithm for it from
multiple model options. However, not only do different algorithms require different hyperparameters,
but also different microstructures have different value ranges for the same hyperparameter, resulting
in dependencies among hyperparameters. For example, given a classification task on a tabular dataset,
XGBoost (Chen & Guestrin, 2016) and SVM (Cervantes et al., 2020) can be candidates with different
hyperparameters, such as booster type in XGBoost and kernel in SVM (see Fig. 1). Also, the various
boosters require various hyperparameters such as the number of estimators in the former but not in
the latter. When searching the neural networks in CNN, the ranges of the appropriate number of
channels always alter across different layers.

Here, we give a loose assumption that such a conditional structure is a tree structure or a combination
of several tree structures. To avoid many repetitions and to simplify the notation, in this paper, we
use a tree structure referring to multiple trees, since embedding methods and our method can also
handle this case. Inspired by Ma & Blaschko (2020b), we define the search space χ as a tree structure
T = (P,E), where one node p ∈ P refers to one hyperparameter with associated range, type and
value (if sampled), and e ∈ E refers to the dependency relationship between a node p and the father
node p ↑∈ P . To unify the notation, for those root nodes without a father, we assign a virtual father
vertex with a fixed embedding. Here, the ancestor nodes represent categorical variables, whereas leaf
nodes that have no children, can be of various types including integers, floats, and categories. From
the data structure view of this tree structure, since each node has only one parent node or not, we
can serialize the tree by storing nodes and their corresponding father nodes, as shown in Section 4.1.
The tree structure search space χ can be extended as a set of subspaces

{
χi
}

without dependency,
where each subspace is a path from the root to a leaf node. After sampling from the search space
χ, we group the configurations X by each subspace χi as Xi =

{
xi
j

}
, where i = 1, 2, ..., n and

j = 1, 2, ..., N i, N i represents the number of points belongs to the subspace χi. A configuration

xi
j is a set of hyperparameters

{
p
xi
j

k

}
with specific values, where k = 1, 2, ..., di, di means the

dimension of the subspace χi.

4 DEEP KERNEL LEARNING WITH ATTENTION

GP serves as a good surrogate model due to its good uncertainty estimation and sample efficiency,
however, to the best of our knowledge, there is no suitable hand-crafted kernel function capable of
modeling the similarity between these configurations from different subspaces which have different
dimensions and dependencies. In this paper, we seek to build a global GP in a hierarchical conditional
search space to achieve higher efficiency and efficacy. In order to achieve our purpose, we need
to project these configurations xi, i = 1, 2, ..., n, into a unified latent space Z ⊂ Rd, enabling the

4

Under review as a conference paper at ICLR 2024

Configuration 𝑥

Embedding Block

⋯

⋯ ⋯
⋯
⋯

Structure Information

Structure-aware

Embeddings

⋯

Attention-based Encoder

Average Pooling

Conditional Search Space

value of hyperparameter dimension of hyperparameter name of hyperparameter

value embedding

name embedding name embedding of the father node

Attention Block

Latent Vector 𝑧

⋯

father’s name of hyperparameter dimension embedding

Figure 2: The framework of our proposed AttnBO.

configurations in different spaces to be comparable and modeled directly by a single kernel. Although
the idea of deep kernel learning provides a way to learn suitable kernel functions in different situations,
finding a deep neural network that can deal with variable-length configurations and capture the global
relationships between hyperparameters in these configurations is unprecedented.

Recently attention-based models, which have the ability to capture the global relationship between
words in variable-length sequences, have achieved great success in Natural Language Processing
(NLP). In the context of NLP, the words need to be embedded into vectors and then fed to the
attention-based models with their positional encoding, which contains the positional information
in sequences, to introduce the ordering relationships between words. In the setting of our prob-
lem, the configurations from different subspaces can be viewed as variable-length sequences of
hyperparameters, with each hyperparameter representing a token. However, unlike in NLP, the
position of hyperparameters in a configuration need not be taken into account, and the dependencies
between them require consideration. Thus, we propose a dependencies-aware embedding method
to introduce the dependencies between hyperparameters during modeling. And then, with these
dependencies-aware embeddings, we utilize an attention-based encoder to capture the meta fea-
ture of the configurations which consider the dependencies and global relationships between their
hyperparameters and project these configurations into a unified latent space Z ⊂ Rd.

Based on the dependencies-aware embeddings and attention-based encoder, we propose an efficient
BO framework, named AttnBO, which can build a global Deep Kernel GP in a complex conditional
search space. The outlook of the proposed framework is shown in Fig. 2.

4.1 STRUCTURE-AWARE EMBEDDINGS

The hyperparameters in configurations sampled from different subspaces have different semantics and
relationships, which the surrogate model should be aware of for capturing the hierarchical response
surface. Suppose we have a tree-structured search space that is composed of two subspaces, the
hyperparameters of configurations from the two subspaces, which are (p1, p2, p3, p4) and (p1, p5, p6)
respectively, obviously have different semantics and relationships, which makes the vectors containing
only hyperparameter values cannot be used directly to fit the surrogate model. Previous BO works

5

Under review as a conference paper at ICLR 2024

aligned the configurations in all subspaces by imputing inactive hyperparameters with some default
values, however, which would lose the space-specific dependencies and lead to a higher dimension.

Inspired by this point, we assign each hyperparameter an embedding that contains semantic and
dependency information, instead of only considering the value of the hyperparameter as in traditional
BO methods. In a tree-structured conditional search space, restoring the structure of the tree
only requires identifiers for each node and its father. Thus, as Fig. 2 shows, we can encode a

hyperparameter p
xi
j

k to a structure-aware embedding with four elements: 1) the name embedding

name_emb(p
xi
j

k), 2) the name embedding of its father name_emb(p
xi
j

k ↑), 3) the dimension

embedding dim_emb(p
xi
j

k) and 4) the value embedding value_emb(p
xi
j

k). We take into account
the dimension information because some hyperparameters, such as the number of hidden units
in a multi-layer deep neural network, may be represented as lists. In this setting, configurations
xi
j , j = 1...N i in the same space χi have the same name embeddings, father name embeddings

and dimension embeddings, which will be different in different space. We concatenate these four

embeddings as the representation of a hyperparameter p
xi
j

k :

emb(p
xi
j

k) = concat(name_emb(p
xi
j

k), name_emb(p
xi
j

k ↑),

dim_emb(p
xi
j

k), value_emb(p
xi
j

k)), k = 1, 2, ..., di, (3)

where di represents the dimension of the flat subspace χi, With such embeddings, we transform
each configuration into a vectorial representation that contains space-specific semantic information
and dependencies, which can be used for training a structure-aware surrogate model to capture the
hierarchical response surface. The full embedding of a configuration is represented as:

emb(xi
j) =

{
emb(p

xi
j

1), emb(p
xi
j

2), ..., emb(p
xi
j

di)

}
. (4)

To demonstrate the effectiveness of the structure-aware embedding, we conducted an ablation study
on these embeddings, and the experimental results can be found in Appendix E.

4.2 ATTENTION-BASED ENCODER FOR DEEP KERNEL GAUSSIAN PROCESS

Although we have embedded semantic information into the configuration, the configurations X ={
xi
j |i = 1, 2, ..., n, j = 1, 2, ..., N i

}
in different subspaces, where N i represents the numbers of

observations in search space χi, are of varying lengths and have different hyperparameters, which
is still a challenge to project them into a unified latent space Z ⊂ Rd. Therefore, we introduce an
attention model that can handle variable-length sequences and capture global relationships into our
framework to solve this problem. With an attention-based encoder ϕ : χ → Z , we can exploit the
meta feature of the configurations which consider the dependencies and relationships between their
hyperparameters. And then a GP can be built on this latent space Z with a standard kernel function,
e.g., Matérn 5/2 kernel. To demonstrate this ability of our method, we give the visualization of the
attention map among the hyperparameters in Appendix D.

We adopt the deep kernel learning framework to learn the weights of the embeddings, attention-based
encoder, and the parameters of the kernel function jointly by maximizing the log marginal likelihood:

log p(y|X, θ, ω) ∝ −(yTK−1
deepy + log(|Kdeep|)), (5)

where y =
{
yij |i = 1, 2, ..., n, j = 1, 2, ..., N i

}
represents the noisy response of all configurations

and ω1, ω2 are two subsets of ω which represent the weights of the embeddings and the attention-based
encoder respectively. According to eq. 2, the deep kernel matrix is as follow:

Kdeep = kdeep(X,X|θ, ω) + σ2I (6)

= k(ϕ(emb(X, ω1), ω2), ϕ(emb(X, ω1), ω2)|θ) + σ2I (7)

.

6

Under review as a conference paper at ICLR 2024

4.3 BAYESIAN OPTIMIZATION WITH THE ATTENTION-BASED DKGP

Consider a black-box function with nosiy observations yi = f(xi) + ϵ, i ⊂ 1, ..., n, ϵ ∼ N (0, σ),
we have a dataset D of N noisy observations in a conditional space χ that has n flat subspaces{
χ1 ∪ χ2 ∪ ... ∪ χn

}
, N =

∑n
i=1 N

i, D =
{
D1, D2, ..., Dn

}
, where Di means all observations{

(xi
j , y

i
j)|j = 1, 2, ..., N i

}
in subspace χi. The predictive posterior distribution of the objective

function f at x∗ is as follow:

f∗|X,y, x∗ ∼ N
(
f∗, var(f∗))

)
(8)

where

f∗ = kdeep(x∗,X)K−1
deepy, (9)

var(f∗) = kdeep(x∗, x∗)− kdeep(x∗,X)K−1
deepkdeep(X, x∗), (10)

and the deep kernel matrix Kdeep can be founded in eq. 2. In this paper, we use the Matérn 5/2 kernel
function to accommodate the DKGP model and adopt EI acquisition function to choose the next
query. During the acquisition stage, we optimize EI on each subspace and find the most valuable
configurations to query in each subspace, enabling parallel Bayesian optimization on the objective
functions. Under the sequential BO setting, we choose the configuration that has the highest value of
the acquisition function among all subspaces. The detailed procedure of the algorithm can be found
in Algorithm 1.

5 EXPERIMENTS

To demonstrate the efficiency and efficacy of AttnBO, we conduct experiments on multiple bench-
marks, including a simulation benchmark used in Jenatton et al. (2017); Ma & Blaschko (2020b), a
NAS benchmark whose search space is similar to Tan et al. (2019) evaluated on cifer-10 dataset, and
several real-world benchmarks on OpenML. For the simulation benchmark, we follow the setting
of Ma & Blaschko (2020b), which has three binary decision variables x1, x2, x3, two shared variables
r8, r9 bound in [0, 1], and four non-shared numerical variables x4, x5, x6, x7 bounded in [-1, 1].

Following the solid work Tan et al. (2019) in the NAS field, we set an optimization problem in a
complex search space which includes a minimum of 29 and a maximum of 47 hyperparameters
depending on different conditions —- the number of the blocks ranging from 4 to 7. There are both
categorical and continuous hyperparameters in this NAS space, and the candidate will be evaluated
on CIFAR-10 dataset after 100 training epochs. The details of the settings of this search space can be
found in Appendix C.3.

0 20 40 60 80
Iteration

10

5

0

lo
g 1

0
R

eg
re

t

Random Search
SMAC
TPE

Bandits-BO
Add-tree
AttnBO

Figure 3: Performance of our AttnBO and base-
lines on the conditional simulation objective func-
tion.

For the OpenML benchmarks, we design two hi-
erarchical search spaces for SVM and XGBoost
respectively, which are two popular machine-
learning models for tabular data. The SVM
search space has four hyperparameters: 1) C
{type: float, range: [0.001, 1000]}, 2) kernel
{type: choice, range: {linear, poly, rbf, sig-
moid}}, 3) degree {type: int, range: [2, 5]}, 4)
gamma {type: float, range: [0.001, 1000]}. Dif-
ferent kernels need kernel-specific hyperparam-
eters, which leads to a hierarchical space. The
hyperparameter gamma is valid except when the
kernel is set to linear. And the hyperparameter
degree is only valid when the kernel is set to
poly. As to XGBoost, we set a categorical hy-
perparameter booster to determine whether to
use a tree-based model or a linear model, which
divides the space into two subspaces. Moreover,
we also combine the two search spaces via an
algorithm variable, leading to a CASH problem
and making the search space more complex having six subspaces and 15 hyperparameters. The details
of these search spaces are shown in Appendix C.2.

7

Under review as a conference paper at ICLR 2024

Random Search SMAC TPE Bandits-BO Add-tree AttnBO

0 20 40 60 80
Numbers of Observations

2

3

4

A
ve

ra
ge

 R
an

ki
ng

(a) SVM

0 20 40 60 80
Numbers of Observations

2

3

4

5

A
ve

ra
ge

 R
an

ki
ng

(b) XGBoost

0 20 40 60 80
Numbers of Observations

2

3

4

A
ve

ra
ge

 R
an

ki
ng

(c) SVM + XGBoost

Figure 4: Performance of various black-box optimization methods on three machine-learning bench-
marks evaluated on real-world OpenML datasets.

Supported by OpenML (Vanschoren et al., 2013), we consider 6 most evaluated datasets whose
task_ids are: [10101, 37, 9967, 9946, 10093, 3494]. Both SVM and XGBoost models can be
evaluated on all these tasks.

Baselines. We compare AttnBO with Random Search (Bergstra & Bengio, 2012) and four
BO baselines for the conditional space on all benchmarks, including two GP-based methods
(Bandits-BO (Nguyen et al., 2020), AddTree (Ma & Blaschko, 2020b;a)) and two non-GP methods
(SMAC (Hutter et al., 2011), TPE (Bergstra et al., 2011)). Moreover, we also compare with Bandits-
BO under a parallel setting on the real-world OpenML benchmarks to demonstrate our ability of
batch optimization. The implementation details of these baselines can be found in Appendix B.2.

Experimental Set-up. We train the embedding layer and attention-based encoder by maximizing the
negative log marginal likelihood according to eq.5 for 100 epochs using Adam optimizer. We set the
initial learning rate to 0.01 and reduce it by half every 30 epochs. More details of our implementation
can be found in Appendix B.1. For each experiment, following the settings of Bandits-BO, we give
2n random points to initialize BO methods. Then, we run BO on the simulation and OpenML tasks
until 80 observations (without initial points) are collected and repeat the experiment 10 times in order
to reduce the impact of random seeds. For the NAS tasks, we train each candidate on CIFAR-10
training set for 100 epochs and evaluate on the testing set. Because the evaluation of a configuration
in this task is very expensive, we only repeat the experiment 3 times.

5.1 SIMULATION BENCHMARK

Following the setting of Ma & Blaschko (2020b), we compare our AttnBO with other baselines on
this additive structure objective function. As shown in Fig. 3, our method performs best on this
simulation benchmark. Here, for a fair comparison, we re-implement the experiment and set the same
random seeds as all other algorithms. (Probably, we did not get the same results as shown in their
paper due to modifying the number of initial points.) In this task, the objective function is additive as
a prior. Although no such prior is added to the model, the attention mechanism can also automatically
learn the relationship from the observations.

5.2 REAL-WORLD BENCHMARKS ON OPENML

Fig. 4 reports the average ranking of performance on three hierarchical search spaces of two
machine-learning models, which were evaluated on 6 real-world datasets randomly selected from
OpenML (Vanschoren et al., 2013; Feurer et al., 2019). In our setup, we conducted experiments using
three different search spaces: SVM, XGBoost, and the combination of the two shown in Fig. 1. When
the search space becomes complex, the gap between different algorithms becomes more obvious,
and the performance of the algorithm optimized for the tree structure is significantly improved. We
guess this is due to considering the same parameters in different subspaces in the search spaces
of SVM and XGBoost. For example, the effect of gamma in RBF is similar to that of sigmoid in
SVM. Our proposed method achieves the best performance on all three benchmarks and, in particular,
outperforms the start-of-the-art BO method AddTree (Ma & Blaschko, 2020b) for conditional search
spaces. We also report the performance of all baselines on each dataset, which can be found in
Fig. 15.

8

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Iteration

0.90

0.91

0.92

0.93

0.94

0.95

0.96

O
pt

im
al

 A
cc

ur
ac

y

Random Search
Bandits-BO

Add-tree
AttnBO

Figure 5: Performance of baselines and AttnBO on the complex NAS space.

5.3 NEURAL ARCHITECTURE SEARCH

Considering the evaluation of a deep neural network is very expensive, the parallel of BO becomes
especially important and necessary, which could improve the efficiency of the optimization process.
However, the state-of-the-art method AddTree (Ma & Blaschko, 2020b) is not able to conduct a
parallel BO, which will still give only one query per BO iteration in this experiment. We show the
optimal accuracy after each BO iteration for all methods in Fig. 5. With more hyperparameters
and more complex condition settings, the ability to explore becomes crucial. Compared to other
methods, Add-Tree is limited in its capability to explore or exploit various configurations within a
BO loop due to the inability to provide batch queries. As a result, the opportunity for observation is
reduced, leading to a failure in finding optimal configurations during the early stages. On the other
hand, Random Search demonstrates better performance on this task because of its strong ability to
explore across each dimension in a larger space with parallelism (Bergstra & Bengio, 2012). In
contrast to existing methods, our AttnBO has the advantage of exploiting the relationships between
hyperparameters, which allows us to learn better representations of configurations (see Fig. 12).
Additionally, AttnBO also enables parallel optimization by selecting the best candidate in each
subspace, leading to better performance throughout the BO process.

6 CONCLUSION

In this paper, we proposed a novel attention-based BO framework, named AttnBO, to capture the
hierarchical response surface with conditional dependencies by a single GP, which facilitates the
application of Bayesian optimization in practical automated machine learning systems. Specifically,
we proposed a general embedding method that can introduce the semantic and dependency information
into the configurations from different subspaces. Then we utilize an attention-based to capture the
relationships among hyperparameters in a configuration and project the configurations from different
subspaces, which have different structures and dimensions, into a unified latent space. With the
powerful attention-based encoder, we build a single GP model in the latent space and train the
parameters of the deep kernel by the negative log marginal likelihood. Moreover, our proposed
method can give a batch of quires in a BO iteration, which improves the efficiency when dealing with
expensive objective functions. Finally, we conduct the experiments on multiple benchmarks and give
sufficient experimental results to demonstrate the effectiveness of our method.

7 BROADER IMPACT AND LIMITATIONS

The proposed method in this paper enables efficient and effective Bayesian optimization in the
search spaces that exist dependencies among hyperparameters, which can facilitate the application
of Bayesian optimization in practical AutoML systems. We trust our proposed method can be a
powerful tool for more complicated AutoML scenarios which include data preprocessing and feature
engineering, however, we do not discuss this topic in this paper, which we would pay more attention
to this application in our feature work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In NeurIPS, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In NeurIPS, 2011.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization for
learning gaits under uncertainty - an experimental comparison on a dynamic bipedal walker. Ann
Math Artif Intell, 2016.

Jair Cervantes, Farid García-Lamont, Lisbeth Rodríguez-Mazahua, and Asdrúbal López Chau. A
comprehensive survey on support vector machine classification: Applications, challenges and
trends. Neurocomputing, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD, 2016.

Alexander I. Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys
Griffiths, Alexandre Max Maraval, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou-Ammar.
HEBO: an empirical study of assumptions in bayesian optimisation. J. Artif. Intell. Res., 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi,
Andreas Mueller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible python
api for openml. CoRR, 2019.

Javier González, Joseph Longworth, David C. James, and Neil D. Lawrence. Bayesian optimization
for synthetic gene design. CoRR, 2015.

Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander I. Cowen-
Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, Jan Peters, and Haitham
Bou-Ammar. High-dimensional bayesian optimisation with variational autoencoders and deep
metric learning. CoRR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, 2017.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In LION, 2011.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong.
Tutel: Adaptive mixture-of-experts at scale. CoRR, 2022.

Rodolphe Jenatton, Cédric Archambeau, Javier González, and Matthias W. Seeger. Bayesian
optimization with tree-structured dependencies. In ICML, 2017.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In ICML, 2017.

Julien-Charles Levesque, Audrey Durand, Christian Gagné, and Robert Sabourin. Bayesian optimiza-
tion for conditional hyperparameter spaces. In IJCNN, 2017.

10

Under review as a conference paper at ICLR 2024

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open,
2022.

Daniel J. Lizotte, Tao Wang, Michael H. Bowling, and Dale Schuurmans. Automatic gait optimization
with gaussian process regression. In IJCAI, 2007.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil D. Lawrence. Structured variationally auto-
encoded optimization. In ICML, 2018.

X. Ma and M. B. Blaschko. Additive tree-structured conditional parameter spaces in bayesian
optimization: A novel covariance function and a fast implementation. TPAMI, 2020a.

Xingchen Ma and Matthew B. Blaschko. Additive tree-structured covariance function for conditional
parameter spaces in bayesian optimization. In AISTATS, 2020b.

Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and José A. Castellanos. Active policy
learning for robot planning and exploration under uncertainty. In RSS III, 2007.

Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, and Jacob R. Gardner.
Local latent space bayesian optimization over structured inputs. In NeurIPS, 2022.

Jonas Mockus. Application of bayesian approach to numerical methods of global and stochastic
optimization. J Glob Optim, 1994.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for
seeking the extremum. Towards global optimization, 1978.

Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh. Bayesian optimiza-
tion for categorical and category-specific continuous inputs. In AAAI, 2020.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Matthias W. Seeger. Gaussian processes for machine learning. Int. J. Neural Syst., 2004.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In NeurIPS, 2012.

Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input warping for bayesian
optimization of non-stationary functions. In ICML, 2014.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 1933.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: combined
selection and hyperparameter optimization of classification algorithms. In KDD, 2013.

Austin Tripp, Erik A. Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. In NeurIPS, 2020.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in
machine learning. SIGKDD, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

11

Under review as a conference paper at ICLR 2024

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In AISTATS, 2016.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates. In
ICLR, 2021.

Chao Xue, Wei Liu, Shuai Xie, Zhenfang Wang, Jiaxing Li, Xuyang Peng, Liang Ding, Shanshan
Zhao, Qiong Cao, Yibo Yang, Fengxiang He, Bohua Cai, Rongcheng Bian, Yiyan Zhao, Heliang
Zheng, Xiangyang Liu, Dongkai Liu, Daqing Liu, Li Shen, Chang Li, Shijin Zhang, Yukang
Zhang, Guanpu Chen, Shixiang Chen, Yibing Zhan, Jing Zhang, Chaoyue Wang, and Dacheng Tao.
Omniforce: On human-centered, large model empowered and cloud-edge collaborative automl
system. CoRR, 2023.

12

Under review as a conference paper at ICLR 2024

A ALGORITHM

We describe the procedure of our proposed method in Algorithm 1.

Algorithm 1: AttnBO: An Attention-based Approach for Bayesian Optimization with Dependen-
cies.
Inputs :A black-box function f defined on a hierarchical search space χ = χ1 ∪ χ2 ∪ ... ∪ χn

with conditional dependencies;
The name of hyperparameters name(px

i

k) in a subspace χi, where i = 1, 2, ..., n,
xi ∈ χi ⊂ Rdi

, k = 1, 2, ..., di;
The batch size B(B <= n);
The number of total training iterations T .

1 Randomly sample two initial points (N i = 2) to evaluate from each subspace, resulting in
N = 2n initial points in total.

2 Get the initial dataset: D0 =
{
(xi

j , y
i
j)|i = 1, 2, ..., n, j = 1, 2, ..., N i

}
3 for t := from 1 to T do
4 Fit the Deep Kernel Gaussian Process by maximizing the log marginal likelihood (eq.5) with
5 Adam optimizer.
6 Optimize the acquisition function in each subspace: xi

∗ = argmaxx∈χi α(x), i = 1, 2, ..., n.

7 Get the next queries X∗ = {xb|b = 1, 2, ..., B} = TopB(
{
α(xi

∗)|i = 1, 2, ..., n
}
) and their

8 responses: D∗ = {(xb, yb)|b = 1, 2, ..., B, yb = f(xb)} .
9 Update the dataset of observations Dt = Dt−1 ∪D∗

10 end
11 Output: The best point xopt in history.
12 †: TopB is a function that returns the top B configurations ranked by the acquisition function.

B IMPLEMENTATION DETAILS

B.1 ATTNBO

B.1.1 STRUCTURE-AWARE EMBEDDINGS

We use sequential coding to encode the name of each hyperparameter in a full hierarchical space χ.
For example, assume that we have a search space that has three hyperparameters x1, x2 and x3, and
x2 is a child of x1. We create a map to encode x1’s name into 1, x2’s name into 2 and x3’s name
into 3. Then, we find the code of each hyperparameter’s father node to introduce the dependencies
information. Combine the father’s name code and its own name code, we can get such codes for
the three hyperparameters: x1 : [0, 1], x2 : [1, 2], x3 : [0, 3], where code 0 is the padding code for
representing a hyperparameter without father node.

Considering there are some hyperparameters that are lists and have several dimensions, we introduce
the dimension information of the hyperparameter. For example, we have two hyperparameters in a
neural network search space, which are the number of layers nums_layer and the number of units
per layer nums_unit respectively. Specifically, nums_layer is the father node of nums_unit and
ranges from 4 to 7, which indicates that the hyperparameter nums_units will be a list whose length
ranges from 4 to 7 depending on the value of nums_layer. In such a situation, we need to identify
each dimension of the hyperparameter using the index of the list because each dimension in this list
has the same name and father node. For example, if nums_layer gets 4, then we can get code 1, 2,
3, 4 for each dimension of nums_units. In addition, if a hyperparameter is a scalar and only has
one dimension, we use code 0 to represent its dimension.

Based on these codes, we utilize an embedding layer to get the name_emb and the father’s
name_emb, and another embedding layer to get dim_emb for each hyperparameter. Specifically,
we utilize ’nn.Embedding’ provided in PyTorch to get the embeddings, which have 64 dimensions in
our setting. When we sample a configuration in the search space, we use a linear layer to transform
the value of each hyperparameter into a 64-dim vector and concatenate these three embeddings as the

13

Under review as a conference paper at ICLR 2024

representation of each hyperparameter. Then, we can get the full embedding of the configuration as
eq.3 and eq.4 show.

B.1.2 ATTENTION-BASED ENCODER

We adopt the Transformer encoder as the deep kernel network to project the configurations in different
subspaces into a unified latent space Z . Specifically, we employ 6 attention blocks with 2 parallel
attention heads. The dimensionality of input and output is dmodel = 256 (4 × 64), and the inner layer
also has a dimensionality of 512. We adopt average pooling to integrate the output of the transformer
encoder and utilize a multi-layer perceptron (MLP) with 4 hidden layers, which has [128, 128, 128,
32] units of each hidden layer, to project the features of the configurations into 32-dim vectors. In our
ablation study, following Dosovitskiy et al. (2021), we utilize another way to integrate the features of
the transformer encoder via an extra token, which we named AttnBO-token-mixer in this paper.

B.1.3 DEEP KERNEL GAUSSIAN PROCESS

For the Gaussian Process model, we utilize Matérn 5/2 as the kernel function and set the mean prior
to zero. We adopt the Adam optimizer to train the parameters of the kernel by maximizing the
log-likelihood, embedding layer, and attention-based encoder for 100 epochs. We set the learning rate
to 0.001 with a decay rate of 0.5 every 30 epochs. For the acquisition, we utilize EI to balance the
exploration and exploitation and utilize the lbfgs optimizer to optimize EI in each subspace during
the acquisition stage. Unfortunately, a large number of subspaces will make it impossible to optimize
EI in each subspace using lbfgs, which performs best in our experiment. In this situation, we can use
Thompson sampling as the acquisition to find the next query like Nguyen et al. (2020). If you still
want to use EI, you can just simply use random sampling to optimize EI in the full search space.

B.2 BASELINES

In this section, we provide the specific details of each baseline mentioned in the paper:

Random Search (RS). Following the description in Bergstra & Bengio (2012), we sample candi-
dates uniformly at random.

Tree Parzen Estimator (TPE). Bergstra et al. (2011) adopt kernel density estimators to model
the probability of configurations with bad and good performance respectively. We use the default
settings provided in hyperopt package (https://github.com/hyperopt/hyperopt).

SMAC. Hutter et al. (2011) adopt random forest to model the response surface of the black-box
function. When dealing with the search space with dependencies, SMAC imputes the inactive
hyperparameters in each subspace with default values. We use the default settings given by scikit-
optimize package (https://github.com/scikit-optimize/scikit-optimize) and
impute the default values as SMAC3 package (https://github.com/automl/SMAC3).

Bandits-BO. Nguyen et al. (2020) builds a sub-GP in each subspace and uses a Thompson sampling
scheme that helps connect both multi-arm bandits and GP-BO in a unified framework. We implement
this method in our own framework. For each sub-GP, we use the same settings as our AttnBO except
for the deep neural network. We use the Matérn 5/2 as the kernel function and fit the sub-GPs using
slice sampling.

AddTree. Ma & Blaschko (2020b) proposed an Add-Tree covariance function to capture the global
response surface using a single GP, which is the state-of-the-art BO method for the hierarchical search
spaces. We use the default settings provided by https://github.com/maxc01/addtree.

C DETAILS OF THE BENCHMARKS AND EXPERIMENTS

To better display the search space with dependencies, we define a YAML format to represent the
search space. Following Xue et al. (2023), we adopt the keywords "type" and "range" to represent

14

https://github.com/hyperopt/hyperopt
https://github.com/scikit-optimize/scikit-optimize
https://github.com/automl/SMAC3
https://github.com/maxc01/addtree

Under review as a conference paper at ICLR 2024

the type and domain of the hyperparameter respectively. In addition, we also define the keyword
"submodule" to indicate the dependencies among hyperparameters. As for dependencies, in this
search space format, we support two types. When the number or distribution of one parameter
depends on another parameter, we can use the keyword "submodule" to indicate the relationship
between these parameters. For the type of each hyperparameter, we support choice, int, and float
for the categorical, integer, and decimal hyperparameters respectively. As to the range of integer
hyperparameters, we adopt the left-closed and right-open intervals to represent. For example, if an
integer hyperparameter x1 has the range [0...2], it can be 0 or 1. For every search space, we will give
both the YAML-style and figure-style representation.

C.1 SIMULATION BENCHMARK

The tree-structure search space of the simulation function that was originally presented in Jenatton
et al. (2017) consists of 9 hyperparameters as Listing 1 and Fig. 6 shows.

x1

0

r9 x3

1

x5x4

0 1

r8 x2

x5x4

0 1

Figure 6: The tree-structured search space on the simulation function presented in Jenatton et al.
(2017).

Listing 1: YAML-style representation of the simulation search space.

x1:
type : c h o i c e
range : {0 , 1}
submodule:

0:
r8 :

type : i n t
range : [0 . . . 2]

x2:
type : c h o i c e
range : {0 , 1}
submodule:

0:
x4:

type : f l o a t
range : [− 1 . . . 1]

1:
x5:

type : f l o a t
range : [− 1 . . . 1]

1:
r9 :

type : i n t

15

Under review as a conference paper at ICLR 2024

range : [0 . . . 2]
x3:

type : c h o i c e
range : {0 , 1}
submodule:

0:
x6:

type : f l o a t
range : [− 1 . . . 1]

1:
x7:

type : f l o a t
range : [− 1 . . . 1]

C.2 OPENML BENCHMARKS

We define two search spaces with dependencies for two popular machine-learning algorithms (SVM
and XGBoost) and evaluate the configurations on 6 most evaluated datasets whose task_ids are:
[10101, 37, 9967, 9946, 10093, 3494]. Furthermore, we compose the two search spaces into a more
complex CASH space to further explore the capabilities of our method. In this section, we will give
the details of the three search spaces and show the details of the experimental results for each search
space on all datasets in Fig. 15.

sigmoid

C kernel

linear polyrbf

gamma gammagamma

poly

Figure 7: The tree-structured search space of SVM on the tabular classification tasks. When the
kernel is linear for the SVM model, the shaded box indicates that there are no hyperparameters in this
case.

C.2.1 SVM SEARCH SPACE

The structure of the SVM search space is shown in Listing 2 and Fig. 7. When the kernel is set to
linear, there is no extra hyperparameter and no "submodule" in the YAML file.

Listing 2: YAML-style representation of the SVM search space.

16

Under review as a conference paper at ICLR 2024

C:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

ke rn e l :
type : c h o i c e
range : {"linear" , "poly" , "sigmoid" , "rbf"}
submodule:

poly :
degree :

type : i n t
range : [2 . . . 6]

gamma:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

s igmoid :
gamma:

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

rbf :
gamma:

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

booster

alpha

lambda

gbtree gblinear

n_estimators colsample_bytree

subsample

max_depth

reg_alpha

reg_lambda

colsample_bylevel

min_child_weight

learning_rate

Figure 8: The tree-structured search space of XGBoost on the tabular classification tasks.

C.2.2 XGBOOST SEARCH SPACE

The XGBoost search space consists of 10 hyperparameters and is more complex than the SVM search
space. Its structure can be seen in Listing 3 and Fig. 8.

17

Under review as a conference paper at ICLR 2024

Listing 3: YAML-style representation of the XGBoost search space.

b o o s t e r :
type : c h o i c e
range : { g b t r e e , g b l i n e a r }
submodule:

g bt re e :
n _ e s t i m a t o r s :

type : i n t
range : [5 0 . . . 5 0 1]

l e a r n i n g _ r a t e :
type : f l o a t
range : [0 . 0 0 1 . . . 0 . 1]

min_chi ld_weight :
type : f l o a t
range : [1 . . . 1 2 8]

max_depth:
type : i n t
range : [1 . . . 1 1]

subsample :
type : f l o a t
range : [0 . 1 . . . 0 . 9 9 9]

c o l s a m p l e _ b y t r e e :
type : f l o a t
range : [0 . 0 4 6 7 7 6 . . . 0 . 9 9 8 4 2 4]

c o l s a m p l e _ b y l e v e l :
type : f l o a t
range : [0 . 0 4 6 7 7 6 . . . 0 . 9 9 8 4 2 4]

reg_alpha :
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

reg_lambda:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

g b l i n e a r :
reg_alpha :

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

reg_lambda:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

C.2.3 SVM + XGBOOST SEARCH SPACE

In order to further explore the capabilities of our method, we compose the two search spaces into a
more complex CASH space by introducing a meta-level hyperparameter "algorithm" to choose which
algorithm will be used to evaluate. The structure of the composed CASH search space is shown in
Listing 4 and Fig. 9.

Listing 4: YAML-style representation of the SVM + XGBoost search space.

a lgor i thm :
type : c h o i c e
range : { xgboos t , svm}
submodule:

xgboost :
b o o s t e r :

type : c h o i c e

18

Under review as a conference paper at ICLR 2024

algorithm

XGBoost

sigmoid

booster C kernel

SVM

alpha

lambda

linear polyrbf

gamma gammagamma

poly

n_estimators

……

subsample

gbtree gblinear

Figure 9: The tree-structured search space on the tabular classification tasks. When the kernel is
linear for the SVM model, the shaded box indicates that there are no hyperparameters in this case.

range : { g b t r e e , g b l i n e a r }
submodule:

g bt re e :
n _ e s t i m a t o r s :

type : i n t
range : [5 0 . . . 5 0 1]

l e a r n i n g _ r a t e :
type : f l o a t
range : [0 . 0 0 1 . . . 0 . 1]

min_chi ld_weight :
type : f l o a t
range : [1 . . . 1 2 8]

max_depth:
type : i n t
range : [1 . . . 1 1]

subsample :
type : f l o a t
range : [0 . 1 . . . 0 . 9 9 9]

c o l s a m p l e _ b y t r e e :
type : f l o a t
range : [0 . 0 4 6 7 7 6 . . . 0 . 9 9 8 4 2 4]

c o l s a m p l e _ b y l e v e l :
type : f l o a t
range : [0 . 0 4 6 7 7 6 . . . 0 . 9 9 8 4 2 4]

reg_alpha :
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

reg_lambda:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

g b l i n e a r :
reg_alpha :

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

reg_lambda:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

svm:
C:

19

Under review as a conference paper at ICLR 2024

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

ke rn e l :
type : c h o i c e
range : {"linear" , "poly" , "sigmoid" , "rbf"}
submodule:

poly :
degree :

type : i n t
range : [2 . . . 6]

gamma:
type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

s igmoid :
gamma:

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

rbf :
gamma:

type : f l o a t
range : [0 . 0 0 1 . . . 1 0 0 0]

step_size nums_block

conv_op_0

……

nums_layer_0

stride_layer learning_rate batch_size

4 5 6 7

conv_op_3

conv_op_1

conv_op_2

nums_layer_1

nums_layer_2

nums_layer_3

conv_op_0

……

nums_layer_0

conv_op_6

conv_op_1 nums_layer_1

nums_layer_6

…… ……

……

……

……

……

Figure 10: The tree-structured search space of the NAS task evaluated on CIFAR-10 dataset.

C.3 NEURAL ARCHITECTURE SEARCH

Following Tan et al. (2019), we define a factorized hierarchical search space to find the best network
architecture and its training configurations. The search space consists of two aspects: 1) Neural
network architectures. 2) Hyperparameters of the optimizer used for training the neural networks.

As shown in Fig. ?, for the network architectures, we group the network layers into a number of
provisioned skeletons, called blocks, based on some solid works (Howard et al., 2017; Sandler et al.,
2018; Tan et al., 2019; Tan & Le, 2019) in computer vision. Each block contains various repeated
identical layers, except striding. Only the first layer has stride 2 if the block needs to downsample,
while all other layers have stride 1. We use the hyperparameter "stride_layer" to control this operation.
For each block, we search for the types of stacked convolution operations and connections for a single
layer and the number of layers "nums_layer"(N), and then for one layer i is repeated Ni times (e.g.,
Layer 4-1 to 4-N_4 are the same, where N_4 represents the number of repeated layers in the 4th
block). Now we describe the details of each hyperparameter:

1. nums_block. The number of blocks.

20

Under review as a conference paper at ICLR 2024

Conv kxk

BatchNorm

ReLU

(a) standard convolution

Conv kxk

BatchNorm

ReLU

Conv 1x1

BatchNorm

Conv kxk

BatchNorm

ReLU

Conv 1x1

BatchNorm

(b) depthwise separable convolution

Conv 1x1, BatchNorm, ReLU

Conv kxk, BatchNorm, ReLU

SELayer

Conv 1x1, BatchNorm

Conv 1x1, BatchNorm, ReLU

Conv kxk, BatchNorm, ReLU

SELayer

Conv 1x1, BatchNorm

(c) inverted residual layer

Conv kxk, BatchNorm, ReLU

Conv kxk, BatchNorm

SELayer

C
onv

1x1, B
atchN

orm

ReLU

Conv kxk, BatchNorm, ReLU

Conv kxk, BatchNorm

SELayer

ReLU

(d) residual layer

Figure 11: Searched architectures for NAS task.

2. conv_op. The convolution operation type for a single layer of each block. In our settings,
following Tan et al. (2019), there are 4 provisioned types available, represented by codes
0, 1, 2, and 3 respectively. 1) The first is the standard convolution layer (Simonyan &
Zisserman, 2015), which consists of a 2D convolution operation with a kernel size of
(kernel_size × kernel_size), a batch normalization operation and a ReLU activation
function. 2) The second type is the depthwise separable convolution layer (Howard et al.,
2017). It has the same function as the standard convolution layer but is more efficient,
which is a form of factorized convolutions with a standard convolution into a depthwise
convolution and a 1×1 convolution called a pointwise convolution. 3) The next one is the
inverted residual layer (Sandler et al., 2018), where each layer contains an input followed
by two bottlenecks and two expansion layers between them. 4) The last type is the ResNet
layer commonly used in computer vision tasks (He et al., 2016).

3. kernel_size. The size of the convolution kernel in one convolution block.
4. nums_layer. The number of layers in each block.
5. expend_ration. The ratio for expending, if using the inverted residue block (Sandler et al.,

2018).
6. seratio. The ratio of squeezing and expending if containing such structure.
7. nums_channel. The number of channels for each block.
8. stride_layer. The number of strides for each block is represented in binary.

The optimization hyperparameters The details of each hyperparameter are as follows:

1. learning_rate. The learning rate determines the speed of the network’s training and
convergence.

2. step_size. Size of the change in the parameter when the optimizer updates the parameter.
3. batch_size. Batch size determines how many data points will be used for training in each

iteration.

21

Under review as a conference paper at ICLR 2024

The structure of the search space of the NAS task is shown in Listing 5 and Fig. 10.

D VISUALIZATION OF ATTENTION MAPS

To give some insights into the relationships between the hyperparameters, we visualize the attention
maps learned on the NAS task where nums_block = 4 under two different random seeds in
Fig. 12. In order to preserve the original practical meaning of each embedding, we only visualize
the average of different parallel heads in the first attention block. Note that the attention scores in
each row are normalized by the softmax function. As for the neural architecture, we observed that
the first three blocks are more important for achieving good performance. Additionally, we found
that hyperparameters related to optimization, such as batch_size and learning_rate, are highly
correlated with various hyperparameters of the network architecture, which is intuitive in this task.

Listing 5: YAML-style representation of the NAS search space.

hyperparameters of the network architecture
nums_block:

type : i n t
range :
- 4 . . . 8
submodule:

conv_op:
type : c h o i c e
range : {0 , 1 , 2 , 3}

expand_rat io :
type : i n t
range : [5 . . . 7]

s e r a t i o :
type : c h o i c e
range : {0 , 8 , 16}

k e r n e l _ s i z e :
type : c h o i c e
range : {3 , 5}

nums_layer :
type : c h o i c e
range : {0 , 1 , 2}

nums_channel:
type : c h o i c e
range : {1 , 1 . 2 5 , 1 . 3 }

s t r i d e _ l a y e r :
type : c h o i c e
range : {43 , 44}

hyperparameters for optimization
l e a r n i n g _ r a t e :

type : f l o a t
range : [0 . 0 7 . . . 0 . 1 5]

s t e p _ s i z e :
type : i n t
range : [7 0 . . . 9 0]

b a t c h _ s i z e :
type : p o w e r i n t 2
range : [5 . . . 8]

22

Under review as a conference paper at ICLR 2024

ba
tc

h_
si

ze
co

nv
_o

p_
0

co
nv

_o
p_

1
co

nv
_o

p_
2

co
nv

_o
p_

3
ex

pa
nd

_r
at

io
_0

ex
pa

nd
_r

at
io

_1
ex

pa
nd

_r
at

io
_2

ex
pa

nd
_r

at
io

_3
le

ar
ni

ng
_r

at
e

nu
m

s_
bl

oc
k

st
ep

_s
iz

e
ke

rn
el

_s
iz

e_
0

ke
rn

el
_s

iz
e_

1
ke

rn
el

_s
iz

e_
2

ke
rn

el
_s

iz
e_

3
nu

m
s_

ch
an

ne
l_

0
nu

m
s_

ch
an

ne
l_

1
nu

m
s_

ch
an

ne
l_

2
nu

m
s_

ch
an

ne
l_

3
nu

m
s_

la
ye

r_
0

nu
m

s_
la

ye
r_

1
nu

m
s_

la
ye

r_
2

nu
m

s_
la

ye
r_

3
se

ra
tio

_0
se

ra
tio

_1
se

ra
tio

_2
se

ra
tio

_3
st

rid
e_

la
ye

r

batch_size
conv_op_0
conv_op_1
conv_op_2
conv_op_3

expand_ratio_0
expand_ratio_1
expand_ratio_2
expand_ratio_3

learning_rate
nums_block

step_size
kernel_size_0
kernel_size_1
kernel_size_2
kernel_size_3

nums_channel_0
nums_channel_1
nums_channel_2
nums_channel_3

nums_layer_0
nums_layer_1
nums_layer_2
nums_layer_3

seratio_0
seratio_1
seratio_2
seratio_3

stride_layer

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a)

ba
tc

h_
si

ze
co

nv
_o

p_
0

co
nv

_o
p_

1
co

nv
_o

p_
2

co
nv

_o
p_

3
ex

pa
nd

_r
at

io
_0

ex
pa

nd
_r

at
io

_1
ex

pa
nd

_r
at

io
_2

ex
pa

nd
_r

at
io

_3
le

ar
ni

ng
_r

at
e

nu
m

s_
bl

oc
k

st
ep

_s
iz

e
ke

rn
el

_s
iz

e_
0

ke
rn

el
_s

iz
e_

1
ke

rn
el

_s
iz

e_
2

ke
rn

el
_s

iz
e_

3
nu

m
s_

ch
an

ne
l_

0
nu

m
s_

ch
an

ne
l_

1
nu

m
s_

ch
an

ne
l_

2
nu

m
s_

ch
an

ne
l_

3
nu

m
s_

la
ye

r_
0

nu
m

s_
la

ye
r_

1
nu

m
s_

la
ye

r_
2

nu
m

s_
la

ye
r_

3
se

ra
tio

_0
se

ra
tio

_1
se

ra
tio

_2
se

ra
tio

_3
st

rid
e_

la
ye

r

batch_size
conv_op_0
conv_op_1
conv_op_2
conv_op_3

expand_ratio_0
expand_ratio_1
expand_ratio_2
expand_ratio_3

learning_rate
nums_block

step_size
kernel_size_0
kernel_size_1
kernel_size_2
kernel_size_3

nums_channel_0
nums_channel_1
nums_channel_2
nums_channel_3

nums_layer_0
nums_layer_1
nums_layer_2
nums_layer_3

seratio_0
seratio_1
seratio_2
seratio_3

stride_layer

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(b)

Figure 12: Visualization of attention maps for all tasks.

23

Under review as a conference paper at ICLR 2024

AttnBO-no-emb AttnBO-token-mixer AttnBO

0 20 40 60 80
Numbers of Observations

1.6

1.8

2.0

2.2

2.4

A
ve

ra
ge

 R
an

ki
ng

(a) SVM

0 20 40 60 80
Numbers of Observations

1.8

2.0

2.2

2.4

A
ve

ra
ge

 R
an

ki
ng

(b) XGBoost

0 20 40 60 80
Numbers of Observations

1.8

2.0

2.2

A
ve

ra
ge

 R
an

ki
ng

(c) SVM + XGBoost

Figure 13: Performance of our AttnBO and two variants.

E ABLATION STUDY

To verify the effectiveness of the embedding method we proposed, we conduct ablation studies
on the machine-learning benchmarks. Specifically, we compare the attention-based encoder with-
/without our proposed structure-aware embeddings and the results are shown in Fig. 13. In this
experiment, we compare two different embedding methods, AttenBO-no-emb, and our method. We
try a naive approach of embedding configurations through values and directly concatenating them
into a sequence, dubbed AttenBO-no-emb. The proposed embedding method facilitates the attention
module to learn dependencies in a tree-structured search space in separate search spaces of SVM
and XGBoost, compared with naive methods. In combinatorial search spaces, as the complexity
of the large search space increases, the performance difference becomes smaller and the variation
becomes larger. However, the graph shows a downward trend, and we guess that the algorithm
needs more iterations to converge in complex search spaces, the experiment results are shown in the
supplementary. Furthermore, we validate two methods commonly used in Transformer architectures,
classification token style (AttnBO-token-mixer) and average output embeddings style (Hwang et al.,
2022) (AttnBO). From experiments, we find that the latter performs better than the former. Obviously,
our proposed embedding method helps to capture the relationships between hyperparameters and
leads to higher effectiveness.

In addition, the results for the complex search spaces are shown in Fig. 14. It can be seen that our
algorithm converges in more iterations and outperforms the baseline methods, which indicates the
attention module captures the relationships between hyperparameters and leads to higher effectiveness.

AttnBO-no-emb AttnBO-token-mixer AttnBO

0 50 100 150 200
Numbers of Observations

1.6

1.8

2.0

2.2

2.4

A
ve

ra
ge

 R
an

ki
ng

(a) SVM + XGBoost

Figure 14: Performance of our AttnBO and two variant methods.

24

Under review as a conference paper at ICLR 2024

Random Search SMAC TPE Bandits-BO Add-tree AttnBO

0 20 40 60 80
Numbers of Observations

0.760

0.770

O
pt

im
al

 P
er

fo
rm

an
ce

(a) SVM 10101

0 20 40 60 80
Numbers of Observations

0.660

0.680

0.700

0.720

O
pt

im
al

 P
er

fo
rm

an
ce

(b) SVM 37

0 20 40 60 80
Numbers of Observations

0.653

0.655

O
pt

im
al

 P
er

fo
rm

an
ce

(c) SVM 9967

0 20 40 60 80
Numbers of Observations

0.960

0.970

0.980

0.990

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(d) SVM 10093

0 20 40 60 80
Numbers of Observations

0.800

0.825

0.850

0.875

0.900

0.925

0.950

O
pt

im
al

 P
er

fo
rm

an
ce

(e) SVM 9946

0 20 40 60 80
Numbers of Observations

0.900

0.920

0.940

0.960

0.980

O
pt

im
al

 P
er

fo
rm

an
ce

(f) SVM 3494

0 20 40 60 80
Numbers of Observations

0.762

0.765

0.767

0.770

0.772

O
pt

im
al

 P
er

fo
rm

an
ce

(g) XGBoost 10101

0 20 40 60 80
Numbers of Observations

0.660

0.680

0.700

0.720

0.740

0.760

O
pt

im
al

 P
er

fo
rm

an
ce

(h) XGBoost 37

0 20 40 60 80
Numbers of Observations

0.700

0.800

0.900

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(i) XGBoost 9967

0 20 40 60 80
Numbers of Observations

0.600

0.700

0.800

0.900

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(j) XGBoost 10093

0 20 40 60 80
Numbers of Observations

0.900

0.920

0.940

0.960

0.980

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(k) XGBoost 9946

0 20 40 60 80
Numbers of Observations

0.500

0.600

0.700

0.800

0.900

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(l) XGBoost 3494

0 20 40 60 80
Numbers of Observations

0.760

0.763

0.765

0.768

0.770

O
pt

im
al

 P
er

fo
rm

an
ce

(m) SVM+XGBoost 10101

0 20 40 60 80
Numbers of Observations

0.660

0.680

0.700

0.720

0.740

0.760

O
pt

im
al

 P
er

fo
rm

an
ce

(n) SVM+XGBoost 37

0 20 40 60 80
Numbers of Observations

0.700

0.800

0.900

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(o) SVM+XGBoost 9967

0 20 40 60 80
Numbers of Observations

0.950

0.960

0.970

0.980

0.990

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(p) SVM+XGBoost 10093

0 20 40 60 80
Numbers of Observations

0.700

0.800

0.900

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(q) SVM+XGBoost 9946

0 20 40 60 80
Numbers of Observations

0.800

0.850

0.900

0.950

1.000

O
pt

im
al

 P
er

fo
rm

an
ce

(r) SVM+XGBoost 3494

Figure 15: Performance of various black-box optimization methods on three machine-learning
benchmarks evaluated on real-world OpenML datasets.

25

	Introduction
	Related Work
	Bayesian Optimization for Conditional Search Space
	Deep Kernel Learning for Gaussian Process
	Attention

	Conditional Search Space Modeling
	Deep Kernel Learning with Attention
	Structure-aware Embeddings
	Attention-based Encoder for Deep Kernel Gaussian Process
	Bayesian Optimization with the Attention-based DKGP

	Experiments
	simulation benchmark
	Real-world Benchmarks on OpenML
	Neural Architecture Search

	Conclusion
	Broader Impact and Limitations
	Algorithm
	Implementation Details
	AttnBO
	Structure-aware Embeddings
	Attention-based Encoder
	Deep Kernel Gaussian Process

	Baselines

	Details of the Benchmarks and Experiments
	Simulation Benchmark
	OpenML Benchmarks
	SVM Search Space
	XGBoost Search Space
	SVM + XGBoost Search Space

	Neural Architecture Search

	Visualization of Attention Maps
	Ablation Study

