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Abstract
Consider the process of collective decision-making, in which a group of individuals
interactively select a preferred outcome from among a universe of alternatives. In
this context, “representation” is the activity of making an individual’s preferences
present in the process via participation by a proxy agent—i.e. their “representative”.
To this end, learned models of human behavior have the potential to fill this role,
with practical implications for multi-agent scenario studies and mechanism design.
In this work, we investigate the possibility of training language agents to behave
in the capacity of representatives of human agents, appropriately expressing the
preferences of those individuals whom they stand for. First, we formalize the setting
of collective decision-making—as the episodic process of interaction between a
group of agents and a decision mechanism. On this basis, we then formalize the
problem of digital representation—as the simulation of an agent’s behavior to yield
equivalent outcomes from the mechanism. Finally, we conduct an empirical case
study in the setting of consensus-finding among diverse humans, and demonstrate
the feasibility of fine-tuning large language models to act as digital representatives.

1 Introduction

Collective decision-making is a hallmark of intelligent behavior [1, 2], and is ubiquitous in economic,
social, and political spheres of society [3,4]. Consider any process in which a group of individuals in-
teractively select a preferred outcome from a universe of alternatives: For instance, consider a diverse
group of humans communicating in a mediated environment, seeking to arrive at a consensus opinion
on a topic of debate [5, 6]. In this context, “representation” is the activity of making an (otherwise
absent) individual’s preferences present in the process through participation by a proxy agent—i.e.
their “representative” [7]. To this end, learned models of human behavior have the potential to fill this
role, with practical implications for scenario studies and mechanism design. For instance, it can facil-
itate personalized and detailed simulations of collective interactions, allowing iterative refinement of
mechanisms before real-world deployment. The key question is: What makes a good representative?

Simulation for Representation In this work, we explore the possibility of training language agents
to behave in the capacity of representatives of human agents, appropriately expressing the preferences
of those individuals whom they stand for. On the one hand, this has natural connections to existing
work in simulating human behavior, such as learning from demonstrations [8–11], generating syn-
thetic data, [12–15], and creating plausible simulacra of social agents [16–21]. On the other hand,
unlike such prior work, our objective in simulating human behavior is specifically for “representation”.
This entails unique requirements: (a) grounding in the context of collective interaction, (b) attending
to the granularity of individual fidelity, and (c) operating in the high-dimensional domain of language
space. Specifically, in this work, we are exploring what representation means, how to measure repre-
sentativity, and whether language agents can be trained to act as representatives on behalf of humans.
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Contributions We make three key contributions in this investigation. First, we formalize the setting
of collective decision-making as the episodic process of interaction between a group of agents and a
decision mechanism (Section 2). Building upon this, our second contribution is to characterize the
problem of digital representation as the simulation of an agent’s behavior so as to yield equivalent
outcomes when interacting with the mechanism (Section 3). Finally, we conduct an empirical case
study in the setting of consensus-finding in natural language among diverse humans, and demonstrate
the feasibility of fine-tuning large language models to act as such digital representatives (Section 4).

2 Collective Decision-Making

Consider a general setting for collective decision-making, where interactions between a group of
individuals are mediated by a decision mechanism, yielding a process that produces a final outcome.
By way of preliminaries, we first formalize the notion of a social choice function, which is an abstract
mapping from preferences to outcomes that is implemented by a mechanism:

Definition 1 (Social Choice Function) Let N := {1, . . . , n} denote a set of participants, who are
engaged in the process of making a collective decision. Denote with Ω the space of outcomes, from
which the participants are required to make a final selection ω ∈ Ω. Denote with θi ∈ Θi the type
characterizing each participant i ∈ N , which captures their preferences over different outcomes.
Moreover, let θ := (θi)i∈N ∈ Θ := Θ1 × · · · ×Θn indicate the type profile of all participants. Then
a social choice function h is a mapping from the space of type profiles into the space of outcomes,

h : Θ → Ω (1)
In line with related fields, “participants” may also be referred to as “agents” and “players”, and an
“outcome” may be synonymous with an “alternative” and a “collective decision”. □

We operate in the standard setting for discrete-time Markov decision processes. Let x ∈ X denote
the state variable: While we keep notation simple, x may play the role of “contexts” and “histories”
that capture all observations prior to the current time step. Let ui ∈ Ui denote the action variable for
i ∈ N , and let u := (ui)i∈N ∈ U := U1 × · · · × Un indicate the action profile for all participants. In
our setting, u will largely play the role of “utterances” in language space. Denote with T the finite
length of each decision episode. The outcome of each episode is precisely the terminal state ω := xT .

Definition 2 (Decision Mechanism) Each participant i ∈ N is associated with a behavior denoted
with πi ∈ Πi ⊆ ∆(Ui)

X , and let π := (πi)i∈N ∈ Π := Π1 × · · · ×Πn give the behavior profile for
all participants. A decision mechanism τ is a mapping from states and action profiles to next states,

τ ∈ T ⊆ ∆(X )X×U (2)
and an outcome function f maps behavior profiles and mechanisms into distributions over outcomes.
In our Markov decision process setting, the outcome function is simply the result of “rolling out” an
episode of the interactive process between π and τ to arrive at (a distribution over) terminal states,

f : Π× T → ∆(Ω) (3)
A “behavior” may synonymously be referred to as a “policy” or “strategy”, and a “mechanism” may
be referred to as a “game” or “environment”. Our setting is in general non-stationary: We may use
superscripts t ∈ {1, . . . , T} to indicate time steps, but omit them unless explicitly required. □

Finally, a mechanism τ is said to implement a social choice function h when h(θ) = f(π, τ) for all
π ∈ Π. Both π, τ may depend on θ, though not required. Often, mechanisms are designed with an
optimization objective in mind. For instance, let each participant be associated with a payoff function,

gi : Ω×Θi → R (4)
such that gi(ω, θi) gives the payoff that participant i ∈ N enjoys from the collective decision ω. As
before, for convenience, let g := (gi)i∈N and (with some abuse of notation) write g : Ω×Θ → Rn.
Then a “utilitarian” social choice function is implemented as h(θ) = f(π, τ∗), by the mechanism:

τ∗ ∈ arg max
τ∈T

Eω∼f(π,τ)G(ω, θ) where G(ω, θ) :=
1

n

n∑
i=1

gi(ω, θi) (5)

Note that a “payoff function” is often interchangeable with a “reward function” or “utility function”.
In this work, we use the scenario of consensus-finding among individuals as our illustrative example.
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Case Study (Consensus-Finding) In this setting, a group of human participants shares their thoughts
on a debated topic using natural language. Through interaction with a mediation mechanism, they aim
to reach a consensus on the matter [5,6]. Specifically, an episode begins with a set of N participants ob-
serving a question of interest, sampled from a corpus of questions. For instance, this may be: “Should
we adopt a universal basic income (UBI) policy?” (see Figure 1). Each participant expresses their
opinion in written text. Next, the mediator mechanism processes these opinions and outputs a draft
consensus statement. Each participant then provides their own critique of the draft consensus in writ-
ten text. Note that participants do not observe each other’s opinions or critiques. Finally, the mediator
mechanism processes these critiques to produce a revised consensus statement. The episode ends with
participants viewing the revised consensus, followed by an individual demographics questionnaire.

Question Should we adopt a universal basic income (UBI) policy?

Participant

Opinions

Critiques

Questionnaire

Draft Consensus

Revised Consensus

Mediator 
Mechanism

Maybe, but we must grasp 
its potential harms first.

Exploring a pilot program before implementing UBI could 
address concerns about poverty and economic stability.

Yes, I think it could benefit the 
poor and boost our economy.

No! UBI will disincentivize 
work and burden taxpayers.

I think a pilot program is a 
step in the right direction.

A pilot may not capture the 
big picture benefits of UBI.

A pilot program will reveal 
the main flaws of UBI remain.

A carefully executed pilot program can help assess both the 
potential drawbacks and benefits of UBI.

Gender: Female. Age: 18-29. 
Region: London.

Gender: Female. Age: 30-39. 
Region: East Midlands.

Gender: Male. Age: 50-59. 
Region: West Midlands.

Mediator 
Mechanism

Participant Participant

Figure 1: Consensus-Finding. Observe that this is an instance of a collective decision-making setting:

• N is the set of participants, typically 3–5 for each episode;
• Ω = X is the space of revised consensus statements;
• x1 ∈ X is the question of interest;
• u1

i ∈ U is the opinion of participant i ∈ N on the question;
• x2 ∈ X is the draft consensus statement taking those into account;
• u2

i ∈ U is the critique of participant i ∈ N on the draft consensus;
• x3 ∈ X is the revised consensus statement taking those into account;
• u3

i ∈ U is the dummy action that terminates the episode with a demographics questionnaire;
• θ ∈ Θ is the participants’ preference profile over different consensus opinions;
• πi(·|x) is the utterance behavior of participant i ∈ N in response to x ∈ X ; and
• τ(·|x, u) is the mediation mechanism’s transition function at x ∈ X , u ∈ U .

Remark (Mediator Mechanism) Two comments deserve brief mention. Firstly, for added context,
the mediator mechanism τ is a 70B-parameter Chinchilla [22] model, fine-tuned as described in [5,6]
to best assist humans in collectively producing written consensus statements with maximal approval
(viz. Equation 5). In particular, these statements are preferred more strongly than several high-quality
baselines, including individual human opinions and consensus statements from human mediators.1
Secondly, we want to emphasize that for our purposes, we treat the mechanism as a black-box transi-
tion function. Our goal is to investigate how digital representatives can be trained to operate on behalf
of humans in collective decision-making settings, with the consensus-finding scenario as our primary
example. In this sense, the inner details of the mechanism are not of importance to us, save for recog-
nizing that T (and Π, as we shall see) are families of pre-trained and fine-tuned large language models.

1The mediator mechanism was not trained to endorse a specific perspective or persuade others of any viewpoint;
rather, it was trained purely to produce consensus statements based on the utterances provided by participants.

3



3 Digital Representatives

Suppose the true policy profile π∗∈Π, and we are interested in a model policy profile π̃ that approxi-
mates some or all of π∗ with digital representatives, in the context of decision mechanisms τ ∈T . (For
example, this might involve substituting a part of a single participant’s policy, or multiple participants’
policies, within π∗). What defines the set of profiles π̃ that we can consider as “equivalent” to π∗?

3.1 Digital Clones

One obvious choice is to require that π∗(u|x) = π̃(u|x) for all x ∈ X and u ∈ U , essentially seeking
an identical clone of π∗. This is fine as an objective for training language agents to serve as digital
representatives—in fact, likelihood-based training is exactly what we perform in Section 4. However,
we argue that matching conditionals alone is incomplete for evaluating digital representatives, as it
may be deemed both “too strong” and “too weak”. On one hand, it is “too strong” as π̃ may not need
to clone the entirety of π∗—in the context of τ . Intuitively, suppose there were some decomposition,

U = U || × U⊥ (6)

such that U || somehow encapsulated the “relevant” dimensions of utterances, whereas U⊥ encapsu-
lated the “irrelevant” dimensions. It may be helpful to draw an analogy with the “content” vs. “style”
distinction in the context of image classification [23], or the “meaning” vs. “form” distinction in the
context of semantic clustering [24]. If this is true, we would only care about matching the conditional,

π(u |||x) =
∫
U⊥

π(u|x)du⊥ (7)

That is, we would simply require that π∗(u |||x) = π̃(u |||x), for x ∈ X and u || ∈ U ||. If we had
access to such a decomposition, the matter would be settled. But such a factoring is seldom apparent.

On the other hand, defining representativity purely on the basis of conditionals is also “too weak”, as
the policies in π̃ are ultimately unrolled in one or more transitions by interacting through the mecha-
nism. Any discrepancy in conditionals may lead to compounding errors through such interactions.

3.2 Digital Representatives

A complete measure of representativity should also consider the dynamics of interaction. Here, we
draw connections with value-aware learning [25, 26] and value equivalence [27–30] in model-based
reinforcement learning. This allows us to define representation in a way that addresses both concerns
at once. First, some more notation: Given any π ∈ Π, τ ∈ T , the vector of expected payoffs to
participants at state x taking action u at time t is given by the “value function” Qt

π,τ : X × U → Rn:

Qt
π,τ (x, u) = ExT∼f(π,τ)

[
g(xT , θ)|xt = x, ut = u

]
(8)

Moreover, define the Bellman operator Bπ,τ over the space of functions Q : X × U → Rn such that

(Bπ,τQ)(x, u) := Ex′∼τ(·|x,u)Eu′∼π(·|x′)Q(x′, u′) (9)

Then the sequence of functions Q1:T
π,τ is the unique solution to backward recursions Qt = Bt

π,τQ
t+1

for t ∈ {1, . . . , T − 1}, and QT (x, u) := g(x, θ). Now we examine three notions of equivalence:

Definition 3 (Representational Equivalence) Fix Π and T . Define first the set of policy profiles
π ∈ Π for which actions profiles u ∼ π(·|x) are equal in distribution to u ∼ π∗(·|x) given any state:

Π(π∗) := {π ∈ Π : π∗(·|x) = π(·|x) ∀ x ∈ X} (10)

Instead of matching conditionals in isolation, we may focus on transitions: Define the set of policy
profiles π ∈ Π whose operators Bπ,τ have equal effect to Bπ∗,τ on any function Q ∈ Q ⊆ (Rn)X×U :

Π(π∗, T ,Q) := {π ∈ Π : Bπ∗,τQ = Bπ,τQ ∀ τ ∈ T and Q ∈ Q} (11)

Finally, we may assess equivalence based on payoffs of trajectories: Define the set of policy profiles
whose operators B1:T

π,τ have identical effect to B1:T
π∗,τ when all applied onto any QT ∈ Q ⊆ (Rn)X×U :

ΠT (π∗, T ,Q) := {π ∈ Π : B1
π∗,τ◦ · · · ◦BT

π∗,τQ
T = B1

π,τ◦ · · · ◦BT
π,τQ

T ∀ τ ∈ T , QT ∈ Q} (12)

Since repeated application of a Bellman operator T times turns any function QT into a value function
for the beginning of an episode, this condition effectively asks for equality in expected payoffs. □
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Expression 10 is simply the singleton class of digital clones. However, Expressions 11 and 12 both
capture a notion of invariance in Π in the sense that they define potentially larger classes of policy
profiles. Moreover, they are both defined on the basis of interaction with the mechanism. It turns out
that Expression 11 still demands too much, and 12 provides the better definition for “representation”:

Proposition 1 (Representational Equivalence) Fix Π and T , and let Q be closed under Bellman
updates. Consider the equivalence classes of policy profiles induced by π∗ from Definition 3. We have

Π(π∗) ⊆ Π(π∗, T ,Q) ⊆ ΠT (π∗, T ,Q) (13)

In particular, consider the maximal space of functions Q = (Rn)X×U . If the space of mechanisms is
also maximal, that is T = ∆(X )X×U , then we have that the first subset relation is an equality, that is

Π(π∗) = Π(π∗, T ,Q) ⊆ ΠT (π∗, T ,Q) (14)

Let action profiles be decomposable as U = U || ×U⊥ with card(U⊥)>1, and the interaction between
the mechanism and policies be such that values Qt

π,τ (x, u) = Qt
π,τ (x, (u ||, u⊥)) = Qt

π,τ (x, u ||) for
all t < T , x ∈ X , u ∈ U , π ∈ Π, and τ ∈ T ⊆ ∆(X )X×U . Then the second subset relation is proper,

Π(π∗) ⊆ Π(π∗, T ,Q) ⊂ ΠT (π∗, T ,Q) (15)

Proof. Appendix A. □

If the class of mechanisms is maximal, then the transition-based equivalence class Π(π∗, T ,Q) is
reduced to a singleton, whereas it is still possible for the trajectory-based ΠT (π∗, T ,Q) to be larger
(viz. Expression 14). More importantly, if the class of mechanisms is such that expected payoffs
are invariant to some U⊥ ⊆ U , then the equivalence class ΠT (π∗, T ,Q) is strictly the largest. The
intuition is that π̃ ∈ ΠT (π∗, T ,Q) are free to define arbitrary behavior within U⊥ without affecting
expected payoffs of final outcomes. As an example, suppose the class of mechanisms T ⊂ ∆(X )X×U

is itself invariant to some U⊥ ⊆ U (that is, τ(·|x, u) = τ(·|x, (u ||, u⊥)) = τ(·|x, u ||) for all x ∈ X ,
u ∈ U , τ ∈ T ). It is easy to see—by induction from QT

π,τ (x, u) := g(x, θ)—that the invariance as-
sumption on value functions required for Expression 15 holds (but not necessarily for Expression 14).

Value Equivalence In summary, this motivates a simple estimate of “representativity” that captures
how much a given model profile π̃ deviates from the true profile π∗ through their expected payoffs:

Representativity(π∗, π̃) := max
τ∈T ,QT∈Q

L
(
Eω∼f(π∗,τ)Q

T (ω),Eω∼f(π̃,τ)Q
T (ω)

)
(16)

where L is some measure of discrepancy between its vector arguments. In other words, π̃ is a “good”
representative of π∗ if behaviors elicited from each profile are such that, when aggregated through
mechanisms τ ∈T , they yield outcomes that (in expectation) are equivalent as measured by QT ∈Q.2

4 Case Study: Consensus-Finding

In the context of consensus-finding (viz. Figure 1) as collective decision-making, we now turn to the
empirical question: Is it feasible to train language agents to act as digital representatives of humans?
Indeed, large language models are often pre-trained on datasets rich in diverse preferences, and recent
work has shown that language agents can generate plausible behavior in interactive settings [21],
and to simulate subpopulations of humans in studies in economics [20], psychology [17], and social
science [19]. However, while socio-demographically prompted models can capture the sentiment of
general subpopulations of humans [31, 32], they are not as reliable on more granular levels [18, 33].
Is it possible to fine-tune language models on a personalized level to represent individuals in a group?

4.1 Experiment Setup

In this work, we train and evaluate digital representatives using a consensus-finding dataset from [5,6].
For completeness, we briefly recall the input questions and data collection process [5,6]. Then we give
an overview of the final dataset and the training process for digital representatives in our experiment.

2Note that this is reminiscent of how environment models are judged based on value equivalence [25–30]. However,
instead of defining equivalent environments based on a reference class of policies for reinforcement learning,
here we are defining equivalence classes of multi-agent policy profiles based on a reference class of mechanisms.

5



Questions The corpus of input questions concern reasonably divisive political issues relevant in
the United Kingdom. Questions were generated using a pre-trained 70B-parameter Chinchilla [22]
language model. First, 152 “seed” questions on contemporary topics of debate were written by hand.
Random samples of 10 seed questions at a time were used to prompt the model to generate final
questions, for a total of 3,500 unique questions. Questions likely to prompt extremist views or discrim-
inatory language were removed by hand, leaving a corpus of 2,922 questions. See [5,6] for more detail.

Data Collection In each episode of data collection, a group of 3–5 participants based in the United
Kingdom participated in an implementation of the protocol described in Figure 1. To begin, each
participant π∗

i viewed a question x1 sampled from the corpus. Next, they each wrote an opinion u1
i by

typing free text into an input box in a custom web application. Then, the opinions of the group were
included in a prompt provided to the mediator mechanism τ to generate a draft consensus statement
x2. Each participant then wrote a critique u2

i by typing free text into another input box. Finally,
these were all included in another prompt provided to the mediator mechanism to generate a revised
consensus statement x3, after which participants answered a short demographic questionnaire u3

i .
Separately, before writing their initial opinion, participants were asked to provide a “position” score
indicating their agreement on the declarative form of the question (so a question of the form “Should
we [...]” will have declarative form “We should [...]”), to allow measuring baseline disagreement
among the group. An average session took 45–60 minutes, and each set of participants were engaged
in three different episodes (i.e., corresponding to three different questions).3 See [5,6] for more detail.

Experiment Dataset The final dataset we use for experiments is the result of 1,662 episodes of data
collection, corresponding to a total of 2,290 participants and 6,872 written opinions and critiques.
For each episode, the dataset includes the text of each question, written opinions, draft consensus
statement, written critiques, and revised consensus statement. For each participant in a episode, the
metadata recorded include the other questions that the participant had engaged in from a past debate,
as well as the written opinions and critiques of that participant on those other questions. The ques-
tionnaire each participant completed covers a range of demographic information, including gender
identity, age (in decades), ethnicity, region of domicile, education, political and religious affiliation,
immigration status, and approximate household income. For each question, the initial “position” score
of each participant was also recorded. We split this final dataset into training and validation sets on the
basis of both data collection episodes and participant identity. This ensured that each participant and
each question only appears in either the training set or the validation set, but not both. This produced
a training set with 1,332 episodes of data collection, corresponding to 1,828 participants and 5,484
instances of written opinions and written critiques, and a validation set with 330 episodes of data
collection, corresponding to 462 participants and 1,386 instances of written opinions and critiques.

Digital Representatives In our experiments, we focus on learning digital representatives of human
participants for the critique step (u2). Let π̂i be a model trained to produce a written critique on
the basis of a question, participant i’s opinion, a draft consensus, and (optionally) any additional
information about that participant. Then the digital representative π̃i for that participant is defined as:

π̃i(·|xt) :=

{
π̂i (·|xt) if t = 2

π∗
i (·|xt) otherwise

(17)

Our training pipeline follows a standard supervised learning procedure for fine-tuning large language
models to learn from demonstrations. We train 1B- and 30B-parameter adaptations of Chinchilla [22]
models as digital representatives π̂i, using the dataset to estimate and maximize the training objective:

Jtraining(ϕ) := Eπ∗
i ,π̃i∼Dtraining...
u2
i∼π∗

i (·|x
2)

[
log π̃i(u

2
i |x2)

]
(18)

where ϕ denotes the trainable parameters of the model, and the vertical ellipsis indicates the sampling
of intermediate states and actions omitted for brevity. We fine-tune all model parameters using a
constant learning rate of 2 · 10−6, a batch size of 128, and the AdamW optimizer [34]. During
training, we evaluate the model’s performance by calculating the perplexity on the validation set.
This metric is employed for early stopping to prevent overfitting. Following this procedure, we select
the best checkpoints after 150 training steps for the 1B model and after 10 steps for the 30B model.

3Full details of the data collection procedure were first reviewed by an independent ethics review committee. No
personally identifiable data was collected, and no offensive content was shown to participants. All participants
had provided their informed consent before engaging, and were compensated £15 per hour for their involvement.
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Table 1: Example Critique. Critiques sampled from a vanilla/fine-tuned digital representative (“DR”).

Ground Truth
I agree that some sort of tax should be mandatory but as I said earlier if its too severe these wealthy
people wont [sic] stay on these islands and take their wealth elsewhere, its [sic] one thing having wealth
but it has to attractive for these people.

Vanilla DR 1B
It is really quite unclear why the government wants to make this change. It does not make sense to make
such a drastic change to the wealth tax. The logic of the government is that by introducing such a tax
they will be able to raise £45 billion in revenues. The same money will be used to build infrastruct-[...]

Fine-Tuned DR 1B I agree with this opinion and think it captures the nuances of the issue well.

Vanilla DR 30B
It is a little unclear to me why we should have this tax at all. I understand the problem of inequality, but
I’m not sure that a flat tax would help at all. We could be doing more good by helping people on lower
incomes to find jobs.

Fine-Tuned DR 30B I agree with this. However the tax should not be so severe as to make people leave the country and
therefore the gap would get wider.

4.2 Results: Critique Evaluation

First, we evaluate digital representatives at the level of individual critiques. Our first performance
measure is the log-likelihood of ground-truth critiques in the validation set, under the learned model:

J (critique)
likelihood (ϕ) := Eπ∗

i ,π̃i∼Dvalidation...
u2
i∼π∗

i (·|x
2)

[
log π̃i(u

2
i |x2)

]
(19)

Another measure involves prompting a large version of PaLM 2 [35] (i.e. over 1–2 orders of magnitude
larger than digital representatives) as an autorater, reporting the win-rate against a baseline critique:

J (critique)
autorater (ϕ) := Eπ∗

i ,π̃i∼Dvalidation...
u2
i∼π̃i(·|x2)

v2
i∼πbaseline

[
Autorater(u2

i ≻ v2i |x2)
]

(20)

where the golden baseline is the ground-truth critique (i.e. πbaseline := π∗). See Table 1 for some
critique samples. See Figure 2 for results on ablations and baseline (additional results in Appendix B).

4.3 Results: Consensus Evaluation

Second, we evaluate digital representatives at the level of consensus outcomes. Our first performance
measure is the discrepancy in expected payoff (cf. Equation 16) relative to some baseline consensus,
where payoffs are estimated using a payoff model accompanying the work in [5, 6], which is a model
based on a 1B-parameter Chinchilla [22] that outputs a scalar “agreement” score4 for each participant:

J (outcome)
payoff (ϕ) := Eπ∗,π̃∼Dvalidation...

u2∼π̃(·|x2)

x3∼τ(·|x2,u2)

y3∼τbaseline

[
L
(
Q3(x3), Q3(y3)

)]
(21)

Here, L computes the average element-wise difference between its two inputs, for participants who
are substituted by their digital representatives. We test two regimes of model policy profiles π̃: One in
which a single participant is substituted, that is π̃−i := (π∗

1 , . . . , π̃i, . . . , π
∗
n), and one in which all of

them are substituted, that is π̃N := (π̃1, . . . , π̃n). As before, another measure involves an autorater:

J (outcome)
autorater (ϕ) := Eπ∗,π̃∼Dvalidation...

u2∼π̃(·|x2)

v2∼π∗(·|x2)

x3∼τ(·|x2,u2)

y3∼τbaseline

[
Autorater(x3 ≻ y3|x2, v2)

]
(22)

where we report the win-rate against a baseline consensus (and the golden baseline is the ground-truth
consensus). See Figure 3 for results on ablations and baselines (and further results in Appendix B).

4The use of a payoff model serves as a proxy for human endorsement without replicating the entire study of [5,6].
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Figure 2: Critique Evaluation. Left: Mean log-likelihood of ground-truth critiques from human
participants (from the validation set), evaluated under models π̂i with fine-tuned (“FT’d”) or vanilla
digital representatives (“DRs”) with 1B or 30B parameters. The fine-tuned models consistently exhibit
higher log-likelihoods compared to their vanilla counterparts, indicating a superior representation
of participants’ ground-truth critiques. Right: The autorater’s win-rate of a sampled critique (for
different models π̂i across the x-axis) against one’s own ground-truth critique (i.e. the baseline). The
golden bar represents π∗ against itself, serving as a reference for ceiling performance. Conclusion:
Fine-tuning and scale both improve the representativeness of DRs for held-out participants’ critiques.

Figure 3: Consensus Evaluation. Either one participant’s critique (top), or all participants’ critiques
(bottom) are substituted with critiques sampled from their respective digital representatives π̂i. Left:
Mean discrepancy in payoffs between the revised consensus generated by the mediator mechanism
using participants’ ground-truth critiques, versus using critiques sampled from DRs. Replacing either
one or all ground truth critiques with vanilla DR samples results in significantly degraded payoffs,
whereas fine-tuned DR samples yield payoffs with little or no degradation, indicating that those
consensuses are more or less equivalent. Right: The autorater’s win-rate of a generated revised
consensus (using critiques sampled from different models π̂i) against the revised consensus generated
using ground-truth critiques (i.e. the baseline). The golden bar represents the baseline consensus
against itself, serving as a reference for ceiling performance. Substituting a single critique (chosen at
random) results in consensuses perceived as roughly equally similar across all DRs by the autorater
(13% difference between ceiling and Vanilla 1B DRs). This is likely a property of the mediation
mechanism, which we empirically observe disregards outlier critiques. However, substituting the
entire group’s critiques significantly influences the revised consensus output (30% difference between
ceiling and Vanilla 1B DRs), with the 30B fine-tuned DRs having a notably higher win-rate here.
Conclusion: Using the notion of representativity motivated earlier, in both top and bottom panels we
also observe that fine-tuning and scale both improve the representativity of DRs for held-out episodes.
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5 Discussion

We fine-tune language agents to act as digital representatives in the context of collective decision-
making, offering practical implications for scenario studies and mechanism design. In the sequel, we
provide an overview of related work and conclude with a discussion on limitations and future work.

Related Work Our work in “simulation for representation” straddles two domains of research: in (1)
how human behavior is simulated with models, and (2) how human behavior is represented by models.

SimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulationSimulation: First, imitation learning deals with training an artificial agent to mimic a demonstrator
[8–11], to match some notion of performance [36–39], or to recover some underlying motive for their
behavior [40–43]. Multiple artificial agents have also been cloned [44, 45], such as for simple control
tasks [46], bandit environments [47], and driving simulation [48]. This contrasts with our high-
dimensional language domain, and with our focus on “representativity” in collective decision-making.
Second, synthetic data generation deals with sampling from learned distributions to approximate real
phenomena, such as in sequential data [49–51], medical environments [14,52], driving simulation [15],
as well as in language space for social science [12], privacy preservation, [53], and to augment text
mining [13]. However, this contrasts with our emphasis on learning models to act in an interactive
context. Third, recent work has explored creating plausible simulacra of social agents using language
models, such as in creating populated prototypes for social computing [16], in prompting models
to simulate human sub-populations [19] and replicate human subject studies [17, 18], in simulating
economic agents [20], and in creating believable social behavior in sandbox environments [21]. In
contrast, we fine-tune models on a personalized level to represent specific individuals within a group.

RepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentationRepresentation: Since large language models are often pre-trained on human data with diverse per-
spectives, a recent line of work has seeks to measure the preferences that pre-trained models inherently
reflect with prompting, such as the representation of broad-based global demographic groups [54], the
alignment of their views with demographic categories in the United States [31], as well as to uncover
the intrinsic ideological biases that pre-trained models exhibit [55]. Secondly, a related strand of
research systematically probes pre-trained models to actively simulate biased perspectives, such as by
prompting with socio-demographic profiles [33], as well as by prompting with liberal or conservative
profiles to sample text with corresponding moral biases [32]. Some models have also been explicitly
fine-tuned to query the opinions and worldviews of demographic categories of people [56, 57]. In
contrast, however, in this work we seek to simulate behavior at the granularity of individual repre-
sentativity, specifically in the context of collective interaction. Finally, while we draw an analogy
with value-aware [25, 26] and value equivalent learning [27–30], our work has close connections
with broader notions of representation [7] in collective interaction [3], consensus-based decision-
making [4], and has potential implications for real and simulated deliberative democracy [58–61].

Future Work We began with the question: “What makes a good representative?”. Our argument
contends that a representative should not only capture the conditional dynamics of behavior but also
ensure that its interaction through a mechanism preserves the trajectory-wise dynamics of outcomes.
Several caveats are in order: First, there is no escaping the fact that the fidelity of any notion of
“representative” is most solidly grounded in human endorsement. While we use a black-box payoff
model as proxy, future work would greatly benefit from human validation of digital representatives.
Second, in this work we focused on learning representatives for the critique-writing step only. Future
work would benefit from naturally extending this to the opinion-writing step as well, yielding fully-
simulated representatives. Thirdly, although we defined and evaluated representatives based on an
equivalence objective, in our experiments the models were trained on a standard likelihood-based
fine-tuning objective. Future work could explore directly training for the equivalence objective.

Broader Impact It is important to emphasize that our training of digital representatives is geared
toward simulation, not advocating for their deployment as substitutes for human accountability in
decision-making. For instance, suppose we were interested in using digital representatives for the
purpose of simulating outcomes to improve some downstream tasks. Then evaluation of those tasks
must be performed with real humans. This is crucial, since we do not train representatives on any
notion of factuality or transparency. In fact, representatives are specifically trained to mimic their
human inputs per se, thereby carrying over any biases from those corresponding humans. That said,
this research was conducted with a focus on societal benefit. The ultimate goal is to facilitate granular
simulations of collective interactions for policy design, allowing decision mechanisms to benefit from
scalable and cost-effective iterative refinement before real-world deployment.
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A Proof of Proposition 1

Proposition 1 (Representational Equivalence) Fix Π and T , and let Q be closed under Bellman
updates. Consider the equivalence classes of policy profiles induced by π∗ from Definition 3. We have

Π(π∗) ⊆ Π(π∗, T ,Q) ⊆ ΠT (π∗, T ,Q) (13)

In particular, consider the maximal space of functions Q = (Rn)X×U . If the space of mechanisms is
also maximal, that is T = ∆(X )X×U , then we have that the first subset relation is an equality, that is

Π(π∗) = Π(π∗, T ,Q) ⊆ ΠT (π∗, T ,Q) (14)

Let action profiles be decomposable as U = U || ×U⊥ with card(U⊥)>1, and the interaction between
the mechanism and policies be such that values Qt

π,τ (x, u) = Qt
π,τ (x, (u ||, u⊥)) = Qt

π,τ (x, u ||) for
all t < T , x ∈ X , u ∈ U , π ∈ Π, and τ ∈ T ⊆ ∆(X )X×U . Then the second subset relation is proper,

Π(π∗) ⊆ Π(π∗, T ,Q) ⊂ ΠT (π∗, T ,Q) (15)

Proof. The first subset in Expression 13 is immediate from Definitions 9 and 11. The second subset
can be seen as follows: Fix π̃ ∈ Π(π∗, T ,Q), so for any τ ∈ T and Q ∈ Q we have the following,

Bπ∗,τQ = Bπ̃,τQ (23)

But Bπ∗,τQ and Bπ̃,τQ are also in Q from the closure assumption, so we can repeatedly apply the
Bellman operators Bπ∗,τ and Bπ̃,τ on the left and right hand sides for a total of T times, therefore

B1
π∗,τ◦ · · · ◦BT

π∗,τQ = B1
π̃,τ◦ · · · ◦BT

π̃,τQ (24)

so π̃ ∈ ΠT (π∗, T ,Q). Next, the equality in Expression 14 is obvious. Finally, the proper subset in
Expression 15 can be shown by picking the following model policy π̃ as proof (note that π̃ ̸∈ Π(π∗)):

π̃((u ||, u⊥)|x) := 1{u⊥=ũ⊥}π
∗(u |||x) (25)

First, note that the value function Q1:T
π∗,τ for the true policy π∗ profile satisfies the following recursion:

Qt
π∗,τ (x, (u ||, u⊥)) (26)

= (Bt
π∗,τQ

t+1
π∗,τ )(x, (u ||, u⊥)) (27)

= Ex′∼τ(·|x,(u ||,u⊥))E(u′
||,u

′
⊥)∼π∗(·|x′)Q

t+1
π∗,τ (x

′, (u′
||, u

′
⊥)) (28)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

∫
U⊥

π∗((u′
||, u

′
⊥)|x′)Qt+1

π∗,τ (x
′, (u′

||, u
′
⊥))du

′
||du

′
⊥ (29)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

∫
U⊥

π∗(u′
|||x′)π∗(u′

⊥|x′)Qt+1
π∗,τ (x

′, (u′
||, u

′
⊥))du

′
||du

′
⊥ (30)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

π∗(u′
|||x′)Qt+1

π∗,τ (x
′, u′

||)du
′
|| (31)

= Ex′∼τ(·|x,(u ||,u⊥))Eu′
||∼π∗(·|x′)Q

t+1
π∗,τ (x

′, u′
||) (32)

for t ∈ {1, . . . , T −1}, and QT
π∗,τ (x, u) = g(x, θ). Likewise, the value function Q1:T

π∗,τ for the model
policy profile π̃ satisfies the following recursion:

Qt(x, (u ||, u⊥)) (33)

= (Bt
π̃,τQ

t+1)(x, (u ||, u⊥)) (34)

= Ex′∼τ(·|x,(u ||,u⊥))E(u′
||,u

′
⊥)∼π̃(·|x′)Q

t+1(x′, (u′
||, u

′
⊥)) (35)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

∫
U⊥

π̃((u′
||, u

′
⊥)|x′)Qt+1(x′, (u′

||, u
′
⊥))du

′
||du

′
⊥ (36)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

∫
U⊥

1{u′
⊥=ũ⊥}π

∗(u′
|||x′)Qt+1(x′, (u′

||, u
′
⊥))du

′
||du

′
⊥ (37)

= Ex′∼τ(·|x,(u ||,u⊥))

∫
U ||

π∗(u′
|||x′)Qt+1(x′, (u′

||, ũ⊥))du
′
|| (38)

= Ex′∼τ(·|x,(u ||,u⊥))Eu′
||∼π∗(·|x′)Q

t+1(x′, (u′
||, ũ⊥)) (39)

for t ∈ {1, . . . , T − 1}, and QT (x, u) = g(x, θ). But Q1:T
π∗,τ is a solution to this recursion, and as

solutions to backward recursions are unique, we have that Q1:T
π̃,τ = Q1:T

π∗,τ , hence π̃ ∈ ΠT (π∗, T ,Q).
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Next, we show π̃ ̸∈ Π(π∗, T ): Pick Q(x, (u ||, u⊥)) := 1{u⊥ ̸=ũ⊥}. Then we have that

(Bπ∗,τQ)(x, (u ||, u⊥)) = Ex′∼τ(·|x,(u ||,u⊥))E(u′
||,u

′
⊥)∼π∗(·|x′)Q(x′, (u′

||, u
′
⊥)) (40)

= Ex′∼τ(·|x,(u ||,u⊥))P(u′
⊥ ̸= ũ⊥|x′, π∗) (41)

= P(u′
⊥ ̸= ũ⊥|x, (u ||, u⊥), π

∗, τ) (42)
and likewise,

(Bπ̃,τQ)(x, (u ||, u⊥)) = Ex′∼τ(·|x,(u ||,u⊥))Eu′
||∼π∗(·|x′)Q(x′, (u′

||, ũ⊥)) (43)

= Ex′∼τ(·|x,(u ||,u⊥))P(ũ⊥ ̸= ũ⊥) (44)

= 0 (45)

Suppose it were true that π̃ ∈ Π(π∗, T ,Q), so that for all Q we have that (Bπ∗,τQ)(x, (u ||, u⊥)) =
(Bπ̃,τQ)(x, (u ||, u⊥)), which means P(u′

⊥ = ũ⊥|x, (u ||, u⊥), π
∗, τ) = 1. But this is only possible

if U⊥={ũ⊥} hence card(U⊥)=1, which is a contradiction with the premise that card(U⊥)>1. □

B Further Experiment Detail

Variants of Digital Representatives As a reminder, a digital representative π̂i is a language model
trained to produce a critique based on a question, participant i’s opinion, a draft consensus (all of
which form the base information), and optionally any supplemental information about participant i.
The main text discusses various information sources within the task pipeline, which we outline in
Table 2 along with text examples from the dataset. We experimented with different combinations of
conditioning information along various axes of variation to create diverse datasets for fine-tuning.
In Figure 4 we show a handful of variants of digital representatives when conditioning on various
data in addition to the base information. Guided by the log-likelihood of the ground truth critiques
(in the validation set), we empirically determined the most effective additional information, which
included the participant i’s opinions and critiques on other debate questions discussed within the
same data collection pipeline. An input prompt example from the dataset used to fine-tune the digital
representatives as presented in the main text is illustrated in text box 1.

Table 2: Possible prompt information. A list of sections (with examples) that may be included in the
prompt for fine-tuning digital representatives.

Alias Description Example section as part of the prompt

Base Current question under debate Current question under debate: Should the government spend more on science and
technology research?

Base Opinion of participant i about the ques-
tion under debate

Opinion of the participant about the question under debate: I think its really
important that the government spends more on Science and Technology. If you
think about the problems we have as a society and as a planet - the answers lie
with Science and Technology.

Base Draft consensus statement
Group draft consensus statement (to be critiqued): The government should spend
more on science and technology research as this would lead to better technology
and medical discoveries to help the world.

D Demographic profile of participant i
(based on questionnaire)

You represent a participant with the following demographic profile. Gender
Identity: Male. Age (in decades): 50 to 59. Region: West Midlands. Ethnicity:
White. Party voted for in the most recent General Election: Labour. Highest
level of education completed: Higher or secondary or further education (A-levels,
BTEC, etc.). Religious affiliation: No religion. Approximate household income:
£20k to £40k per year. Immigration status in the UK: British Passport holder.

O Participant i’s opinions about other ques-
tions (1 to 3)

Question 1 from a past debate: Should the government spend more on science and
technology research?
Opinion of the participant about question 1: I believe that the government should
be allocating more money for science and technology research.

C Participant i’s critiques of other ques-
tions (1 to 3)

Question 1 from a past debate: Should the government spend more on science and
technology research?
Critique of the participant about question 1: I totally agree. Science and Technol-
ogy can help us out of our current problems and make life better for everyone.

P Participant i’s position score (as text)
about other questions (1 to 3)

Question 1 from a past debate: Should the government spend more on science and
technology research?
Position of the participant about question 1: agree.
Question 2 from a past debate: Should students be required to pass a literacy and
numeracy test before graduating from primary school?
Position of the participant about question 2: strongly disagree.
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Figure 4: Variants of Digital Representatives. Mean log-likelihood of ground-truth critiques from
human participants (from the validation set), evaluated under various digital representatives. All
these DRs have 1B parameters and were fine-tuned on datasets conditioned on diverse additional
information, as indicated on the x-axis (refer to Table 2 for details and examples). The optimal
variant (Base+O+C) incorporates participant i’s opinions and critiques to other questions. This
variant performs very similarly to its counterpart that additionally includes demographic information
(Base+O+C). However, we opted for the former for simplicity. Note that variants based solely
on demographics (Base+D or position scoring (Base+P) perform much worse. This suggests that
integrating participant-specific few-shot information enhances both task- and self-consistency.

Figure 5: Autorater Critique Evaluations: Ablations. The autorater’s win-rate of sampled critiques
against a custom baseline, as specified by the grey bar within each plot (included as a sanity check,
expected around 50%). The ground truth (One’s Own Critique) is also included to set the performance
ceiling. The main take-away is that the 30B fine-tuned DR (green) closely matches the performance
of ground truth critiques (golden), suggesting its ability to learn both task-specific aspects (e.g.,
critique-ness, topic) and participant-specific nuances (e.g., individual preferences, style). A similar
trend is observed for the 1B fine-tuned DR, albeit to a lesser extent.
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A group of participants is engaged in debates regarding important questions. They have been
tasked with coming up with a consensus for a new debate question.
This participant has shared their opinions on other open debate questions, as outlined below.
Question 1 from a past debate: Should students be required to pass a literacy and numeracy
test before graduating from primary school?
Opinion of the participant about question 1: I’m against this, children should not be under
pressure at such a young age and should concentrate more on being children. Obviously monitor
literacy and numeracy but to make them pass a test is unnecessary. Some people develop
academically as they get older, so a test at this young age is meaningless. Children will have
enough pressure as adults, let them enjoy being children.
Critique of the participant about question 1: Totally agree one hundred per cent with this,
pupils should not have to pass a test before graduating but they should be monitored and helped
if necessary. Let children be children. Question 2 from a past debate: Should we require people
to pay a fixed tax on any amount of wealth they own above £10 million?
Opinion of the participant about question 2: There is a growing wealth gap in the UK and the
world and a tax like this would help narrow that gap, help the country pay its way and help to
invest in important infrastructure. However we do not want to set this fixed amount of tax too
high that it puts wealthy individuals off from living here, investing here and spending money. I
do think though £10 million is the right figure to apply this tax.
Critique of the participant about question 2: Like the group opinion, it aligns well with what
my response was. Totally agree with the money helping to fund the public sector and poorest in
society. My concern was that the tax should not be set to high and 1% seems a fair figure. That
1% would still generate a substanial sum for the country.
Please offer a critique that accurately represents the participant’s opinion on a new debate
question in relation to the group draft consensus statement.
Current question under debate: Should the government spend more on science and technology
research?
Opinion of the participant about the question under debate: I think its really important that
the government spends more on Science and Technology. If you think about the problems we
have as a society and as a planet - the answers lie with Science and Technology. We have just
had a serious pandemic and we were helped by scientists coming up quickly with a vaccination.
One of the ways out of the Climate Change crisis is through science and technology coming up
with solutions as we as individuals do not want to change pur habits. More money going into
Science and Technology will help us counter these crises and future problems. If we don’t put
the money in, the next pandemic maybe more severe and costly.
Group draft consensus statement (to be critiqued): The government should spend more on
science and technology research as this would lead to better technology and medical discoveries
to help the world.
Critique of the participant:

Box 1: Prompt example for the digital representative used in the main text (Base+O+C).

Figure 6: Autorater Consensus Evaluations: Ablations. The autorater’s win-rate of generated
consensuses (based on single participant substitutions with DRs) against the baseline (based solely
on ground truth critiques). For comparison, various baseline consensus statements (as specified on
the x-axis) are included from the original dataset. This ablation demonstrates that DRs contribute to
generating consensuses that are competitively similar to human-selected consensuses (i.e. red bar).
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