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ABSTRACT

Local SGD is a communication-efficient variant of SGD for large-scale training,
where multiple GPUs perform SGD independently and average the model param-
eters periodically. It has been recently observed that Local SGD can not only
achieve the design goal of reducing the communication overhead but also lead
to higher test accuracy than the corresponding SGD baseline (Lin et al., 2020b),
though the training regimes for this to happen are still in debate (Ortiz et al.,
2021). This paper aims to understand why (and when) Local SGD generalizes
better based on Stochastic Differential Equation (SDE) approximation. The main
contributions of this paper include (i) the derivation of an SDE that captures the
long-term behavior of Local SGD in the small learning rate regime, showing how
noise drives the iterate to drift and diffuse after it has reached close to the mani-
fold of local minima, (ii) a comparison between the SDEs of Local SGD and SGD,
showing that Local SGD induces a stronger drift term that can result in a stronger
effect of regularization, e.g., a faster reduction of sharpness, and (iii) empirical ev-
idence validating that having a small learning rate and long enough training time
enables the generalization improvement over SGD but removing either of the two
conditions leads to no improvement.

1 INTRODUCTION

As deep models have grown larger, training them with reasonable wall-clock times has led to new
distributed environments and new variants of gradient-based training. Recall that Stochastic Gradi-
ent Descent (SGD) tries to solve minθ∈Rd Eξ∼D̃[ℓ(θ; ξ)], where θ ∈ Rd is the parameter vector of
the model, ℓ(θ; ξ) is the loss function for a data sample ξ drawn from the training distribution D̃,
e.g., the uniform distribution over the training set. SGD with learning rate η and batch size B does
the following update at each step, using a batch of B independent ξt,1, . . . , ξt,B ∼ D̃:

θt+1 ← θt − ηgt, where gt =
1

B

B∑
i=1

∇ℓ(θt; ξt,i). (1)

Parallel SGD tries to improve wall-clock time when the batch size B is large enough. It distributes
the gradient computation toK ≥ 2 workers, each of whom focuses on a local batch ofBloc := B/K
samples and computes the average gradient over the local batch. Finally, gt is obtained by averaging
the local gradients over the K workers.

However, large-batch training leads to a significant test accuracy drop compared to a small-batch
training baseline with the same number of training steps or epochs (Smith et al., 2020; Shallue et al.,
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(a) CIFAR-10, B = 4096, ResNet-56.
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(b) ImageNet, B = 8192, ResNet-50.

Figure 1: Post-Local SGD (H > 1) generalizes better than SGD (H = 1). We switch to Local SGD at the
first learning rate decay (epoch #250) for CIFAR-10 and at the second learning rate decay (epoch #100) for
ImageNet. See Appendix M.1 for training details.

2019; Keskar et al., 2017; Jastrzębski et al., 2017). Reducing this generalization gap is the goal of
much subsequent research. It was suggested that the generalization gap arises because larger batches
lead to a reduction in the level of noise in batch gradient (see Appendix A for more discussion). The
Linear Scaling Rule (Krizhevsky, 2014; Goyal et al., 2017; Jastrzębski et al., 2017) tries to fix this
by increasing the learning rate in proportion to batch size. This is found to reduce the generalization
gap for (parallel) SGD, but does not entirely eliminate it.

To reduce the generalization gap further, Lin et al. (2020b) discovered that a variant of SGD, called
Local SGD (Yu et al., 2019; Wang & Joshi, 2019; Zhou & Cong, 2018), can be used as a strong
component. Perhaps surprisingly, Local SGD itself is not designed for improving generalization, but
for reducing the high communication cost for synchronization among the workers, which is another
important issue that often bottlenecks large-batch training (Seide et al., 2014; Strom, 2015; Chen
et al., 2016; Recht et al., 2011). Instead of averaging the local gradients per step as in parallel SGD,
Local SGD allows K workers to train their models locally and averages the local model parameters
whenever they finish H local steps. Here every worker samples a new batch at each local step, and
in this paper we focus on the case where all the workers draw samples with or without replacement
from the same training set. See Appendix C for the pseudocode.

More specifically, Lin et al. (2020b) proposed Post-local SGD, a hybrid method that starts with
parallel SGD (equivalent to Local SGD with H = 1 in math) and switches to Local SGD with
H > 1 after a fixed number of steps t0. They showed through extensive experiments that Post-
local SGD significantly outperforms parallel SGD in test accuracy when t0 is carefully chosen. In
Figure 1, we reproduce this phenomenon on both CIFAR-10 and ImageNet.

As suggested by the success of Post-local SGD, Local SGD can improve the generalization of SGD
by merely adding more local steps (while fixing the other hyperparameters), at least when the train-
ing starts from a model pre-trained by SGD. But the underlying mechanism is not very clear, and
there is also controversy about when this phenomenon can happen (see Section 2.1 for a survey).
The current paper tries to understand: Why does Local SGD generalize better? Under what general
conditions does this generalization benefit arise?

Previous theoretical research on Local SGD is mainly restricted to the convergence rate for minimiz-
ing a convex or non-convex objective (see Appendix A for a survey). A related line of works (Stich,
2018; Yu et al., 2019; Khaled et al., 2020) showed that Local SGD has a slower convergence rate
compared with parallel SGD after running the same number of steps/epochs. This convergence re-
sult suggests that Local SGD may implicitly regularize the model through insufficient optimization,
but this does not explain why parallel SGD with early stopping, which may incur an even higher
training loss, still generalizes worse than Post-local SGD.

Our Contributions. In this paper, we provide the first theoretical understanding on why (and
when) switching from parallel SGD to Local SGD improves generalization.

1. In Section 2.2, we conduct ablation studies on CIFAR-10 and ImageNet and identify a clean
setting where adding local steps to SGD consistently improves generalization: if the learning
rate is small and the total number of steps is sufficient, Local SGD eventually generalizes better
than the corresponding (parallel) SGD baseline.

2. In Section 3.2, we derive a special SDE that characterizes the long-term behavior of Local SGD
in the small learning rate regime, as inspired by a previous work (Li et al., 2021b) that proposed
this type of SDE for modeling SGD. These SDEs can track the dynamics after the iterate has
reached close to a manifold of minima. In this regime, the expected gradient is near zero, but the
gradient noise can drive the iterate to wander around. In contrast to the conventional SDE (3) for
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SGD, where the drift and diffusion terms are connected respectively to the expected gradient and
gradient noise, the SDE we derived for Local SGD has drift and diffusion terms both connected
to gradient noise.

3. Section 3.3 explains the generalization improvement of Local SGD over SGD by comparing the
corresponding SDEs: increasing the number of local steps H strengthens the drift term of SDE
while keeping the diffusion term untouched. We hypothesize that having a stronger drift term
can benefit generalization.

4. As a by-product, we provide a new proof technique that can give the first quantitative approxi-
mation bound for how well Li et al. (2021b)’s SDE approximates SGD.

Back to the discussion on the generalization gap between small- and large-batch training, we remark
that this gap can occur early in training when the learning rate is very large (Smith et al., 2020) and
Local SGD cannot prevent this gap in this phase. Instead, our theory suggests that Local SGD can
reduce the gap in late training phases after decaying the learning rate.

2 WHEN DOES LOCAL SGD GENERALIZE BETTER?

In our motivating example of Post-local SGD, switching from SGD to Local SGD can outperform
running SGD alone (i.e., no switching) in test accuracy, but this improvement does not always arise
and can depend on the choice of the switching time point. Because of this, a necessary first step for
developing a theoretical understanding of Local SGD is to identify under what general conditions
Local SGD can improve the generalization of SGD by merely adding local steps.

2.1 THE DEBATE ON LOCAL SGD

We first summarize a debate in the literature regarding when to switch from SGD to Local SGD in
running Post-local SGD, which hints the conditions so that Local SGD can improve upon SGD.

Local SGD generalizes better than SGD on CIFAR-10. Lin et al. (2020b) empirically observed
that Post-local SGD exhibits a better generalization performance than SGD. Most of their exper-
iments are conducted on CIFAR-10 and CIFAR-100 with multiple learning rate decays, and the
algorithm switches from (parallel) SGD to Local SGD right after the first learning rate decay. We
refer to this particular choice of the switching time point as the first-decay switching strategy for
short. To justify this strategy, they empirically showed that the generalization improvement can be
less significant if starting Local SGD from the beginning or right after the second learning rate de-
cay. It has also been observed by Wang & Joshi (2021) that running Local SGD from the beginning
improves generalization, but the test accuracy improvement may not be large enough. A subsequent
work by Lin et al. (2020a) showed that adding local steps to Extrap-SGD, a variant of SGD pro-
posed therein, after the first learning rate decay also improves generalization, suggesting that the
first-decay switching strategy can also be applied to the post-local variant of other optimizers.

Does Local SGD exhibit the same generalization benefit on large-scale datasets? Going be-
yond CIFAR-10, Lin et al. (2020b) conducted a few ImageNet experiments and showed that Post-
local SGD with first-decay switching strategy still leads to better generalization than SGD. However,
the improvement is sometimes marginal, e.g., 0.1% for batch size 8192. For the general case, they
suggested that the time of switching should be tuned aiming at “capturing the time when trajectory
starts to get into the influence basin of a local minimum” in a footnote, but no further discussion or
experiments are provided to justify this guideline. Ortiz et al. (2021) conducted a more extensive
evaluation on ImageNet (with a different set of hyperparameters) and concluded with the opposite:
the first-decay switching strategy can hurt the validation accuracy. Instead, switching at a later time,
such as the second learning rate decay, leads to a better validation accuracy than SGD.1 To explain
this phenomenon, they conjecture that switching to Local SGD has a regularization effect that is
beneficial only in the short-term, so it is always better to switch as late as possible. They further
conjecture that this discrepancy between CIFAR-10 and ImageNet is mainly due to the task scale.
On TinyImageNet, which is a spatially downscaled subset of ImageNet, the first-decay switching
strategy indeed leads to better validation accuracy.

1This generalization improvement is not mentioned explicitly in (Ortiz et al., 2021) but can be clearly seen
from Figures 7 and 8 in their paper.
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(a) CIFAR-10, start from random.
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(b) CIFAR-10, start from #250.
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(c) ImageNet, start from #100.
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(d) ImageNet, first phase η = 3.2.
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(e) CIFAR-10, test acc v.s. H .
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(f) ImageNet, test acc v.s. H .

Figure 2: Ablation studies on η, H and training time in the same setting as Figure 1. For (a)(d), we train from
random initialization. For (b)(c)(e)(f), we start training from the checkpoints saved at the switching time points
in Figure 1 (epoch #250 for CIFAR-10 and epoch #100 for ImageNet). See Appendix M.2 for training details.

2.2 KEY FACTORS: SMALL LEARNING RATE AND SUFFICIENT TRAINING TIME

All the above papers agree that Post-local/Local SGD improves upon SGD to some extent. How-
ever, it is in debate under what conditions the generalization benefit can consistently occur. We now
conduct ablation studies to identify the key factors so that adding local steps improves the general-
ization of SGD. We run parallel SGD and Local SGD with the same learning rate η, local batch size
Bloc, and number of workers K. We start training from the same initialization and compare their
generalization after the same number of epochs. As Post-local SGD can be viewed as Local SGD
starting from an SGD-pretrained model, the initial point in our experiments can be either random or
a checkpoint of SGD training. See Appendix C for implementation details and Appendix M.2 for
more details about the experimental setup.

The first observation we have is that the generalization benefits can be reproduced on both CIFAR-
10 and ImageNet in our setting (see Figure 1). We remark that Post-local SGD and SGD in Lin et al.
(2020b); Ortiz et al. (2021) are implemented with accompanying Nesterov momentum terms. The
learning rate also decays a couple of times in training with Local SGD. Nevertheless, our experi-
ments show that the Nesterov momentum and learning rate decay are not necessary for Local SGD
to generalize better than SGD. Our main finding after further ablation studies is summarized below:

Finding 2.1. Given a sufficiently small learning rate and a sufficiently long training time, Local
SGD exhibits better generalization than SGD, if the number of local steps H per round is tuned
properly according to the learning rate. This holds for both training from random initialization and
from pre-trained models.

Now we go through each point of our main finding. See also Appendix F for more plots.
(1). Pretraining is not necessary. In contrast to previous works claiming the benefits of Post-local
SGD over Local SGD (Lin et al., 2020b; Ortiz et al., 2021), we observe that Local SGD with random
initialization also generalizes significantly better than SGD, as long as the learning rate is small and
the training time is sufficiently long (Figure 2(a)). Starting from a pretrained model may shorten the
time to reach this generalization benefit to show up (Figure 2(b)), but it is not necessary.

(2). Learning rate should be small. We experiment with a wide range of learning rates to con-
clude that setting a small learning rate is necessary. The learning rate is 0.32 for Figures 2(a) and 2(b)
and is 0.16 for Figure 2(c). As shown in Figure 2(d), Local SGD encounters optimization difficulty
in the first phase where η is large (η = 3.2), resulting in inferior final test accuracy. Even for training
from a pretrained model, the generalization improvement of Local SGD disappears for large learn-
ing rates (e.g., η = 1.6 in Figure 5(d)). In contrast, if a longer training time is allowed, reducing the
learning rate of Local SGD does not lead to test accuracy drop (Figure 5(c)).

(3). Training time should be long enough. To investigate the effect of training time, in Fig-
ures 2(b) and 2(c), we extend the training budget for the Post-local SGD experiments in Figure 1
and observe that a longer training time leads to greater generalization improvement upon SGD. On
the other hand, Local SGD generalizes worse than SGD in the first few epochs of Figures 2(a)
and 2(c); see Figures 5(a) and 5(b) for an enlarged view.
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(4). The number of local steps H should be tuned carefully. The number of local steps H has
a complex interplay with the learning rate η, but generally speaking, a smaller η needs a higher H
to achieve consistent generalization improvement. For CIFAR-10 with a post-local training budget
of 250 epochs (see Figure 2(e)), the test accuracy first rises as H increases, and begins to fall as H
exceeds some threshold for relatively large η (e.g., η ≥ 0.5) while keeps growing for smaller η (e.g.,
η < 0.5). For ImageNet with a post-local training budget of 50 epochs (see Figure 2(f)), the test
accuracy first increases and then decreases in H for all learning rates.

Reconciling previous works. Our finding can help to settle the debate presented in Section 2.1 to
a large extent. Simultaneously requiring a small learning rate and sufficient training time poses a
trade-off when learning rate decay is used with a limited training budget: switching to Local SGD
earlier may lead to a large learning rate, while switching later makes the generalization improve-
ment of Local SGD less noticeable due to fewer update steps. It is thus unsurprising that first-decay
switching strategy is not always the best. The need for sufficient training time does not contradict
with Ortiz et al. (2021)’s conjecture that Local SGD only has a “short-term” generalization benefit.
In their experiments, the generalization improvement usually disappears right after the next learn-
ing rate decay (instead of after a fixed amount of time). We suspect that the real reason why the
improvement vanishes is that the number of local steps H was kept as a constant, but our finding
suggests tuning H after η changes. In Figure 5(e), we reproduce this phenomenon and show that
increasing H after learning rate decay retains the improvement.

Generalization performances at the optimal learning rate of SGD. In practice, the learning
rate of SGD is usually tuned to achieve the best training loss/validation accuracy within a fixed
training budget. Our finding suggests that when the tuned learning rate is small and the training
time is sufficient, Local SGD can offer generalization improvement over SGD. As an example, in
our experiments on training from an SGD-pretrained model, the optimal learning rate for SGD is
0.5 on CIFAR-10 (Figure 2(e)) and 0.064 on ImageNet (Figure 2(f)). With the same learning rate
as SGD, the test accuracy is improved by 1.1% on CIFAR-10 and 0.3% on ImageNet when using
Local SGD with H = 750 and H = 26 respectively. The improvement could become even higher
if the learning rate of Local SGD is carefully tuned.

3 THEORETICAL ANALYSIS OF LOCAL SGD: THE SLOW SDE
In this section, we adopt an SDE-based approach to rigorously establish the generalization benefit
of Local SGD in a general setting. Below, we first identify the difficulty of adapting the SDE
framework to Local SGD. Then, we present our novel SDE characterization of Local SGD around
the manifold of minimizers and explain the generalization benefit of Local SGD with our SDE.

Notations. We follow the notations in Section 1. We denote by η the learning rate, K the number
of workers, B the (global) batch size, Bloc := B/K the local batch size, H the number of local
steps, ℓ(θ; ζ) the loss function for a data sample ζ, and D̃ the training distribution. Furthermore,
we define L(θ) := Eξ∼D̃[ℓ(θ; ξ)] as the expected loss, Σ(θ) := Covξ∼D̃[∇ℓ(θ; ξ)] as the noise
covariance of gradients at θ. Let {Wt}t≥0 denote the standard Wiener process. For a mapping
F : Rd → Rd, denote by ∂F (θ) the Jacobian at θ and ∂2F (θ) the second order derivative at θ.
Furthermore, for any matrix M ∈ Rd×d, ∂2F (θ)[M ] =

∑
i∈[d]⟨

∂2Fi

∂θ2 ,M⟩ei where ei is the i-th
vector of the standard basis. We write ∂2(∇L)(θ)[M ] as ∇3L(θ)[M ] for short.

Local SGD. We use the following formulation of Local SGD for theoretical analysis. See also
Appendix C for the pseudocode. Local SGD proceeds in multiple rounds of model averaging, where
each round produces a global iterate θ̄(s). In the (s+ 1)-th round, every worker k ∈ [K] starts with
its local copy of the global iterate θ

(s)
k,0 ← θ̄(s) and does H steps of SGD with local batches. In

the t-th local step of the k-th worker, it draws a local batch of Bloc := B/K independent samples
ξ
(s)
k,t,1, . . . , ξ

(s)
k,t,Bloc

from a shared training distribution D̃ and updates as follows:

θ
(s)
k,t+1 ← θ

(s)
k,t − ηg

(s)
k,t , where g

(s)
k,t =

1

Bloc

Bloc∑
i=1

∇ℓ(θ(s)
k,t ; ξ

(s)
k,t,i), t = 0, . . . ,H − 1. (2)

The local updates on different workers are independent of each other as there is no communication.
After finishing the H local steps, the workers aggregate the resulting local iterates θ(s)

k,H and assign

the average to the next global iterate: θ̄(s+1) ← 1
K

∑K
k=1 θ

(s)
k,H .

5



Published as a conference paper at ICLR 2023

3.1 DIFFICULTY OF ADAPTING THE SDE FRAMEWORK TO LOCAL SGD

A widely-adopted approach to understanding the dynamics of SGD is to approximate it from a con-
tinuous perspective with the following SDE (3), which we call the conventional SDE approximation.
Below, we discuss why it cannot be directly adopted to characterize the behavior of Local SGD.

dX(t) = −∇L(X)dt+
√

η
BΣ

1/2(X)dWt. (3)

It is proved by Li et al. (2019a) that this SDE is a first-order approximation to SGD, where each
discrete step corresponds to a continuous time interval of η. Several previous works adopt this SDE
approximation and connect good generalization to having a large diffusion term

√
η
BΣ

1/2dWt in
the SDE (Jastrzębski et al., 2017; Smith et al., 2020), because a suitable amount of noise can be
necessary for large-batch training to generalize well (see also Appendix A).

According to Finding 2.1, it is tempting to consider the limit η → 0 and see if Local SGD can also be
modeled via a variant of the conventional SDE. In this case the typical time length that guarantees a
good SDE approximation error isO(η−1) discrete steps (Li et al., 2019a; 2021a). However, this time
scaling is too short for the difference to appear between Local SGD and SGD. Indeed, Theorem 3.1
below shows that they closely track each other for O(η−1) steps.
Theorem 3.1. Assume that the loss function L is C3-smooth with bounded second and third order
derivatives and that ∇ℓ(θ; ξ) is bounded. Let T > 0 be a constant, θ̄(s) be the s-th global iterate
of Local SGD and wt be the t-th iterate of SGD with the same initialization w0 = θ̄(0) and same
η,Bloc,K. Then for any H ≤ T

η and δ = O(poly(η)), it holds with probability at least 1 − δ that

for all s ≤ T
ηH , ∥θ̄(s) −wsH∥2 = O(

√
η log 1

ηδ ).

We defer the proof to Appendix I. See also Appendix D for Lin et al. (2020b)’s attempt to model
Local SGD with multiple conventional SDEs and discussions on why it does not give much insight.

3.2 SDE APPROXIMATION NEAR THE MINIMIZER MANIFOLD

Inspired by a recent paper (Li et al., 2021b), our strategy to overcome the shortcomings of the
conventional SDE is to design a new SDE that can guarantee a good approximation for O(η−2)
discrete steps, much longer than the O(η−1) discrete steps for the conventional SDE. Following
their setting, we assume the existence of a manifold Γ consisting only of local minimizers and track
the global iterate θ̄(s) around Γ after it takes Õ(η−1) steps to approach Γ. Though the expected
gradient∇L is near zero around Γ, the dynamics are still non-trivial because the noise can drive the
iterate to move a significant distance in O(η−2) steps.
Assumption 3.1. The loss function L(·) and the matrix square root of the noise covariance Σ

1/2(·)
are C∞-smooth. Besides, we assume that ∥∇ℓ(θ; ξ)∥2 is bounded by a constant for all θ and ξ.
Assumption 3.2. Γ is a C∞-smooth, (d − m)-dimensional submanifold of Rd, where any ζ ∈ Γ
is a local minimizer of L. For all ζ ∈ Γ, rank(∇2L(ζ)) = m. Additionally, there exists an open
neighborhood of Γ, denoted as U , such that Γ = argminθ∈U L(θ).
Assumption 3.3. Γ is a compact manifold.

The smoothness assumption on L is generally satisfied when we use smooth activation functions,
such as Swish (Ramachandran et al., 2017), softplus and GeLU (Hendrycks & Gimpel, 2016), which
work equally well as ReLU in many circumstances. The existence of a minimizer manifold with
rank(∇2L(ζ)) = m has also been made as a key assumption in Fehrman et al. (2020); Li et al.
(2021b); Lyu et al. (2022), where rank(∇2L(ζ)) = m ensures that the Hessian is maximally non-
degenerate on the manifold and implies that the tangent space at ζ ∈ Γ equals the null space of
∇2L(ζ). The last assumption is made to prevent the analysis from being too technically involved.

Our SDE for Local SGD characterizes the training dynamics near Γ. For ease of presentation, we
define the following projection operators Φ, Pζ for points and differential forms respectively.

Definition 3.1 (Gradient Flow Projection). Fix a point θnull /∈ Γ. For x ∈ Rd, consider the gradient
flow dx(t)

dt = −∇L(x(t)) with x(0) = x. We denote the gradient flow projection of x as Φ(x).
Φ(x) := limt→+∞ x(t) if the limit exists and belongs to Γ; otherwise, Φ(x) = θnull.
Definition 3.2. For any ζ ∈ Γ and any differential form AdWt + bdt in Itô calculus, where A
is a matrix and b is a vector, we use Pζ(AdWt + bdt) as a shorthand for the differential form
∂Φ(ζ)AdWt +

(
∂Φ(ζ)b+ 1

2∂
2Φ(ζ)[AA⊤]

)
dt.
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See Øksendal (2013) for an introduction to Itô calculus. Here Pζ equals Φ(ζ+AdWt+bdt)−Φ(ζ)
by Itô calculus, which means that Pζ projects an infinitesimal step from ζ, so that ζ after taking the
projected step does not leave the manifold Γ. It can be shown by simple calculus that ∂Φ(ζ) equals
the projection matrix onto the tangent space of Γ at ζ. We decompose the noise covariance Σ(ζ)
for ζ ∈ Γ into two parts: the noise in the tangent space Σ∥(ζ) := ∂Φ(ζ)Σ(ζ)∂Φ(ζ) and the noise
in the rest Σ♢(ζ) := Σ(ζ)−Σ∥(ζ). Now we are ready to state our SDE for Local SGD.
Definition 3.3 (Slow SDE for Local SGD). Given η,H > 0 and ζ0 ∈ Γ, define ζ(t) as the solution
of the following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2B∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I

−K−1
2B ∇

3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸
(c) drift-II

)
. (4)

Here Σ̂♢(ζ), Ψ̂(ζ) ∈ Rd×d are defined as

Σ̂♢(ζ) :=
∑
i,j:(λi ̸=0)∨(λj ̸=0)

1
λi+λj

〈
Σ♢(ζ),viv

⊤
j

〉
viv

⊤
j , (5)

Ψ̂(ζ) :=
∑
i,j:(λi ̸=0)∨(λj ̸=0)

ψ(ηH·(λi+λj))
λi+λj

〈
Σ♢(ζ),viv

⊤
j

〉
viv

⊤
j , (6)

where {vi}di=1 is a set of eigenvectors of ∇2L(ζ) that forms an orthonormal eigenbasis, and
λ1, . . . , λd are the corresponding eigenvalues. Additionally, ψ(x) := e−x−1+x

x for x ̸= 0 and
ψ(0) = 0.

The use of Pζ keeps ζ(t) on the manifold Γ through projection. Σ
1
2

∥ (ζ) introduces a diffusion

term to the SDE in the tangent space. The two drift terms involve Σ̂♢(·) and Ψ̂(·), which can be
intuitively understood as rescaling the entries of the noise covariance in the eigenbasis of Hessian.
In the special case where ∇2L = diag(λ1, · · · , λd) ∈ Rd×d, we have Σ̂♢,i,j = 1

λi+λj
Σ0,i,j .

Ψ̂i,j =
ψ(ηH(λi+λj))

λi+λj
Σ0,i,j . ψ(x) is a monotonically increasing function, which goes from 0 to 1 as

x goes from 0 to infinity (see Figure 9)

We name this SDE as the Slow SDE for Local SGD because we will show that each discrete step
of Local SGD corresponds to a continuous time interval of η2 instead of an interval of η in the
conventional SDE. In this sense, our SDE is “slower” than the conventional SDE (and hence can
track a longer horizon). This Slow SDE is inspired by Li et al. (2021b). Under nearly the same set
of assumptions, they proved that SGD can be tracked by an SDE that is essentially equivalent to (4)
with K = 1, namely, without the drift-II term.

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2B∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I

)
, (7)

We refer to (7) as the Slow SDE for SGD. We remark that the drfit-II term in (4) is novel and is the
key to separate the generalization behaviors of Local SGD and SGD in theory. We will discuss this
point later in Section 3.3. Now we present our SDE approximation theorem for Local SGD.
Theorem 3.2. Let Assumptions 3.1 to 3.3 hold. Let T > 0 be a constant and ζ(t) be the solution
to (4) with the initial condition ζ(0) = Φ(θ̄(0)) ∈ Γ. If H is set to α

η for some constant α > 0,

then for any C3-smooth function g(θ), max0≤s≤ T
Hη2

∣∣E[g(Φ(θ̄(s))]− E[g(ζ(sHη2)]
∣∣ = Õ(η0.25),

where Õ(·) hides log factors and constants that are independent of η but can depend on g(θ).
Theorem 3.3. For δ = O(poly(η)), with probability at least 1 − δ, it holds for all O( 1

α log 1
η ) ≤

s ≤ T
αη that Φ(θ̄(s)) ∈ Γ and ∥θ̄(s) − Φ(θ̄(s))∥2 = O(

√
αη log α

ηδ ), where O(·) hides constants

independent of η, α and δ.

Theorem 3.2 suggests that the trajectories of the manifold projection and the solution to the Slow
SDE (4) are close to each other in the weak approximation sense. That is, {Φ(θ̄(s))} and {ζ(t)}
cannot be distinguished by evaluating test functions from a wide function class, including all poly-
nomials. This measurement of closeness between the iterates of stochastic gradient algorithms and
their SDE approximations is also adopted by Li et al. (2019a; 2021a); Malladi et al. (2022), but their
analyses are for conventional SDEs. Theorem 3.3 further states that the iterate θ̄(s) keeps close to
its manifold projection after the first few rounds.
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Remark 3.1. To connect to Finding 2.1, we remark that our theorems (1) do not require the model
to be pre-trained (as long as the gradient flow starting with θ(0) converges to Γ); (2) give better
bounds for smaller η; (3) characterize a long training horizon ∼ η−2. The need for tuning H will
be discussed in Section 3.3.3.
Technical Contribution. The proof technique for Theorem 3.2 is novel and significantly different
from the Slow SDE analysis of SGD in Li et al. (2021a). Their analysis uses advanced stochastic
calculus and invokes Katzenberger’s theorem (Katzenberger, 1991) to show that SGD converges to
the Slow SDE in distribution, but no quantitative error bounds are provided. Also, due to the local
updates and multiple aggregation steps in Local SGD, it is unclear how to extend Katzenberger’s
theorem to our case. To overcome this difficulty, we develop a new approach to analyze the Slow
SDEs, which is based on the method of moments (Li et al., 2019a) and can provide the quantitative
error bound Õ(η0.25) in weak approximation. See Appendix J for our proof outline. A by-product
of our result is the first quantitative approximation bound for the Slow SDE approximation for SGD,
which can be easily obtained by setting K = 1.

3.3 INTERPRETATION OF THE SLOW SDES

In this subsection, we compare the Slow SDEs for SGD and Local SGD and provide an important
insight into why Local SGD generalizes better than SGD: Local SGD strengthens the drift term in
the Slow SDE, which makes the implicit regularization of stochastic gradient noise more effective.

3.3.1 INTERPRETATION OF THE SLOW SDE FOR SGD.

The Slow SDE for SGD (7) consists of the diffusion and drift-I terms. The former injects noise into
the dynamics in the tangent space; the latter one drives the dynamics to move along the negative
gradient of 1

2B ⟨∇
2L(ζ), Σ̂♢(ζ)⟩ projected onto the tangent space, but ignoring the dependency of

Σ̂♢(ζ) on ζ. This can be connected to the class of semi-gradient methods which only computes a
part of the gradient (Mnih et al., 2015; Sutton & Barto, 1998; Brandfonbrener & Bruna, 2020). In
this view, the long-term behavior of SGD is similar to a stochastic semi-gradient method minimizing
the implicit regularizer 1

2B ⟨∇
2L(ζ), Σ̂♢(ζ)⟩ on the minimizer manifold of the original loss L.

Though the semi-gradient method may not perfectly optimize its objective, the above argument
reveals that SGD has a deterministic trend toward the region with a smaller magnitude of Hessian,
which is commonly believed to correlate with better generalization (Hochreiter & Schmidhuber,
1997; Keskar et al., 2017; Neyshabur et al., 2017; Jiang et al., 2020) (see Appendix A for more
discussions). In contrast, the diffusion term can be regarded as a random perturbation to this trend,
which can impede optimization when the drift-I term is not strong enough.

Based on this view, we conjecture that strengthening the drift term of the Slow SDE can help SGD
to better regularize the model, yielding a better generalization performance. More specifically, we
propose the following hypothesis, which compares the generalization performances of the following
generalized Slow SDEs. Note that ( 1

B ,
1
2B )-Slow SDE corresponds to the Slow SDE for SGD (7).

Definition 3.4. For κ1, κ2 ≥ 0, define (κ1, κ2)-Slow SDE to be the following:

dζ(t) = Pζ

(√
κ1Σ

1/2
∥ (ζ)dWt − κ2∇3L(ζ)[Σ̂♢(ζ)]dt

)
. (8)

Hypothesis 3.1. Starting at a minimizer ζ0 ∈ Γ, run (κ1, κ2)-Slow SDE and (κ1, κ
′
2)-Slow SDE

respectively for the same amount of time T > 0 and obtain ζ(T ), ζ′(T ). If κ2 > κ′2, then the
expected test accuracy at ζ(T ) is better than that at ζ′(T ).
Due to the No Free Lunch Theorem, we do not claim that our hypothesis is always true, but we do
believe that the hypothesis holds when training usual neural networks (e.g., ResNets, VGGNets) on
standard benchmarks (e.g., CIFAR-10, ImageNet).

Example: Training with Label Noise Regularization. To exemplify the generalization benefit of
having a larger drift term, we follow a line of theoretical works (Li et al., 2021b; Blanc et al., 2020;
Damian et al., 2021) to study the case of training over-parameterized neural nets with label noise
regularization. For a C-class classification task, the label noise regularization is as follows: every
time we draw a sample from the training set, we make the true label as it is with probability 1 − p,
and replace it with any other label with equal probability p

C−1 . When we use cross-entropy loss,
the Slow SDE for SGD turns out to be a simple deterministic gradient flow on Γ (instead of a semi-
gradient method) for minimizing the trace of Hessian: dζ(t) = − 1

4B∇Γtr(∇2L(ζ))dt, where∇Γf
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stands for the gradient of the function f projected to the tangent space of Γ. Checking the validity
of our hypothesis reduces to the following question: Is minimizing the trace of Hessian beneficial to
generalization? Many works prove positive results in concrete settings, including the line of works
we just mentioned. We refer the readers to Appendix G for further discussion.

3.3.2 LOCAL SGD STRENGTHENS THE DRIFT TERM IN SLOW SDE.

Based on Hypothesis 3.1, we argue that Local SGD improves generalization by strengthening
the drift term of the Slow SDE. First, it can be seen from (4) that the Slow SDE for Local SGD
has an additional drfit-II term. Similar to the drift-I term of the Slow SDE for SGD, this drift-II term
drives the dynamics to move along the negative semi-gradient of K−1

2B ⟨∇
2L(ζ), Ψ̂(ζ)⟩ (with the

dependency of Ψ̂(ζ) on ζ ignored). Combining it with the implicit regularizer induced by the drift-I
term, we can see that the long-term behavior of Local SGD is similar to a stochastic semi-gradient
method minimizing the implicit regularizer 1

2B ⟨∇
2L(ζ), Σ̂♢(ζ)⟩+ K−1

2B ⟨∇
2L(ζ), Ψ̂(ζ)⟩ on Γ.

Comparing the definitions of Σ̂⋄(ζ) (5) and Ψ̂(ζ) (6), we can see that Ψ̂(ζ) is basically a rescaling
of the entries of Σ̂⋄(ζ) in the eigenbasis of Hessian, where the rescaling factor ψ(ηH · (λi + λj))
for each entry is between 0 and 1 (see Figure 9 for the plot of ψ). When ηH is small, the rescaling
factors should be close to ψ(0) = 0, then Ψ̂(ζ) ≈ 0, leading to almost no additional regularization.
On the other hand, when ηH is large, the rescaling factors should be close to ψ(+∞) = 1, so
Ψ̂(ζ) ≈ Σ̂⋄(ζ). We can then merge the two implicit regularizers as K

2B ⟨∇
2L(ζ), Σ̂♢(ζ)⟩, and (4)

becomes the ( 1
B ,

K
2B )-Slow SDE, which is restated below:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt − K

2B∇
3L(ζ)[Σ̂♢(ζ)]dt

)
. (9)

From the above argument we know how the Slow SDE of Local SGD (4) changes as ηH transitions
from 0 to +∞. Initially, when ηH = 0, (4) is the same as the ( 1

B ,
1
2B )-Slow SDE for SGD. Then

increasing ηH strengthens the drift term of (4). As ηH → +∞, (4) transitions to the ( 1
B ,

K
2B )-Slow

SDE, where the drift term becomes K times larger.

According to Hypothesis 3.1, the ( 1
B ,

K
2B )-Slow SDE generalizes better than the ( 1

B ,
1
2B )-Slow SDE,

so Local SGD with ηH = +∞ should generalize better than SGD. When ηH is chosen realistically
as a finite value, the generalization performance of Local SGD interpolates between these two cases,
which results in a worse generalization than ηH = +∞ but should still be better than SGD.

3.3.3 THEORETICAL INSIGHTS INTO TUNING THE NUMBER OF LOCAL STEPS

Based on our Slow SDE approximations, we now discuss how the number of local steps H affects
the generalization of Local SGD. When η is small but finite, tuning H offers a trade-off between
regularization strength and SDE approximation quality. Larger α := ηH makes the regularization
stronger in the SDE (as discussed in Section 3.3.2), but the SDE itself may lose track of Local SGD,
which can be seen from the error bound O(

√
αη log(α/ηδ)) in Theorem 3.3. Therefore, we expect

the test accuracy to first increase and then decrease as we gradually increase H . Indeed, we observe
in Figures 2(e) and 2(f) that the plot of test accuracy versus H is unimodal for each η.

It is thus necessary to tune H for the best generalization. When H is tuned together with other
hyperparameters, such as learning rate η, our Slow SDE approximation recommends settingH to be
at least Ω(η−1) so that α := ηH does not vanish in the Slow SDE. Since larger α gives a stronger
regularization effect, the optimal H should be set to the largest value so that the Slow SDE does
not lose track of Local SGD. Indeed, we empirically observed that when H is tuned optimally, α
increases as η decreases, suggesting that the optimal H grows faster than Ω(η−1). See Figure 5(f).

4 CONCLUSIONS

In this paper, we analyze the long-term generalization behavior of Local SGD in the small learning
rate regime by deriving the Slow SDE for Local SGD as a generalization of that for SGD (Li et al.,
2021b). We attribute the generalization improvement over SGD to the larger drift term in the SDE for
Local SGD. Our empirical validation shows that Local SGD indeed induces generalization benefits
with small learning rate and long enough training time. The main limitation of our work is that
our analysis does not imply any direct theoretical separation between SGD and Local SGD in test
accuracy, which requires a much deeper understanding of the loss landscape and the Slow SDEs and
is left for future work. Another direction for future work is to design distributed training methods
that provably generalize better than SGD based on the theoretical insights obtained from Slow SDEs.
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A ADDITIONAL RELATED WORKS

Optimization aspect of Local SGD. Local SGD is a communication-efficient variant of parallel
SGD, where multiple workers perform SGD independently and average the model parameters peri-
odically. Dating back to Mann et al. (2009) and Zinkevich et al. (2010), this strategy has been widely
adopted to reduce the communication cost and speed up training in both scenarios of data center dis-
tributed training (Chen & Huo, 2016; Zhang et al., 2014; Povey et al., 2014; Su & Chen, 2015) and
Federated Learning (McMahan et al., 2017; Kairouz et al., 2021). To further accelerate training,
Wang & Joshi (2019) and Haddadpour et al. (2019) proposed adaptive schemes for the averag-
ing frequency, and Basu et al. (2019) combined Local SGD with gradient compression. Motivated
to theoretically understand the empirical success of Local SGD, a lot of researchers analyzed the
convergence rate of Local SGD under various settings, e.g., homogeneous/heterogeneous data and
convex/non-convex objective functions. Among them, Yu et al. (2019); Stich (2018); Khaled et al.
(2020); Woodworth et al. (2020a) focus on the homogeneous setting where data for each worker are
independent and identically distributed (IID). Li et al. (2019b); Karimireddy et al. (2020); Glasgow
et al. (2022); Woodworth et al. (2020b); Wang et al. (2022) study the heterogeneous setting, where
workers have non-IID data and local updates may induce “client drift” (Karimireddy et al., 2020)
and hurt optimization. The error bound of Local SGD obtained by these works is typically inferior
to that of SGD with the same global batch size for fixed number of iterations/epochs and becomes
worse as the number of local steps increases, revealing a trade-off between less communication and
better optimization. In this paper, we are interested in the generalization aspect of Local SGD in the
homogeneous setting, assuming the training loss can be optimized to a small value.

Gradient noise and generalization. The effect of stochastic gradient noise on generalization has
been studied from different aspects, e.g., changing the order of learning different patterns Li et al.
(2019a), inducing an implicit regularizer in the second-order SDE approximation Smith et al. (2021);
Li et al. (2019a). Our work follows a line of works studying the effect of noise in the lens of
sharpness, which is long believed to be related to generalization Hochreiter & Schmidhuber (1997);
Neyshabur et al. (2017). Keskar et al. (2017) empirically observed that large-batch training leads
to worse generalization and sharper minima than small-batch training. Wu et al. (2018); Hu et al.
(2017); Ma & Ying (2021) showed that gradient noise destabilizes the training around sharp min-
ima, and Kleinberg et al. (2018); Zhu et al. (2018); Xie et al. (2021); Ibayashi & Imaizumi (2021)
quantitatively characterized how SGD escapes sharp minima. The most related papers are Blanc
et al. (2020); Damian et al. (2021); Li et al. (2021b), which focus on the training dynamics near a
manifold of minima and study the effect of noise on sharpness (see also Section 3.2). Though the
mathematical definition of sharpness may be vulnerable to the various symmetries in deep neural
nets (Dinh et al., 2017), sharpness still appears to be one of the most promising tools for predicting
generalization (Jiang et al., 2020; Foret et al., 2021).

Improving generalization in large-batch training. The generalization issue of the large-batch
(or full-batch) training has been observed as early as (Bengio, 2012; LeCun et al., 2012). As men-
tioned in Section 1, the generalization issue of large-batch training could be due to the lack of a
sufficient amount of stochastic noise. To make up the noise in large-batch training, Krizhevsky
(2014); Goyal et al. (2017) empirically discovered the Linear Scaling Rule for SGD, which sug-
gests enlarging the learning rate proportionally to the batch size. Jastrzębski et al. (2017) adopted
an SDE-based analysis to justify that this scaling rule indeed retains the same amount of noise as
small-batch training (see also Section 3.1). However, the SDE approximation may fail if the learning
rate is too large (Li et al., 2021a), especially in the early phase of training before the first learning
rate decay (Smith et al., 2020). Shallue et al. (2019) demonstrated that generalization gap between
small- and large-batch training can also depend on many other training hyperparameters. Besides
enlarging the learning rate, other approaches have also been proposed to reduce the gap, including
training longer (Hoffer et al., 2017), learning rate warmup (Goyal et al., 2017), LARS (You et al.,
2018), LAMB (You et al., 2020). In this paper, we focus on using Local SGD to improve general-
ization, but adding local steps is a generic training trick that can also be combined with others, e.g.,
Local LARS (Lin et al., 2020b), Local Extrap-SGD (Lin et al., 2020a).

18



Published as a conference paper at ICLR 2023

B ADDITIONAL DISCUSSIONS

Connection to the conventional wisdom that the diffusion term matters more. As mentioned
in Section 3.1, it is believed in the literature is that a large diffusion term in the conventional SDE
leads to good generalization. One may think that the diffusion term in the Slow SDE corresponds to
that in the conventional SDE, and thus enlarging the diffusion term rather than the drift term should
lead to better generalization. However, we note that both the diffusion and drift terms in the Slow
SDEs result from the long-term effects of the diffusion term in the conventional SDE (Slow SDEs
become stationary if Σ = 0). This means our view characterizes the role of gradient noise in more
detail, and therefore, goes one step further on the conventional wisdom.

Slow SDEs for neural nets with modern training techniques. In modern neural net training, it
is common to add normalization layers and weight decay (L2-regularization) for better optimization
and generalization. However, these techniques lead to violations of our assumptions, e.g., no fixed
point exists in the regularized loss (Li et al., 2020; Ahn et al., 2022). Still, a minimizer manifold
can be expected to exist for the unregularized loss. Li et al. (2022) noted that the drift and diffusion
around the manifold proceeds faster in this case, and derived a Slow SDE for SGD that captures
O( 1η log

1
η ) discrete steps instead of O( 1

η2 ). We believe that our analysis can also be extended to
this case, and that adding local steps still results in the effect of strengthening the drift term.
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C IMPLEMENTATION DETAILS OF PARALLEL SGD, LOCAL SGD AND
POST-LOCAL SGD

In this section, we present the formal procedures for Parallel SGD, Local SGD and Post-local SGD.
Given a training dataset and a data augmentation function, Algorithms 1 and 2 show the imple-
mentations of distributed samplers for sampling local batches with and without replacement. Then
Algorithms 3 to 5 show the implementations of parallel SGD, Local SGD and Post-local SGD that
can run with either of the samplers.

Sampling with replacement. Our theory analyzes parallel SGD, Local SGD and Post-local SGD
when local batches are sampled with replacement (Algorithm 1). That is, local batches consist of IID
samples from the same training distribution D̃, where D̃ serves as an abstraction of the distribution
of an augmented sample drawn from the training dataset. The mathematical formulations are given
in Section 1.

Sampling without replacement. Slightly different from our theory, we use the sampling without
replacement (Algorithm 2) in our experiments unless otherwise stated. This sampling scheme is
standard in practice: it is used by Goyal et al. (2017) for parallel SGD and by Lin et al. (2020b); Ortiz
et al. (2021) for Post-local/Local SGD. This sampling scheme works as follows. At the beginning
of every epoch, the whole training dataset is shuffled and evenly partitioned into K shards. Each
worker takes one shard and samples batches without replacement. When all workers pass their
own shard, the next epoch begins and the whole dataset is reshuffled. An alternative view is that
the workers always share the same dataset. For each epoch, they perform local steps by sampling
batches of data without replacement until the dataset contains too few data to form a batch. Then
another epoch starts with the dataset reloaded to the initial state.

Discrepancy in Sampling Schemes. We argue that this discrepancy between theory and experi-
ments on sample schemes is minor. Though sampling without replacement is standard in practice,
most previous works, e.g., Wang & Joshi (2019); Li et al. (2021a); Zhang et al. (2020), analyze
sampling with replacement for technical simplicity and yields meaningful results.

Moreover, even if we change the sampling scheme to with replacement, Local SGD can still improve
the generalization of SGD (by merely adding local steps). See Appendix F for the experiments. We
believe that the reasons for better generalization of Local SGD with either sampling scheme are
similar and leave the analysis for sampling without replacement for future work.
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Algorithm 1: Distributed Sampler on K Workers (Sampling with Replacement)

1 Require: shared training dataset D, data augmentation function A(ξ̂)
2 Hyperparameters: local batch size Bloc

3 Function Sample() on worker k:
4 Draw Bloc IID samples ξ̂1, . . . , ξ̂Bloc

from D with replacement ;
5 ξb ← A(ξ̂b) for all 1 ≤ b ≤ Bloc ; // apply data augmentation

6 return (ξ1, . . . , ξBloc
) ;

7 end

Algorithm 2: Distributed Sampler on K Workers (Sampling without Replacement)

1 Require: shared training dataset D, data augmentation function A(ξ̂)
2 Hyperparameters: local batch size Bloc

3 Constant: Nloc :=
⌊

|D|
KBloc

⌋
// number of local batches per worker per epoch

4 Local Variables: c(k) ← NlocBloc for worker k // number of samples drawn in this epoch

5 Function Sample() on worker k:
6 if c(k) = NlocBloc then

// Now start a new epoch

7 Wait until all the other workers reach this line ; // synchronize

8 Draw a random permutation P of 1, . . . , |D| jointly with other workers so that the same
permutation is shared among all workers ; // reshuffle the dataset

9 Q
(k)
j ← P(k−1)NlocBloc+j for all 1 ≤ j ≤ Nloc ; // partition the dataset

10 c(k) ← 0 ;
11 end
12 for i = 1, . . . , Bloc do
13 ξ̂i ← the Q(k)

c(k)+i
-th data point of D ; // sample without replacement

14 ξi ← A(ξ̂i) ; // apply data augmentation

15 end
16 c(k) ← c(k) +Bloc ;
17 return (ξ1, . . . , ξBloc

) ;
18 end
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Algorithm 3: Parallel SGD on K Workers
1 Input: loss function ℓ(θ; ξ), initial parameter θ0
2 Hyperparameters: total number of iterations T , learning rate η, local batch size Bloc

3 for t = 0, · · · , T − 1 do
4 for each worker k do in parallel
5 (ξk,t,1, . . . , ξk,t,Bloc

)← Sample() ; // sample a local batch

6 gk,t ← 1
Bloc

∑Bloc

i=1 ∇ℓ(θt; ξk,t,i) ; // computing the local gradient

7 end
8 gt ← 1

K

∑K
k=1 gk,t ; // all-Reduce aggregation of local gradients

9 θt+1 ← θt − ηtgt ; // update the model

10 end

Algorithm 4: Local SGD on K Workers

1 Input: loss function ℓ(θ; ξ), initial parameter θ̄(0)

2 Hyperparameters: total number of rounds R, number of local steps H per round
3 Hyperparameters: learning rate η, local batch size Bloc

4 for s = 0, . . . , R− 1 do
5 for each worker k do in parallel
6 θ

(s)
k,0 ← θ̄(0) ; // maintain a local copy of the global iterate

7 for t = 0, . . . ,H − 1 do
8 (ξ

(s)
k,t,1, . . . , ξ

(s)
k,t,Bloc

)← Sample() ; // sample a local batch

9 g
(s)
k,t ←

1
Bloc

∑Bloc

i=1 ∇ℓ(θ
(s)
k,t ; ξ

(s)
k,t,i) ; // computing the local gradient

10 θ
(s)
k,t+1 ← θ

(s)
k,t − ηg

(s)
k,t ; // update the local model

11 end
12 end
13 θ̄(s+1) ← 1

K

∑K
k=1 θ

(s)
k,H ; // all-Reduce aggregation of local iterates

14 end

Algorithm 5: Post-local SGD on K Workers
1 Input: loss function ℓ(θ; ξ), initial parameter θ0
2 Hyperparameters: total number of iterations T , learning rate η, local batch size Bloc

3 Hyperparameters: switching time point t0, number of local steps H per round
4 Ensure: T − t0 is a multiple of H

5 Starting from θ0, run Parallel SGD for t0 iterations and obtain θt0 ;
6 Starting from θt0 , run Local SGD for 1

H (T − t0) rounds with H local steps per round ;
7 return the final global iterate of Local SGD ;
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D MODELING LOCAL SGD WITH MULTIPLE CONVENTIONAL SDES

Lin et al. (2020b) tried to informally explain the success of Local SGD by adopting the argument
that larger diffusion term in the conventional SDE leads to better generalization (see Section 3.1
and appendix A). Basically, they attempted to write multiple SDEs, each of which describes the
H-step local training process of each worker in each round (from θ

(s)
k,0 to θ

(s)
k,H ). The key difference

between each of these SDEs and the SDE for SGD (3) is that the former one has a larger diffusion
term because the workers use batch size Bloc instead of B:

dX(t) = −∇L(X)dt+

√
η

Bloc
Σ

1/2(X)dWt. (10)

Lin et al. (2020b) then argue that the total amount of “noise” in the training dynamics of Local SGD
is larger than that of SGD. However, it is hard to see whether it is indeed larger, since the model
averaging step at the end of each round can reduce the variance in training and may cancel the effect
of having larger diffusion terms.

More formally, a complete modeling of Local SGD following this idea should view the sequence of
global iterates {θ̄(s)} as a Markov process {X(s)}. Let PX(x, B, t) the distribution of X(t) in (3)
with initial condition X(0) = x. Then the Markov transition should be X(s+1) = 1

K

∑K
k=1 X

(s)
k,H ,

where X
(s)
1,H , . . . ,X

(s)
K,H are K independent samples from PX(X(s), Bloc, Hη), i.e., sampling

from (10).

Consider one round of model averaging. It is true that PX(X(s), Bloc, Hη) may have a larger vari-
ance than the corresponding SGD baseline PX(X(s), B,Hη) because the former one has a smaller
batch size. However, it is unclear whether X(s+1) also has a larger variance thanPX(X(s), B,Hη).
This is because X(s+1) is the average of K samples, which means we have to compare 1

K times the
variance of PX(X(s), Bloc, Hη) with the variance of PX(X(s), B,Hη). Then it is unclear which
one is larger.

In the special case where Hη is small, PX(X(s), Bloc, Hη) is approximately equal to the following
Gaussian distribution:

N
(
X(s) − ηH∇L(X(s)),

η2H

Bloc
Σ(X(s))

)
(11)

Then averaging over K samples gives

N
(
X(s) − ηH∇L(X(s)),

η2H

B
Σ(X(s))

)
, (12)

which is exactly the same as the Gaussian approximation of the SGD baseline. This means there
do exist certain cases where Lin et al. (2020b)’s argument does not give a good separation between
Local SGD and SGD.

Moreover, we do not gain any further insights from this modeling since it is hard to see how model
averaging interacts with the SDEs.

E ADDITIONAL INTERPRETATION OF THE SLOW SDES

E.1 UNDERSTANDING THE DIFFUSION TERM IN THE SLOW SDE

So far, we have discussed why adding local steps enlarges the drift term in the Slow SDE and why
enlarging the drift term can benefit generalization. Besides this, here we remark that another way
to accelerate the corresponding semi-gradient method for minimizing the implicit regularizer is to
reduce the diffusion term, so that the trajectory more closely follows the drift term. More formally,
we propose the following:
Hypothesis E.1. Starting at a minimizer ζ0 ∈ Γ, run (κ1, κ2)-Slow SDE and (κ1, κ

′
2)-Slow SDE

respectively for the same amount of time T > 0 and obtain ζ(T ), ζ′(T ). If Σ∥ ̸≡ 0 and κ1 < κ′1,
then the expected test accuracy at ζ(T ) is better than that at ζ′(T ).
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(b) ImageNet, H = 78 for K > 1.

Figure 3: Reducing the diffusion term of the Slow SDE for Local SGD leads to better generalization.
Test accuracy improves as we increase K with fixed η and H to reduce the diffusion term while
keeping the drift term untouched. See Appendix M.4 for details.

Here we exclude the case of Σ∥ ≡ 0 because in this case the diffusion term in the Slow SDE is
always zero. To verify Hypothesis E.1, we set the product α := ηH large, keep H, η fixed, increase
the number of workers K, and compare the generalization performances after a fixed amount of
training steps (but after different numbers of epochs). This case corresponds to the ( 1

KBloc
, 1
2Bloc

)-
Slow SDE, so adding more workers should reduce the diffusion term. As shown in Figure 3, a higher
test accuracy is indeed achieved for larger K.

Implication: Enlarging the learning rate is not equally effective as adding local steps. Given
that Local SGD improves generalization by strengthening the drift term, it is natural to wonder if
enlarging the learning rate of SGD would also lead to similar improvements. While it is true that
enlarging the learning rate effectively increases the drift term, it also increases the diffusion term
simultaneously, which can hinder the implicit regularization by Hypothesis E.1. In contrast, adding
local steps does not change the diffusion term. As shown in Figure 6(a), even when the learning rate
of SGD is increased, SGD still underperforms Local SGD by about 2% in test accuracy.

On the other hand, in the special case of where Σ∥ ≡ 0, Hypothesis E.1 does not hold, and enlarging
the learning rate by

√
K results in the same Slow SDE as adding local steps (see Appendix G for

derivation). Then these two actions should produce the same generalization improvement, unless
the learning rate is so large that Slow SDE loses track of the training dynamics. As an example of
such a special case, an experiment with label noise regularization is presented in Figure 8.

E.2 THE EFFECT OF GLOBAL BATCH SIZE ON GENERALIZATION

In this section, we discuss the effect of global batch size on the generalization of Local SGD. Given
that the computation power of a single worker is limited, we consider the case where the local batch
size Bloc is fixed and the global batch size B = KBloc is tuned by adding or removing the workers.
This scenario is relevant to the practice because one may want to know the maximum parallelism
possible to train the neural net without causing generalization degradation.

For SGD, previous works have proposed the Linear Scaling Rule (LSR) (Krizhevsky, 2014; Goyal
et al., 2017; Jastrzębski et al., 2017): scaling the learning rate η 7→ κη linearly with the global batch
size B 7→ κB yields the same conventional SDE (3) under a constant epoch budget, hence leading
to almost the same generalization performance as long as the SDE approximation does not fail.

We show in Theorem H.1 that the LSR does not change the Slow SDE of SGD either. Experiments
in Figure 4 show that the LSR indeed holds nicely when we continue training with small learning
rates from the same CIFAR-10 and ImageNet checkpoints as in Figure 2. Here we choose K = 16
and K = 256 as the base settings for CIFAR-10 and ImageNet, respectively, and then tune the
learning rate to maximize the test accuracy. As shown in Figures 4(a) and 4(b), the optimal learning
rate turns out to be small enough that the LSR can be applied to scale the global batch size with only
a minor change in test accuracy.

Now, assuming the learning rate is scaled as LSR, we study how to tune the number of local stepsH
for Local SGD for better generalization. A natural choice is to tune H in the base settings and keep
α unchanged via scaling H 7→ H/κ. Then the following SDE can be derived (see Theorem H.2):

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion (unchanged)

− 1
2B∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I (unchanged)

−κK−1
2B ∇

3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸
(c) drift-II (rescaled)

)
. (13)

24



Published as a conference paper at ICLR 2023

4 8 16 32 64
Number of workers K (log scale)

0.91

0.92

0.93

T
es

t
A

cc
ur

ac
y

optimal α

constant α

H = 1

(a) CIFAR-10, start from #250.

16 32 64 256 512128
Number of workers K (log scale)

0.754

0.756

0.758

0.760

T
es

t
A

cc
ur

ac
y

optimal α constant α H = 1

(b) ImageNet, start from #100.

4 8 16 32 64
Number of workers K (log scale)

10

40

160

640

2560

α
(l

og
sc

al
e)

optimal α

constant α

(c) CIFAR-10, start from #250.

16 32 64 256 512128
Number of workers K (log scale)

1

4

16

64

256

α
(l

og
sc

al
e)

optimal α

constant α

(d) ImageNet, start from #100.

Figure 4: For training from CIFAR-10 and ImageNet checkpoints, Local SGD consistently outper-
forms SGD (H = 1) across different batch sizes B (fixing Bloc and varying K), where the learning
rate is scaled by the LSR η ∝ B. Two possible ways of tuning the number of local steps H are con-
sidered: (1). Tune H for the best test accuracy for K = 16 and K = 256 respectively on CIFAR-10
and ImageNet, then scale H as H ∝ 1/B so that α := ηH is constant; (2). Tune H specifically for
each K. See Appendix M.5 for training details.

Compared with (4), the drift-II term here is rescaled by a positive factor. Again, when α is large, we
can follow the argument in Section 3.3.2 to approximate Ψ̂(ζ) ≈ Σ̂♢(ζ) and obtain the following
( 1
B ,

κK
B )-Slow SDE:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dW (t)− κK

2B∇
3L(ζ)[Σ̂♢(ζ)]dt

)
. (14)

The drift term of the above SDE is always stronger than SGD (7), as long as there exists more than
one worker after the scaling (i.e., κK > 1). As expected from Hypothesis 3.1, we observed in
the experiments that the generalization performance of Local SGD is always better than or at least
comparable to SGD across different batch sizes (see Figures 4(a) and 4(b)).

Taking a closer look into the drift term in the Slow SDE (14), we can find that it scales linearly
with κ. According to Hypothesis 3.1, the SDE is expected to generalize better when adding more
workers (κ > 1) and to generalize worse when removing some workers (κ < 1). For the latter
case, we indeed observed that the test accuracy of Local SGD drops when removing workers. For
the case of adding workers, however, we also need to take into account that the LSR specifies a
larger learning rate and causes a larger SDE approximation error for the same α, which may cancel
the generalization improvement brought by strengthening the drift term. In the experiments, we
observed that the test accuracy does not rise when adding more workers to the base settings.

Since α also controls the regularization strength (Section 3.3.3), it would be beneficial to decrease
α for large batch size so as to better trade-off between regularization strength and approximation
quality. In Figures 4(c) and 4(d), we plot the optimal value of α for each batch size, and we indeed
observed that the optimal α drops as we scale up K. Conversely, a smaller batch size (and hence a
smaller learning rate) allows for using a larger α to enhance regularization while still keeping a low
approximation error (Theorem 3.3). The test accuracy curves in Figures 4(a) and 4(b) indeed show
that setting a larger α can compensate for the accuracy drop when reducing the batch size.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to further verify our finding.
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Supplementary Plot: Training time should be long enough. Figures 5(a) and 5(b) show en-
larged views for Figures 2(a) and 2(c) respectively, showing that Local SGD can generalize worse
than SGD in the first few epochs.

Supplementary Plot: Learning rate should be small. Figure 5(c) shows that reducing the learn-
ing rate from 0.32 to 0.064 does not lead to test accuracy drop for Local SGD on CIFAR-10, if the
training time is allowed to be longer and the number of local steps H is set properly. Figure 5(d)
presents the case where, with a large learning rate, the generalization improvement of Local SGD
disappears even starting from a pre-trained model.

Supplementary Plot: Reconciling our main finding with Ortiz et al. (2021). In Figure 5(e),
the generalization benefit of Local SGD with H = 24 becomes less significant after the learning
rate decay at epoch 226, which is consistent with the observation by Ortiz et al. (2021) that the
generalization benefit of Local SGD usually disappears after the learning rate decay. But we can
preserve the improvement by increasing H to 900. Here, we use Local SGD with momentum.

Supplementary Plot: Optimal α gets larger for smaller η. In Figure 5(f), we summarize the
optimal α := ηH that enables the highest test accuracy for each learning rate in Figure 2(f). We can
see that the optimal α increases as we decrease the learning rate. The reason is that the approxima-
tion error bound O(

√
αη log α

ηδ ) in Theorem 3.3 decreases with η, allowing for a larger value of α

to better regularize the model.
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Figure 5: Additional experimental results about the effect of the learning rate, training time and the
number of local steps. See Appendix M.2 for details.
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(b) SGD with larger batch sizes.
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Figure 6: Additional experimental results on CIFAR-10. See Appendix M.3 for details.
SGD generalizes worse even with extensively tuned learning rates. In Figure 6(a), we run SGD
from both random initialization and the pre-trained model for another 3, 000 epochs with various
learning rates and report the test accuracy. We can see that none of the SGD runs beat Local SGD
with the fixed learning rate η = 0.32. Therefore, the inferior performance of SGD in Figures 2(a)
and 2(b) is not due to the improper learning rate and Local SGD indeed generalizes better.
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SGD with larger batch sizes performs no better. In Figure 6(b), we enlarge the batch size of
SGD and report the test accuracy for various learning rates. We can see that SGD with larger batch
sizes performs no better and none of the SGD runs outperform Local SGD with the fixed learning
rate η = 0.32. This result is unsurprising since it is well established in the literature (Jastrzębski
et al., 2017; Smith et al., 2020; Keskar et al., 2017) that larger batch size typically leads to worse
generalization. See Appendix A for a survey of empirical and theoretical works on understanding
and resolving this phenomenon.

Sampling with or without replacement does not matter. Note that there is a slight discrep-
ancy in sampling schemes between our theoretical and experimental setup: the update rules (1) and
(2) assume that data are sampled with replacement while most experiments use sampling without
replacement (Appendix C). To eliminate the effect of this discrepancy, we conduct additional exper-
iments on Post-local SGD using sampling with replacement (see Figure 6(c)) and Post-local SGD
significantly outperforms SGD.

G DISCUSSIONS ON LOCAL SGD WITH LABEL NOISE REGULARIZATION

G.1 THE SLOW SDE FOR LOCAL SGD WITH LABEL NOISE REGULARIZATION

In this subsection, we present the Slow SDE for Local SGD in the case of label noise regularization
and show that Local SGD indeed induces a stronger regularization term, which presumably leads to
better generalization.
Theorem G.1 (Slow SDE for Local SGD with label noise regularization). For a C-class classifi-
cation task with cross-entropy loss, the slow SDE of Local SGD with label noise has the following
form:

dζ(t) = − 1

4B
∇Γ

(
tr(∇2L(ζ)) + (K − 1) · tr(F (2Hη∇

2L(ζ)))
2Hη

)
dt, (15)

where F (x) :=
∫ x
0
ψ(y)dy and is interpreted as a matrix function. Additionally,∇Γf stands for the

gradient of a function f projected to the tangent space of Γ.

Proof. See Appendix L.

Note that the magnitude of the RHS in (15) becomes larger as H increases. By letting H to go to
infinity, we further have the following theorem.
Theorem G.2. As the number of local steps H goes to infinity, the slow SDE of Local SGD with
label noise (15)can be simplified as:

dζ(t) = − K

4B
∇Γtr(∇2L(ζ))dt. (16)

Proof. We obtain the corollary by simply taking the limit. By L’Hospital’s rule,

lim
x→+∞

F (ax)

x
= lim
x→+∞

dF (ax)

dx
= lim
x→+∞

aψ(ax) = a.

Therefore,

lim
x→+∞

tr(F (2Hη∇2L(ζ)))
2Hη

= tr(∇2L(ζ)). (17)

Substituting (17) into (15) yields (16).

As introduced in Section 3.3, the Slow SDE for SGD with label noise regularization has the follow-
ing form:

dζ(t) = − 1

4B
∇Γtr(∇2L(ζ))dt, (18)

which is a deterministic flow that keeps reducing the trace of Hessian.
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(a) ResNet-56 + GroupNorm.
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(b) VGG-16 w/o normalization.

Figure 7: Local SGD with label noise regularization on CIFAR-10 without data augmentation using
K = 32 ,Bloc = 128. A larger number of local steps indeed enables higher test accuracy. For both
architectures, we replace ReLU with Swish. See Appendix M.6 for training details.

As the trace of Hessian can be seen as a measure for the sharpness of the local loss landscape,
(18) indicates that SGD with label noise regularization has an implicit bias toward flatter minima,
which presumably promotes generalization (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017;
Neyshabur et al., 2017). More concretely, Blanc et al. (2020) and Li et al. (2021b) connect mini-
mizing the trace of Hessian to finding sparse or low-rank solutions for training two-layer linear nets.
Damian et al. (2021) empirically showed that good generalization correlates with a smaller trace
of Hessian in training ResNets with label noise. Besides, Ma & Ying (2021) connect the trace of
Hessian to the smoothness of the function represented by a deep neural net.

From Theorems G.1 and G.2, we can conclude that Local SGD accelerates the process of sharp-
ness reduction, thereby leading to better generalization. Furthermore, the regularization effect gets
stronger for larger H and is approximately K times that of SGD. We also conduct experiments on
non-augmented CIFAR-10 with label noise regularization to verify our conclusion. As shown in
Figure 7, increasing the number of local steps indeed gives better generalization performance.

G.2 THE EQUIVALENCE OF ENLARGING THE LEARNING RATE AND ADDING LOCAL STEPS

In this subsection, we explain in detail why training with label noise regularization is a special case
where enlarging the learning rate of SGD can bring the same generalization benefit as adding local
steps. TWhen we scale up the learning rate of SGD η 7→ κη (while keeping other hyperparameters
unchanged), the corresponding Slow SDE is (18) with time horizon κ2T instead of T , where SGD
tracks a continuous interval of κ2η2 per step instead of η2. After rescaling the time horizon to T so
that SGD tracks a continuous interval of η2 per step, we obtain

dζ(t) = − κ
2

4B
∇Γtr(∇2L(ζ))dt. (19)

Let κ =
√
K in (19) and we obtain the same Slow SDE as (16), which is for Local SGD with a

large number of local steps. In Figure 8, we conduct experiments to verify that SGD indeed achieves
comparable test accuracy to that of Local SGD with a largeH if its learning rate is scaled up by

√
K

that of Local SGD.

H DERIVING THE SLOW SDE AFTER APPLYING THE LSR

In this section, we derive the Slow SDEs for SGD and Local SGD after applying the LSR in Ap-
pendix E.2. The results are formally summarized in the following theorems.

Theorem H.1 (Slow SDE for SGD after applying the LSR). Let Assumptions 3.1 to 3.3 hold.
Assume that we run SGD with learning rate η′ = κη and the number of workers K ′ =
κK for some constant κ > 0. Let T > 0 be a constant and ζ(t) be the solution to
(7) with the initial condition ζ(0) = Φ(θ0) ∈ Γ. Then for any C3-smooth function g(θ),
max0≤s≤ κT

η′2

∣∣E[g(Φ(θs)]− E[g(ζ(sη′2/κ)]
∣∣ = Õ(η′0.25), where Õ(·) hides log factors and con-

stants that are independent of η′ but can depend on g(θ).
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Figure 8: Local SGD with label noise regularization on CIFAR-10 without data augmentation using
K = 4, Bloc = 128. SGD (H = 1) indeed achieves comparable test accuracy as Local SGD with a
large H when we scale up its learning rate to

√
K times that of Local SGD. See Appendix M.6 for

training details.

Proof. Replacing B with κB in the original Slow SDE for Local SGD (7) gives the following Slow
SDE:

dζ(t) = Pζ

(
1√
κB

Σ
1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2κB∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I

)
. (20)

Note that the continuous time horizon for (20) is κT instead of T since after applying the LSR, SGD
tracks a continuous interval of κ2η2 per step instead of η2 while the total number of steps is scaled
down by κ. We can then rescale the time scaling to obtain (7) that holds for T .

Theorem H.2 (Slow SDE for Local SGD after applying the LSR). Let Assumptions 3.1 to 3.3 hold.
Assume that we run Local SGD with learning rate η′ = κη, the number of workers K ′ = κK, and
the number of local steps H ′ = α

κη for some constants α, κ > 0. Let T > 0 be a constant and
ζ(t) be the solution to (21) with the initial condition ζ(0) = Φ(θ̄(0)) ∈ Γ. Then for any C3-smooth
function g(θ), max0≤s≤ κT

H′η′2

∣∣E[g(Φ(θ̄(s))]− E[g(ζ(sH ′η′2/κ)]
∣∣ = Õ(η′0.25), where Õ(·) hides

log factors and constants that are independent of η′ but can depend on g(θ).

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion (unchanged)

− 1
2B∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I (unchanged)

−κK−1
2B ∇

3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸
(c) drift-II (rescaled)

)
. (21)

Proof. Replacing B with κB in the original Slow SDE for Local SGD (4) gives the following Slow
SDE:

dζ(t) = Pζ

(
1√
κB

Σ
1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2κB∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I

−κK−1
2κB ∇

3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸
(c) drift-II

)
. (22)

Note that the continuous time horizon for (22) is κT instead of T since after applying the LSR,
Local SGD tracks a continuous interval of κ2η2 per step instead of η2 while the total number of
steps is scaled down by κ. We can then rescale the time scaling to obtain (21) that holds for T .
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I PROOF OF THEOREM 3.1

This section presents the proof for Theorem 3.1. First, we introduce some notations that will be used
throughout this section. For the sequence of Local SGD iterates {θ(s)

k,t : k ∈ [K], 0 ≤ t ≤ H, s ≥ 0},
we introduce an auxiliary sequence {ût}t∈N, which consists of GD iterates from θ̄(0):

û0 = θ̄(0), ût+1 ← ût − η∇L(ût).

For convenience, let û(s)
t := ûsH+t and zk,sH+t := z

(s)
k,t . We will use û

(s)
t and ûsH+t, z

(s)
k,t and

zk,sH+t interchangeably. Recall that we have assumed that L is C3-smooth with bounded second
and third order derivatives. Let ν2 := supθ∈Rd ∥∇2L(θ)∥2 and ν3 := supθ∈Rd ∥∇3L(θ)∥2. Since
∇ℓ(θ; ζ) is bounded, the gradient noise z

(s)
k,t is also bounded. We denote by σmax an upper bound

such that ∥z(s)
k,t∥2 ≤ σmax holds for all s, k, t.

To prove Theorem 3.1, we will show that both Local SGD iterates θ̄(s) and SGD iterates wsH track
GD iterates ûsH closely with high probability. For each client k, define the following sequence
{Ẑk,t : t ≥ 0}, which will be used in the proof for bounding the overall effect of noise.

Ẑk,t =

t−1∑
τ=0

[
t−1∏
l=τ+1

(I − η∇2L(ûl))

]
zk,τ , Ẑk,0 = 0, ∀k ∈ [K].

The following lemma shows that Ẑk,t is concentrated around the origin.

Lemma I.1 (Concentration property of {Ẑk,t}). With probability at least 1− δ, the following holds
simultaneously for all k ∈ [K], 0 ≤ t < ⌊Tη ⌋:

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

δη
,

where Ĉ1 := exp(Tν2).

Proof. For each Ẑk,t, construct a sequence {Ẑk,t,t′}tt′=0:

Ẑk,t,t′ :=

t′−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ûl))

)
z
(s)
k,τ , Z̃

(s)
k,t,0 = 0.

Since ∥∇2L(ûl)∥2 ≤ ν2 for all l ≥ 0, the following holds for all 0 ≤ τ < t− 1 and 0 < t < ⌊Tη ⌋:∥∥∥∥∥
t−1∏
l=τ+1

(I − η∇2L(ûl))

∥∥∥∥∥
2

≤ (1 + ρ2η)
t ≤ exp(Tν2) = Ĉ1.

So {Ẑk,t,t′}tt′=0 is a martingale with ∥Ẑk,t,t′ − Ẑk,t,t′−1∥2 ≤ Ĉ1σmax. Since Ẑk,t = Ẑk,t,t, by
Azuma-Hoeffding’s inequality,

P(∥Ẑk,t∥2 ≥ ϵ′) ≤ 2 exp

 −ϵ′2

2t
(
Ĉ1σmax

)2
.

Taking union bound on all k ∈ [K] and 0 ≤ t ≤ ⌊Tη ⌋, we can conclude that with probability at least
1− δ,

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

δη
, ∀0 ≤ t <

⌊
T

η

⌋
, k ∈ [K].
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The following lemma states that, with high probability, Local SGD iterates θ
(s)
k,t and θ̄(s) closely

track the gradient descent iterates ûsH for ⌊ THη ⌋ rounds.

Lemma I.2. For δ = O(poly(η)), the following inequalities hold with probability at least 1− δ:

∥θ(s)
k,t − ûsH+t∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ s <

⌊
T

Hη

⌋
, 0 ≤ t ≤ H,

and

∥θ̄(s) − ûsH∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀0 ≤ s ≤

⌊
T

Hη

⌋
,

where Ĉ3 is a constant independent of η and H .

Proof. Let ∆̂(s)
k,t := θ

(s)
k,t − û

(s)
t and ∆̄(s) := θ̄(s)− û

(s)
0 be the differences between the Local SGD

and GD iterates. According to the update rule for θ(s)
k,t and û

(s)
t ,

θ
(s)
k,t+1 = θ

(s)
k,t − η∇L(θ

(s)
k,t)− ηz

(s)
k,t (23)

û
(s)
t+1 = û

(s)
t − η∇L(û

(s)
t ). (24)

Subtracting (23) by (24) gives

∆̂
(s)
k,t+1 = ∆̂

(s)
k,t − η(∇L(θ

(s)
k,t)−∇L(û

(s)
t ))− ηz(s)

k,t

= (I − η∇2L(û(s)
t ))∆̂

(s)
k,t − ηz

(s)
k,t + ηv̂

(s)
k,t , (25)

where v̂(s)
k,t is a remainder term with norm ∥v̂(s)

k,t∥2 ≤
ν3
2 ∥∆̂

(s)
k,t∥22. For the s-th round of Local SGD,

we can apply (25) t times to obtain the following:

∆̂
(s)
k,t =

[
t−1∏
τ=0

(I − η∇2L(û(s)
τ ))

]
∆̂

(s)
k,0 − η

t−1∑
τ=0

[
t−1∏
l=τ+1

(I − η∇2L(û(s)
l ))

]
z
(s)
k,τ︸ ︷︷ ︸

T

+ η

t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(û(s)
l ))v̂

(s)
k,τ .

(26)

Here, T can be expressed in the following form:

T = Ẑk,sH+t −

[
sH+t−1∏
l=sH

(I − η∇2L(ûl))

]
Ẑk,sH .

Substituting in t = H and taking the average, we derive the following recursion:

∆̄(s+1) =
1

K

∑
k∈[K]

∆̂
(s)
k,H

=

[
H−1∏
τ=0

(I − η∇2L(û(s)
τ ))

]
∆̄(s)

− η

K

∑
k∈[K]

Ẑk,(s+1)H +
η

K

∑
k∈[K]

(s+1)H−1∏
l=sH

(I − η∇2L(ûl))

 Ẑk,sH

+
η

K

∑
k∈[K]

H−1∑
τ=0

H−1∏
l=τ+1

(I − η∇2L(û(s)
l ))v̂

(s)
k,τ . (27)
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Applying (27) s times yields

∆̄(s) = − η

K

∑
k∈[K]

Ẑk,sH +
η

K

s−1∑
r=0

H−1∑
τ=0

∑
k∈[K]

[
sH∏

l=rH+τ+1

(I − η∇2L(ûl))

]
v̂
(r)
k,τ . (28)

Substitute (28) into (26) and we have

∆̂
(s)
k,t = −

η

K

∑
k′∈[K]

Ẑk′,sH − ηẐk,sH+t + η

[
sH+t−1∏
l=sH

(I − η∇2L(ûl))

]
Ẑk,sH

+
η

K

s−1∑
r=0

H−1∑
τ=0

∑
k′∈[K]

[
sH+t−1∏
l=rH+τ+1

(I − η∇2L(ûl))

]
v̂
(r)
k′,τ

+ η

t−1∑
τ=0

[
sH+t−1∏
l=sH+τ+1

(I − η∇2L(ûl))

]
v̂
(s)
k,τ .

By Cauchy-Schwartz inequality and triangle inequality, we have

∥∆̂(s)
k,t∥2 ≤

η

K

 ∑
k′∈[K]

∥Ẑk′,sH∥2

+ η∥Ẑk,sH+t∥2 + ηĈ1∥Ẑk,sH∥2

+
ηĈ1ν3
2K

s−1∑
r=0

H−1∑
τ=0

∑
k′∈[K]

∥∆̂(r)
k′,τ∥

2
2 +

ηĈ1ν3
2

t−1∑
τ=0

∥∆̂(r)
k,τ∥

2
2,

(29)

where Ĉ1 = exp(ν2T ).

Below we prove by induction that for δ = O(poly(η)), if

∥Ẑk,t∥2 ≤ Ĉ1σmax

√
2T

η
log

2TK

ηδ
, ∀0 ≤ t <

⌊
T

η

⌋
, k ∈ [K], (30)

then there exists a constant Ĉ2 such that for all k ∈ [K], 0 ≤ s < ⌊ TηH ⌋ and 0 ≤ t ≤ H ,

∥∆̂(s)
k,t∥2 ≤ Ĉ2

√
η log

2TK

ηδ
. (31)

First, for all k ∈ [K], ∥∆̂(0)
k,0∥2 = 0 and hence (31) holds. Assuming that (31) holds for all ∆̂(r)

k′,τ

where k′ ∈ [K], 0 ≤ r < s, 0 ≤ τ ≤ H and r = s, 0 ≤ τ < t, then by (29), for all k ∈ [K], the
following holds:

∥∆̂(s)
k,t∥2 ≤ 3Ĉ2

1σmax

√
2Tη log

2TK

ηδ
+ Ĉ1Ĉ

2
2Tην3 log

2TK

ηδ
.

Let Ĉ2 ≥ 6Ĉ2
1σmax

√
2T . Then for sufficiently small η, (31) holds. By Lemma I.1, (30) holds with

probability at least 1 − δ. Furthermore, notice that θ̄(s) − ûsH = 1
K

∑
k∈[K] ∆̂

(s−1)
k,H . Hence we

have the lemma.

The iterates of standard SGD can be viewed as the local iterates on a single client with the number
of local steps ⌊Tη ⌋. Therefore, we can directly apply Lemma I.2 and obtain the following lemma
about the SGD iterates wt.
Corollary I.1. For δ = O(poly(η)), the following holds with probability at least 1− δ:

∥wsH − ûsH∥2 ≤ Ĉ3

√
η log

1

ηδ
, ∀0 ≤ s ≤ T

Hη
,

where Ĉ3 is the same constant as in Lemma I.2.

Applying Lemma I.2 and Corollary I.1 and taking the union bound, we have Theorem 3.1.
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J PROOF OUTLINE OF MAIN THEOREMS

We adopt the general framework proposed by Li et al. (2019a) to bound the closeness of discrete
algorithms and SDE solutions via the method of moments. However, their framework is not di-
rectly applicable to our case since they provide approximation guarantees for discrete algorithms
with learning rate η for O(η−1) steps while we want to capture Local SGD for O(η−2) steps. To
overcome this difficulty, we treat Rgrp := ⌊ 1

αηβ
⌋ rounds as a “giant step” of Local SGD with an

“effective” learning rate η1−β , where β is a constant in (0, 1), and derive the recursive formulas
to compute the moments for the change in every step, every round, and every Rgrp rounds. The
formulation of the recursions requires a detailed analysis of the limiting dynamics of the iterate and
careful control of approximation errors.

The dynamics of the iterate can be divided into two phases: the approaching phase (Phase 1) and
the drift phase (Phase 2). The approaching phase only lasts for O(log 1

η ) rounds, during which the
iterate is quickly driven to the minimizer manifold by the negative gradient and ends up within only
Õ(√η) from Γ (see Appendix K.5). After that, the iterate enters the drifting phase and moves in the
tangent space of Γ while staying close to Γ (see Appendix K.6). The closeness of the iterates (local
and global) and Γ is summarized in the following theorem.
Theorem J.1 (Closeness of the iterates and Γ). For δ = O(poly(η)), with probability at least 1−δ,
for all O(log 1

η ) ≤ s ≤ ⌊T/(Hη
2)⌋,

Φ(θ̄(s)) ∈ Γ, ∥θ̄(s) − Φ(θ̄(s))∥2 = O
(√

η log
1

ηδ

)
.

Also, for all O(log 1
η ) ≤ s < ⌊T/(Hη

2)⌋, k ∈ [K] and 0 ≤ t ≤ H ,

∥θ(s)
k,t − Φ(θ̄(s))∥2 = O

(√
η log

1

ηδ

)
.

Here, O(·) hides constants independent of η and δ.

To control the approximation errors, we also provide a high probability bound for the change of the
manifold projection within Rgrp rounds.
Theorem J.2 (High probability bound for the change of manifold projection). For δ = O(poly(η)),
with probability at least 1− δ, for all 0 ≤ s ≤ ⌊T/(Hη2)⌋ −Rgrp and 0 ≤ r ≤ Rgrp,

Φ(θ̄(s)),Φ(θ̄(s+r)) ∈ Γ, ∥Φ(θ̄(s+r))− Φ(θ̄(s))∥2 = O
(
η0.5−0.5β

√
log

1

ηδ

)
,

where O(·) hides constants independent of η and δ.

The proof of Theorems J.1 and J.2 is based on the analysis of the dynamics of the iterate and
presented in Appendix K.7.

Utilizing Theorems J.1 and J.2, we move on to estimate the first and second moments of the change
of the manifold projection every Rgrp rounds. However, the randomness during training might drive
the iterate far from the manifold (with a low probability, though), making the dynamics intractable.
To tackle this issue, we construct a well-behaved auxiliary sequence {θ̂(s)

k,t}, which is constrained

to the neighborhood of Γ and equals the original sequence {θ(s)
k,t} with high probability (see Defini-

tion K.5). Then we can formulate recursions for the change of manifold projection of the auxiliary
sequence using the nice properties near Γ. The estimate of moments is summarized in Theorem K.2.

Finally, based on the moment estimates, we apply the framework in Li et al. (2019a) to show that the
manifold projection and the SDE solution are weak approximations of each other in Appendix K.10.

K PROOF DETAILS OF MAIN THEOREMS

The detailed proof is organized as follows. In Appendix K.1, we introduce the notations that will be
used throughout the proof. To establish preliminary knowledge, Appendix K.2 provides explicit ex-
pression for the projection operator Φ(·), and Appendix K.3 presents lemmas about gradient descent
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(GD) and gradient flow (GF). Based on the preliminary knowledge, we construct a nested working
zone to characterize the closeness of the iterate and Γ in Appendix K.4. Appendices K.5 to K.10
make up the main body of the proof. Specifically, Appendices K.5 and K.6 analyze the dynamics of
Local SGD iterates for phases 1 and 2, respectively. Utilizing these analyses, we provide the proof
of Theorems J.1 and J.2 in Appendix K.7 and the proof of Theorem 3.3 in Appendix K.8. Then we
derive the estimation for the first and second moments of one “giant step ” Φ(θ̄(s+Rgrp))− Φ(θ̄(s))
in Appendix K.9. Finally, we prove the approximation theorem 3.2 in Appendix K.10.

K.1 ADDITIONAL NOTATIONS

Let Rtot := ⌊ T
Hη2 ⌋ be the total number of rounds. Denote by ϕ(s) the manifold projection of the

global iterate at the beginning of round s. Let x(s)
k,t := θ

(s)
k,t − ϕ(s) be the difference between the

local iterate and the manifold projection of the global iterate. Also define x̄
(s)
H := 1

K

∑
k∈[K] x

(s)
k,H

and x̄
(s)
0 := 1

K

∑
k∈[K] x

(s)
k,0 which is the average of x(s)

k,t among K workers at step 0 and H . Then

for all k ∈ [K], x(s)
k,0 = x̄

(s)
0 = θ̄(s) − ϕ(s). Finally, Since ∇ℓ(θ; ζ) is bounded, the gradient noise

z
(s)
k,t is also bounded and we denote by σmax the upper bound such that ∥z(s)

k,t∥2 ≤ σmax,∀s, k, t.

We first introduce the notion of µ-PL. We will later show that there exists a neighborhood of the
minimizer manifold Γ where L satisfies µ-PL.
Definition K.1 (Polyak-Łojasiewicz Condition). For µ > 0, we say a function L(·) satisfies µ-
Polyak-Łojasiewicz condition (abbreviated as µ-PL) on set U if

1

2
∥∇L(θ)∥22 ≥ µ(L(θ)− inf

θ′∈U
L(θ′)).

We then introduce the definitions of the ϵ-ball at a point and the ϵ-neighborhood of a set. For θ ∈ Rd
and ϵ > 0, Bϵ(θ) := {θ′ : ∥θ′ − θ∥2 < ϵ} is the open ϵ-ball centered at θ. For a set Z ⊆ Rd,
Zϵ :=

⋃
θ∈Z B

ϵ(θ) is the ϵ-neighborhood of Z .

K.2 COMPUTING THE DERIVATIVES OF THE LIMITING MAPPING

In subsection, we present lemmas that relate the derivatives of the limiting mapping Φ(·) to the
derivatives of the loss function L(·). We first introduce the operator VH .
Definition K.2. For a semi-definite symmetric matrix H ∈ Rd×d, let λj , vj be the j-th eigenvalue
and eigenvector and vj’s form an orthonormal basis of Rd. Then, define the operator VH : Rd×d →
Rd×d as

VH(M) :=
∑

i,j:λi ̸=0∨λj ̸=0

1

λi + λj

〈
M ,viv

⊤
j

〉
viv

⊤
j ,∀M ∈ Rd×d.

Intuitively, this operator projects M to the base matrix viv
⊤
j and sums up the projections with

weights 1
λi+λj

.

Additionally, for θ ∈ Γ, denote by Tθ and T⊥
θ the tangent and normal space of Γ at θ respectively.

Lemmas K.1 to K.4 are from Li et al. (2021b). We include them to make the paper self-contained.
Lemma K.1 (Lemma C.1 of Li et al. (2021b)). For any θ ∈ Γ and any v ∈ Tθ(Γ), it holds that
∇2L(θ)v = 0.
Lemma K.2 (Lemma 4.3 of Li et al. (2021b)). For any θ ∈ Γ, ∂Φ(θ) ∈ Rd×d is the projection
matrix onto the tangent space Tθ(Γ).
Lemma K.3 (Lemma C.4 of Li et al. (2021b)). For any θ ∈ Γ, u ∈ Rd and v ∈ Tθ(Γ), it holds
that

∂2Φ(θ)[v,u] = −∂Φ(θ)∇3L(θ)[v,∇2L(θ)+u]−∇2L(θ)+∇3L(θ)[v, ∂Φ(θ)u].

Lemma K.4 (Lemma C.6 of Li et al. (2021b)). For any θ ∈ Γ and Σ ∈ span{uu⊤ | u ∈ T⊥
θ (Γ)},〈

∂2Φ(θ),Σ
〉
= −∂Φ(θ)∇3L(θ)[V∇2L(θ)(Σ)].
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Lemma K.5. For all θ ∈ Γ, u,v ∈ Tθ(Γ), it holds that

∂Φ(θ)∇3L[vu⊤] = 0. (32)

Proof. This proof is inspired by Lemma C.4 of Li et al. (2021b). For any θ ∈ Γ, consider a
parameterized smooth curve v(t), t ≥ 0 on Γ such that v(0) = θ and v′(0) = v. Let P∥(t) =

∂Φ(v(t)), P⊥(t) = I − ∂Φ(v(t)) and H(t) = ∇2L(v(t)). By Lemma C.1 and 4.3 in Li et al.
(2021b),

H(t) = P⊥(t)H(t).

Take the derivative with respect to t on both sides,

H ′(t) = P⊥(t)H
′(t) + P ′

⊥(t)H(t)

⇒ P∥(t)H
′(t) = P ′

⊥(t)H(t) = −P ′
∥(t)H(t).

At t = 0, we have

P∥(0)H
′(0) = −P ′

∥(0)H(0). (33)

WLOG let H(0) = diag(λ1, · · · , λd),∈ Rd×d, where λi = 0 for all m < i ≤ d. Therefore

P⊥(0) =

[
Im 0
0 0

]
, P∥(0) =

[
0 0
0 Id−m

]
. Decompose P ′

∥(0), H(0) and H ′(0)as follows.

P ′
∥(0) =

[
P ′

∥,11(0) P ′
∥,12(0)

P ′
∥,21(0) P ′

∥,22(0)

]
,H(0) =

[
H11(0) 0

0 0

]
,H ′(0) =

[
H ′

11(0) H ′
12(0)

H ′
21(0) H ′

22(0)

]
.

Substituting the decomposition into (33), we have[
0 0

H ′
21(0) H ′

22(0)

]
= −

[
P ′

∥,11(0)H11(0) 0

P ′
∥,21(0)H11(0) 0

]
.

Therefore, H ′
22(0) = 0 and

P∥(0)H
′(0) = −P ′

∥(0)H(0) = −
[

0 0
H ′

21(0) 0

]
.

Any u ∈ Tθ(Γ) can be decomposed as u = [0,u2]
⊤ where u2 ∈ Rd−m. With this decomposition,

we have P∥(0)H
′(0)u = 0. Also, note that H ′(0) = ∇3L(θ)[v]. Hence,

∂Φ(θ)∇3L(θ)[vuT ] = 0.

K.3 PRELIMINARY LEMMAS FOR GD AND GF

In this subsection, we introduce a few useful preliminary lemmas about gradient descent and gradient
flow. Before presenting the lemmas, we introduce some notations and assumptions that will be used
in this subsection.

Assume that the loss function L(θ) is ρ-smooth and µ-PL in an open, convex neighborhood U of
a local minimizer θ∗. Denote by L∗ := L(θ∗) the minimum value for simplicity. Let ϵ′ be the
radius of the open ϵ′-ball centered at θ∗ such that Bϵ

′
(θ∗) ⊆ U . We also define a potential function

Ψ̃(θ) :=
√
L(θ)− L∗.

Consider gradient descent iterates {ût}t∈N following the update rule ût+1 = ût − η∇L(ût). We
first introduce the descent lemma for gradient descent.
Lemma K.6 (Descent lemma for GD). If ût ∈ U and η ≤ 1

ρ , then

η

2
∥∇L(ût)∥22 ≤ L(ût)− L(ût+1),

and

L(ût+1)− L∗ ≤ (1− µη)(L(ût)− L∗).
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Proof. By ρ-smoothness,

L(ût+1) ≤ L(ût) + ⟨∇L(ût), ût+1 − ût⟩+
ρη2

2
∥ût+1 − ût∥22

= L(ût)− η(1−
ρη

2
)∥∇L(ût)∥22

≤ L(ût)−
η

2
∥∇L(ût)∥22

By the definition of µ-PL, we have

L(ût+1)− L∗ ≤ (1− µη)(L(ût)− L∗).

Then we prove the Lipschitzness of Ψ̃(θ).

Lemma K.7 (Lipschitzness of Ψ̃(θ)). Ψ̃(θ) is
√
2ρ-Lipschitz for θ ∈ U . That is, for any θ1,

θ2 ∈ U ,

|Ψ̃(θ1)− Ψ̃(θ2)| ≤
√

2ρ∥θ1 − θ2∥2.

Proof. Fix θ1 and θ2. Denote by θ(t) := (1 − t)θ1 + tθ2 the convex combination of θ1 and θ2
where t ∈ [0, 1]. Further define f(t) := Ψ̃(θ(t)). Below we consider two cases.

Case 1. If ∀t ∈ (0, 1), f(t) > 0, then f(t) is differentiable on (0, 1).

|Ψ̃(θ2)− Ψ̃(θ1)| = |f(1)− f(0)|

=

∣∣∣∣∫ 1

0

f ′(t)dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈
∇Ψ̃(θ(t)),θ2 − θ1

〉
dt

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

⟨∇L(θ(t)),θ2 − θ1⟩√
L(θ(t))− L∗

dt

∣∣∣∣∣
≤ ∥θ2 − θ1∥2

∫ 1

0

∥∇L(θ(t))∥2√
L(θ(t))− L∗

dt.

By ρ-smoothness of L, for all θ ∈ U ,

∥∇L(θ)∥22 ≤ 2ρ (L(θ)− L∗) .

Since
√
L(θ(t))− L∗ > 0 for all t ∈ (0, 1), ∥∇L(θ(t))∥2√

L(θ(t))−L∗
≤
√
2ρ. Therefore,

|Ψ̃(θ2)− Ψ̃(θ1)| ≤
√
2ρ2∥θ2 − θ1∥2.

Case 2. If ∃t′ ∈ (0, 1) such that f(t′) = 0, then

|Ψ̃(θ2)− Ψ̃(θ1)| = |f(1)− f(0)|

=

∣∣∣∣(1− t′)f(1)− f(t′)1− t′
+ t′

(
f(t′)− f(0)

t′

)∣∣∣∣
≤ max

(
f(1)

1− t′
,
f(0)

t′

)
.

Since θ(t′) minimizes L in an open set,∇L(θ(t′)) = 0. By ρ-smoothness of L, for all θ ∈ U ,

L(θ) ≤ L∗ +
ρ

2
∥θ − θ(t′)∥22 ⇒ Ψ̃(θ) ≤

√
ρ

2
∥θ − θ(t′)∥2.
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Therefore,

f(1) ≤
√
ρ

2
∥θ2 − θ(t′)∥2 = (1− t′)

√
ρ

2
∥θ2 − θ1∥2

f(0) ≤
√
ρ

2
∥θ1 − θ(t′)∥2 = t′

√
ρ

2
∥θ2 − θ1∥2.

Then we have

|Ψ̃(θ2)− Ψ̃(θ1)| ≤
√
ρ

2
∥θ2 − θ1∥2.

Combining case 1 and case 2, we conclude the proof.

Below we introduce a lemma that relates the movement of one step gradient descent to the change
of the potential function.
Lemma K.8 (Lemma G.1 in Lyu et al. (2022)). If ût ∈ U and η ≤ 1/ρ2 then

Ψ̃(ût)− Ψ̃(ût+1) ≥
√
2µ

4
η∥∇L(ût)∥2.

Proof.

Ψ̃(ût)− Ψ̃(ût+1) =
L(ût)− L(ût+1)

Ψ̃(ût) + Ψ̃(ût+1)

≥ L(ût+1)− L(ût)
2Ψ̃(ût)

≥ η(1− ρ2η/2)∥∇L(ût)∥22
2Ψ̃(ût)

,

where the two inequalities uses Lemma K.6. By µ-PL, Ψ̃(ût) ≤ 1√
2µ
∥∇L(ût)∥2. Therefore, we

have Ψ̃(ût)− Ψ̃(ût+1) ≥
√
2µ
2 (1− ηρ/2)η∥∇L(ût)∥2 ≥

√
2µ
4 η∥∇L(ût)∥2.

Based on Lemma K.8, we have the following lemma that bounds the movement of GD over multiple
steps.

Lemma K.9 (Bounding the movement of GD). If û0 is initialized such that ∥û0−θ∗∥2 ≤ 1
4

√
µ
ρ ϵ

′,

then for all t ≥ 0, ût ∈ Bϵ
′
(θ∗) and

∥ût − û0∥2 ≤
√

8

µ
Ψ̃(û0).

Proof. We prove the proposition by induction. When t = 0, it trivially holds. Assume that the
proposition holds for ûτ , 0 ≤ τ < t. For step t, since ûτ ∈ Bϵ

′
(θ∗), we apply Lemma K.8 and

obtain

∥ût − û0∥2 ≤ η
t−1∑
τ=0

∥∇L(ûτ )∥2 ≤
√

8

µ

(
Ψ̃(û0)− Ψ̃(ût)

)
≤
√

8

µ
Ψ̃(û0).

Further by ρ-smoothness of L(·),

∥ût − û0∥2 ≤
√

8

µ
Ψ̃(û0) ≤ 2

√
ρ

µ
∥û0 − θ∗∥2 ≤

1

2
ϵ′.

Therefore, ∥ût − θ∗∥2 ≤ ∥ût − û0∥2 + ∥û0 − θ∗∥2 < ϵ′, which concludes the proof.

Finally, we introduce a lemma adapted from Thm. D.4 of which bounds the movement of GF. Lyu
et al. (2022).
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Lemma K.10. Assume that ∥θ0 − θ∗∥2 <
√

µ
ρ ϵ

′. The gradient flow θ(t) = −dL(θ(t))
dt starting at

θ0 converges to a point in U and∥∥∥∥θ0 − lim
t→+∞

θ(t)

∥∥∥∥
2

≤
√

2

µ

√
L(θ0)− L∗ ≤

√
ρ

µ
∥θ0 − θ∗∥2

Proof. Let T := inf{t : θ /∈ U}. Then for all t < T ,

d

dt
(L(θ)− L∗)

1/2
=

1

2
(L(θ)− L∗)

−1/2 ·
〈
∇L(θ), dθ

dt

〉
= −1

2
(L(θ)− L∗)−1/2∥∇L(θ)∥2∥

dθ

dt
∥2.

By µ-PL, ∥∇L(θ)∥2 ≥
√

2µ(L(θ)− L∗). Hence,

d

dt
(L(θ)− L∗)

1/2 ≤ −
√
2µ

2
∥dθ
dt
∥2.

Integrating both sides, we have∫ T

0

∥dθ(τ)
dτ
∥dτ ≤ 2√

2µ
(L(θ0)− L∗)1/2 ≤

√
ρ

µ
∥θ0 − θ∗∥2 < ϵ′,

where the second inequality uses ρ-smoothness of L. Therefore, T = +∞ and θ(t) converges to
some point in U .

K.4 CONSTRUCTION OF WORKING ZONES

We construct four nested working zones (Γϵ0 ,Γϵ1 ,Γϵ2 ,Γϵ3) in the neighborhood of Γ. Later we will
show that the local iterates θ(s)

k,t ∈ Γϵ2 and the global iterates θ̄(s) ∈ Γϵ0 with high probability after
O(log 1

η ) rounds. The following lemma illustrates the properties the working zones should satisfy.

Lemma K.11 (Working zone lemma). There exists constants ϵ0 < ϵ1 < ϵ2 < ϵ3 such that
(Γϵ0 ,Γϵ1 ,Γϵ2 ,Γϵ3) satisfy the following properties:

1. L satisfies µ-PL in Γϵ3 for some µ > 0.

2. Any gradient flow starting in Γϵ2 converges to some point in Γ. Then, by Falconer (1983), Φ(·)
is C∞ in Γϵ2 .

3. Any θ ∈ Γϵ1 has an ϵ1-neighborhood Bϵ1(θ) such that Bϵ1(θ) ⊆ Γϵ2 .

4. Any gradient descent starting in Γϵ0 with sufficiently small learning rate will stay in Γϵ1 .

Proof. Let θ̄(0) be initialized such that Φ(θ̄(0)) ∈ Γ. Let Z be the set of all points on the gradient
flow trajectory starting from θ̄(0) and Zϵ be the ϵ-neighborhood of Z , where ϵ is a positive constant.
Since the gradient flow converges to ϕ(0), Z and Zϵ are bounded.

We construct four nested working zones. By Lemma H.3 in Lyu et al. (2022), there exists an ϵ3-
neighborhood of Γ, Γϵ3 , such that L satisfies µ-PL for some µ > 0. LetM be the convex hull of
Γϵ3 ∪ Zϵ and Mϵ4 be the ϵ4-neighborhood of M where ϵ4 is a positive constant. Then Mϵ4 is
bounded.

Define ρ2 = supθ∈Mϵ4 ∥∇2L(θ)∥2 and ρ3 = supMϵ4 ∥∇3L(θ)∥2. By Lemma K.10, we can

construct an ϵ2-neighborhood of Γ where ϵ2 <
√

µ
ρ2
ϵ3 such that all GF starting in Γϵ2 con-

verges to Γ. By Falconer (1983), Φ(·) is C2 in Γϵ3 . Define ν1 = supθ∈Γϵ3 ∥∂Φ(θ)∥2 and ν2 =

supθ∈Γϵ3 ∥∂2Φ(θ)∥2. We also construct an ϵ1 neighborhood of Γ, Γϵ1 , where ϵ1 ≤ 1
2ϵ2 <

1
2

√
µ
ρ2
ϵ3

such that all θ ∈ Γϵ1 has an ϵ1 neighborhood where Φ is well defined. Finally, by Lemma K.9, there
exists an ϵ0-neighborhood of Γ where ϵ0 ≤ 1

4

√
µ
ρ2
ϵ1 such that all gradient descent iterates starting

in Γϵ0 with η ≤ 1
ρ2

will stay in Γϵ1 .
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Note that the notions of Zϵ, Mϵ4 , ρ2, ρ3, ν1, and ν2 defined in the proof will be useful in the
remaining part of this section. When analyzing the limiting dynamics of Local SGD, we will show
that all θ(s)

k,t stays in Γϵ2 , ũ(s)
t ∈ Γϵ1 , θ̄(s) ∈ Γϵ0 with high probability after O(log 1

η ) rounds.

K.5 PHASE 1: ITERATE APPROACHING THE MANIFOLD

The approaching phase can be further divided into two subphases. In the first subphase, θ̄(0) is
initialized such that ϕ(0) ∈ Γ. We will show that after a constant number of rounds s0, θ̄(s0) goes
to the inner part of Γϵ0 such that ∥θ̄(s0) −ϕ(0)∥2 ≤ cϵ0 with high probability, where 0 < c < 1 and
the constants will be specified later (see Appendix K.5.2). In the second subphase, we show that the
iterate can reach within Õ(√η) distance from Γ after O(log 1

η ) rounds with high probability (see
Appendix K.5.3).

K.5.1 ADDITIONAL NOTATIONS

Consider an auxiliary sequence {ũ(s)
t } where ũ

(s)
0 = θ̄(s) and ũ

(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t ), 0 ≤ t ≤

H − 1. Define ∆̃
(s)
k,t := θ

(s)
k,t − ũ

(s)
t to be the difference between the local iterate and the gradient

descent iterate. Notice that ∆̃(s)
k,0 = 0, for all k and s.

Consider a gradient flow {u(t)}t≥0 with the initial condition u(0) = θ̄(0) and converges to ϕ(0) ∈
Γ. For simplicity, let u(s)

t := u(sα+ tη) be the gradient flow after s rounds plus t steps. Let s0 be
the smallest number such that ∥u(s0)

0 − ϕ(0)∥2 ≤ 1
4

√
µ
ρ2
ϵ0 . Note that s0 is a constant independent

of η.

In this subsection, the minimum value of the loss in Appendix K.3 corresponds to the loss value on
Γ, i.e., L∗ = L(ϕ),∀ϕ ∈ Γ.

We also define the following sequence {Z̃(s)
k,t}Ht=0 that will be used in the proof. Define

Z̃
(s)
k,t :=

t−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,0 = 0.

K.5.2 PROOF FOR SUBPHASE 1

First, we have the following lemma about the concentration of Z̃(s)
k,t .

Lemma K.12 (Concentration property of {Z̃(s)
k,t}Ht=0). Given θ̄(s) such that ũ(s)

t ∈ Γϵ3 ∪Zϵ for all
0 ≤ t ≤ H , then with probability at least 1− δ,

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2H log

2HK

δ
, ∀0 ≤ t ≤ H, k ∈ [K],

where C̃1 := exp(αρ2).

Proof. For each Z̃
(s)
k,t , construct a sequence {Z̃(s)

k,t,t′}tt′=0:

Z̃
(s)
k,t,t′ :=

t′−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,t,0 = 0.

Since ũ
(s)
t ∈ Γϵ3 ∪ Zϵ, we have ∥∇2L(ũ(s)

t )∥2 ≤ ρ2 for all 0 ≤ t ≤ H . Then, for all τ and t,∥∥∥∥∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

∥∥∥∥∥
2

≤ (1 + ρ2η)
H ≤ exp(αρ2) = C̃1.
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Notice that for all 0 ≤ t ≤ H , {Z̃(s)
k,t,t′}tt′=0 is a martingale with ∥Z̃(s)

k,t,t′ − Z̃
(s)
k,t,t′−1∥2 ≤ C̃1σmax.

By Azuma-Hoeffding’s inequality,

P(∥Z̃(s)
k,t∥2 ≥ ϵ

′) ≤ 2 exp

 −ϵ′2

2t
(
C̃1σmax

)2
 ≤ 2 exp

 −ϵ′2

2H
(
C̃1σmax

)2
.

Taking a union bound on all k ∈ [K] and 0 ≤ t ≤ H , we can conclude that with probability at least
1− δ,

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2H log

2HK

δ
, ∀0 ≤ t ≤ H, k ∈ [K].

The following lemma states that the gradient descent iterates will closely track the gradient flow
with the same initial point.
Lemma K.13. Denote G := supt≥0 ∥∇L(u(t))∥2 as the upper bound of the gradient on the gradi-

ent flow trajectory. If ∥ũ(s)
t − u

(s)
t ∥2 = O(√η), then for all 0 ≤ t ≤ H , the closeness of ũ(s)

t and
u
(s)
t is bounded by

∥ũ(s)
t − u

(s)
t ∥2 ≤ C̃1∥ũ(s)

0 − u
(s)
0 ∥2 + C̃1ηG,

where C̃1 = exp(αρ2).

Proof. We prove by induction that

∥ũ(s)
t − u

(s)
t ∥2 ≤ (1 + ρ2η)

t∥ũ(s)
0 − u

(s)
0 ∥2 + ρ2η

2G

t−1∑
τ=0

(1 + ρ2η)
τ . (34)

When t = 0, (34) holds trivially. Assume that (34) holds for 0 ≤ τ ≤ t, then

ũ
(s)
t+1 − u

(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t )−

(
ut −

∫ sα+(t+1)η

sα+tη

∇L(u(v))dv

)
= ũ

(s)
t − ut − η

(
∇L(ũ(s)

t )−∇L(u(s)
t )
)

−
∫ sα+(t+1)η

sα+tη

(
∇L(u(s)

t )−∇L(u(v))
)
dv.

By smoothness of L,

∥∇L(u(s)
t )−∇L(u(v))∥2 ≤ ρ2∥u(s)

t − u(v)∥2

≤ ρ2
∫ v

sα+tη

∥∇L(u(w))∥2dw

≤ ρ2ηG.

Since ρ22η
2G
∑t−1
τ=0(1 + ρ2η)

τ ≤ ηG(1 + ρ2η)
t ≤ exp(αρ2)ηG, then ∥ũ(s)

t − u
(s)
t ∥2 = O(√η),

which implies that ũ(s)
t ∈Mϵ4 . Hence, ∥∇L(ũ(s)

t )− L(u(s)
t )∥2 ≤ ρ2∥ũ(s)

t − u
(s)
t ∥2.

By triangle inequality,

∥ũ(s)
t+1 − u

(s)
t+1∥2 ≤ (1 + ρ2η)∥ũ(s)

t − u
(s)
t ∥2 + ρ2η

2G

≤ (1 + ρ2η)
t+1∥ũ(s)

t − u
(s)
t ∥2 + ρ2η

2G

t∑
τ=0

(1 + ρ2η)
τ ,

which concludes the induction step. Appling 1 + ρ2η ≤ exp(ρ2η), we have the lemma.
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Utilizing the concentration probability of {Z̃(s)
k,t}, we can obtain the following lemma which implies

that the Local SGD iterates will closely track the gradient descent iterates with high probability.

Lemma K.14. Given θ̄(s) such that ũ(s)
t ∈ Γϵ3 ∪ Zϵ for all 0 ≤ t ≤ H , then for δ = O(poly(η)),

with probability at least 1− δ, there exists a constant C̃3 such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C̃3

√
η log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

1

ηδ
.

Proof. Since ũ
(s)
t ∈ Γϵ3 ∪ Zϵ for all 0 ≤ t ≤ H , we have ∥∇2L(ũ(s)

t )∥2 ≤ ρ2. According to the
update rule for θ(s)

k,t and ũ
(s)
t ,

θ
(s)
k,t+1 = θ

(s)
k,t − η∇L(θ

(s)
k,t)− ηz

(s)
k,t , (35)

ũ
(s)
t+1 = ũ

(s)
t − η∇L(ũ

(s)
t ). (36)

Subtracting (36) from (35) gives

∆̃
(s)
k,t+1 = ∆̃

(s)
k,t − η(∇L(θ

(s)
k,t)−∇L(ũ

(s)
t ))− ηz(s)

k,t

= (I − η∇2L(ũ(s)
t ))∆̃

(s)
k,t − ηz

(s)
k,t + ηṽ

(s)
k,t . (37)

Here, ṽ(s)
k,t = (1 − β(s)

k,t )θ
(s)
k,t + β

(s)
k,t ũ

(s)
k,t, where β(s)

k,t ∈ (0, 1) depends on θ
(s)
k,t and ũ

(s)
t . Therefore,

∥ṽ(s)
k,t∥2 ≤

ρ3
2 ∥∆̃

(s)
k,t∥22 if θ(s)

k,t ∈Mϵ4 . Applying (37) t times, we have

∆̃
(s)
k,t =

[
t−1∏
τ=0

(I − η∇2L(ũ(s)
τ ))

]
∆̃

(s)
k,0 − η

t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))z

(s)
k,τ

+ η

t−1∑
τ=0

t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))ṽ

(s)
k,τ .

By Cauchy-Schwartz inequality, triangle inequality and the definition of Z̃(s)
k,t , if for all 0 ≤ τ ≤ t−1

and k ∈ [K], θ(s)
k,τ ∈Mϵ4 , then we have

∥∆̃(s)
k,t∥2 ≤ η∥Z̃

(s)
k,t∥2 +

1

2
ηρ3

t−1∑
τ=0

C̃1∥∆̃(s)
k,τ∥

2
2. (38)

Applying Lemma K.12 and substituting in the value of H , we have that with probability at least
1− δ,

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2α

η
log

2αK

ηδ
, ∀k ∈ K, 0 ≤ t ≤ H. (39)

Now we show by induction that for δ = O(poly(η)), when (39) holds, there exists a constant

C̃2 > 2σmax

√
2αC̃1 such that ∥∆̃(s)

k,t∥2 ≤ C̃2

√
η log 2αK

ηδ .

When t = 0, ∆̃(s)
k,0 = 0. Assume that ∥∆̃(s)

k,τ∥2 ≤ C̃2

√
η log 2αK

ηδ , for all k ∈ [K], 0 ≤ τ ≤ t − 1.

Then for all 0 ≤ τ ≤ t− 1, θ(s)
k,τ ∈Mϵ4 . Therefore, we can apply (38) and obtain

∥∆̃(s)
k,t∥2 ≤ η∥Z̃

(s)
k,t∥2 +

1

2
ηρ3

t−1∑
τ=0

C̃1∥∆̃(s)
k,τ∥

2
2

≤ C̃1σmax

√
2αη log

2αK

ηδ
+

1

2
C̃1C̃

2
2σ

2
maxαρ3η log

2αK

ηδ
.
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Given that C̃2 ≥ 2σmax

√
2αC̃1 and δ = O(poly(η)), when η is sufficiently small, ∥∆̃(s)

k,t∥2 ≤

C̃2

√
η log 2αK

ηδ .

To sum up, for δ = O(poly(η)), with probability at least 1 − δ, ∥∆̃(s)
k,t∥2 ≤ C̃2

√
η log 2αK

ηδ for all

k ∈ [K], 0 ≤ t ≤ H . By triangle inequality,

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤

1

K

∑
k∈[K]

∥∆̃(s)
k,H∥2 ≤ C̃2

√
η log

2αK

ηδ
.

The combination of Lemma K.13 and Lemma K.14 leads to the following lemma, which states that
the Local SGD iterate will enter Γϵ1 after s0 rounds with high probability.

Lemma K.15. Given θ̄(0) such that Φ(θ̄(0)) ∈ Γ, then for δ = O(poly(η)), there exists a positive
constant C̃4 such that with probability at least 1− δ,

∥θ̄(s0) − ϕ(0)∥2 ≤
1

4

√
µ

ρ2
ϵ0 + C̃4

√
η log

1

ηδ
.

Proof. First, we prove by induction that for δ = O(poly(η)), when

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2H log

2HKs0
δ

, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < s0, (40)

the closeness of θ̄(s) and u
(s)
0 is bounded by

∥θ̄(s) − u
(s)
0 ∥2 ≤

s∑
l=1

C̃l1

(
ηG+ C̃3

√
η log

s0
ηδ

)
, ∀0 ≤ s ≤ s0. (41)

When s = 0, θ̄(0) = u
(0)
0 . Assume that (41) holds for round s. Then by Lemma K.13, for all

0 ≤ t ≤ H ,

∥ũ(s)
t − u

(s)
t ∥2 ≤ C̃1∥ũ(s)

0 − u
(s)
0 ∥2 + C̃1ηG

= C̃1∥θ̄(s)
0 − u

(s)
0 ∥2 + C̃1ηG

≤
s∑
l=1

C̃l+1
1

(
ηG+ C̃3

√
η log

s0
ηδ

)
+ C̃1ηG.

Therefore, for sufficiently small η, ũ(s)
t ∈ Zϵ, ∀0 ≤ t ≤ H . Combing the above inequality with

Lemma K.14, we have

∥θ̄(s+1) − u
(s+1)
0 ∥2 = ∥θ̄(s+1) − u

(s)
H ∥2

≤ ∥θ̄(s+1) − ũ
(s)
H ∥2 + ∥ũ

(s)
H − u

(s)
H ∥2

≤
s+1∑
l=1

C̃l+1
1

(
ηG+ C̃3

√
η log

s0
ηδ

)
,

which concludes the induction.

Therefore, when (40) holds, there exists a positive constant C̃4 such that

∥θ̄(s0) − u
(s0)
0 ∥2 ≤ C̃4

√
η log

1

ηδ
.

By definition of u(s0)
0 ,

∥θ̄(s0) − ϕ(0)∥2 ≤
1

4

√
µ

ρ2
ϵ0 + C̃4

√
η log

1

ηδ
.

Finally, according to Lemma K.12, (40) holds with probability at least 1− δ.
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K.5.3 PROOF FOR SUBPHASE 2

In subphase 2, we show that the iterate can reach within Õ(√η) distance from Γ after O(log 1
η )

rounds with high probability. The following lemma manifests how the potential function Ψ̃(θ̄(s))
evolves after one round.
Lemma K.16. Given θ̄(s) ∈ Γϵ0 , for δ = O(poly(η)), with probability at least 1− δ,

θ
(s)
k,t ∈ Γϵ2 , Ψ̃(θ

(s)
k,t) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H

and

θ̄(s+1) ∈ Γϵ2 , Ψ̃(θ̄(s+1)) ≤ exp(−αµ/2)Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
,

where C̃5 is a positive constant.

Proof. Since θ̄(s) ∈ Γϵ0 , then for all 0 ≤ t ≤ H , ũ(s)
t ∈ Γϵ1 by the definition of the working zone.

By Lemma K.6, for η ≤ 1
ρ2

,

L(ũ(s)
t )− L∗ ≤ (1− µη)t

(
L(θ̄(s))− L∗

)
≤ L(θ̄(s))− L∗, ∀0 ≤ t ≤ H.

Specially, for t = H ,

L(ũ(s)
H )− L∗ ≤ (1− µη)

α
η

(
L(θ̄(s))− L∗

)
≤ exp(−αµ)(L(θ̄(s))− L∗).

Therefore,

Ψ̃(ũ
(s)
H ) ≤ exp(−αµ/2)Ψ̃(θ̄(s)).

According to the proof of Lemma K.14, for δ = O(poly(η)), when

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2α

η
log

2αK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, (42)

there exists a constant C̃3 such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C̃3

√
η log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

1

ηδ
.

Since ũ
(s)
t ∈ Γϵ1 , ∀0 ≤ t ≤ H , θ̄(s+1) ∈ Γϵ2 and θ̄

(s)
k,t ∈ Γϵ2 , ∀0 ≤ t ≤ H , k ∈ [K].

By Lemma K.7, Ψ̃(·) is
√
2ρ2-Lipschitz inMϵ4 . Therefore, when (42) holds, there exists a constant

C̃5 :=
√
2ρ2C̃3 such that

Ψ̃(θ
(s)
k,t) ≤ Ψ̃(ũ

(s)
t ) +

√
2ρ2∥θ(s)

k,t − ũ
(s)
t ∥2

≤ Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
,

and

Ψ̃(θ̄(s+1)) ≤ Ψ̃(ũ
(s)
H ) +

√
2ρ2∥θ̄(s+1) − ũ

(s)
H ∥2

≤ exp(−αµ/2)Ψ̃(θ̄(s)) + C̃5

√
η log

1

ηδ
.

Finally, by Lemma K.12, (42) holds with probability at least 1− δ.
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We are thus led to the following lemma which characterizes the evolution of the potential Ψ̃(θ̄(s))

and Ψ̃(θ
(s)
k,t) over multiple rounds.

Lemma K.17. Given ∥θ̄(0) − ϕ(0)∥2 ≤ 1
2

√
µ
ρ2
ϵ0, for δ = O(poly(η)) and any integer 1 ≤ R ≤

Rtot, with probability at least 1− δ,

θ̄(s) ∈ Γϵ0 , Ψ̃(θ̄(s)) ≤ exp(−αµs/2)Ψ̃(θ̄(0)) +
1

1− exp(−αµ/2)
C̃5

√
η log

R

ηδ
,∀0 ≤ s ≤ R.

(43)

Furthermore,

θ̄
(s)
k,t ∈ Γϵ2 , Ψ̃(θ

(s)
k,t) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

R

ηδ
, ∀0 ≤ t ≤ H, 0 ≤ s < R, k ∈ [K]. (44)

Proof. We prove induction that for δ = O(poly(η)), when

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2α

η
log

2RαK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < R, (45)

then for all 0 ≤ s ≤ R, (43) and (44) hold.

When s = 0, θ̄(0) ∈ Γϵ0 and (43) trivially holds. By Lemma K.16, (44) holds. Assume that (43)
and (44) hold for round s− 1. Then for round s, by Lemma K.16, θ̄(s) ∈ Γϵ2 and

Ψ(θ̄(s)) ≤ exp(−αµ/2)Ψ̃(θ̄(s−1)) + C̃5

√
η log

R

ηδ

≤ exp(−αµs/2)Ψ̃(θ̄(0)) +
1

1− exp(−αµ/2)
C̃5

√
η log

R

ηδ
,

where the second inequality comes from the induction hypothesis. By Lemma K.10,

∥θ̄(s) − ϕ(s)∥2 ≤
2√
2µ

Ψ̃(θ̄(s))

≤ 2√
2µ

Ψ̃(θ̄(0)) +
2√

2µ(1− exp(−αµ/2))
C̃5

√
η log

R

ηδ

≤ 1

2
ϵ0 +

2√
2µ(1− exp(−αµ/2))

C̃5

√
η log

R

ηδ
.

Here, the last inequality uses Ψ̃(θ̄(0)) ≤
√

ρ2
2 ∥θ̄

(s) − ϕ(0)∥2 ≤ 1
2

√
µ
2 ϵ0. Hence, when η is suffi-

ciently small, θ̄(s) ∈ Γϵ0 . Still by Lemma K.16, θ̄(s)
k,t ∈ Γϵ2 and

Ψ̃(θ
(s)
k,t) ≤ Ψ̃(θ̄(s)) + C̃5

√
η log

R

ηδ
.

Finally, according to Lemma K.12, (45) holds with probability at least 1− δ.

The following corollary is a direct consequence of Lemma K.17 and Lemma K.10.

Corollary K.1. Let s1 := ⌈ 20αµ log 1
η ⌉. Given ∥θ̄(0)−ϕ(0)∥2 ≤ 1

2

√
µ
ρ2
ϵ0, for δ = O(poly(η)), with

probability at least 1− δ,

Ψ̃(θ̄(s1)) ≤ C̃6

√
η log

1

ηδ
, ∥θ̄(s1) − ϕ(s1)∥2 ≤ C̃6

√
η log

1

ηδ
, (46)

where C̃6 is a constant.
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Proof. Substituting in R = s1 to Lemma K.17 and applying ∥θ̄(s1) − ϕ(s)∥2 ≤
√

2
µ Ψ̃(θ̄(s1)) for

θ̄(s1) ∈ Γϵ0 , we have the lemma.

Finally, we provide a high probability bound for the change of the projection on the manifold after
s1 rounds ∥ϕ(s1) − ϕ(0)∥2.

Lemma K.18. Let s1 := ⌈ 20αµ log 1
η ⌉. Given ∥θ̄(0)−ϕ(0)∥2 ≤ 1

2

√
µ
ρ2
ϵ0. For δ = O(poly(η)), with

probability at least 1− δ,

∥ϕ(s1) − ϕ(0)∥2 ≤ C̃8 log
1

η

√
η log

1

ηδ
.

Proof. From Lemma K.17, for δ = O(poly(η)), when

∥Z̃(s)
k,t∥2 ≤ C̃1σmax

√
2α

η
log

2s1αK

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < s1, (47)

then θ̄(s) ∈ Γϵ0 , for all 0 ≤ s ≤ s1. By the definition of Γϵ0 , ũ(s)
t ∈ Γϵ1 , for all 0 ≤ t ≤ H, 0 ≤

s ≤ s1. By triangle inequality, ∥ϕ(s1) − ϕ(0)∥2 can be decomposed as follows.

∥ϕ(s1) − ϕ(0)∥2 ≤
s1−1∑
s=0

∥ϕ(s+1) − ϕ(s)∥2

≤
s1−1∑
s=0

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 +

s1−1∑
s=0

∥Φ(θ̄(s+1))− Φ(ũ
(s)
H )∥2. (48)

By Lemma K.14, when (47) hold , then for all 0 ≤ s < s1 − 1,

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C̃3

√
η log

s1
ηδ
.

This implies that θ̄(s+1) ∈ Bϵ1(ũ
(s)
H ). Since for all θ ∈ Γϵ2 , ∥∂Φ(θ)∥2 ≤ ν1, then Φ(·) is ν1-

Lipschitz in Bϵ1(ũ(s)
H ). This gives

∥Φ(θ̄(s+1))− Φ(ũ
(s)
H )∥2 ≤ ν1∥θ̄(s+1) − ũ

(s)
H ∥2

≤ ν1C̃3

√
η log

s1
ηδ
. (49)

Then we analyze ∥θ̄(s+1) − ũ
(s)
H ∥2. By Lemma K.9 and the definition of Γϵ0 and Γϵ1 , there exists

ϕ ∈ Γ such that ũ(s)
t ∈ Bϵ1(ϕ), ∀0 ≤ t ≤ H . Therefore, we can expand Φ(ũ

(s)
t+1) as follows:

Φ(ũ
(s)
t+1) = Φ(ũ

(s)
t − η∇L(ũ

(s)
t ))

= Φ(ũ
(s)
t )− η∂Φ(ũ(s))∇L(u(s)

t ) +
η2

2
∂2Φ(û

(s)
t )[∇L(ũ(s)

t ),∇L(ũ(s)
t )]

= Φ(ũ
(s)
t ) +

η2

2
∂2Φ

(
c
(s)
t ũ

(s)
t + (1− c(s)t )ũ

(s)
t+1

)
[∇L(ũ(s)

t ),∇L(ũ(s)
t )],

where c(s)t ∈ (0, 1). Then we have

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤

η2

2

H−1∑
t=0

∥∂2Φ(
(
c
(s)
t ũ

(s)
t + (1− c(s)t )ũ

(s)
t+1

)
)[∇L(ũ(s)),∇L(ũ(s)

t )]∥2

≤ η2

2
ν2

H−1∑
t=0

∥∇L(ũ(s)
t )∥22.
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By Lemma K.6, η2∥∇L(ũ
(s)
t )∥22 ≤ L(ũ

(s)
t )− L(ũ(s)

t+1). Therefore,

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤ ην2(L(ũ(s)

0 )− L(ũ(s)
H ))

≤ ην2[Ψ̃(θ̄(s))]2

≤ ν2η

[
2 exp(−αsµ)Ψ̃(θ̄(0)) +

C̃2
5η

(1− exp(−αµ/2))2
log

s1
ηδ

]
, (50)

where the last inequality uses Cauchy-Schwartz inequality and Lemma K.17. Summing up (50) ,
we obtain
s1−1∑
s=0

∥Φ(ũ(s)
H )− Φ(ũ

(s)
0 )∥2 ≤ ν2η

[
2Ψ̃(θ̄(0))

s1−1∑
s=0

exp(−αµs) + s1C̃
2
5η

(1− exp(−αµ/2))2
log

s1
ηδ

]

≤ C̃7η log
1

η
log

1

ηδ
, (51)

where C̃7 is a constant. Substituting (49) and (51) into (48), for sufficiently small η, we have

∥ϕ(s1) − ϕ(0)∥2 ≤ ν1C̃3s1

√
η log

s1
ηδ

+ C̃7η log
1

η
log

1

ηδ

≤ C̃8 log
1

η

√
η log

1

ηδ
,

where C̃8 is a constant. Finally, according to Lemma K.12, (47) holds with probability at least
1− δ.

K.6 PHASE 2: ITERATES STAYING CLOSE TO MANIFOLD

In this subsection, we show that ∥x(s)
k,t∥2 = Õ(√η) and ∥θ̄(s+r) − θ̄(s)∥2 = Õ(η0.5−0.5β), ∀0 ≤

r ≤ Rgrp with high probability.

K.6.1 ADDITIONAL NOTATIONS

Before presenting the lemmas, we define the following martingale {m(s)
k,t}Ht=0 that will be useful in

the proof:

m
(s)
k,t :=

t−1∑
τ=0

z
(s)
k,τ , mk,0 = 0.

We also define P̃ : Rd → Rd×d as an extension of ∂Φ:

P̃ (θ) :=

{
∂Φ(θ), if θ ∈ Γϵ2 ,

0, otherwise.

Finally, we define a martingale {Z(s)
t : s ≥ 0, 0 ≤ t ≤ H}:

Z
(s)
t :=

1

K

∑
k∈[K]

s−1∑
r=0

H−1∑
τ=0

P̃ (θ̄(r))z
(r)
k,t +

1

K

∑
k∈[K]

t−1∑
τ=0

P̃ (θ̄(s))z
(s)
k,t , Z

(0)
0 = 0.

K.6.2 PROOF FOR THE HIGH PROBABILITY BOUNDS

A direct application of Azuma-Hoeffding’s inequality yields the following lemma.

Lemma K.19 (Concentration property of m(s)
k,t). With probability at least 1−δ, the following holds:

∥m(s)
k,t∥2 ≤ C̃9

√
1

η
log

1

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp,

where C̃9 is a constant.
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Proof. Notice that ∥m(s)
k,t+1 −m

(s)
k,t∥2 ≤ σmax. Then by Azuma-Hoeffdings inequality,

P(∥m(s)
k,t∥2 ≥ ϵ

′) ≤ 2 exp

(
− ϵ′2

2tσ2
max

)
.

Taking union bound on K clients, H local steps and Rgrp rounds, we obtain that the following
inequality holds with probability at least 1− δ:

∥m(s)
k,t∥2 ≤ σmax

√
2H log

2KHRgrp

δ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp.

Substituting in H = α
η and Rgrp = ⌊ 1

αηβ
⌋ yields the lemma.

Again applying Azuma-Hoeffding’s inequality, we have the following lemma about the concentra-
tion property of Z(s)

t .

Lemma K.20 (Concentration property of Z(s)
t ). With probability at least 1 − δ, the following in-

equality holds:

∥Z(s)
H ∥2 ≤ C̃12η

−0.5−0.5β

√
log

1

ηδ
, ∀0 ≤ s < Rgrp.

Proof. Notice that ∥Z(s)
t+1 −Z

(s)
t ∥2 ≤ ν2σmax,∀0 ≤ t ≤ H − 1 and ∥Z(s+1)

0 −Z
(s)
H ∥2 ≤ ν2σmax.

By Azuma-Hoeffding’s inequality,

P(∥Z(s)
t ∥2 ≥ ϵ′) ≤ 2 exp

(
− ϵ′2

2(sH + t)ν22σ
2
max

)
.

Taking union bound on Rgrp rounds, we obtain that the following inequality holds with probability
at least 1− δ:

∥Z(s)
H ∥2 ≤ σmaxν2

√
2HRgrp log

2Rgrp

δ
, ∀0 ≤ s < Rgrp.

Substituting in H = α
η and Rgrp = ⌊ 1

αηβ
⌋ yields the lemma.

We proceed to present a direct corollary of Lemma K.17 which provides a bound for the potential
function over Rgrp rounds.

Lemma K.21. Given ∥θ̄(0) − ϕ(0)∥2 ≤ C0

√
η log 1

η where C0 is a constant, then for δ =

O(poly(η)), with probability at least 1− δ,

θ̄(s) ∈ Γϵ0 , Ψ̃(θ̄(s)) ≤ C1

√
η log

1

ηδ
, ∀0 ≤ s < Rgrp, (52)

and

θ̄
(s)
k,t ∈ Γϵ2 , Ψ̃(θ̄

(s)
k,t) ≤ C1

√
η log

1

ηδ
, ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, k ∈ [K], (53)

where C1 is a constant that can depend on C0.

Furthermore,

Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
η log

1

ηδ
,

where C̃9 is a constant independent of C0.
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Proof. By ρ2-smoothness of L, Ψ̃(θ̄(0)) ≤ C0

√
ηρ2
2 log 1

η . Substituting Rgrp = ⌊ 1
αηβ
⌋ and

Ψ̃(θ̄(0)) ≤ C0

√
ηρ2
2 log 1

η into Lemma K.17, for δ = O(poly(η)), with probability at least 1 − δ,
(52) and (53) where C1 is a constant that can depend on C0.

Furthermore, for round θ̄(Rgrp),

Ψ̃(θ̄(Rgrp)) ≤ exp(−O(η−β)) + 1

1− exp(−αµ/2)
C̃5

√
η log

Rgrp

ηδ
≤ C̃10

√
η log

1

ηδ
,

where C̃9 is a constant independent of C0.

Lemma K.22. Given ∥θ̄(0) − ϕ(0)∥2 ≤ C0

√
η log 1

η where C0 is a constant, then for δ =

O(poly(η)), with probability at least 1− δ, for all 0 ≤ s0 < Rgrp, 0 ≤ t ≤ H , k ∈ [K],

∥x(s)
k,t∥2 ≤ C2

√
η log

1

ηδ
, ∥x̄(s)

H ∥2 ≤ C2

√
η log

1

ηδ
,

∥θ̄(s)
k,t − θ̄(s)∥2 ≤ C2

√
η log

1

ηδ
, ∥θ̄(s+1) − θ̄(s)∥2 ≤ C2

√
η log

1

ηδ
.

where C2 is a constant that can depend C0. Furthermore,

∥θ̄(Rgrp) − ϕ(Rgrp)∥2 ≤ C̃11

√
η log

1

ηδ
,

where C̃11 is a constant independent of C0.

Proof. Decomposing x
(s)
k,t by triangle inequality, we have

∥x(s)
k,t∥2 ≤ ∥θ

(s)
k,t − θ̄(s)∥2 + ∥θ̄(s) − ϕ(s)∥2.

We first bound ∥θ̄(s) − ϕ(s)∥2. By Lemma K.21, for δ = O(poly(η)), with probability at least
1− δ

2 ,

Ψ̃(θ̄(s)) ≤ C1

√
η log

2

ηδ
,∀0 ≤ s < Rgrp, (54)

Ψ̃(θ
(s)
k,t) ≤ C1

√
η log

2

ηδ
, ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, (55)

and

Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
η log

2

ηδ
, (56)

where C2 is a constant that may depend on C0 and C̃10 is a constant independent of C0. When (54)
and (56) hold, by Lemma K.10,

∥θ̄(s) − ϕ(s)∥2 ≤
√

2

µ
Ψ̃(θ̄(s)) ≤ C1

√
2η

µ
log

2

ηδ
, (57)

∥θ̄(Rgrp) − ϕ(Rgrp)∥2 ≤
√

2

µ
Ψ̃(θ̄(Rgrp)) ≤ C̃10

√
2η

µ
log

2

ηδ
. (58)

Then we bound ∥θ(s)
k,t − θ̄(s)∥2. By the update rule, we have

θ
(s)
k,t = θ̄(s) − η

t−1∑
τ=0

∇L(θ(s)
k,τ )− η

t−1∑
τ=0

z
(s)
k,τ = θ̄(s) − η

t−1∑
τ=0

∇L(θ(s)
k,τ )− ηm

(s)
k,t.
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Still by triangle inequality, we have

∥θ(s)
k,t − θ̄(s)∥2 ≤ η

t−1∑
τ=0

∥∇L(θ(s)
k,τ )∥2 + η∥m(s)

k,t∥2.

Due to ρ2-smoothness of L, when (55) holds,

∥∇L(θ(s)
k,τ )∥2 ≤

√
2ρ2Ψ̃(θ

(s)
k,τ ) ≤ C1

√
2ρ2η log

2

ηδ
. (59)

By Lemma K.19, with probability at least 1− δ
2 ,

∥m(s)
k,t∥2 ≤ C̃9

√
1

η
log

2

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K], 0 ≤ s < Rgrp. (60)

Combining (59) and (60), when (55) and (56) hold simultaneously, there exists a constant C3 which
can depend on C0 such that

∥θ(s)
k,t − θ̄(s)∥2 ≤ C3

√
η log

1

ηδ
, ∀k ∈ [K], 0 ≤ t ≤ H. (61)

By triangle inequality,

∥θ̄(s+1) − θ̄(s)∥2 ≤ C3

√
η log

1

ηδ
.

Combining (57), (58) and (61), we complete the proof.

Then we provide high probability bounds for the movement of ϕ(s) within Rgrp rounds.

Lemma K.23. Given ∥θ̄(0) − ϕ(0)∥2 ≤ C0

√
η log 1

η where C0 is a constant, then for δ =

O(poly(η)), with probability at least 1− δ,

∥ϕ(s) − ϕ(0)∥2 ≤ C4η
0.5−0.5β

√
log

1

ηδ
, ∀1 ≤ s ≤ Rgrp.

where C4 is a constant that can depend on C0.

Proof. By the update rule of Local SGD,

θ
(s)
k,H = θ̄(s) − η

H−1∑
t=0

∇L(θ(s)
k,t)− η

H−1∑
t=0

z
(s)
k,t

Averaging among K clients gives

θ̄(s+1) = θ̄(s) − η

K

H−1∑
t=0

∑
k∈[K]

∇L(θ(s)
k,t)−

η

K

H−1∑
t=0

∑
k∈[K]

z
(s)
k,t .

By Lemma K.22, for δ = O(poly(η)), the following holds with probability at least 1− δ/3,

∥θ(s)
k,t − θ̄(s)∥2 ≤ C2

√
η log

3

ηδ
, θ

(s)
k,t ∈ B

ϵ0(ϕ(s)), ∀0 ≤ s < Rgrp, 0 ≤ t ≤ H, k ∈ [K],

(62)

∥θ̄(s+1) − θ̄(s)∥2 ≤ C2

√
η log

3

ηδ
, θ̄(s), θ̄(s+1) ∈ Bϵ0(ϕ(s)), ∀0 ≤ s < Rgrp. (63)
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When (62) and (63) hold, we can expand Φ(θ̄(s+1)) as follows:

ϕ(s+1) = ϕ(s) + ∂Φ(θ̄(s))(θ̄(s+1) − θ̄(s)) +
1

2
∂2Φ(θ̃(s))[θ̄(s+1) − θ̄(s), θ̄(s+1) − θ̄(s)]

= ϕ(s)− η

K

H−1∑
t=0

∑
k∈[K]

∂Φ(θ̄(s))∇L(θ(s)
k,t)︸ ︷︷ ︸

T (s)
1

− η

K
∂Φ(θ̄(s))

H−1∑
t=0

∑
k∈[K]

z
(s)
k,t︸ ︷︷ ︸

T (s)
2

+
1

2
∂2Φ(a(s)θ̄(s) + (1− a(s))θ̄(s+1))[θ(s+1) − θ(s),θ(s+1) − θ(s)]︸ ︷︷ ︸

T (s)
3

,

where a(s) ∈ (0, 1). Telescoping from round 0 to s− 1, we have

∥ϕ(s) − ϕ(0)∥2 =

s−1∑
r=0

T (r)
1 +

s−1∑
r=0

T (r)
2 +

s−1∑
r=0

T (r)
3 .

From (63), we can bound ∥T (s)
3 ∥2 by ∥T (s)

3 ∥2 ≤ 1
2ν2C

2
2η log

3
ηδ . We proceed to bound ∥T (s)

1 ∥2.
When (62) and (63) hold, we have

∂Φ(θ̄(s))∇L(θ(s)
k,t) = ∂Φ(θ

(s)
k,t)∇L(θ

(s)
k,t) + ∂2Φ(θ̂

(s)
k,t)[θ

(s)
k,t − θ̄(s),∇L(θ(s)

k,t)]

= ∂2Φ(b
(s)
k,tθ̄

(s) + (1− b(s)k,t)θ̂
(s)
k,t)[θ

(s)
k,t − θ̄(s),∇L(θ(s)

k,t)],

where b(s)k,t ∈ (0, 1). By Lemma K.17, with probability at least 1− δ/3, the following holds:

∥∇L(θ(s)
k,t)∥2 ≤

√
2ρ2Ψ̃(θ

(s)
k,t) ≤ C1

√
2ρ2η log

3

ηδ
,∀k ∈ [K], 0 ≤ t ≤ H, 0 ≤ s < Rgrp. (64)

When (62), (63) and (64) hold simultaneously, we have for all 0 ≤ s < Rgrp,

∥T (s)
1 ∥2 ≤

ην2
K

H−1∑
t=0

∥θ(s)
k,t − θ̄(s)∥2∥∇L(θ(s)

k,t)∥2

≤ αν2
√
2ρ2C1C2

K
η log

3

ηδ
.

Finally, we bound ∥
∑s−1
r=0 T

(r)
2 ∥2. By Lemma K.20, the following inequality holds with probability

at least 1− δ/3:

∥Z(s)
H ∥2 ≤ C̃12η

−0.5−0.5β

√
log

3

ηδ
, ∀0 ≤ s < Rgrp. (65)

When (62), (63) and (65) hold simultaneously, we have

∥
s∑
r=0

T (r)
2 ∥2 = η∥Z(s)

H ∥2 ≤ C̃12η
0.5−0.5β

√
log

3

ηδ
, ∀0 ≤ s < Rgrp

Combining the bounds for ∥T (s)
1 ∥2, ∥

∑s
r=0 T

(r)
2 ∥2 and ∥T (s)

3 ∥2 and taking union bound, we obtain
that for δ = O(poly(η)), the following inequality holds with probability at least 1− δ:

∥ϕ(s) − ϕ(0)∥2 ≤ C4η
0.5−0.5β

√
log

1

ηδ
, ∀1 ≤ s ≤ Rgrp.

where C4 is a constant that can depend on C0.
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K.7 SUMMARY OF THE DYNAMICS AND PROOF OF THEOREMS J.1 AND J.2

Based on the results in Appendix K.5 and Appendix K.6, we summarize the dynamics of Local SGD
iterates and then present the proof of Theorems J.1 and J.2 in this subsection. For convenience, we
first introduce the definition of global step and δ-good step.
Definition K.3 (Global step). Define I as the index set {(s, t) : s ≥ 0, 0 ≤ t ≤ H} with lexico-
graphical order, which means (s1, t1) ⪯ (s2, t2) if and only if s1 < s2 or (s1 = s2 and t1 ≤ t2). A
global step is indexed by (s, t) corresponding to the t-th local step at round s.
Definition K.4 (δ-good step). In the training process of Local SGD, we say the global step (s, t) ⪯
(Rtot, 0) is δ-good if the following inequalities hold:

∥Z̃(r)
k,τ∥2 ≤ exp(αρ2)σmax

√
2H log

6HRtotK

δ
, ∀k ∈ [K], (r, τ) ⪯ (s, t),

∥m(r)
k,τ∥2 ≤ σmax

√
2H log

6KHRtot

δ
, ∀k ∈ [K], (r, τ) ⪯ (s, t),

∥Z(r)
H ∥2 ≤ σmaxν2

√
2HRgrp log

2Rtot

δ
, ∀0 ≤ r < s.

Applying the concentration properties of Z̃
(r)
k,τ ,m

(r)
k,τ and Z

(r)
H (Lemmas K.20, K.19 and K.12)

yields the following theorem.
Theorem K.1. For δ = O(poly(η)), with probability at least 1 − δ, all global steps (s, t) ⪯
(Rtot, 0) are δ-good.

In the remainder of this subsection, we use O(·) notation to hide constants independent of δ and η.

Below we present a summary of the dynamics of Local SGD when θ̄(0) is initialized such that
Φ(θ̄(0)) ∈ Γ and all global steps are δ-good. Phase 1 lasts for s0 + s1 = O(log 1

η ) rounds. At the

end of phase 1, the iterate reaches within O(
√
η log 1

ηδ ) from Γ, i.e., ∥θ̄(s0+s1) − ϕ(s0+s1)∥2 =

O(
√
η log 1

ηδ ). The change of the projection on manifold over s0 + s1 rounds, ∥ϕ(s1+s0)−ϕ(0)∥2,

is bounded by O(log 1
η

√
η log 1

ηδ ).

After s0 + s1 rounds, the dynamic enters phase 2 when the iterates stay close to Γ with θ̄(s) ∈
Γϵ2 ,∀s0+s1 ≤ s ≤ Rtot and θ

(s)
k,t ∈ Γϵ2 , ∀k ∈ [K], (s0+s1, 0) ⪯ (s, t) ⪯ (Rtot, 0). Furthermore,

∥x(s)
k,t∥2 and ∥x̄(s)

H ∥2 satisfy the following equations:

∥x(s)
k,t∥2 = O(

√
η log 1

ηδ ), ∀k ∈ [K], 0 ≤ t ≤ H, s0 + s1 ≤ s < Rtot,

∥x̄(s)
H ∥2 = O(

√
η log 1

ηδ ), ∀s0 + s1 ≤ s < Rtot.

Moreover, for s0+s1 ≤ s ≤ Rtot−Rgrp, the change of the manifold projection withinRgrp rounds
can be bounded as follows:

∥ϕ(s+r) − ϕ(s)∥2 = O(η0.5−0.5β

√
log

1

ηδ
), ∀1 ≤ r ≤ Rgrp.

After combing through the dynamics of Local SGD iterates during the approaching and drift phase,
we are ready to present the proof of Theorems J.1 and J.2, which are direct consequences of the
lemmas in Appendix K.5 and K.6.

Proof of Theorem J.1. By Lemmas K.15, K.22 and Corollary K.1, for δ = O(poly(η)), when all
global steps are δ-good, θ̄(s) ∈ Γϵ2 ,∀s0 + s1 ≤ s ≤ Rtot and θ

(s)
k,t ∈ Γϵ2 , ∀k ∈ [K], (s0 + s1, 0) ⪯

(s, t) ⪯ (Rtot, 0) and ∥x(s)
k,t∥2, ∥x̄(s)

H ∥2 satisfy the following equations:

∥x(s)
k,t∥2 = O(

√
η log 1

ηδ ), ∀k ∈ [K], 0 ≤ t ≤ H, s0 + s1 ≤ s < Rtot,

∥x̄(s)
H ∥2 = O(

√
η log 1

ηδ ), ∀s0 + s1 ≤ s < Rtot.
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Hence ∥x̄(Rtot)
0 ∥2 = O(Ψ̃(θ̄(Rtot))) = O(∥x̄(Rtot−1)

H ∥2) = O(
√
η log 1

ηδ ) by smoothness of L and
Lemma K.10. According to Theorem K.1, with probability at least 1−δ, all global steps are δ-good,
thus completing the proof.

Proof of Theorem J.2. By Lemma K.23, for δ = O(poly(η)), when all global steps are δ-good, then
∀s0 + s1 ≤ s ≤ Rtot −Rgrp,

∥ϕ(s+r) − ϕ(s)∥2 = Õ(η0.5−0.5β), ∀0 ≤ r ≤ Rgrp.

Also, by Lemma K.18, when all global steps are δ-good, the change of projection on manifold over
s0+s1 rounds (i.e., Phase 1), ∥ϕ(s0+s1)−ϕ(0)∥2 is bounded by Õ(√η). According to Theorem K.1,
with probability at least 1− δ, all global steps are δ-good, thus completing the proof.

K.8 PROOF OF THEOREM 3.3

In this subsection, we explicitly derive the dependency of the approximation error on α. The proofs
are quite similar to those in Appendix K.5 and hence we only state the key proof idea for brevity.
With the same method as the proofs in Appendix K.5.2, we can show that with high probability,
∥θ̄(s) − ϕ(s)∥2 ≤ 1

2

√
µ
ρ2

after s′0 = O(1) rounds. Below we focus on the dynamics of Local SGD

thereafter. We first remind the readers of the definition of {Z̃s
k,t}:

Z̃
(s)
k,t :=

t−1∑
τ=0

(
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

)
z
(s)
k,τ , Z̃

(s)
k,0 = 0.

We have the following lemma that controls the norm of the matrix product
∏t−1
l=τ+1(I −

η∇2L(ũ(s)
l )).

Lemma K.24. Given θ̄(s) ∈ Γϵ0 , then there exists a positive constant C ′
3 independent of α such

that for all 0 ≤ τ < t ≤ H , ∥∥∥∥∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))

∥∥∥∥∥
2

≤ C ′
3.

Proof. Since θ̄(s) ∈ Γϵ0 , then ũ
(s)
t ∈ Γϵ1 for all 0 ≤ t ≤ H . We first bound the minimum

eigenvalue of∇2L(ũ(s)
t ). Due to the PL condition, by Lemma K.6, for η ≤ 1

ρ2
,

L(ũ(s)
t )− L∗ ≤ (1− µη)t

(
L(θ̄(s))− L∗

)
≤ exp(−µtη)(L(θ̄(s))− L∗), ∀0 ≤ t ≤ H.

Therefore,

Ψ̃(ũ
(s)
t ) ≤ exp(−µtη/2)Ψ̃(θ̄(s)).

Let C ′
1 = ρ3

√
ρ2
µ . By Weyl’s inequality,

|λmin(∇2L(ũ(s)
t ))| = |λmin(∇2L(ũ(s)

t ))− λmin(∇2L(Φ(ũ(s)
t ))|

≤ ρ3∥∇2L(ũ(s)
t )−∇2L(Φ(ũ(s)

t ))∥2
≤ ρ3∥ũ(s)

t − Φ(ũ
(s)
t )∥2

≤ ρ3
√

2

µ
exp(−µtη/2)Ψ̃(θ̄(s))

≤ C ′
1 exp(−µtη/2)ϵ0,
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where the last two inequalities use Lemmas K.10 and K.7 respectively. Therefore, for all 0 ≤ t ≤ H
and 0 ≤ τ ≤ t− 1,

∥
t−1∏
l=τ+1

(I − η∇2L(ũ(s)
l ))∥2 ≤

t−1∏
l=τ+1

(1 + η|λmin∇2L(ũ(s)
l )|)

≤
∞∏
l=0

(1 + η|λmin∇2L(ũ(s)
l )|)

≤ exp(ηϵ0C
′
1

∞∑
l=0

exp(−µlη/2)). (66)

For sufficiently small η, there exists a constant C ′
2 such that

∞∑
l=0

exp(−µlη/2)) = 1

1− exp(−µη/2)
≤ C ′

2

η
. (67)

Substituting (67) into (66), we obtain the lemma.

Based on Lemma K.24, we obtain the following lemma about the concentration property of Z̃(s)
k,t ,

which can be derived in the same way as Lemma K.12.

Lemma K.25. Given θ̄(s) ∈ Γϵ0 , then with probability at least 1− δ,

∥Z̃(s)
k,t∥2 ≤ C

′
3σmax

√
2α

η
log

2αK

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

where C ′
3 is defined in Lemma K.24.

The following lemma can be derived analogously to Lemma K.14 but the error bound is tighter in
terms of its dependency on α.

Lemma K.26. Given θ̄(s) ∈ Γϵ1 , then for δ = O(poly(η)), with probability at least 1 − δ, there
exists a constant C ′

4 independent of α such that

∥θ(s)
k,t − ũ

(s)
t ∥2 ≤ C ′

4

√
αη log

α

ηδ
, ∀0 ≤ t ≤ H, k ∈ [K],

and

∥θ̄(s+1) − ũ
(s)
H ∥2 ≤ C

′
4

√
αη log

α

ηδ
.

Then, similar to Lemma K.17, we can show that for δ = O(poly(η)) and simultaneously all s ≥
s′0 + s′1 where s′1 = O( 1

α log 1
η ), it holds with probability at least 1 − δ that ∥θ̄(s) − ϕ(s)∥2 =

O(
√
αη log α

ηδ ). Note that to eliminate the dependency of the second term’s denominator on α in

(44), we can discuss the cases of α > c0 and α < c0 respectively where c0 can be an arbitrary
positive constant independent of α. For the case of α < c0 group ⌈ c0α ⌉ rounds together and repeat
the arguments in this subsection to analyze the closeness between Local SGD and GD iterates as
well as the evolution of loss.

K.9 COMPUTING THE MOMENTS FOR ONE “GIANT STEP”

In this subsection, we compute the first and second moments for the change of manifold projection
every Rgrp rounds of Local SGD. Since the randomness in training might drive the iterate out of the
working zone, making the dynamic intractable, we analyze a more well-behaved sequence {θ̂(s)

k,t :

(s, t) ⪯ (Rtot, 0), k ∈ [K]} which is equal to {θ(s)
k,t} with high probability. Specifically, θ̂(s)

k,t equal

to θ
(s)
k,t if the global step (s, t) is η100-good and is set as a point ϕnull ∈ Γ otherwise. The formal

definition is as follows.
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Figure 9: A plot of ψ(x).

Definition K.5 (Well-behaved sequence). Denote by E(s)t the event
{global step (s, t) is η100-good}. Define a well-behaved sequence θ̂

(s)
k,t := θ

(s)
k,t1E(s)

t
+ ϕnull1Ē(s)

t
,

which satisfies the following update rule:

θ̂
(s)
k,t+1 = θ

(s)
k,t+11E(s)

t+1
+ ϕnull1Ē(s)

t+1
(68)

= θ̂
(s)
k,t − η∇L(θ̂

(s)
k,t)− ηz

(s)
k,t −1Ē(s)

t+1
(θ̂

(s)
k,t − η∇L(θ̂

(s)
k,t)− ηz

(s)
k,t) + 1Ē(s)

t+1
ϕnull︸ ︷︷ ︸

:=ê
(s)
k,t

. (69)

By Theorem K.1, with probability at least 1 − η100, θ̂(s)
k,t = θ

(s)
k,t , ∀k ∈ [K], (s, t) ⪯ (Rtot, 0).

Similar to {θ(s)
k,t}, we define the following variables with respect to {θ̂(s)

k,t}:

θ̂(s+1)
avg :=

1

K

∑
k∈[K]

θ̂
(s)
k,H , ϕ̂(s) := Φ(θ̂(s)

avg),

x̂
(s)
k,t := θ̂

(s)
k,t − ϕ̂(s), x̂

(s)
avg,0 := θ̂(s)

avg − ϕ̂(s), x̂
(s)
avg,H :=

1

K

∑
k∈[K]

x̂
(s)
k,H .

Notice that x̂(s)
k,0 = x̂

(s)
avg,0 for all k ∈ [K]. Finally, we introduce the following mapping Ψ(θ) :

Γ→ Rd×d, which is closely related to Ψ̂ defined in Theorem 3.2.
Definition K.6. For θ ∈ Γ, we define the mapping Ψ(θ) : Γ→ Rd×d:

Ψ(θ) =
∑
i,j∈[d]

ψ(ηH(λi + λj))
〈
Σ(θ),viv

⊤
j

〉
viv

⊤
j ,

where λi,vi are the i-th eigenvalue and eigenvector of∇2L(θ) and vi’s form an orthonormal basis
of Rd. Additionally, ψ(x) := e−x−1+x

x and ψ(0) = 0; see Figure 9 for a plot.

Remark K.1. Intuitively, Ψ(θ) rescales the entries of Σ(θ) in the eigenbasis of ∇2L(θ). When
∇2L(θ) = diag(λ1, · · · , λd) ∈ Rd×d, where λi = 0 for all m < i ≤ d, Ψ(Σ0)i,j = ψ(ηH(λi +
λj))Σ0,i,j . Note that Ψ(θ) can also be written as

vec(Ψ(θ)) = ψ(ηH(∇2L(θ)⊕∇2L(θ)))vec(Σ(θ)),

where⊕ denotes the Kronecker sum A⊕B = A⊗Id+Id⊗B, vec(·) is the vectorization operator
of a matrix and ψ(·) is interpreted as a matrix function.

Now we are ready to present the result about the moments of ϕ̂(s+Rgrp) − ϕ̂(s).
Theorem K.2. For s0 + s1 ≤ s ≤ Rtot − Rgrp and 0 < β < 0.5, the first and second moments of
ϕ̂(s+Rgrp) − ϕ̂(s) are as follows:

E[ϕ̂(s+Rgrp) − ϕ̂(s) | ϕ̂(s), E(s)0 ] =
η1−β

2B
∂2Φ(ϕ̂(s))[Σ(ϕ̂(s)) + (K − 1)Ψ(ϕ̂(s))]

+ Õ(η1.5−2β) + Õ(η),
(70)

E[(ϕ̂(s+Rgrp) − ϕ̂(s))(ϕ̂(s+Rgrp) − ϕ̂(s))⊤ | ϕ̂(s), E(s)0 ] =
η1−β

B
Σ∥(ϕ̂

(s)) + Õ(η1.5−2β) + Õ(η),
(71)

where Õ(·) hides log terms and constants independent of η.
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Remark K.2. By Theorem K.1 and the definition of θ̂(s)
k,t , (70) and (71) still hold when we replace

ϕ̂(s) with ϕ(s) and replace ϕ̂(s+Rgrp) with ϕ(s+Rgrp).

We shall have Theorem K.2 if we prove the following theorem, which directly gives Theorem K.2
with a simple shift of index. For brevity, denote by ∆ϕ̂(s) := ϕ̂(s) − ϕ̂(0), Σ0 := Σ(ϕ̂(0)),
Σ0,∥ := Σ∥(ϕ̂

(0)).

Theorem K.3. Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 < β < 0.5, the first and second

moments of ∆ϕ̂(Rgrp) are as follows:

E[∆ϕ̂(Rgrp)] =
η1−β

2B
∂2Φ(ϕ̂(0))[Σ0 + (K − 1)Ψ(ϕ̂(0))] + Õ(η1.5−2β) + Õ(η),

E[∆ϕ̂(Rgrp)∆ϕ̂(Rgrp)⊤] =
η1−β

B
Σ0,∥ + Õ(η1.5−1.5β) + Õ(η).

We will prove Theorem K.3 in the remainder of this subsection. For convenience, we introduce
more notations that will be used throughout the proof. Let H0 := ∇2L(ϕ̂(0)). By Assumption 3.2,
rank(H0) = m. WLOG, assume H0 = diag(λ1, · · · , λd) ∈ Rd×d, where λi = 0 for all m <

i ≤ d and λ1 ≥ λ2 · · · ≥ λm. By Lemma K.2, ∂Φ(ϕ̂(0)) is the projection matrix onto the tangent

space Tϕ̂(0)(Γ) (i.e. the null space of ∇2L(ϕ̂(0))) and therefore, ∂Φ(ϕ̂(0)) =

[
0 0
0 Id−m

]
. Let

P∥ := ∂Φ(ϕ̂(0)) and P⊥ := Id − P∥.

Let Â(s)
avg := E[x̂(s)

avg,H x̂
(s)⊤
avg,H ], q̂(s)

t := E[x̂(s)
k,t] and B̂

(s)
t := E[x̂(s)

k,t∆ϕ̂(s)⊤]. The latter two

notations are independent of k since θ̂(s)
1,t , . . . , θ̂

(s)
K,t are identically distributed. The following lemma

computes the first and second moments of the change of manifold projection every round.

Lemma K.27. Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp, the first and second

moments of ϕ̂(s+1) − ϕ̂(s) are as follows:

E[ϕ̂(s+1) − ϕ̂(s)] = P∥q̂
(s)
H + ∂2Φ(ϕ̂(0))[B̂

(s)
H ] +

1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β), (72)

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] = P∥Â
(s)
avgP∥ + Õ(η1.5−0.5β). (73)

Proof. By Taylor expansion, we have

ϕ̂(s+1) = Φ
(
ϕ̂(s) + x̂

(s)
avg,H

)
= ϕ̂(s) + ∂Φ(ϕ̂(s))x̂

(s)
avg,H +

1

2
∂2Φ(ϕ̂(s))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ] +O(∥x̂(s)

avg,H∥
3
2)

= ϕ̂(s) + ∂Φ(ϕ̂(0) +∆ϕ̂(s))x̂
(s)
avg,H +

1

2
∂2Φ(ϕ̂(0) +∆ϕ̂(s))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥x̂(s)
avg,H∥

3
2)

= ϕ̂(s) + P∥x̂
(s)
avg,H + ∂2Φ(ϕ̂(0))[x̂

(s)
avg,H∆ϕ̂(s)⊤] +

1

2
∂2Φ(ϕ̂(0))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥∆ϕ̂(s)∥22∥x̂
(s)
avg,H∥2 + ∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥
2
2 + ∥x̂

(s)
avg,H∥

3
2).

Rearrange the terms and we obtain:

ϕ̂(s+1) − ϕ̂(s) = P∥x̂
(s)
avg,H + ∂2Φ(ϕ̂(0))[x̂

(s)
avg,H∆ϕ̂(s)⊤] +

1

2
∂2Φ(ϕ̂(0))[x̂

(s)
avg,H x̂

(s)⊤
avg,H ]

+O(∥∆ϕ̂(s)∥22∥x̂
(s)
avg,H∥2 + ∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥
2
2 + ∥x̂

(s)
avg,H∥

3
2).

(74)

Moreover,

(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤ = P∥x̂
(s)
avg,H x̂

(s)⊤
avg,HP∥ +O(∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥
2
2). (75)
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Noticing that x̂(s)
k,H∆ϕ̂(s)⊤ are identically distributed for all k ∈ [K], we have E[x̂(s)

avg,H∆ϕ̂(s)⊤] =
1
K

∑
k∈[K] E[x̂

(s)
k,H∆ϕ̂(s)⊤] = B̂

(s)
H . Then taking expectation of both sides of (74) gives

E[ϕ̂(s+1) − ϕ̂(s)] = P∥q̂
(s)
H + ∂2Φ(ϕ̂(0))[B̂

(s)
H ] +

1

2
∂2Φ(ϕ̂(0))[Â(s)

avg]

+O(E[∥∆ϕ̂(s)∥22∥x̂
(s)
avg,H∥2] + E[∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥
2
2] + E[∥x̂(s)

avg,H∥
3
2]).

Again taking expectation of both sides of (75) yields

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) −∆ϕ̂(s)⊤)] = P∥Â
(s)
avgP∥ +O(E[∥∆ϕ̂(s)∥2∥x̂(s)

avg,H∥
2
2]).

By Lemmas K.22 and K.23, the following holds simultaneously with probability at least 1− η100:

∥∆ϕ̂(s)∥2 = Õ(η0.5−0.5β), ∥x̂(s)
avg,H∥2 = Õ(η0.5).

Furthermore, since for all k ∈ [K] and (s, t) ⪯ (Rtot, 0), θ̂
(s)
k,t stays in Γϵ2 which is a bounded set,

∥∆ϕ̂(s)∥2 and ∥x̂(s)
avg,H∥2 are also bounded. Therefore, we have

E[∥∆ϕ̂(s)∥22∥x̂
(s)
avg,H∥2] = Õ(η

1.5−β), (76)

E[∥∆ϕ̂(s)∥2∥x̂(s)
avg,H∥

2
2] = Õ(η1.5−0.5β), (77)

E[∥x̂(s)
avg,H∥

3
2] = Õ(η1.5), (78)

which concludes the proof.

We compute Â(s)
avg, q̂(s)

t and B̂
(s)
t by solving a set of recursions, which is formulated in the following

lemma. Additionally, define Â
(s)
t := E[x̂(s)

k,tx̂
(s)⊤
k,t ] and M̂

(s)
t := E[x̂(s)

k,tx̂
(s)
k,l ], (k ̸= l).

Lemma K.28. Given ∥θ̂(0)
avg − ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp and 0 ≤ t < H , we have
the following recursions.

q̂
(s)
t+1 = q̂

(s)
t − ηH0q̂

(s)
t − η∇3L(ϕ(0))[B̂

(s)
t ]− η

2
∇3L(ϕ(0))[Â

(s)
t ] + Õ(η2.5−β), (79)

Â
(s)
t+1 = Â

(s)
t − ηH0Â

(s)
t − ηÂ

(s)
t H0 +

η2

Bloc
Σ0 + Õ(η2.5−0.5β), (80)

M̂
(s)
t+1 = M̂

(s)
t − ηH0M̂

(s)
t − ηM̂ (s)

t H0 + Õ(η2.5−0.5β), (81)

B̂
(s)
t+1 = (I − ηH0)B̂

(s)
t + Õ(η2.5−β). (82)

Moreover,

Â(s)
avg =

1

K
Â

(s)
H + (1− 1

K
)M̂

(s)
H , (83)

M̂
(s+1)
0 = Â

(s+1)
0 = P⊥Â

(s)
avgP⊥ +O(η1.5−0.5β), (84)

q̂
(s+1)
0 = P⊥q̂

(s)
H − ∂

2Φ(ϕ(0))[B̂
(s)
H ]− 1

2
∂2Φ(ϕ(0))[Â(s)

avg] + Õ(η1.5−β), (85)

B̂
(s+1)
0 = P⊥B̂

(s)
H + P⊥Â

(s)
avgP∥ + Õ(η1.5−β). (86)

Proof. We first derive the recursion for q̂(s)
t . Recall the update rule for θ̂(s)

k,t :

θ̂
(s)
k,t+1 = θ̂

(s)
k,t − η∇L(θ̂

(s)
k,t)− ηz

(s)
k,t + ê

(s)
k,t.
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Subtracting ϕ̂(s) from both sides gives

x̂
(s)
k,t+1 = x̂

(s)
k,t − η∇L(θ̂

(s)
k,t)− ηz

(s)
k,t +O(∥ê

(s)
k,t∥2)

= x̂
(s)
k,t − η

(
∇2L(ϕ̂(s))x̂

(s)
k,t +

1

2
∇3L(ϕ̂(s))[x̂

(s)
k,tx̂

(s)⊤
k,t ] +O(∥x̂(s)

k,t∥
3
2)

)
− ηz(s)

k,t +O(∥ê
(s)
k,t∥2)

= x̂
(s)
k,t − η

(
∇2L(ϕ̂(0)) +∇3L(ϕ̂(0))∆ϕ̂(s) +O(∥∆ϕ̂(s)∥2)

)
x̂
(s)
k,t

− η

2

(
∇3L(ϕ̂(0)) +O(∥∆ϕ̂(s)∥2)

)
[x̂

(s)
k,tx̂

(s)⊤
kt ]− ηz(s)

k,t +O(η∥x̂
(s)
k,t∥

3
2 + ∥ê

(s)
k,t∥2)

= x̂
(s)
k,t − ηH0x̂

(s)
k,t − η∇

3L(ϕ̂(0))[x̂
(s)
k,t∆ϕ̂(s)⊤]− η

2
∇3L(ϕ̂(0))[x̂

(s)
k,tx̂

(s)⊤
k,t ]− ηz(s)

k,t

+O(η∥x̂(s)
k,t∥

3
2 + η∥∆ϕ̂(s)∥2∥x̂(s)

k,t∥
2
2 + η∥∆ϕ̂(s)∥22∥x̂

(s)
k,t∥2 + ∥ê

(s)
k,t∥2), (87)

where the second and third equality perform Taylor expansion. Taking expectation on both sides
gives

q̂
(s)
t+1 = (I − ηH0)q̂

(s)
t − η∇3L(ϕ̂(0))[q̂

(s)
t ]− η

2
∇3L(ϕ̂(0))[Â

(s)
t ]

+O
(
ηE[∥x̂(s)

k,t∥
3
2] + ηE[∥∆ϕ̂(s)∥2∥x̂(s)

k,t∥
2
2] + ηE[∥∆ϕ̂(s)∥22∥x̂

(s)
k,t∥2] + E[∥ê(s)k,t∥2]

)
.

By Theorem K.1, with probability at least 1 − η100, ê(s)k,t = 0, ∀k ∈ [K], (s, t) ⪯ (Rgrp, 0). Also

notice that both θ̂
(s)
k,t and ϕnull belong to the bounded set Γϵ2 . Therefore, ∥ê(s)k,t∥2 is bounded and we

have E[∥ê(s)k,t∥2] = O(η100). Combining this with (76) to (78) yields (79).

Secondly, we derive the recursion for B̂(s)
t . Multiplying both sides of (87) by ∆ϕ̂(s)⊤ and taking

expectation, we have

B̂
(s)
t+1 = (I − ηH0)B̂

(s)
t +O(ηE[∥∆ϕ̂(s)∥2∥x̂(s)

k,t∥
2
2 + ∥∆ϕ̂(s)∥22∥x̂

(s)
k,t∥2 + ∥ê

(s)
k,t∥2]).

Still by Theorem K.1 and (76) to (78), we have (82).

Thirdly, we derive the recursion for Â(s)
t . By (87), we have

Â
(s)
t+1 = Â

(s)
t − ηH0Â

(s)
t − ηÂ

(s)
t H0 +

η2

Bloc
Σ0 +O(η2E[∥∆ϕ̂(s)∥2 + ∥x̂(s)

k,t∥2])

+O(ηE[∥x̂(s)
k,t∥

3
2 + ∥x̂

(s)
k,t∥

2
2∥∆ϕ̂(s)∥2 + ∥ê(s)k,t∥2])

= (I − ηH0)Â
(s)
t +

η2

Bloc
Σ0 + Õ(η2.5−0.5β),

which establishes (80).

Fourthly, we derive the recursion for M̂ (s)
t . Multiplying both sides of (87) by x̂

(s)
l,t+1 and taking

expectation, l ̸= k, we obtain

M̂
(s)
t+1 = M̂

(s)
t − ηH0M̂

(s)
t − ηM̂ (s)

t H0 +O(ηE[∥x̂(s)
k,t∥2∥x̂

(s)
l,t ∥2∥∆ϕ̂(s)∥2])

+O(ηE[∥x̂(s)
k,t∥

2
2∥x̂

(s)
l,t ∥2 + ∥ê

(s)
k,t∥2]).

By a similar argument to the proof of Lemma K.27, we have

E[∥x̂(s)
k,t∥

2
2∥x̂

(s)
l,t ∥2] = Õ(η

1.5),

E[∥x̂(s)
k,t∥2∥x̂

(s)
l,t ∥2∥∆ϕ̂(s)∥2] = Õ(η1.5−0.5β),

which yields (81).
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Now we proceed to prove (83) to (86). By definition of Â(s)
avg,

Â(s)
avg =

1

K2
E[(

∑
k∈[K]

x̂
(s)
k,H)(

∑
k∈[K]

x̂
(s)
k,H)⊤]

=
1

K2

∑
k∈[K]

E[x̂(s)
k,H x̂

(s)⊤
k,H ] +

1

K2

∑
k,l∈[K],k ̸=l

E[x̂(s)
k,H x̂

(s)⊤
l,H ]

=
1

K
Â

(s)
H + (1− 1

K
)M̂

(s)
H ,

which demonstrates (83). Then we derive (84). By definition of x̂(s+1)
avg,0 ,

x̂
(s+1)
avg,0 = ϕ̂(s) + x̂

(s)
avg,H − Φ(ϕ̂(s) + x̂

(s)
avg,H)

= ϕ̂(s) + x̂
(s)
avg,H −

(
ϕ̂(s) + ∂Φ(ϕ̂(s))x̂

(s)
avg,H +O(∥x̂(s)

avg,H∥
2
2)
)

= x̂
(s)
avg,H −

(
P∥ +O(∥∆ϕ̂(s)∥2)

)
x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥
2
2)

= P⊥x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥
2
2 + ∥x̂

(s)
avg,H∥2∥∆ϕ̂(s)∥2). (88)

Hence,

M̂
(s+1)
0 = Â

(s+1)
0 = E[x̂(s)

avg,0x̂
(s)⊤
avg,0]

= P⊥Â
(s)
avgP⊥ +O(E[∥x̂(s)

avg,H∥
3
2 + ∥x̂

(s)
avg,H∥

2
2∥∆ϕ̂(s)∥2]).

By (76) and (78), we obtain (84). By (74),

ϕ̂(s+1) − ϕ̂(s) = P∥x̂
(s)
avg,H +O(∥x̂(s)

avg,H∥2∥∆ϕ̂(s)∥2 + ∥x̂(s)
avg,H∥

2
2). (89)

Combining (88) and (89) gives

E[x̂(s)
avg,0(ϕ̂

(s+1) − ϕ̂(s))⊤] = P⊥Â
(s)
avgP∥ + Õ(η1.5−0.5β).

Therefore,

B̂
(s+1)
0 = E[x̂(s+1)

avg,0 ∆ϕ̂(s+1)⊤] = E[x̂(s+1)
avg,0 (∆ϕ̂(s) + ϕ̂(s+1) − ϕ̂(s))⊤]

= P⊥B̂
(s)
H + P⊥Â

(s)
avgP∥ + Õ(η1.5−β).

Finally, we apply Lemma K.27 to derive (85).

q̂
(s+1)
0 = E[x̂(s+1)

avg,0 ] = E[x̂(s)
avg,H − (ϕ̂(s+1) − ϕ̂(s))]

= q̂
(s)
H − P∥q̂

(s)
H − ∂

2Φ(ϕ̂(0))[B̂
(s)
H ]− 1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β)

= P⊥q̂
(s)
H − ∂

2Φ(ϕ̂(0))[B̂
(s)
H ]− 1

2
∂2Φ(ϕ̂(0))[Â(s)

avg] + Õ(η1.5−β),

which concludes the proof.

With the assumption that the hessian at ϕ̂(0) is diagonal, we have the following corollary that for-
mulates the recursions for each matrix element.
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Corollary K.2. Given ∥θ̂(0)
avg− ϕ̂(0)∥2 = O(

√
η log 1

η ), for 0 ≤ s < Rgrp and 0 ≤ t < H , we have
the following elementwise recursions.

Â
(s)
t+1,i,j = (1− (λi + λj) η)Â

(s)
t,i,j +

η2

Bloc
Σ0,i,j + Õ(η2.5−0.5β), (90)

M̂
(s)
t+1,i,j = (1− (λi + λj) η)M̂

(s)
t,i,j + Õ(η

2.5−0.5β), (91)

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η
2.5−β), (92)

Â
(s)
avg,i,j =

1

K
(Â

(s)
H,i,j − M̂

(s)
H,i,j) + M̂

(s)
H,i,j , (93)

M̂
(s+1)
0,i,j = Â

(s+1)
0,i,j =

{
Â

(s)
avg,i,j + Õ(η1.5−0.5β), 1 ≤ i ≤ m, 1 ≤ j ≤ m,
Õ(η1.5−0.5β), otherwise.

(94)

B̂
(s+1)
0,i,j =


B̂

(s)
H,i,j + Â

(s)
avg,,i,j

+ Õ(η1.5−β), 1 ≤ i ≤ m,m < j ≤ d,
B̂

(s)
H,i,j + Õ(η1.5−β), 1 ≤ i ≤ m, 1 ≤ j ≤ m,
Õ(η1.5−β), m < i ≤ d.

(95)

Having formulated the recursions, we are ready to solve out the explicit expressions. We will split
each matrix into four parts and them one by on. Specifically, a matrix M can be split into P∥MP∥

in the tangent space of Γ at ϕ̂(0), P⊥MP⊥ in the normal space, along with P∥MP⊥ and P⊥MP∥
across both spaces.

We first compute the elements of P⊥Â
(s)
t P⊥ and P⊥Â

(s)
avgP⊥.

Lemma K.29 (General formula for P⊥Â
(s)
t P⊥ and P⊥Â

(s)
avgP⊥). Let R0 := ⌈ 10

λmα
log 1

η ⌉. Then
for 1 ≤ i ≤ m, 1 ≤ j ≤ m and R0 ≤ s < Rgrp,

Â
(s)
avg,i,j =

1

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β).

For s < R0, Â(s)
t,i,j = Õ(η) and Â(s)

avg,,i,j
= Õ(η).

Proof. For 1 ≤ i ≤ m, 1 ≤ j ≤ m, λi > 0, λj > 0. By (90),

Â
(s)
t,i,j = (1− (λi + λj)η)

tÂ
(s)
0,i,j +

t−1∑
τ=0

(1− (λi + λj)η)
τ η2

Bloc
Σ0,i,j

+ Õ(
t−1∑
τ=0

(1− (λi + λj)η)
τη2.5−0.5β)

= (1− (λi + λj)η)
tÂ

(s)
0,i,j +

1− (1− (λi + λj)η)
t

(λi + λj)Bloc
ηΣ0,i,j + Õ(η1.5−0.5β),

where the second inequality uses
∑t−1
τ=0(1− (λi+λj)η)

τ =
1−(1−(λi+λj)η)

t

(λi+λj)η
≤ 1

(λi+λj)η
. By (91),

M̂
(s)
t,i,j = (1− (λi + λj)η)

tM̂
(s)
0,i,j + Õ(

t−1∑
τ=0

(1− (λi + λj)η)
τη2.5−0.5β)

= (1− (λi + λj)η)
tÂ

(s)
0,i,j + Õ(η

1.5−0.5β),
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where the second equality uses M (s+1)
0 = A

(s+1)
0 . By (93) and (94),

Â
(s)
avg,i,j =

1− (1− (λi + λj)η)
H

(λi + λj)KBloc
ηΣ0,i,j + (1− (λi + λj)η)

HÂ
(s)
0,i,j + Õ(η

1.5−0.5β),

Â
(s+1)
0,i,j = Â

(s)
avg,i,j + Õ(η

2.5−0.5β)

=
1− (1− (λi + λj)η)

H

(λi + λj)KBloc
ηΣ0,i,j + (1− (λi + λj)η)

HÂ
(s)
0,i,j + Õ(η

1.5−0.5β).

Then we obtain

Â
(s)
0,i,j = (1− (λi + λj)η)

sHÂ
(0)
0,i,j +

1− (1− (λi + λj)η)
H

(λi + λj)KBloc
ηΣ0,i,j

s−1∑
r=0

(1− (λi + λj)η)
rH

+ Õ(η1.5−0.5β
s−1∑
r=R0

(1− (λi + λj)η)
rH).

Notice that |1− (λi + λj)η| < 1 and

(1− (λi + λj)η)
H ≤ exp(−(λi + λj)ηH) = exp(−(λi + λj)α). (96)

Therefore,
s−1∑
r=0

(1− (λi + λj)η)
rH =

1− (1− (λi + λj)η)
rH

1− (1− (λi + λj)η)H
≤ 1

1− exp(−(λi + λj)α)
.

Then we have

Â
(s)
0,i,j = (1− (λi + λj)η)

sHÂ
(0)
0,i,j +

1− (1− (λi + λj)η)
sH

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β).

Finally, we demonstrate that for s ≥ R0, Â
(s)
0,i,j and Â

(s)
avg,i,j is approximately equal to

η
(λi+λj)KBloc

Σ0,i,j . By (96), when s ≥ R0, (1− (λi + λj)η)
sH = O(η10), which gives

Â
(s)
avg,i,j =

1

(λi + λj)KBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

A
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β).

For s < R0, since Â
(0)
0 = x̂

(s)
avg,0x̂

(s)⊤
avg,0=Õ(η), we have Â(s)

avg,,i,j
= Õ(η) and Â(s)

t,i,j = Õ(η).

Secondly, we compute P∥Â
(s)
t P⊥ and P∥Â

(s)
avgP⊥.

Lemma K.30 (General formula for P⊥Â
(s)
t P∥ and P⊥Â

(s)
avgP∥). For 1 ≤ i ≤ m,m < j ≤ d,

Â
(s)
t,i,j =

1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
avg,i,j =

1− (1− λiη)H

λiKBloc
ηΣ0,i,j + Õ(η1.5−0.5β).

Proof. Note that for 1 ≤ i ≤ m,m < j ≤ d and λi > 0, λj = 0. By (90) and (94),

Â
(s)
t,i,j = (1− λiη)tÂ(s)

0,i,j +
1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η1.5−0.5β)

=
1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η1.5−β).

By (91) and (94), M̂ (s)
t,i,j = Õ(η1.5−0.5β). Then,

Â
(s)
avg,i,j =

1− (1− λiη)H

λiKBloc
ηΣ0,i,j + Õ(η1.5−0.5β).
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Similar to Lemma K.30, we have the following lemma for the general formula of P∥Â
(s)
t P⊥ and

P∥Â
(s)
avgP⊥.

Lemma K.31 (General formula for P∥Â
(s)
t P⊥ and P∥Â

(s)
avgP⊥). For m < i ≤ d and 1 ≤ j ≤ m,

Â
(s)
t,i,j =

1− (1− λjη)t

λjBloc
ηΣ0,i,j + Õ(η1.5−0.5β),

Â
(s)
avg,i,j =

1− (1− λjη)H

λjKBloc
ηΣ0,i,j + Õ(η1.5−0.5β).

Finally, we derive the general formula for P∥Â
(s)
t P∥ and P∥Â

(s)
avgP∥.

Lemma K.32 (General formula for P∥Â
(s)
t P∥ and P∥Â

(s)
avgP∥). For m < i ≤ d and m < j ≤ d,

Â
(s)
avg,i,j =

Hη2

KBloc
Σ0,i,j + Õ(η1.5−0.5β),

Â
(s)
t,i,j = Â

(s)
0,i,j +

tη2

Bloc
Σ0,i,j + Õ(η1.5−0.5β).

Proof. Note that for m < i ≤ d, m < j ≤ d and λi = λj = 0. (90) is then simplified as

Â
(s)
t+1,i,j = Â

(s)
t,i,j +

η2

Bloc
Σ0,i,j + Õ(η2.5−0.5β).

Therefore,

Â
(s)
t,i,j = Â

(s)
0,i,j +

tη2

Bloc
Σ0,i,j + Õ(η1.5−0.5β). (97)

According to (91), M̂ (s)
t,i,j = Õ(η1.5−0.5β) for m < i ≤ d and m < j ≤ d. Combining (91), (94)

and (97) yields

Â
(s)
avg,i,j =

Hη2

KBloc
Σ0,i,j + Õ(η1.5−0.5β).

Now, we move on to compute the general formula for B̂(s)
t .

Lemma K.33 (The general formula for P⊥B̂
(s)
t P∥). Note that for 1 ≤ i ≤ m and m < j ≤ d,

when R0 := ⌈ 10
λmα

log 1
η ⌉ ≤ s < Rgrp,

B̂
(s)
t,i,j =

(1− λiη)t

λiKBloc
ηΣ0,i,j + Õ(η1.5−β).

For s < R0, B̂(s)
t,i,j = Õ(η).

Proof. Note that for 1 ≤ i ≤ m, λi > 0. By (92),

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η
2.5−β).

Hence,

B̂
(s)
t,i,j = (1− λiη)tB̂(s)

0,i,j + Õ(η
1.5−β).

According to (95),

B̂
(s+1)
0,i,j = B̂

(s)
H,i,j + Â

(s)
avg,,i,j

+ Õ(η2.5−β)

= (1− λiη)HB̂(s)
0,i,j + Â

(s)
avg,i,j + Õ(η

1.5−β).
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Then we have

B̂
(s)
0,i,j = (1− λiη)sHB̂(0)

0,i,j + Â
(s)
avg,i,j

s−1∑
r=0

(1− λiη)rH + Õ(
s−1∑
r=0

(1− λiη)rHη1.5−β)

= (1− λiη)sHB̂(0)
0,i,j +

1− (1− λiη)sH

1− (1− λiη)H
Â

(s)
avg,,i,j

+ Õ(η1.5−β)

=
1− (1− λiη)sH

1− (1− λiη)H
Â

(s)
avg,,i,j

+ Õ(η1.5−β).

where the second equality uses (96) and the last inequality uses B̂
(0)
0 = x̂

(0)
avg,0∆ϕ̂(0) = 0. For

s ≥ R0, Â(s)
avg,i,j =

1−(1−λiη)
H

λiKBloc
ηΣ0,i,j + Õ(η1.5−0.5β), which gives

B̂
(s)
0,i,j =

η

λiKBloc
Σ0,i,j + Õ(η1.5−β).

Therefore,

B̂
(s)
t,i,j =

(1− λiη)t

λiKBloc
ηΣ0,i,j + Õ(η1.5−β).

For s < R0, Â(s)
avg,,i,j

= Õ(η) and therefore, B̂(s)
t,i,j = Õ(η).

Lemma K.34 (General formula for the elements of P⊥B̂
(s)
t P⊥ ). For 1 ≤ i ≤ m and 1 ≤ j ≤ m,

, B̂(s)
t,i,j = Õ(η1.5−β).

Proof. Note that for 1 ≤ i ≤ m, λi > 0. By (92),

B̂
(s)
t+1,i,j = (1− λiη)B̂(s)

t,i,j + Õ(η
2.5−β).

Hence,

B̂
(s)
t,i,j = (1− λiη)tB̂(s)

0,i,j + Õ(η
1.5−β).

By (95),

B̂
(s+1)
0,i,j = B̂

(s)
H,i,j + Õ(η

2.5−β)

= (1− λiη)HB̂(s)
0,i,j + Õ(η

1.5−β)

= (1− λiη)sHB̂(0)
0,i,j + Õ(

s−1∑
r=0

(1− λiη)rHη1.5−β)

= (1− λiη)sHB̂(0)
0,i,j + Õ(η

1.5−β)

= Õ(η1.5−β),

where the last inequality uses B̂(0)
0 = 0.

Lemma K.35 (General formula for P∥B̂
(s)
t ). For m < i ≤ d, B̂(s)

t,i,j = Õ(η1.5−β).

Proof. Note that λi = 0 for m < i ≤ d. By (92) and (95),

B̂
(s)
t+1 = B̂

(s)
t + Õ(η2.5−β), B̂

(s)
0 = Õ(η2.5−β).

Therefore,

B̂
(s)
t = tÕ(η2.5−β) + B̂

(s)
0 = Õ(η1.5−β).

Having obtained the expressions for B̂(s)
t , Â(s)

t and Â
(s)
avg, we now provide explicit expressions for

the first and second moments of the change of manifold projection every round in the following two
lemmas.
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Lemma K.36. The expectation of the change of manifold projection every round is

E[ϕ̂(s+1) − ϕ̂(s)] =

{
Hη2

2B ∂2Φ(ϕ̂(0))[Σ0 +Ψ(ϕ̂(0))] + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0

, (98)

where R0 := ⌈ 10
λmα

log 1
η ⌉.

Proof. We first compute E[ϕ̂(s+1) − ϕ̂(s)]. By (72), we only need to compute P∥q̂
(s)
H by relating it

to these matrices. Multiplying both sides of (79) by P∥ gives

P∥q̂
(s)
t+1 = P∥q̂

(s)
t − ηP∥∇3L(ϕ̂(0))[B̂

(s)
t ]− η

2
P∥∇3L(ϕ̂(0))[Â

(s)
t ] + Õ(η2.5−β). (99)

Similarly, according to (85), we have

P∥q̂
(s+1)
0 = −P∥∂

2Φ(ϕ̂(0))[B̂
(s)
H ]− 1

2
P∥∂

2Φ(ϕ̂(0))[Â(s)
avg] + Õ(η1.5−β). (100)

Combining (99) and (100) yields

P∥q̂
(s)
H = −1

2
P∥∂

2Φ(ϕ̂(0))[Â(s−1)
avg ]− η

2
P∥∇3L(ϕ̂(0))[

H−1∑
t=0

Â
(s)
t ]

− ηP∥∇3L(ϕ̂(0))[

H−1∑
t=0

B̂
(s)
t ]− P∥∂

2Φ(ϕ̂(0))[B̂
(s−1)
H ] + Õ(η1.5−β).

(101)

By Lemmas K.29, K.32 and K.30, for s ≤ R0 = ⌊ 10λα log 1
η ⌋, Â

(s)
t = Õ(η), Â(s)

avg = Õ(η) and

B̂
(s)
t = Õ(η). Therefore, E[ϕ̂(s+1) − ϕ̂(s)] = Õ(η). For s > R0, Â(s−1)

avg = Â
(s)
avg + Õ(η1.5−0.5β).

Substituting (101) into (72) gives

E[ϕ̂(s+1) − ϕ̂(s)] =
1

2
P⊥∂

2Φ(ϕ̂(0))[Â(s)
avg] + P⊥∂

2Φ(ϕ̂(0))[B̂
(s)
H ]︸ ︷︷ ︸

T1

T2︷ ︸︸ ︷
−ηP∥∇3L(ϕ̂(0))[

1

2

H−1∑
t=0

Â
(s)
t +

H−1∑
t=0

B̂
(s)
t︸ ︷︷ ︸

T3

] +Õ(η1.5−β).

Below we compute T1 and T2 for s > R0 respectively. By Lemma K.3,

P⊥∂
2Φ(ϕ̂(0))[P⊥Â

(s)
avgP∥] = P⊥∂

2Φ(ϕ̂(0))[P∥Â
(s)
avgP⊥] = 0,

P⊥∂
2Φ(ϕ̂(0))[P∥Â

(s)
avgP∥] = ∂2Φ(ϕ̂(0))[P∥Â

(s)
avgP∥].

By Lemma K.4,

P⊥∂
2Φ(ϕ̂(0))[P⊥Â

(s)
avgP⊥] = 0.

Therefore, for s > R0,

P⊥∂
2Φ(ϕ̂(0))[Â(s)

avg] =
Hη2

2KBloc
∂2Φ(ϕ̂(0))Φ[Σ0,∥] + Õ(η1.5−0.5β),

where we apply Lemma K.32. Similarly, for s > R0,

P⊥∂
2Φ(ϕ̂(0))[B̂

(s)
H ] = ∂2Φ(ϕ̂(0))[P∥B̂

(s)
H P∥] = Õ(η1.5−β),

where we apply Lemma K.35. Hence,

T1 =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0,∥] + Õ(η1.5−β). (102)
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We move on to show that

T2 =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0 −Σ0,∥ + (K − 1)Ψ(ϕ̂(0))]. (103)

Similar to the way we compute Â
(s)
t , Â(s)

avg and B̂
(s)
t , we compute T2 by splitting T3 into four

matrices and then substituting them into the linear operator −ηP∥∇3L(ϕ̂(0))[·] one by one. First,
we show that

−ηP∥∇3L(ϕ̂(0))[P⊥T3P⊥] =
Hη2

2B
∂2Φ(ϕ̂(0))[Σ0,⊥ + (K − 1)ψ(Σ0,⊥)]

+ Õ(η1.5−β),
(104)

where ψ(·) is interpreted as an elementwise matrix function here. By Lemmas K.29 and K.34, for
1 ≤ i ≤ m, 1 ≤ j ≤ m and s > R0,

Â
(s)
t,i,j = −

(
1− 1

K

)
(1− (λi + λj)η)

t

(λi + λj)Bloc
ηΣ0,i,j +

η

(λi + λj)Bloc
Σ0,i,j + Õ(η1.5−0.5β),

B̂
(s)
t,i,j = Õ(η

1.5−β).

Therefore,
H−1∑
t=0

Â
(s)
t,i,j = −

(
1− 1

K

)
1− (1− (λi + λj)η)

H

(λi + λj)2Bloc
Σ0,i,j +

Hη

(λi + λj)Bloc
Σ0.,i,j + Õ(η0.5−β)

=
Hη

K(λi + λj)Bloc
Σ0.,i,j

+

(
1− 1

K

)
Hη

(λi + λj)Bloc

[
1− 1− (1− (λi + λj)η)

H

Hη(λi + λj)

]
︸ ︷︷ ︸

T4

Σ0,i,j + Õ(η0.5−β).

H−1∑
t=0

B̂
(s)
t,i,j = Õ(η

0.5−β),

Then we simplify T4. Notice that

(1− (λi + λi)η)
H = exp(−H(λi + λj)η)[1 +O(Hη2)]

= exp(−H(λi + λj)η) +O(η).

Therefore,

T4 = ψ((λi + λj)Hη) +O(η).

Substituting T4 back into the expression for
∑H−1
t=0 Â

(s)
t,i,j gives

H−1∑
t=0

Â
(s)
t,i,j =

Hη

K(λi + λj)Bloc
Σ0.,i,j +

(
1− 1

K

)
Hηψ((λi + λj)Hη)

(λi + λj)Bloc
Σ0,i,j + Õ(η0.5−β).

Combining the elementwise results, we obtain the following matrix form expression:

−ηP∥∇3L(ϕ̂(0))[P⊥T3P⊥] = −
Hη2

2B
P∥∇3L(ϕ̂(0))[VH0(Σ0,⊥ + (K − 1)ψ(Σ0,⊥))]

+ Õ(η1.5−β).

By Lemma K.4, we have (104).

Secondly, we show that for s > R0,

− ηP∥∇3L(ϕ̂(0))[P⊥T3P∥ + P∥T3P⊥]

=
Hη2

B
∂2Φ(ϕ̂(0))[Σ0,⊥,∥ + (K − 1)ψ(Σ0,⊥,∥)] + Õ(η1.5−β),

(105)

64



Published as a conference paper at ICLR 2023

where ψ(·) is interpreted as an elementwise matrix function here. By symmetry of Â
(s)
t ’s and

∇3L(ϕ̂(0)),

1

2
∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥Â
(s)
t P∥ +

H−1∑
t=0

P∥Â
(s)
t P⊥

]
= ∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥Â
(s)
t P∥

]
.

Therefore, we only have to evaluate

∇3L(ϕ̂(0))

[
H−1∑
t=0

P⊥(Â
(s)
t + B̂

(s)
t )P∥ +

H−1∑
t=0

P∥B̂
(s)
t P⊥

]
.

To compute the elements of
∑H−1
t=0 P⊥(Â

(s)
t + B̂

(s)
t )P∥, we combine Lemmas K.30 and K.33 to

obtain that for 1 ≤ i ≤ m and m < j ≤ d,
H−1∑
t=0

Â
(s)
t,i,j =

H−1∑
t=0

1− (1− λiη)t

λiBloc
ηΣ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc
Σ0,i,j −

1− (1− λiη)H

λ2iBloc
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc

(
1− 1− (1− λiη)H

λiHη

)
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiBloc
ψ(λiHη)Σ0,i,j + Õ(η0.5−β),

and
H−1∑
t=0

B̂
(s)
t,i,j =

H−1∑
t=0

(1− λiη)t

λiKBloc
ηΣ0,i,j + Õ(η1.5−β),

=
1− (1− λiη)H

λ2iKBloc
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiKBloc
Σ0,i,j −

Hη

λiKBloc

(
1− 1− (1− λiη)H

λiHη

)
Σ0,i,j + Õ(η0.5−β)

=
Hη

λiKBloc
Σ0,i,j −

Hη

λiKBloc
ψ(λiHη)Σ0,i,j + Õ(η0.5−β).

Therefore, the matrix form of
∑H−1
t=0 P⊥(Â

(s)
t + B̂

(s)
t )P∥ is

H−1∑
t=0

P⊥(Â
(s)
t + B̂

(s)
t )P∥ =

Hη

B
VH0

(
Σ0,⊥,∥ + (K − 1)ψ(Σ0,⊥,∥)

)
+ Õ(η0.5−β),

where ψ(·) is interpreted as an elementwise matrix function here. Furthermore, by Lemma K.35,∑H−1
t=0 B̂

(s)
t = Õ(η0.5−β). Applying Lemma K.3, we have (105). Finally, directly applying

Lemma K.5, we have

−ηP∥∇3L(ϕ̂(0))[P∥T3P∥] = 0. (106)

Notice that ψ(Σ0,∥) = 0 where ψ(·) operates on each element. Combining (104), (105) and (106),
we obtain (103). By (102) and (103), we have (98).

Lemma K.37. The second moment of the change of manifold projection every round is

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] =

{
Hη2

B Σ0,∥ + Õ(η1.5−0.5β), R0 ≤ s < Rgrp

Õ(η), s < R0

,

where R0 := ⌈ 10
λmα

log 1
η ⌉.

Proof. Directly apply Lemma K.32 and Lemma K.27 and we have the lemma.
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With Lemmas K.36 and K.37, we are ready to prove Theorem K.3.

Proof of Theorem K.3. We first derive E[∆ϕ̂(Rgrp)]. Recall that Rgrp = ⌊ 1
αηβ
⌋ = 1

Hη1+β + o(1)

where 0 < β < 0.5. By Lemma K.36,

E[ϕ̂(Rgrp) − ϕ̂(0)] =

R0∑
s=0

E[ϕ̂(s+1) − ϕ̂(s)] +

Rgrp−1∑
s=R0+1

E[ϕ̂(s+1) − ϕ̂(s)]

=
η1−β

2B
∂2Φ(ϕ̂(0))[Σ0 +Ψ(ϕ̂(0))] + Õ(η1.5−2β) + Õ(η).

Then we compute E[∆ϕ̂(Rgrp)∆ϕ̂(Rgrp)⊤].

E


Rgrp−1∑

s=0

(ϕ̂(s+1) − ϕ̂(s))

Rgrp−1∑
s=0

(ϕ̂(s+1) − ϕ̂(s))

⊤


=

Rgrp−1∑
s=0

E[(ϕ̂(s+1) − ϕ̂(s))(ϕ̂(s+1) − ϕ̂(s))⊤] +
∑
s̸=s′

E[(ϕ̂(s+1) − ϕ̂(s))]E[(ϕ̂(s′+1) − ϕ̂(s′))⊤]

=
η1−β

B
Σ0,∥ + Õ(η) + Õ(η1.5−1.5β),

where the last inequality uses E[(ϕ̂(s+1) − ϕ̂(s))]E[(ϕ̂(s′+1) − ϕ̂(s′))⊤] = Õ(η2).

K.10 PROOF OF WEAK APPROXIMATION

We are now in a position to utilize the estimate of moments obtained in previous subsections to prove
the closeness of the sequence {ϕ(s)}⌊T/(Hη

2)⌋
s=0 and the SDE solution {ζ : t ∈ [0, T ]} in the sense of

weak approximation. Recall the SDE that we expect the manifold projection {Φ(θ̄(s))}⌊T/(Hη
2)⌋

s=0 to
track:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion

− 1
2B∇

3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift-I

−K−1
2B ∇

3L(ζ)[Ψ̂(ζ)]dt︸ ︷︷ ︸
(c) drift-II

)
, (107)

According to Lemma K.3 and Lemma K.4, the drift term in total can be written as the following
form:

(b) + (c) =
1

2B
∂2Φ(ζ)[Σ(ζ) + (K − 1)Ψ(ζ)].

Then by definition of Pζ , (107) is equivalent to the following SDE:

dζ(t) =
1√
B
∂Φ(ζ)Σ1/2(ζ)dWt +

1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] dt. (108)

Therefore, we only have to show that ϕ(s) closely tracks {ζ(t)} satisfying Equation (108). By
Lemma K.11, there exists an ϵ3 neighborhood of Γ, Γϵ3 , where Φ(·) is C∞-smooth. Due to com-
pactness of Γ, Γϵ3 is bounded and the mappings ∂2Φ(·), ∂Φ(·), Σ1/2(·), Σ(·) and Ψ(·) are all
Lipschitz in Γϵ3 . By Kirszbraun theorem, both the drift and diffusion term of (108) can be extended
as Lipschitz functions on Rd. Therefore, the solution to the extended SDE exists and is unique. We
further show that the solution, if initialized as a point on Γ, always stays on the manifold almost
surely.

As a preparation, we first show that Γ has no boundary.
Lemma K.38. Under Assumptions 3.1 to 3.3, Γ has no boundary.

Proof. We prove by contradiction. If Γ has boundary ∂Γ, WLOG, for a point p ∈ ∂Γ, let the
Hessian at p be diagonal with the form ∇2L(p) = diag(λ1, · · · , λd) where λi > 0 for 1 ≤ i ≤ m
and λi = 0 for m < i ≤ d .
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Denote by xi:j := (xi, xi+1, · · · , xj) (i ≤ j) the (j − i+ 1)-dimensional vector formed by the i-th
to j-th coordinates of x. Since ∂(∇L(p))

∂p1:m
= diag(λ1, · · · , λm) is invertible, by the implicit function

theorem, there exists an open neighborhood V of pm+1:d such that ∇L(v) = 0, ∀v ∈ V . Then,
L(v) = L(p) = minθ∈U L(θ) and hence V ⊂ Γ, which contradicts with p ∈ ∂Γ.

Therefore, Γ is a closed manifold (i.e., compact and without boundary). Then we have the following
lemma stating that Γ is invariant for (108).
Lemma K.39. Let ζ(t) be the solution to (108) with ζ(0) ∈ Γ, then ζ(t) ∈ Γ for all t ≥ 0. In other
words, Γ is invariant for (108).

Proof. According to Filipović (2000) and Du & Duan (2007), for a closed manifoldM to be viable
for the SDE dX(t) = F (X(t))dt + B(X(t))dWt where F : Rd → Rd and B : Rd → Rd are
locally Lipschitz, we only have to verify the following Nagumo type consistency condition:

µ(x) := F (x)− 1

2

∑
j

D[Bj(x)]Bj(x) ∈ Tx(M), Bj(x) ∈ Tx(M),

where D[·] is the Jacobian operator and Bj(x) denotes the j-th column of B(x).

In our context, since for ϕ ∈ Γ, ∂Φ(ϕ) is a projection matrix onto Tϕ(Γ), each column of
∂Φ(ϕ)Σ1/2(ϕ) belongs to Tϕ(Γ), verifying the second condition. Denote by P⊥(ϕ) := Id−∂Φ(ϕ)
the projection onto the normal space of Γ at ϕ. To verify the first condition, it suffices to show that
P⊥(ϕ)µ(ϕ) = 0. We evaluate

∑
j P⊥(ϕ)D[Bj(ϕ)]Bj(ϕ) as follows.∑

j

P⊥(ϕ)D[Bj(ϕ)]Bj(ϕ) =
1

B

∑
j

D[∂Φ(ϕ)Σ
1/2
j (ϕ)]∂Φ(ϕ)Σ

1/2
j (ϕ)

=
1

B
P⊥(ϕ)

∑
j

∂2Φ(ϕ)[Σ
1/2
j (ϕ), ∂Φ(ϕ)Σ

1/2
j (ϕ)]

= − 1

B
∇2L(ϕ)+∇3L(ϕ)[Σ∥(ϕ)], (109)

where the last inequality uses Lemma K.3. Again applying Lemma K.3, we have

P⊥(ϕ)F (ϕ) = −
1

2B
∇2L(ϕ)+∇3L(ϕ)[Σ∥(ϕ)]. (110)

Combining (109) and (110), we can verify the first condition.

In order to establish Theorem 3.2, it suffices to prove the following theorem, which captures the
closeness of ϕ(s) and ζ(t) every Rgrp rounds.

Theorem K.4. If ∥θ̄(0) − ϕ(0)∥2 = O(
√
η log 1

η ) and ζ(0) = ϕ(0) ∈ Γ, then for Rgrp =

⌊ 1
αη0.75 ⌋every test function g ∈ C3,

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣Eg(ϕ(nRgrp))− Eg(ζ(nη0.75))
∣∣∣ ≤ Cgη0.25(log 1

η )
b,

where Cg > 0 is a constant independent of η but can depend on g(·) and b > 0 is a constant
independent of η and g(·).

K.10.1 PRELIMINARIES AND ADDITIONAL NOTATIONS

We first introduce a general formulation for stochastic gradient algorithms (SGAs) and then specify
the components of this formulation in our context. Consider the following SGA:

xn+1 = xn + ηeh(xn, ξn),

where xn ∈ Rd is the parameter, ηe is the learning rate, h(·, ·) is the update which depends on
xn and a random vector ξn sampled from some distribution Ξ(xn). Also, consider the following
Stochastic Differential Equation (SDE).

dX(t) = b(X(t))dt+ σ(X(t))dWt,
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where b(·) : Rd → Rd is the drift function and σ(·) : Rd×d → Rd×d is the diffusion matrix.

Denote by PX(x, s, t) the distribution of X(t) with the initial condition X(s) = x.Define

∆̃(x, n) := X(n+1)ηe − x, where X(n+1)ηe ∼ PX(x, nηe, (n+ 1)ηe),

which characterizes the update in one step.

In our context, we view the change of manifold projection over Rgrp := ⌊ 1
αη1−β ⌋(β ∈ (0, 0.5))

rounds as one “giant step". Hence the ϕ(nRgrp) corresponds to the discrete time random variable
xn corresponds to and ζ(t) corresponds to the continuous time random variable Xt. According to
Theorem K.2, we set

ηe = η1−β , b(ζ) =
1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] , σ(ζ) =

1√
B
∂Φ(ζ)Σ1/2(ζ).

Due to compactness of Γ, b(·) and σ(·) are Lipschitz on Γ.

As for the update in one step, ∆̃(·, ·) is defined in our context as:

∆̃(ϕ, n) := ζ(n+1)ηe − ϕ, where ζ(n+1)ηe ∼ Pζ(ϕ, nηe, (n+ 1)ηe) and ϕ ∈ Γ.

For convenience, we further define

∆(n) := ϕ̂((n+1)Rgrp) − ϕ̂(nRgrp), ∆̃(n) := ∆̃(ϕ̂(Rgrp), n),

b(n) : = b(ϕ̂(nRgrp)), σ(n) : = σ(ϕ̂(nRgrp)).

We use Cg,i to denote constants that can depend on the test function g and independent of ηe. The
following lemma relates the moments of ∆̃(ϕ, n) to b(ϕ) and σ(ϕ).
Lemma K.40. There exists a positive constant C0 independent of ηe and g such that for all ϕ ∈ Γ,

|E[∆̃i(ϕ, n)]− ηebi(ϕ)| ≤ C0η
2
e , ∀1 ≤ i ≤ d,

|E[∆̃i(ϕ, n)∆̃j(x, n)]− ηe
d∑
l=1

σi,l(ϕ)σl,j(ϕ)| ≤ C0η
2
e , ∀1 ≤ i, j ≤ d,

E

[∣∣∣∣∣
6∏
s=1

∆̃is(ϕ, n)

∣∣∣∣∣
]
≤ C0η

3
e , ∀1 ≤ i1, · · · , i6 ≤ d.

The lemma below states that the expectation of the test function is smooth with respect to the initial
value.

Proof. Noticing that (i) the solution to (108) always stays on Γ almost surely if its initial value ζ(0)
belongs to Γ , (ii) b(·) and σ(·) are C∞ and (iii) Γ is compact, we can directly apply Lemma B.3 in
Malladi et al. (2022) and Lemma 26 in Li et al. (2019a) to obtain the above lemma.

The following lemma states that the expectation of g(ζ(t)) for g ∈ C3 is smooth with respect to the
initial value of the SDE solution.
Lemma K.41. Let s ∈ [0, T ], ϕ ∈ Γ and g ∈ C3. For t ∈ [s, T ], define

u(ϕ, s, t) := Eζt∼Pζ(ϕ,s,t)[g(ζt)].

Then u(·, s, t) ∈ C3 uniformly in s, t.

Proof. A slight modification of Lemma B.4 in Malladi et al. (2022) will give the above lemma.

K.10.2 PROOF OF THE APPROXIMATION IN OUR CONTEXT

For β ∈ (0, 0.5), define γ1 := 1.5−2β
1−β , γ2 := 1

1−β , and then 1 < γ1 < 1.5, 1 < γ2 < 2.
We introduce the following lemma which serves as a key step to control the approximation error.
Specifically, this lemma bounds the difference in one step change between the discrete process and
the continuous one as well as the product of higher orders.
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Lemma K.42. If ∥θ̄(0) − ϕ(0)∥2 = O(
√
η log 1

η ), then there exist positive constants C1 and b

independent of ηe and g such that for all 0 ≤ n < ⌊T/ηe⌋,

1.
|E[∆(n)

i − ∆̃
(n)
i | E(nRgrp)

0 | ≤ C1η
γ1
e (log 1

ηe
)b + C1η

γ2
e (log 1

ηe
)b, ∀1 ≤ i ≤ d,

|E[∆(n)
i ∆

(n)
j − ∆̃

(n)
i ∆̃

(n)
j | E(nRgrp)

0 | ≤ C1η
γ1
e (log 1

ηe
)b + C1η

γ2
e (log 1

ηe
)b, ∀1 ≤ i, j ≤ d.

2.

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

1η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d,

E

[∣∣∣∣∣
6∏
s=1

∆̃
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

1η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d.

Proof. According to Appendix K.7, we have

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
= Õ(η3−3β).

Since γ1 < 1.5 and γ2 < 2, we can utilize Theorem K.3 and conclude that there exist positive
constants C2 and b independent of ηe and g such that∣∣∣E[∆(n)

i − ηeb(n)i | E(nRgrp)
0 ]

∣∣∣ ≤ C2η
γ1
e (log 1

ηe
)b + C2η

γ2
e (log 1

ηe
)b,∀1 ≤ i ≤ d,

(111)∣∣∣∣∣E[∆(n)
i ∆

(n)
j − ηe

d∑
l=1

σ
(n)
i,l σ

(n)
l,j | E

(nRgrp)
0 ]

∣∣∣∣∣ ≤ C2η
γ1
e (log 1

ηe
)b + C2η

γ2
e (log 1

ηe
)b,∀1 ≤ i, j ≤ d,

(112)

E

[∣∣∣∣∣
6∏
s=1

∆
(n)
is

∣∣∣∣∣ | E(nRgrp)
0

]
≤ C2

2η
2γ1
e (log 1

ηe
)2b, ∀1 ≤ i1, · · · , i6 ≤ d. (113)

Combining (111) - (113) with Lemma K.40 gives the above lemma.

Lemma K.43. For a test function g ∈ C3, let ul,n(ϕ) := u(ϕ, lηe, nηe) = Eζt∼Pζ(ϕ,lηe,nηe)[g(ζt)].

If ∥θ̄(0) − ϕ(0)∥2 = O(
√
η log 1

η ), then for all 0 ≤ l ≤ n− 1 and 1 ≤ n ≤ ⌊T/ηe⌋,∣∣∣E[ul+1,n(ϕ̂
(lRgrp) +∆(l))− ul+1,n(ϕ̂

(lRgrp) + ∆̃(l+1)) | ϕ̂(lRgrp)]
∣∣∣ ≤ Cg,1(ηγ1e + ηγ2e ) log( 1

ηe
)b,

where Cg,1 is a positive constant independent of η and ϕ̂(lRgrp) but can depend on g.

Proof. By Lemma K.41, ul,n(ϕ) ∈ C3 for all l and n. That is, there exists K(·) ∈ G such that for
all l, n, ul,n(ϕ) and its partial derivatives up to the third order are bounded by K(ϕ).

By the law of total expectation and triangle inequality,∣∣∣E[ul+1,n(ϕ̂
(lRgrp) +∆(l))− ul+1,n(ϕ̂

(lRgrp) + ∆̃(l))] | ϕ̂(lRgrp)
∣∣∣

≤
∣∣∣E[ul+1,n(ϕ̂

(lRgrp) +∆(l))− ul+1,n(ϕ̂
(lRgrp) + ∆̃(l)) | ϕ̂(lRgrp), E(lRgrp)

0 ]
∣∣∣︸ ︷︷ ︸

A1

+ η100E[|ul+1,n(ϕ̂
(lRgrp) +∆(l))| | ϕ̂(lRgrp), Ē(lRgrp)

0 ]︸ ︷︷ ︸
A2

+ η100E[|ul+1,n(ϕ̂
(lRgrp) + ∆̃(l))| | ϕ̂(lRgrp), Ē(lRgrp)

0 ]︸ ︷︷ ︸
A3

.

69



Published as a conference paper at ICLR 2023

We first bound A2 and A3. Since ϕ̂(lRgrp) ∈ Γ, both ϕ̂(lRgrp) +∆(l) and ϕ̂(lRgrp) + ∆̃(l) belong to
Γ. Due to compactness of Γ and smoothness of ul+1,n(·) on Γ, there exist a positive constant Cg,2
such that A2 +A3 ≤ Cg,2η100.

We proceed to bound A1. Expanding ul+1,n(·) at ϕ̂(lRgrp) and by triangle inequality,

A(s)
1 ≤

d∑
i=1

∣∣∣∣E[∂ul+1,n

∂ϕi
(ϕ̂(lRgrp))

(
∆

(l)
i − ∆̃

(l)
i

)
| ϕ̂(lRgrp), E(lRgrp)

0

∣∣∣∣︸ ︷︷ ︸
B1

+
1

2

∑
1≤i,j≤d

∣∣∣∣E[∂2ul+1,n

∂ϕi∂ϕj
(ϕ̂(lRgrp))

(
∆

(l)
i ∆

(l)
j − ∆̃

(l)
i ∆̃

(l)
j

)
| ϕ̂(lRgrp), E(lRgrp)

0 ]

∣∣∣∣︸ ︷︷ ︸
B2

+ |R|+ |R̃|,
where the remaindersR and R̃ are

R =
1

6

∑
1≤i,j,p≤d

E[
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j | ϕ̂

(lRgrp), E(lRgrp)
0 ],

R̃ =
1

6

∑
1≤i,j,p≤d

E[
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ̃∆̃(l))∆̃

(l)
i ∆̃

(l)
j ∆̃(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ],

for some θ, θ̃ ∈ (0, 1). Since ϕ̂(lRgrp) belongs to Γ which is compact, there exists a constant Cg,3
such that for all 1 ≤ i, j ≤ d, 0 ≤ l ≤ n− 1, 1 ≤ n ≤ ⌊T/ηe⌋,

|∂ul+1,n

∂ϕi
(ϕ̂(lRgrp))| ≤ Cg,3, |∂

2ul+1,n

∂ϕi∂ϕj
(ϕ̂(lRgrp))| ≤ Cg,3.

By Lemma K.42,

B1 ≤ dCg,3C1(η
γ1
e + ηγ2e )(log 1

ηe
)b, B2 ≤

d2

2
Cg,3C1(η

γ1
e + ηγ2e )(log 1

ηe
)b.

Now we bound the remainders. By Cauchy-Schwartz inequality,∣∣∣∣E[ ∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j ∆(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ]

∣∣∣∣
≤

(
E

[(
∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))

)2

| ϕ̂(lRgrp), E(nRgrp)
0

])1/2

×

(
E[(∆(l)

i ∆
(l)
j ∆(l)

p )2 | ϕ̂(lRgrp), E(nRgrp)
0 ]

)1/2
.

Since ϕ̂(lRgrp) and ϕ̂(lRgrp) +∆(l) both belong to Γ which is compact, there exists a constant Cg,4
such that for all 1 ≤ i, j, p ≤ d, 0 ≤ l ≤ n− 1 and 1 ≤ n ≤ ⌊T/ηe⌋,(

∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))

)2
≤ C2

g,4.

Combining the above inequality with Lemma K.42, we have∣∣∣∣E[ ∂3ul+1,n

∂ϕi∂ϕj∂ϕp
(ϕ̂(lRgrp) + θ∆(l))∆

(l)
i ∆

(l)
j ∆(l)

p | ϕ̂(lRgrp), E(lRgrp)
0 ]

∣∣∣∣ ≤ Cg,4C1η
γ1
e log( 1

ηe
)b.

Hence, for all 1 ≤ n ≤ ⌊T/ηe⌋, 0 ≤ l ≤ n− 1,

|R| ≤ d3

6
Cg,4C1η

γ1
e log( 1

ηe
)b.

Similarly, we can show that there exists a constant Cg,5 such that for all 1 ≤ n ≤ ⌊T/ηe⌋, 0 ≤ l ≤
n− 1,

|R̃| ≤ d3

6
Cg,5C1η

γ1
e log( 1

ηe
)b.

Combining the bounds on A1 to A3, we have the lemma.
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Finally, we prove Theorem K.4.

Proof. For 0 ≤ l ≤ n, define the random variable ζ̂l,n which follows the distribution
Pζ(ϕ̂

(lRgrp), l, n) conditioned on ϕ̂(lRgrp). Therefore, P(ζ̂n,n = ϕ̂(nRgrp)) = 1 and ζ̂0,n ∼ ζnηe .
Denote by u(ϕ, s, t) := Eζt∼Pζ(ϕ,s,t)[g(ζt)] and Tl+1,n := ul+1,n(ϕ̂

(lRgrp)+∆(l), (l+1)ηe, nηe)−
ul+1,n(ϕ̂

(lRgrp) + ∆̃(l), (l + 1)ηe, nηe).∣∣∣E[g(ϕ(nRgrp))]− E[g(ζ(nηe))]
∣∣∣

≤
∣∣∣E[g(ζ̂n,n)− g(ζ̂0,n) | E(nRgrp)

0 ]
∣∣∣+O(η100)

≤
n−1∑
l=0

∣∣∣E[g(ζ̂l+1,n)− g(ζ̂l,n) | E
(nRgrp)
0 ]

∣∣∣+O(η100)
=

n−1∑
l=0

∣∣∣E[u(ϕ̂((l+1)Rgrp), (l + 1)ηe, nηe)− u(ζ̂l,l+1, (l + 1)ηe, nηe) | E
(nRgrp)
0 ]

∣∣∣+O(η100)
=

n−1∑
l=0

∣∣∣E[Tl+1,n | E
(nRgrp)
0 ]

∣∣∣+O(η100).
Noticing that E[Tl+1,n | E

(nRgrp)
0 ] = E[E[Tl+1,n | ϕ̂(lRgrp), E(lRgrp)

0 ] | E(nRgrp)
0 ], we can apply

Lemma K.43 and obtain that for all 0 ≤ n ≤ ⌊T/ηe⌋,∣∣∣E[g(ϕ(nRgrp))]− E[g(ζ(nηe))]
∣∣∣ ≤ nCg,1(ηγ1e + ηγ2e )(log 1

ηe
)b

≤ TCg,1(ηγ1−1
e + ηγ2−1

e )(log 1
ηe
)b.

Notice that ηγ1e + ηγ2e = η0.5−β + ηβ and T , Cg,1 are both constants that are independent of ηe. Let
β = 0.25 and we have Theorem K.4.

Having established Theorem K.4, we are thus led to prove Theorem 3.2.

Proof of Theorem 3.2. Denote by scls = s0 + s1 = O(log 1
η ), which is the time the global iterate

θ̄(s) will reach within Õ(η) from Γ with high probability. Define ζ̃(t) to be the solution to the
limiting SDE (108) conditioned on E(scls)0 and ζ̃(0) = ϕ(scls). By Theorem K.4, we have

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣E[g(ϕ(nRgrp+scls))− g(ζ̃(nη0.75)) | ϕ(scls), E(scls)0 ]
∣∣∣ ≤ Cgη0.25(log 1

η )
b,

where Rgrp = ⌊ 1
αη0.75 ⌋. Noticing that (i) g ∈ C3 (ii) b,σ ∈ C∞ and (iii) ζ(t), ζ̃(t) ∈ Γ, t ∈ [0,∞)

almost surely, we can conclude that given E(scls)0 ,

∥ζ(t)− ζ̃(t)∥2 = Õ(√η), ∀t ∈ [0, T ].

Then there exists positive constant b′ independent of η and g, and C ′
g which is independent of η but

can depend on g such that

max
n=0,··· ,⌊T/η0.75⌋

∣∣∣E[g(ϕ(nRgrp+scls))− g(ζ(nη0.75 + sclsHη
2))]
∣∣∣ ≤ C ′

gη
0.25(log 1

η )
b′ .

We can view the random variable pairs {(ϕ(nRgrp+scls), ζnη0.75+sclsαη) : n = 0, · · · , ⌊T/η0.75⌋} as
reference points and then approximate the value of g(ϕ(s)) and g(ζ(sHη2)) with the value at the
nearest reference points. By Lemmas K.18 and K.23, for 0 ≤ r ≤ Rgrp and 0 ≤ s ≤ Rtot − r,

E[∥ϕ(s+r) − ϕ(s)∥2] = Õ(η0.375).

Since the values of ϕ(s) and ζ are restricted to a bounded set, g(·) is Lipschitz on that set. Therefore,
we have the theorem.
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L DERIVING THE SLOW SDE FOR LABEL NOISE REGULARIZATION

In this section, we formulate how label noise regularization works and provide a detailed derivation
of the theoretical results in Appendix G.

Consider training a model for C-class classification on datasetD = {(xi, yi)}Ni=1, where xi denotes
the input and yi ∈ [C] denotes the label. Denote by ∆C−1

+ the (C−1)-open simplex. Let f(θ;x) ∈
∆C−1

+ be the model output on input x with parameter θ, whose j-th coordinate fj(θ;x) stands for
the probability of x belonging to class j. Let ℓ(θ;x, y) be the cross entropy loss given input x and
label y, i.e, ℓ(θ;x, y) = − log fy(θ;x).

Adding label noise means replacing the true label y with a fresh noisy label ŷ every time we access
the sample. Specifically, ŷ is set as the true label y with probability 1 − p and as any other label
with probability p

C−1 , where p is the fixed corruption probability. The training loss is defined as

L(θ) = 1
N

∑N
i=1 E[ℓ(θ;xi, ŷi)], where the expectation is taken over the stochasticity of ŷi. Notice

that given a sample (x, y),

E[ℓ(θ;x, ŷ)] = −(1− p) log fy(θ;x)−
p

C − 1

∑
j ̸=y

log fj(θ;x). (114)

By the property of cross-entropy loss, (114) attains its global minimum if and only if fj = p
C−1 ,

for all j ∈ [C], j ̸= y and fy = 1 − p. Due to the large expressiveness of modern deep learning
models, there typically exists a set S∗ := {θ | fi(θ) = E[ŷi],∀i ∈ [N ]} such that all elements
of S∗ minimizes L(θ). Then, the manifold Γ is a subset of S∗. The following lemma relates
the noise covariance Σ(θ) := 1

N

∑
i∈[N ] E[(∇ℓ(θ;xi, ŷi)−∇L(θ)) (∇ℓ(θ;xi, ŷi)−∇L(θ))

⊤
]

to the hessian∇2L(θ) for all θ ∈ S∗.
Lemma L.1. If f(θ;xi, ŷi) is C2-smooth on Rd given any i ∈ [N ], ŷi ∈ [C] and S∗ ̸= ∅, then for
all θ ∈ S∗, Σ(θ) = ∇2L(θ).

Proof. Since L(·) is C2-smooth,∇L(θ) = 0 for all θ ∈ S∗. To prove the above lemma, it suffices to
show that ∀i ∈ [N ], E[∇ℓ(θ;xi, ŷi)∇ℓ(θ;xi, ŷi)⊤] = ∇2L(θ). W.L.O.G, let y = 1 and therefore
for all θ ∈ S∗,

f1(θ;x) = 1− p =: a1,

fj(θ;x) =
p

C − 1
=: a2,∀j > 1, j ∈ [C].

Additionally, let h(x) := − log(x), x ∈ R+. The stochastic gradient ∇ℓ(θ;x, ŷ) follows the distri-
bution:

∇ℓ(θ;x, ŷ) =

{
h′(a1)

∂f1
∂θ w.p. 1− p,

h′(a2)
∂fj
∂θ , w.p. p

C−1 ,∀j ∈ [C], j > 1.

Then the covariance of the gradient noise is:

E[∇ℓ(θ;x, ŷ)∇ℓ(θ;x, ŷ)⊤] = (1− p)(h′(a1))2
∂f1(θ

∗)

∂θ∗

(
∂f1(θ

∗)

∂θ∗

)⊤

+
p(h′(a2))

2

C − 1

∑
j>1

∂fj(θ
∗)

∂θ∗

(
∂fj(θ

∗)

∂θ∗

)⊤

.

And the hessian is:

∇2L(θ) = (1− p)h′(a1)
∂2f1
∂θ2

+
ph′(a2)

C − 1

∑
j>1

∂2fj
∂θ2︸ ︷︷ ︸

T

+ (1− p)h′′(a1)
∂f1
∂θ

(
∂f1
∂θ

)⊤

+
ph′′(a2)

C − 1

∑
j>1

∂fj
∂θ

(
∂fj(θ)

∂θ

)⊤

.
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Since
∑
j∈[C] fi = 1,

∂2f1
∂θ2

= −
∑
j>1

∂2fj
∂θ2

. (115)

Also, notice that h′(x) = − 1
x . Therefore,

(1− p)h′(a1) =
ph′(a2)

C − 1
. (116)

Substituting (115) and (116) into the expression of T gives T = 0, which simplifies∇2L(θ) as the
following form:

∇2L(θ) = (1− p)h′′(a1)
∂f1
∂θ

(
∂fj(θ)

∂θ

)⊤

+
ph′′(a2)

C − 1

∑
j>1

∂fj
∂θ

(
∂fj(θ)

∂θ

)⊤

.

Again notice that h′′(x) = h′(x) for all x ∈ R+. Therefore, ∇2L(θ) = Σ(θ).

With the property Σ(θ) = ∇2L(θ), we are ready to prove Theorem G.1.

Proof of Theorem G.1. Recall the general form of the slow SDE:

dζ(t) =
1√
B
∂Φ(ζ)Σ1/2(ζ)dW (t) +

1

2B
∂2Φ(ζ) [Σ(ζ) + (K − 1)Ψ(ζ)] dt, (117)

where Ψ is defined in Definition K.6. Since for ζ ∈ Γ, Σ(ζ) = ∇2L(ζ), then

∂Φ(ζ)Σ1/2(ζ) = 0. (118)

Now we show that

∂2Φ(ζ)[Σ(ζ)] = −∇Γtr(∇2L(ζ)). (119)

Since∇2L(ζ) = Σ(ζ), V∇2L(ζ)[Σ] = 1
2I . By Lemma K.4,

∂2Φ(ζ)[Σ(ζ)] = −1

2
∂Φ(ζ)∇3L(ζ)[I] = −1

2
∇Γtr(∇2L(ζ)).

Finally, we show that

∂2Φ(ζ)[Ψ(ζ)] = −∇Γ
1

2Hη
tr(F (2Hη∇2L(ζ))). (120)

Define ψ̂(x) := xψ(x) = e−x − 1 + x. By definition of Ψ(ζ), when Σ(ζ) = ∇2L(ζ),
Ψ(ζ) = ψ̂(2ηH∇2L(ζ)), where ψ̂(·) is interpreted as a matrix function. Since ψ(2ηH∇2L(ζ)) ∈
span{uu⊤ | u ∈ T⊥

ζ (Γ)}, by Lemma K.4,

∂2Φ(ζ)[Ψ(ζ)] = −1

2
∂Φ(ζ)trψ(2ηH∇2L(ζ)).

By the chain rule, we have (120). Combining (118),(119) and (120) gives the theorem.
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M EXPERIMENTAL DETAILS

In this section, we specify the experimental details that are omitted in the main text. Our experiments
are conducted on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet Russakovsky et al. (2015). Our
code is available at https://github.com/hmgxr128/Local-SGD. Our implementation of
ResNet-56 (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2015) is based on the high-starred
repository by Wei Yang2 and we use the implementation of ResNet-50 from torchvision 0.3.1. We
run all CIFAR-10 experiments with Bloc = 128 on 8 NVIDIA Tesla P100 GPUs while ImageNet
experiments are run on 8 NVIDIA A5000 GPUS with Bloc = 32. All ImageNet experiments are
trained with ResNet-50.

We generally adopt the following training strategies. We do not add any momentum unless otherwise
stated. We follow the suggestions by Jia et al. (2018) and do not add weight decay to the bias and
learnable parameters in the normalization layers. For all models with BatchNorm layers, we go
through 100 batches of data with batch size Bloc to estimate the running mean and variance before
evaluation. Experiments on both datasets follow the standard data augmentation pipeline in He et al.
(2016) except the label noise experiments. Additionally, we use FFCV (Leclerc et al., 2022) to
accelerate data loading for ImageNet training.

Slightly different from the update rule of Local SGD in Section 1, we use sampling without replace-
ment unless otherwise stated. See Appendix C for implementation details and discussion.

M.1 POST-LOCAL SGD EXPERIMENTS IN SECTION 1

CIFAR-10 experiments. We simulate 32 clients withB = 4096. We follow the linear scaling rule
and linear learning rate warmup strategy suggested by Goyal et al. (2017). We first run 250 epochs of
SGD with the learning rate gradually ramping up from 0.1 to 3.2 for the first 50 epochs. Resuming
from the model obtained at epoch 250, we run Local SGD with η = 0.32. Note that we conduct grid
search for the initial learning rate among {0.005, 0.01, 0.05, 0.1, 0.15, 0.2} and choose the learning
rate with which parallel SGD (H = 1) achieves the best test accuracy. We also make sure that the
optimal learning rate resides in the middle of the set. The weight decay λ is set as 5× 10−4. As for
the initialization scheme, we follow Lin et al. (2020b) and Goyal et al. (2017). Specifically, we use
Kaiming Normal (He et al., 2015) for the weights of convolutional layers and initialize the weights
of fully-connected layers by a Gaussian distribution with mean zero and standard deviation 0.01.
The weights for normalization layers are initialized as one. All bias parameters are initialized as
zero. We report the mean and standard deviation over 5 runs.

ImageNet experiments. We simulate 256 workers with B = 8192. We follow the linear scaling
rule and linear learning rate warmup strategy suggested by Goyal et al. (2017). We first run 100
epochs of SGD where the learning rate linearly ramps up from 0.5 to 16 for the first 5 epochs and
then decays by a factor of 0.1 at epoch 50. Resuming from epoch 100, we run Local SGD with
η = 0.16. Note that we conduct grid search for the initial learning rate among {0.05, 0.1, 0.5, 1}
and choose the learning rate with which parallel SGD (H = 1) achieves the best test accuracy. We
also make sure that the optimal learning rate resides in the middle of the set. The weight decay
λ is set as 1 × 10−4 and we do not add any momentum. The initialization scheme follows the
implementation of torchvision 0.3.1. We report the mean and standard deviation over 3 runs.

M.2 EXPERIMENTAL DETAILS FOR FIGURES 2 AND 5

CIFAR-10 experiments. We use ResNet-56 for all CIFAR-10 experiments in the two figures. We
simulate 32 workers withB = 4096 and set the weight decay as 5×10−4. For Figures 2(a) and 2(b),
we set η = 0.32, which is the same as the learning rate after decay in Figure 1(a). For Figure 2(a), we
adopt the same initialization scheme introduced in the corresponding paragraph in Appendix M.1.
For Figures 2(b), 2(e) and 5(c), we use the model at epoch 250 in Figure 1(a) as the pre-trained
model. Additionally, we use a training budget of 250 epochs for Figure 2(e). In Figure 5(e), we use
Local SGD with momentum 0.9, where the momentum buffer is kept locally and never averaged.
We run SGD with momentum 0.9 for 150 epochs to obtain the pre-trained model, where the learning

2https://github.com/bearpaw/pytorch-classification
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(a) CIFAR-10, start from #250.
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(b) ImageNet, start from #100.
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Figure 10: The learning curves for experiments in Figure 4.

rate ramps up from 0.05 to 1.6 linearly in the first 150 epochs. Note that we conduct grid search for
the initial learning rate among {0.01, 0.05, 0.1, 0.15, 0.2} and choose the learning rate with which
parallel SGD (H = 1) achieves the highest test accuracy. We also make sure that the optimal
learning rate resides in the middle of the set. Resuming from epoch 150, we run Local SGD H = 1
(i.e., SGD) and 24 with η = 0.16 and decay η by 0.1 at epoch 226. For Local SGD H = 900, we
resume from the model at epoch 226 of H = 24 with η = 0.016. We report the mean and standard
deviation over 3 runs for Figures 2(a), 2(b) and 5(c), and over 5 runs for Figure 2(e).

ImageNet experiments. We simulate 256 clients with B = 8192 and set the weight decay as
1 × 10−4. In Figure 2(d) , both Local SGD and SGD start from the same random initialization.
We warm up the learning rate from 0.1 to 3.2 in the first 5 epochs and decay the learning rate by a
factor of 0.1 at epochs 50 and 100. For Figures 2(c), 2(f) and 5(d), we use the model at epoch 100
in Figure 1(b) as the pre-trained model. In Figure 2(c), we set the learning rate as 0.16, which is the
same as the learning rate after epoch 100 in Figure 1(b). Finally, in Figures 2(c), 2(f), 5(b) and 5(d),
we report the mean and average over 3 runs.

M.3 DETAILS FOR EXPERIMENTS IN FIGURE 6

For all experiments in Figure 6, we train a ResNet-56 model on CIFAR-10. We report mean test
accuracy over three runs and the shaded area reflects the standard deviation. For Figure 6(a), we use
the same setup as Figures 2(a) and 2(b) for training from random initialization and from a pre-trained
model respectively except the learning rate. For Figure 6(b), we resume from the model obtained
at epoch 250 in Figure 1(a) and train for another 250 epochs. For Figure 6(c), we follow the same
procedure as Figure 1(a) except that we use sampling with replacement. We also ensure that the
total numbers of iterations in Figures 1(a) and 6(c) are the same.

M.4 DETAILS FOR EXPERIMENTS ON THE EFFECT OF THE DIFFUSION TERM

CIFAR-10 experiments. The model we use is ResNet-56. For Figure 3(a), we first run SGD
with batch size 128 and learning rate η = 0.5 for 250 epochs to obtain the pre-trained model. The
initialization scheme is the same as the corresponding paragraph in Appendix M.1. Resuming from
epoch 250 with η = 0.05, we run Local SGD withK = 16 until epoch 6000 and run all other setups
for the same number of iterations. We report the mean and standard deviation over 3 runs.

ImageNet experiments. For Figures 3(b) and 4(b), we start from the model obtained at epoch
100 in Figure 1(b). In Figure 3(b), we run Local SGD with K = 256 for another 150 epochs with
η = 0.032. We run all other setups for the same number of iterations with the same learning rate.
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M.5 DETAILS FOR EXPERIMENTS ON THE EFFECT OF GLOBAL BATCH SIZE

CIFAR-10 experiments. The model we use is ResNet-56. We resume from the model obtained in
Figure 1(a) at epoch 250 and train for another 250 epochs. The local batch size for all runs isBloc =
128. We first make grid search of η for SGD with K = 16 among {0.04, 0.08, 0.16, 0.32, 0.64} and
find that the final test accuracy varies little across different learning rates (within 0.1%). Then we
choose η = 0.32. For the green curve in Figure 4(a), we search for the optimal H for K = 16 and
keep α fixed when scaling η with K. For the red curve in Figure 4(a), we search for the optimal H
for each K among {6, 12, 60, 120, 300, 750, 1500, 3000, 6000, 12000, 24000} and also make sure
that H does not exceed the total number of iterations for 250 epochs. The learning curves for
constant and optimal α are visualized in Figures 10(a) and 10(c) respectively. We report the mean
and standard deviation over three runs.

ImageNet experiments. We start from the model obtained at epoch 100 in Figure 1(b) and train for
another 50 epochs. The local batch size for all runs is Bloc = 32. We first make grid search among
{0.032, 0.064, 0.16, 0.32} for H = 1 to achieve the best test accuracy and choose H = 0.064. For
the orange curve in Figure 4(b), we search H among {2, 4, 6, 13, 26, 52, 78, 156} for K = 256 to
achieve the optimal test accuracy and the keepα constant as we scale η withK. To obtain the optimal
H for eachK, we search among {6240, 7800, 10400, 12480, 15600, 20800, 24960, 31200} forK =
16, {1600, 3120, 4160, 5200, 6240, 7800, 10400} for K = 32, {312, 480, 520, 624, 800, 975, 1040,
1248, 1560, 1950} for K = 64, and {1, 2, 3, 6, 13} for K = 512. The learning curves for constant
and optimal α are visualized in Figures 10(b) and 10(d) respectively. We report the mean and
standard deviation over three runs.

M.6 DETAILS FOR EXPERIMENTS ON LABEL NOISE REGULARIZATION

For all label noise experiments, we do not use data augmentation, use sampling with replacement,
and set the corruption probability as 0.1. We simulate 32 workers with B = 4096 in Figure 7 and
4 workers with B = 512 in Figure 8. We use ResNet-56 with GroupNorm with the number of
groups 8 for Figure 7(a) and VGG-16 without normalization for Figures 7(b) and 8. Below we list
the training details for ResNet-56 and VGG-16 respectively.

ResNet-56. As for the model architecture, we replace the batch normalization layer in Yang’s
implementation with group normalization such that the training loss is independent of the sampling
order. We also use Swish activation (Ramachandran et al., 2017) in place of ReLU to ensure the
smoothness of the loss function. We generate the pre-trained model by running label noise SGD
with corruption probability p = 0.1 for 500 epochs (6, 000 iterations). We initialize the model by
the same strategy introduced in the first paragraph of Appendix M.1. Applying the linear warmup
scheme proposed by Goyal et al. (2017), we gradually ramp up the learning rate η from 0.1 to 3.2 for
the first 20 epochs and multiply the learning rate by 0.1 at epoch 250. All subsequent experiments
in Figure 7(a) (a) use learning rate 0.1. The weight decay λ is set as 5 × 10−4 . Note that adding
weight decay in the presence of normalization accelerates the limiting dynamics and will not affect
the implicit regularization on the original loss function (Li et al., 2022).

VGG-16. We follow Yang’s implementation of the model architecture except that we replace max-
imum pooling with average pooling and use Swish activation (Ramachandran et al., 2017) to make
the training loss smooth. We initialize all weight parameters by Kaiming Normal and all bias param-
eters as zero. The pre-trained model is obtained by running label noise SGD with total batch size
4096 and corruption probability p = 0.1 for 6000 iterations. We use a linear learning rate warmup
from 0.1 to 0.5 in the first 500 iterations. All runs in Figures 7(b) and 8 resume from the model
obtained by SGD with label noise. In Figure 7(b), we use learning rate η = 0.1. In Figure 8, we set
η = 0.005 for H = 97, 000 and η = 0.01 for SGD (H = 1). The weight decay λ is set as zero.
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