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Abstract

Distributional shifts commonly arise in practice when the target environment dif-
fers from the source environment that provides training data. Robust learning
frameworks such as Distributionally Robust Optimization (DRO) and Robust Sat-
isficing (RS) have been developed to address this challenge, yet their theoretical
behavior under such shifts remains insufficiently understood. This paper analyzes
their performance under distributional shifts measured by the Wasserstein distance,
focusing on the generalization error defined as the excess loss in the target environ-
ment. We derive the first generalization error bounds that explicitly characterize
how DRO and RS balance improved robustness in the target environment with the
regularization cost of robustness, while avoiding the curse of dimensionality. When
partial shift information such as magnitude or direction is available, we conduct a
systematic comparison of both methods and provide theory-based guidelines for se-
lecting between them, supported by simulation results. Finally, we demonstrate the
practical relevance of our framework through an application to a network lot-sizing
problem. This work fills theoretical gaps in robust learning under distributional
shifts and provides practical guidance for algorithm design.

1. Research Problem Machine learning systems often face distribution shifts between training and
deployment, arising from covariate or label shifts, non-stationary environments, or domain-specific
variations. These shifts can severely degrade models trained via Empirical Risk Minimization (ERM),
the widely adopted baseline that minimizes empirical loss under the source distribution [Sinha et al.,
2018, Ben-David et al., 2010].

To address the problem caused by distribution shifts, one widely studied paradigm is Distributionally
Robust Optimization (DRO). Formally, DRO solves

min
f∈F

max
P∈Pr

EP [ℓ(f, z)], where Pr = {P : dW (P, P̂n) ≤ r}, (1)

where ℓ(f, z) denotes the loss function with f as the objective function and z a random variable. The
radius r defines the Wasserstein ball around the empirical distribution P̂n and reflects a fundamental
trade-off: enlarging r increases robustness to shifts but simultaneously induces conservatism and
higher optimization cost. Existing theoretical results analyze vanishing-radius asymptotics or adver-
sarial settings [Esfahani and Kuhn, 2015, Blanchet et al., 2019], but they do not characterize this
r-induced trade-off or provide guarantees under genuine distribution shifts.

A parallel robust approach is Robust Satisficing (RS) proposed by Long et al. [2023]. Formally, RS
solves
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kτ =min k

s.t. EP [ℓ(f, z)]− τ ≤ kd(P, P̂n), ∀P ∈ P (2)
f ∈ F , k ≥ 0.

where the hyperparameter τ represents a reference value corresponding to tolerable performance. RS
achieves robustness via a satisficing strategy: loss deviations beyond τ are constrained to scale pro-
portionally with the distributional distance. Most prior work on RS has focused on optimization and
reformulation aspects. From a statistical perspective, Li et al. [2024] established the first theoretical
characterization under distribution shifts, but their results suffer from the curse of dimensionality
and fail to capture the τ -trade-off mechanism, namely the balance between capturing target loss and
sacrificing empirical performance for robustness.

In this work we aim to theoretically characterize the generalization error bounds of DRO and
RS under distributional shifts and to highlight their distinct mechanisms for handling such shifts.
These bounds make explicit the trade-off inherent in setting robustness hyperparameters: increasing
robustness improves protection against shifts but also raises optimization costs, either through
additional regularization in DRO or satisficing penalties in RS. Building on these results, we further
analyze how partial knowledge of the shift (e.g., its direction or magnitude) influences the relative
performance of DRO and RS, providing actionable guidance for method selection in practice.

2. Key Methodology and Assumptions One of the key methodologies of this work is the distribu-
tion shift setting. We assume that models are trained on a source distribution P ∗ and evaluated on a
different target distribution P̃ . Let f ∈ F denote the predictive function, and let z ∈ Z ⊆ Rd be a
random variable. The loss function ℓ(f, z), following Vapnik’s general learning setting [Vapnik and
Vapnik, 1998], measures the prediction quality of f on z.

We denote the minimal achievable risks under the two distributions as

J∗ := inf
f∈F

EP∗ [ℓ(f, z)], J̃ := inf
f∈F

EP̃ [ℓ(f, z)]. (3)

For an estimator f̂ ∈ F trained on n i.i.d. samples from P ∗, we evaluate its performance on the target
distribution by the excess risk

RP̃ (f̂) := EP̃ [ℓ(f̂ , z)]− J̃ . (4)

This definition generalizes the classical notion of generalization error, which typically assumes
P ∗ = P̃ and focuses only on overfitting within the same environment [Esfahani and Kuhn, 2015,
Shafieezadeh-Abadeh et al., 2019, Gao, 2023]. It also differs fundamentally from adversarial
formulations [Lee and Raginsky, 2018, An and Gao, 2021], which measure error under the worst-case
distribution in a neighborhood of P ∗. By focusing on the loss of source-trained optimizers under a
shifted target, our setting directly captures the challenges posed by distributional shifts.

Below are mild assumptions required for our results.
Assumption 1 (Regularity). We assume:

(a) Bounded instance space. The instance space Z is bounded: diam(Z) =
supz,z′∈Z d(z, z′) < ∞.

(b) Bounded functions. The loss functions of f ∈ F are upper semicontinuous and uniformly
bounded: 0 ≤ l(f, z) ≤ M < ∞, ∀f ∈ F , z ∈ Z .

(c) Lipschitz continuity of loss. The functions in F are Lipschitz:

sup
z ̸=z′

| l(f, z)− l(f, z′) |
d(z, z′)

≤ L, ∀f ∈ F .

3. Generalization Error Bounds We define the induced loss function class A := { z 7→
ℓ(f, z) | f ∈ F }. To measure its complexity, we use the entropy integral C(A) :=∫∞
0

√
logN (A, ∥ · ∥∞, u) du, where N (A, ∥ · ∥∞, u) denotes the ℓ∞-norm covering number of

A at radius u. Then for ERM, we have:
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Proposition 1 (ERM, Generalization Upper Bound). If Assumptions 1 hold, then with probability at
least 1− δ, we have

RP̃ (f̂ERM ) ≤ [J∗ − J̃ ]︸ ︷︷ ︸
Common term

+L · dW (P ∗, P̃ )︸ ︷︷ ︸
Shift term

+ 24√
n
C(A) + 3M

√
log(2/δ)

2n︸ ︷︷ ︸
Statistical error

, ∀P̃ . (5)

Here the common term will exist in every generalization upper bound for robust methods below.

Proposition 2 (ERM, Lower Bound). Choose ℓ(θ, z) = |1 − zθ| with θ ∈ [0, 1], d = 1 and
P ∗ = δ(1). For any target distribution P̃ , we have

RP̃ (f̂ERM ) ≥ L · dW (P ∗, P̃ ).

These results together imply that, under distribution shifts, the excess risk of ERM inevitably requires
shift term L · dW (P ∗, P̃ ).

We adopt the notation of Gao [2023] and define the DRO regularizer as Λr(Q, f) :=
supP∈B(Q,r) EP [ℓ(f, z)] − EQ[ℓ(f, z)], where B(Q, r) := {P ∈ P(Z) : dW (P,Q) ≤ r} is
the Wasserstein ball of radius r centered at Q. Then for DRO, we have:

Theorem 1 (Generalization error bound of DRO). If Assumptions 1 hold, then with probability at
least 1− δ, we have

RP̃ (f̂DRO) ≤ [J∗ − J̃ ]︸ ︷︷ ︸
Common term

+L · inf
P∈B(P∗,r)

dW (P̃ , P )︸ ︷︷ ︸
Shift term

+ Λr(P
∗, f∗)︸ ︷︷ ︸

Regularization term

(6)

+ 48√
n
C(A) + 48L·diam(Z)√

n
+ 3M

√
log(2/δ)

2n︸ ︷︷ ︸
Statistical error

, ∀P̃ .

The bound contains a shift term and a regularization term, which together reflect the trade-off induced
by the hyperparameter r: small r may fail to capture the target distribution, while large r incurs
regularization-driven degradation. It is important to note that such trade-off has not appeared in
existing results. Moreover, when r = 0, DRO bound 1 reduces to ERM bound 1.

To ensure feasibility of RS, the reference value τ must be no smaller than the empirical loss. Motivated
by this, we parameterize τϵ := inff∈F EP̂n

[ℓ(f, z)]+ ϵ, with ϵ ≥ 0 controlling the satisficing margin.
Next is one Lemma which shows an upper bound for optimizer kτϵ :

Lemma 1 (Li et al. [2024]). If Assumption 1(c) holds, then

kτϵ ≤ L.

Theorem 2 (Generalization error bound of RS). If Assumptions 1(a), 1(b), and 1(c) hold, then with
probability at least 1− δ, we have

RP̃ (f̂RS) ≤ [J∗ − J̃ ]︸ ︷︷ ︸
Common term

+ kτϵ · dW (P ∗, P̃ )︸ ︷︷ ︸
Shift term

+ ϵ︸︷︷︸
Satisficing term

(7)

+ 48√
n
C(A) + 48L·diam(Z)√

n
+ 3M

√
log(2/δ)

2n︸ ︷︷ ︸
Statistical error

, ∀P̃ .

The bound reveals a trade-off governed by ϵ: larger τϵ decreases coefficient kτϵ and hence suppresses
the shift term, but incurs a higher satisficing penalty ϵ. Notably, our bound avoids the curse of
dimensionality, and when ϵ = 0, the RS bound is no worse than that of ERM.

Comparing the two bounds 1 2, we reveal the different mechanisms of two robust models in handing
distributional shifts: DRO mitigates distribution shifts by directly shrinking the distance, whereas RS
reduces the coefficient of the shift distance.
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4. Comparative Statics under Partial Shift Information We specify distributional shift informa-
tion through its magnitude or direction. We quantify shift magnitude by the shift distance dW (P ∗, P̃ ),
and capture shift direction by a distribution family {Pt}t≥0. To ensure that t can be interpreted as
the shift magnitude, we impose Assumption 2, which holds for many translation- or scaling-type
distribution families:

Assumption 2 (Monotonicity). dW (P0, Ps) ≤ dW (P0, Pt) for all 0 ≤ s ≤ t, where P0 ≡ P ∗

denotes the source distribution.

We next demonstrate the hyperparameter selection procedure according to available shift information.

4.1. Scenario I: Known Magnitude, Unknown Direction Suppose the shift magnitude dW (P ∗, P̃ )

is known, while its direction is unspecified. For DRO, the natural choice is to set r = dW (P ∗, P̃ ). For
RS, we set τr = supP∈Pr

EP [ℓ(f̂ERM , z)], reflecting anticipated degradation of the ERM optimizer
under shifts within Pr.

4.2. Scenario II: Known Direction, Unknown Magnitude Suppose the shift direction is known
but the true magnitude t2 is unknown. We pre-specify t (may be underspecified or overspecified) and
set the DRO radius rt = dW (P ∗, Pt) and RS reference τt = EPt [ℓ(f̂ERM , z)]. In this scenario, we
specifically define the adversarial direction by selecting Pt ∈ argmaxP∈Arg(rt) dW (P, P ∗) as the
adversarial scenario where Arg(rt) := argmaxP∈B(P∗,rt) EP

[
ℓ(f∗, z)

]
.

Figure 1 summarizes the key takeaways and offers practical guidance for method adoption under
partial shift information.

Figure 1: Comparison between DRO and RS under Different Distributional Shift Scenarios

5. Application to Network Lot-sizing We consider the network lot-sizing problem under distribu-
tional shifts in demand z. The optimization formulation and the robust counterparts for DRO and RS
are provided in Appendix D.

(a) Mean of total costs across shift magnitude t (b) 95% quantile of total costs across shift magni-
tude t

Figure 2: Mean and 95% quantile of total cost under distribution shift

We highlight the empirical performance in Figure 2. Regarding the mean in Figure 2a, RS exhibits
superior performance under the underspecified setting and when the unit cost of initial ordering c is
low. In contrast, under the overspecified setting, DRO gradually outperforms RS as c becomes higher,
consistent with our theoretical analysis. As shown in Figure 2b, both RS and DRO yield improved
results and RS yield more stable performance than DRO.

4



References
Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled

adversarial training. ICLR, 2018. URL https://arxiv.org/abs/1710.10571.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. A theory of learning from different
domains. Machine Learning, 79:151–175, 2010.

Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization using the
wasserstein metric: Performance guarantees and tractable reformulations. arXiv preprint arXiv:1505.05116,
2015.

Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference and applications to
machine learning. Journal of Applied Probability, 56(3):830–857, 2019.

Daniel Zhuoyu Long, Melvyn Sim, and Minglong Zhou. Robust satisficing. Operations Research, 71(1):61–82,
2023.

Zhiyi Li, Yunbei Xu, and Ruohan Zhan. Statistical properties of robust satisficing. arXiv preprint
arXiv:2405.20451, 2024.

Vladimir Vapnik and Vlamimir Vapnik. Statistical learning theory wiley. New York, 1(624):2, 1998.

Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani. Regularization via mass
transportation. Journal of Machine Learning Research, 20(103):1–68, 2019.

Rui Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the curse of
dimensionality. Operations Research, 71(6):2291–2306, 2023.

Jaeho Lee and Maxim Raginsky. Minimax statistical learning with wasserstein distances. Advances in Neural
Information Processing Systems, 31, 2018.

Yang An and Rui Gao. Generalization bounds for (wasserstein) robust optimization. Advances in Neural
Information Processing Systems, 34:10382–10392, 2021.

Leonid Vasilevich Kantorovich and SG Rubinshtein. On a space of totally additive functions. Vestnik of the St.
Petersburg University: Mathematics, 13(7):52–59, 1958.

Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 2023.

Zhiyuan Wang, Lun Ran, Minglong Zhou, and Long He. On the equivalence and performance of distributionally
robust optimization and robust satisficing models in om applications. Available at SSRN 4455065, 2023.

A Proofs of Main Results

A.1 Proof of Proposition 1

Proof. Let A := {z 7→ ℓ(f, z) : f ∈ F} and recall Assumptions 1(b)–1(c). By the Kan-
torovich–Rubinstein duality (Proposition 3), for any L-Lipschitz function g we have∣∣∣EP̃ [g(z)]− EP∗ [g(z)]

∣∣∣ ≤ LdW (P ∗, P̃ ).

Applying this to g(·) = ℓ(f̂ERM , ·) yields

EP̃

[
ℓ(f̂ERM , z)

]
≤ EP∗

[
ℓ(f̂ERM , z)

]
+ LdW (P ∗, P̃ ). (8)

We now control EP∗ [ℓ(f̂ERM , z)] via a standard decomposition. Add and subtract EP̂n
[·] terms and

insert f∗ ∈ argminf∈F EP∗ [ℓ(f, z)]:

EP∗
[
ℓ(f̂ERM , z)

]
=

(
EP∗ℓ(f̂ERM , z)− EP̂n

ℓ(f̂ERM , z)
)︸ ︷︷ ︸

(I)

+
(
EP̂n

ℓ(f̂ERM , z)− EP̂n
ℓ(f∗, z)

)︸ ︷︷ ︸
≤0

+
(
EP̂n

ℓ(f∗, z)− EP∗ℓ(f∗, z)
)︸ ︷︷ ︸

(II)

+EP∗ℓ(f∗, z).
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The middle term is non-positive because f̂ERM minimizes the empirical loss. Hence

EP∗
[
ℓ(f̂ERM , z)

]
≤ sup

f∈F

(
EP∗ℓ(f, z)− EP̂n

ℓ(f, z)
)
+
(
EP̂n

ℓ(f∗, z)− EP∗ℓ(f∗, z)
)
+ J∗, (9)

where J∗ = inff∈F EP∗ℓ(f, z).

Define the (one-sided) empirical process

Gn := sup
f∈F

{
EP∗ℓ(f, z)− EP̂n

ℓ(f, z)
}
.

By symmetrization and standard concentration, with probability at least 1− δ/2,

Gn ≤ 2Rn(A) +M

√
2 log(2/δ)

n
, (10)

where Rn(A) is the empirical Rademacher complexity of A. For the fixed function f∗, Hoeffding’s
inequality (using 0 ≤ ℓ ≤ M ) implies that with probability at least 1− δ/2,

∣∣EP̂n
ℓ(f∗, z)− EP∗ℓ(f∗, z)

∣∣ ≤ M

√
log(2/δ)

2n
. (11)

Combining (10) and (11) via a union bound, and noting that

sup
f∈F

(
EP∗ℓ(f, z)− EP̂n

ℓ(f, z)
)
≤ Gn,

we obtain, with probability at least 1− δ,

sup
f∈F

(
EP∗ℓ(f, z)−EP̂n

ℓ(f, z)
)
+
(
EP̂n

ℓ(f∗, z)−EP∗ℓ(f∗, z)
)
≤ 2Rn(A)+3M

√
log(2/δ)

2n
. (12)

Substitute (12) into (9), and then plug the result into (8):

EP̃

[
ℓ(f̂ERM , z)

]
≤ J∗ + LdW (P ∗, P̃ ) + 2Rn(A) + 3M

√
log(2/δ)

2n
.

Finally, by Dudley’s entropy integral bound,

Rn(A) ≤ 12√
n

∫ ∞

0

√
logN

(
A, ∥ · ∥∞, u

)
du =

12√
n
C(A),

which yields, with probability at least 1− δ,

EP̃

[
ℓ(f̂ERM , z)

]
≤ J∗ + LdW (P ∗, P̃ ) +

24√
n
C(A) + 3M

√
log(2/δ)

2n
.

Subtracting J̃ := inff∈F EP̃ ℓ(f, z) from both sides completes the claim:

RP̃ (f̂ERM ) := EP̃

[
ℓ(f̂ERM , z)

]
−J̃ ≤ (J∗ − J̃)︸ ︷︷ ︸

Common term

+LdW (P ∗, P̃ )︸ ︷︷ ︸
Shift term

+
24√
n
C(A) + 3M

√
log(2/δ)

2n︸ ︷︷ ︸
Statistical error

.

Proposition 3 (Kantorovich and Rubinshtein [1958]). For any distributions Q1, Q2 ∈ M(Ξ), we
have

dW
(
Q1,Q2

)
= sup

f∈L

{ ∫
Ξ

f(ξ)Q1(dξ)−
∫
Ξ

f(ξ)Q2(dξ)
}
, (13)

where L denotes the space of all Lipschitz functions with |f(ξ)−f(ξ′)| ≤ ∥ξ−ξ′∥ for all ξ, ξ′ ∈ Ξ.
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A.2 Proof of Proposition 2

Proof. Consider the ℓ1 loss ℓ(θ, z) = |1 − zθ| with Θ = [0, 1] and source distribution P ∗ = δ(1)

(P̂n = δ(1)⊗n). Then Lipschitz constant L = 1 and

θ̂ERM ∈ argmin
θ

EP̂n
|1− Zθ| = argmin

θ
|1− θ| = {1},

hence θ̂ERM = 1. For any target distribution P̃ on R,

EP̃

[
|1− Zθ̂ERM |

]
= EP̃

[
|Z − 1|

]
.

For the 1-Wasserstein distance with ground cost c(z, z′) = |z − z′|, any coupling π ∈ Π(P̃ , δ(1))

must satisfy π(dz,dz′) = P̃ (dz)δ1(dz
′), whence

dW (P̃ , δ(1)) = inf
π∈Π(P̃ ,δ(1))

∫
|z − z′| dπ(z, z′) =

∫
|z − 1| dP̃ (z) = EP̃

[
|Z − 1|

]
.

Combining the displays yields

EP̃

[
|1− Zθ̂ERM |

]
= dW (P̃ , δ(1)) = dW (P̃ , P ∗),

which establishes the claimed lower bound without requiring any additional condition on dW (P̃ , P ∗).

A.3 Proof of Theorem 1

Proof. Fix the Wasserstein radius r > 0 and define the population and empirical balls B∗(r) := {P :

dW (P, P ∗) ≤ r} and B̂n(r) := {P : dW (P, P̂n) ≤ r}. Let

f̂DRO ∈ argmin
f∈F

sup
P∈B̂n(r)

EP [ℓ(f, z)], f∗ ∈ argmin
f∈F

EP∗ [ℓ(f, z)], f̃ ∈ argmin
f∈F

EP̃ [ℓ(f, z)].

Introduce the finite-sample discrepancy

∆̃(f) :=
∣∣∣ sup

P∈B̂n(r)

EP [ℓ(f, z)] − sup
P∈B∗(r)

EP [ℓ(f, z)]
∣∣∣.

A three-term decomposition yields, for any f ∈ F ,

sup
P∈B∗(r)

EP [ℓ(f̂DRO, z)]− sup
P∈B∗(r)

EP [ℓ(f, z)] = sup
P∈B∗(r)

EP [ℓ(f̂DRO, z)]− sup
P∈B̂n(r)

EP [ℓ(f̂DRO, z)]︸ ︷︷ ︸
≤ supf′∈F ∆̃(f ′)

+ sup
P∈B̂n(r)

EP [ℓ(f̂DRO, z)]− sup
P∈B̂n(r)

EP [ℓ(f, z)]︸ ︷︷ ︸
≤ 0

+ sup
P∈B̂n(r)

EP [ℓ(f, z)]− sup
P∈B∗(r)

EP [ℓ(f, z)]︸ ︷︷ ︸
≤ ∆̃(f)

≤ sup
f ′∈F

∆̃(f ′) + ∆̃(f).

Taking f = f∗ and adding/subtracting suitable terms gives

EP̃ [ℓ(f̂DRO, z)]− EP̃ [ℓ(f̃ , z)] ≤ EP̃ [ℓ(f̂DRO, z)]− sup
P∈B∗(r)

EP [ℓ(f̂DRO, z)]︸ ︷︷ ︸
(A)

+ sup
P∈B∗(r)

EP [ℓ(f
∗, z)]− EP∗ [ℓ(f∗, z)]︸ ︷︷ ︸
(B)

+ EP∗ [ℓ(f∗, z)]− EP̃ [ℓ(f̃ , z)] + sup
f ′∈F

∆̃(f ′) + ∆̃(f∗). (14)

Then by definition (B) = Λr(P
∗, f∗).

For (A), if P̃ ∈ B∗(r) then (A) ≤ 0; otherwise let P0 ∈ B∗(r) attain P0 ∈
argminP∈B∗(r) dW (P̃ , P ), whence

(A) ≤ EP̃ [ℓ(f̂DRO, z)]− EP0 [ℓ(f̂DRO, z)] ≤ LdW (P̃ , P0) = L inf
P∈B∗(r)

dW (P̃ , P ).

Plugging these bounds into (14) and replacing ∆̃(f̃) by the looser ∆̃(f∗) yields

EP̃ [ℓ(f̂DRO, z)]−EP̃ [ℓ(f̃ , z)] ≤ L inf
P∈B∗(r)

dW (P̃ , P )+Λr(P
∗, f∗)+

(
EP∗ [ℓ(f∗, z)]−EP̃ [ℓ(f̃ , z)]

)
+ sup

f ′∈F
∆̃(f ′)+∆̃(f∗).
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Control of the uniform term via the ϕ-envelope class. Below is similar to the proof given in Lee
and Raginsky [2018]. Define, for f ∈ F and 0 ≤ k ≤ L,

ϕf,k(z) := sup
z′∈Z

{
ℓ(f, z′)− k d(z, z′)

}
, and Φ :=

{
ϕf,k : f ∈ F , 0 ≤ k ≤ L

}
.

Let ∆(f, k) := EP∗ [ϕf,k(z)] − EP̂n
[ϕf,k(z)]. By the Kantorovich dual formulation of the

Wasserstein-robust risk,

sup
P∈B∗(ρ)

EP [ℓ(f, z)] = inf
0≤k≤L

{
kρ+ EP∗ [ϕf,k(z)]

}
,

sup
P∈B̂n(ρ)

EP [ℓ(f, z)] = inf
0≤k≤L

{
kρ+ EP̂n

[ϕf,k(z)]
}
.

Hence, for every f ∈ F ,

∆̃(f) =
∣∣∣ sup

P∈B̂n(ρ)

EP [ℓ(f, z)] − sup
P∈B∗(ρ)

EP [ℓ(f, z)]
∣∣∣ ≤ sup

0≤k≤L

∣∣∣EP∗ [ϕf,k(z)]−EP̂n
[ϕf,k(z)]

∣∣∣.
Taking sup over f and applying symmetrization yields, with probability at least 1− δ1,

sup
f∈F, 0≤k≤L

∆(f, k) ≤ 2Rn(Φ) + M

√
2 log(2/δ1)

n
. (15)

By Lee and Raginsky [2018], the Rademacher complexity of Φ is bounded as

Rn(Φ) ≤ 24√
n
C(A) +

24Ldiam(Z)√
n

, C(A) :=

∫ ∞

0

√
logN

(
A, ∥ · ∥∞, u

)
du. (16)

Combining the dual representation with (15)–(16) and a union bound for the two occurrences of ∆̃(·)
in (14) yields the desired statistical term (w.p. ≥ 1− δ1):

sup
f∈F

∆̃(f) ≤ 48√
n
C(A) +

48Ldiam(Z)√
n

+ M

√
2 log(2/δ1)

n
. (17)

Pointwise control for ∆̃(f∗). Fix f = f∗ and define the class Φf∗ := {ϕf∗,k : 0 ≤ k ≤ L} with
ϕf∗,k(z) := supz′{ℓ(f∗, z′)− k d(z, z′)}. Since 0 ≤ ℓ ≤ M , we have 0 ≤ ϕf∗,k ≤ M and, for any
k, k′ ∈ [0, L] and z ∈ Z ,

ϕf∗,k(z)− ϕf∗,k′(z) ≤ sup
z′

{(k′ − k) d(z, z′)} ≤ |k − k′|diam(Z),

and the reverse inequality by swapping k, k′, hence∣∣ϕf∗,k(z)− ϕf∗,k′(z)
∣∣ ≤ diam(Z) |k − k′|, 0 ≤ ϕf∗,k ≤ M. (18)

Let the pseudometric dΦ(k, k
′) := diam(Z) |k − k′| and the Rademacher process

Xk :=
1√
n

n∑
i=1

εi ϕf∗,k(Zi), εi
i.i.d.∼ Unif{±1}.

By Hoeffding’s lemma and (18),

E exp
(
t(Xk −Xk′)

)
=

n∏
i=1

E exp
(

t√
n
εi
(
ϕf∗,k(Zi)− ϕf∗,k′(Zi)

))
≤ exp

(
t2

2 dΦ(k, k
′)2

)
,

so (Xk) has subgaussian increments w.r.t. dΦ. Dudley’s entropy integral therefore gives

Rn(Φf∗) ≤ 12√
n

∫ ∞

0

√
logN (Φf∗ , dΦ, u) du. (19)

Since Φf∗ is parameterized by the interval [0, L] and dΦ scales linearly with |k − k′|, we have

N (Φf∗ , dΦ, u) = N
(
[0, L], | · |, u

diam(Z)

)
≤ 1 +

Ldiam(Z)

u
.
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Truncating the integral at u = Ldiam(Z) (above which the covering number is 1) and evaluating the
elementary integral in 19, we obtain

Rn(Φf∗) ≤ 12Ldiam(Z)√
n

. (20)

By symmetrization and McDiarmid’s inequality,

∆̃(f∗) ≤ sup
0≤k≤L

∣∣∣EP∗ϕf∗,k − EP̂n
ϕf∗,k

∣∣∣ ≤ 2Rn(Φf∗) + M

√
2 log(2/δ2)

n

with probability at least 1− δ2. Combining with (20),

∆̃(f∗) ≤ 24Ldiam(Z)√
n

+ M

√
2 log(2/δ2)

n
w.p. ≥ 1− δ2. (21)

Finally, choose δ1 = δ2 = δ/2 and apply a union bound to (17) and (21) to get, with probability at
least 1− δ,

sup
f∈F

∆̃(f) + ∆̃(f∗) ≤ 48√
n
C(A) +

72Ldiam(Z)√
n

+ 2M

√
2 log(4/δ)

n
. (22)

Substituting (22) back into (14) completes the proof.

A.4 Proof of Theorem 2

Proof. By feasibility of the RS solution with parameter τϵ = inff∈F EP̂n
[ℓ(f, z)]+ϵ and its sensitivity

kτϵ ∈ [0, L], we have for all P ∈ P:

EP

[
ℓ(f̂RS , z)

]
≤ τϵ + kτϵ dW (P, P̂n). (23)

Using the dual representation of the 1-Wasserstein ball, (23) is equivalent to

EP̂n

[
sup
y∈Z

{
ℓ(f̂RS , y)− kτϵ c(z, y)

}]
≤ τϵ. (24)

Replacing P̂n by P ∗ and adding a uniform deviation term yields

EP∗

[
sup
y∈Z

{
ℓ(f̂RS , y)− kτϵ c(z, y)

}]
≤ τϵ + sup

f∈F, 0≤k≤L
∆̃(f, k), (25)

where

∆̃(f, k) := EP∗
[
sup
y
{ℓ(f, y)− k c(z, y)}

]
− EP̂n

[
sup
y
{ℓ(f, y)− k c(z, y)}

]
.

Applying again the dual representation to (25) gives, for every P ,

EP

[
ℓ(f̂RS , z)

]
≤ τϵ + kτϵ dW (P, P ∗) + sup

f∈F, 0≤k≤L
∆(f, k). (26)

Specializing (26) to P = P̃ and subtracting J̃ := inff∈F EP̃ [ℓ(f, z)],

RP̃ (f̂RS) := EP̃

[
ℓ(f̂RS , z)

]
− J̃

≤ (J∗ − J̃) + kτϵ dW (P ∗, P̃ ) + ϵ +
(
EP̂n

[ℓ(f∗, z)]− EP∗ [ℓ(f∗, z)]
)
+ sup

f∈F, 0≤k≤L
∆̃(f, k),

(27)

where f∗ ∈ argminf EP∗ [ℓ(f, z)] and J∗ = EP∗ [ℓ(f∗, z)].

The last two terms in (27) are the same uniform deviations that appear in the DRO proof’s “control of
the uniform term” via the ϕ-envelope class but we adopt a one-sided control scheme rather than a
two-sided one. We therefore directly reuse that result without rederiving it: with probability at least
1− δ/2,
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sup
f∈F, 0≤k≤L

∆̃(f, k) ≤ 48√
n
C(A) +

48Ldiam(Z)√
n

+M

√
2 log(2/δ)

n
.

Also with probability at least 1− δ/2,

EP̂n
[ℓ(f∗, z)]− EP∗ [ℓ(f∗, z)] ≤ M

√
log(2/δ)

2n
,

Substituting these bounds into (27) yields, with probability at least 1− δ,

RP̃ (f̂RS) ≤ (J∗− J̃) + kτϵ dW (P ∗, P̃ ) + ϵ +
48√
n
C(A) +

48Ldiam(Z)√
n

+ 3M

√
log(2/δ)

2n
,

which is the stated RS generalization bound.

B Supplementary Theoretical Results

B.1 RS Generalization Error Bound without Distributional Shift

Remark 1 (A subtle improvement without distributional shift). When there is no distributional shift
(P ∗ = P̃ ), f̂RS reduces to the ϵ-approximate ERM introduced in Equation 3.3 of Zhang [2023]. By
Proposition 4.20 in Zhang [2023], under Assumption 1(b), with probability at least 1− δ, we have

RP̃ (f̂RS) ≤ ϵ+
24√
n
C(A) + 2M

√
log(2/δ)

2n
. (28)

Comparing (28) with the general RS bound in Theorem 2, we see that in the absence of distributional
shifts, the term involving the instance diameter diam(Z) disappears. Consequently, Assumptions 1(a)
and 1(c) are no longer required.

Our interpretation is that under genuine distributional shifts, these regularity conditions are necessary
to control optimizer migration across distributions, thereby justifying the form of Theorem 2. In the
special case without shifts, however, the analysis reduces to the classical ERM setting [Zhang, 2023],
where only a uniform upper bound M on the loss function is needed.

B.2 Supplement on ERM Lower Bound

Building on the ERM lower bound setting 2, we now consider a special case where the target
distribution is P̃ = δ(x), i.e. a Dirac measure concentrated at x. Distributional shift occurs whenever
x ̸= 1. We evaluate the optimizers θ̂ERM , θ̂DRO, θ̂RS (learned from the source distribution) under
such target distributions.

ERM DRO RS
Optimizer θ̂ERM = 1 θ̂DRO = I[r ≤ 1] θ̂RS = (1− ϵ) I[ϵ ≤ 1](= kτϵ)

Table 1: Solutions under the ℓ1-loss example.

Figure 3 plots target losses of DRO and RS relative to ERM under varying hyperparameters, with the
x-axis representing the point where δ(x) is concentrated. Moving away from x = 1 quantifies both
direction and magnitude of distributional shift.

The plot shows that for nontrivial DRO (r ≤ 1), DRO coincides with ERM: both exhibit identical
target loss growth rates, with slope equal to L = 1. In contrast, RS with ϵ ∈ (0, 1) demonstrates two
distinctive properties. First, its target loss grows at a rate strictly less than 1, reflecting improved
robustness against shifts. Second, an ϵ-dependent trade-off emerges: larger ϵ suppresses growth under
larger shifts but harms performance near x = 1.
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Figure 3: Target losses of RS, ERM, and DRO under ℓ1-loss.

B.3 Additional Theorems for Comparative Statics under Paartial Shift Information

We provide a quantitative comparison of the generalization error bounds of DRO and RS presented
in Theorems 1 and 2. We begin by introducing the following assumptions, which require the loss
function to be Lipschitz continuous and strongly convex in the functional space. These conditions are
standard in the literature and hold for many common loss functions, including logistic loss and mean
squared error.

Assumption 3. We assume:

(a) Parameter-Lipschitz loss: There exists a constant L′ > 0 and a norm ∥ · ∥ on the parameter
space such that∣∣ℓ(f, z)− ℓ(g, z)

∣∣ ≤ L′ ∥f − g∥, ∀f, g ∈ F , ∀z ∈ Z.

(b) Strong convexity of population risk: Let E(f) := EP∗ [ℓ(f, z)]. There exists α > 0 such
that for all f, g ∈ F ,

E(g) ≥ E(f) + ⟨∇E(f), g − f⟩+ α

2
∥g − f∥2.

B.3.1 Scenario I: Known Magnitude, Unknown Direction

Proposition 4. Under Assumption 1 and 3, with probability at least 1− δ, we have:

UBDRO(r) ≤ UBRS(τr)− kτϵr + ρn(δ),

where UBDRO(r) and UBRS(τ) are the generalization upper bounds of DRO and RS in (6) and (7)

respectively, ρn(δ) = L′
√

8
α Gn(δ) + 24L diam(Z)√

n
+ 3M

√
log(8/δ)

2n is the statistical error with

Gn(δ) :=
24√
n
C(A) + M

√
log(4/δ)

2n .

Proposition 4 shows that with known shift information, DRO theoretically outperforms RS by a term
kτϵr in the asymptotic regime (as the sample size grows to infinity). This advantage stems from
DRO’s ability to naturally incorporate the shift magnitude into its robustness framework and capture
the worst-case scenario.

B.3.2 Scenario II: Known Direction, Unknown Magnitude

Proposition 5. If dW (Pt,P
∗)

dW (P̃ ,P∗)
≤ 1− kτt

L , under Assumption 1, 2 and 3, with probability at least 1− δ,
we have:

UBRS(τt) ≤ UBDRO(rt) + ρ̄n(δ),
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where UBDRO(r) and UBRS(τ) are the generalization upper bounds of DRO and RS in (6) and

(7) respectively, ρ̄n(δ) = 2L′
√

8
α Ḡn(δ) + Ḡn(δ) is the statistical error with Ḡn(δ) =

24√
n
C(A) +

M
√

log(2/δ)
2n (the same below).

This proposition implies that when the shift magnitude is substantially under-specified, RS provides
a tighter generalization guarantee than DRO. However, when the shift magnitude is only slightly
under-specified, or when it is well-specified (t = t̃) or over-specified (t > t̃), the shift term in the
DRO bound (6) becomes smaller than that in the RS bound (7), and no clear theoretical comparison
can be made. When the shift direction aligns with the worst-case distributional direction, referred
to as the adversarial scenario, additional results can be derived where DRO tends to perform better
because it is designed to handle worst-case distributions.

Specially for adversarial scenario, we have:
Proposition 6. Under Assumption 1, 2 and3, under the conditions either: (i) the underspecified case
t < t̃ and inf0≤s≤t dW (P̃ , Ps) ≤

kτt

L · dW (P ∗, P̃ ), or (ii) the wellspecified or overspecified case
t ≥ t̃ , with probability at least 1− δ, we have:

UBDRO(rt) ≤ UBRS(τt) + ρ̄n(δ),

where the statistical error is the same as Proposition 5.

In such adversarial scenarios, the RS satisficing term is defined with respect to the worst-case
distribution and is therefore asymptotically equivalent to the DRO regularization term. When the shift
magnitude is mildly under-specified, well-specified, or over-specified, the DRO shift term becomes
small or even vanishes, but the RS bound retains a non-negligible shift term. This results in a tighter
bound for DRO, as characterized by the following proposition.

C Simulation Studies

We present linear regression experiments to evaluate DRO and RS under two distribution shift
scenarios: known shift magnitude and known shift direction. ERM serves as the non-robust baseline.

C.1 Simulation Setup

We generate data (x, y) where x ∼ N (0, I3) and y = ⟨x, β⟩+ ϵ with β = [2, 3,−1]T and Gaussian
noise ϵ. Training samples come from source distribution P ∗. Distribution shift is introduced
via parameter drift: the conditional law changes to y|x = ⟨x, β̃⟩, while x’s distribution remains
unchanged.

We adopt the Huber loss (satisfying Assumption 1(c)), and use a type-1 Wasserstein cost function
following Blanchet et al. [2019]. The optimization problems after dual reformulations are:

1. ERM: β̂ERM = argminβ
1
n

∑
i ℓ(β, xi, yi).

2. DRO: β̂DRO = argminβ
1
n

∑
i ℓ(β, xi, yi) + r∥β∥2.

3. RS: β̂RS = argminβ ∥β∥2 s.t. 1
n

∑
i ℓ(β, xi, yi) ≤ τ .

Both DRO and RS are regularized versions of ERM, shrinking β toward the origin. We evaluate
EP̃ [ℓ(β̂, z)] on target data.

C.2 Scenario I: Known Shift Magnitude

We assume dW (P ∗, P̃ ) ≤ r. DRO sets its radius to r, while RS uses τr = 1
n

∑
i ℓ(β̂ERM , xi, yi) +

r∥β̂ERM∥2. We simulate 500 random shift directions β̃ = β + td with ∥d∥ = 1 and adjust t so that
dW (P ∗, P̃ ) = 0.15. Figure 4 summarizes target losses.

DRO and ERM exhibit similar performance, with loss ratios concentrated near 1.0. In contrast, RS
performs significantly worse, with average target loss nearly twice as large. Moreover, DRO’s loss
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Figure 4: Distribution of loss ratios under known shift magnitude.

Figure 5: Pairwise method comparisons under known shift direction.

distribution shows tighter concentration and smaller spread than RS’s, indicating greater stability
against unknown shift directions. These findings are consistent with theoretical results that DRO
dominates RS when the shift magnitude is known but the direction is unknown.

C.3 Scenario II: Known Shift Direction

We fix a direction d and vary magnitude t in β̃ = β∗ + td. True target is at t = 0.4, but hypothesized
magnitudes may be under/over specified. Let cos θ denote the cosine similarity between the shift
direction d and the negative direction of source parameter vector −β∗.

We categorize directions into two regimes: high-cosine (cos θ ∈ [0.5, 1]) where d is largely aligned
with β, and low-cosine (cos θ ∈ [−1,−0.5]) where d is strongly opposed to β. Figure 5 shows
method comparisons across 500 sampled directions.

Results: in the high-cosine region, ERM is often competitive with the robust methods, while DRO
consistently outperforms RS due to its worst-case protection. In the low-cosine region, when the shift
magnitude is under- or well-specified, RS demonstrates clear advantages over both DRO and ERM.
However, once the magnitude becomes overspecified, DRO gradually regains superiority and RS
performance degrades. These findings confirm that the relative performance of DRO and RS depends
critically on the alignment between the shift direction and the parameter shrinkage direction.

D Supplementary Material on the Network Lot-sizing Problem

D.1 Problem Formulation Details

We provide the complete formulation of the network lot-sizing problem. The decision maker
determines the initial stock allocation x, which represents the amount of goods pre-stocked at each
store before demand is realized. After demand z is observed, the system may adjust through second-
stage decisions (y, w): yij denotes the amount transported from store i to store j, and wi denotes
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the amount obtained via emergency order at store i. The objective is to minimize the total cost,
which includes the pre-stocking cost c⊤x, the transportation cost

∑
i∈[N ] d

⊤
i yi, and the emergency

replenishment cost l⊤w. Formally, the two-stage optimization model is

f(x, z) = c⊤x+ min
(y,w)∈Y

{ ∑
i∈[N ]

d⊤i yi + l⊤w
}
,

where the feasible set Y is defined by the balance constraints

xi + wi +
∑
j∈[N ]

yji −
∑
j∈[N ]

yij − zi ≥ 0, ∀i ∈ [N ].

Here ci is the unit ordering cost for initial stock, li is the emergency order cost, dij is the transportation
cost between stores, and zi is the random demand at store i.

We define several key quantities that decompose the total cost, which quantities will be used in the
subsequent analysis. For a given initial allocation x̂ and a realized random demand z̄, the total cost is
denoted by f(x̂, z̄). It consists of two parts: the initial ordering cost cT x̂ and the operational cost,
which corresponds to the optimal value of the following second-stage problem:

min
(y,w)∈Y(x̂,z̄)

{ ∑
i∈[N ]

dTi yi + lTw
}
.

D.2 Robust Counterparts of DRO and RS

To handle distributional shifts, we introduce robust counterparts of the model. Following Long et al.
[2023], Wang et al. [2023], both DRO and RS admit tractable dual formulations. We present them
below.

DRO counterpart:

min kr + c⊤x+
1

S

∑
s∈[S]

vs

s.t. c⊤x− τ +
1

S

∑
s∈[S]

vs ≤ 0,

∑
i∈[N ]

(
d⊤
i y

(s)
i (z, u) + l⊤w(s)(z, u)

)
− ku− vs ≤ 0,

xi + w
(s)
i (z, u) + y

(s)
ji (z, u)− y

(s)
ij (z, u)− zi ≥ 0, ∀i ∈ [N ],

y(s)(z, u) ≥ 0, w(s)(z, u) ≥ 0,

0 ≤ x ≤ δ̄,

y(s) ∈ LN+1,N×N , w(s) ∈ LN+1,N , ∀s ∈ [S].

RS counterpart:
min k

s.t. c⊤x− τ +
1

S

∑
s∈[S]

vs ≤ 0,

∑
i∈[N ]

(
d⊤
i y

(s)
i (z, u) + l⊤w(s)(z, u)

)
− ku− vs ≤ 0,

xi + w
(s)
i (z, u) + y

(s)
ji (z, u)− y

(s)
ij (z, u)− zi ≥ 0, ∀i ∈ [N ],

y(s)(z, u) ≥ 0, w(s)(z, u) ≥ 0,

0 ≤ x ≤ δ̄,

y(s) ∈ LN+1,N×N , w(s) ∈ LN+1,N , ∀s ∈ [S].

Both models can be solved efficiently using standard solvers such as Gurobi.
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Figure 6: Mean of initial ordering costs and operational costs under distribution shift.

D.3 Cost decomposition: initial ordering vs. operational costs.

We now analyze how the robust methods influence the composition of the total cost, which comprises
the initial ordering cost and the operational cost. Figure 6 reports the mean values of these two
components.

Both DRO and RS incur higher initial ordering costs than the baseline ERM, while their operational
costs are lower. This pattern reflects the preventive behavior of robust methods: by anticipating
potential demand increases, they promote higher initial stocking of relatively inexpensive inventory
to mitigate the risk of incurring substantially higher transportation or emergency-order costs later.

Moreover, both the initial and operational costs under RS increase approximately linearly with the
anticipated demand level, across various choices of unit ordering cost c. In contrast, DRO exhibits
greater sensitivity to c. When c is low, DRO’s initial ordering cost rises faster than the demand shift,
reflecting a heightened urgency to preempt potential shortages. As c increases, this urgency weakens:
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DRO becomes more conservative in its upfront allocation, preferring to retain flexibility for later
adjustments through transportation or emergency replenishment. These observations help explain the
patterns in Figure 2a. In the underspecified regime, RS attains a lower total cost by slightly increasing
initial orders while substantially reducing operational expenses. In the overspecified regime, when
the unit cost of initial orders is low, DRO becomes overly aggressive, purchasing excessive initial
stock without achieving a proportional reduction in operational costs, which leads to a higher total
cost. As the unit ordering cost increases, DRO grows more conservative in its upfront purchasing,
whereas RS continues to scale its orders roughly linearly with the anticipated demand shift. This
gradual shift in behavior causes DRO’s total cost to fall below that of RS at higher unit costs.

D.4 Hyperparameter Correspondence

We now adopt the perspective of hyperparameter correspondence to explain why RS performs more
stably and achieves lower total cost than DRO in under-specified regimes (t < t̃) but the pattern
reverses in over-specified regimes ( t > t̃ ). Following Wang et al. [2023], Li et al. [2024], we derive
a correspondence between the DRO radius r and the RS reference value τ . Figure 7 illustrates this
relationship for an initial ordering cost of c = 10, where each point (r, τ) on the curve represents
a pair of hyperparameters yielding identical solutions from DRO and RS. In the under-specified
regime, corresponding to small r and τ with small anticipated shift, small changes in τ lead to large
changes in r. This indicates that RS is more stable, while DRO behaves more conservatively. In the
over-specified regime, corresponding to large r and τ with large anticipated shift, the relationship
reverses: small changes in r induce large changes in τ , implying that DRO becomes more stable
while RS turns overly conservative.

Figure 7: Hyperparameter correspondence between DRO (r) and RS (τ ). Each pair on the curve
yields the same optimizer.
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