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Abstract

In many scientific applications, we do not have explicit access to the likelihood function.
However simulations of the process of interest, using different parameter settings, may give
us access to the likelihood function implicitly. The methodology for approximating like-
lihoods and posterior distributions based on simulated observations can be described as
simulation-based inference. In this paper, we propose a simulation-based inference algo-
rithm in which we iteratively update particles to more closely resemble the posterior. Our
approach utilises simulations to estimate a density ratio function at each iteration and then
uses it to approximate the KL divergence between the particle density and the posterior
density. By alternating between gradient descent and density ratio estimation, the approx-
imated KL divergence is minimized. We benchmark the performance of our algorithm on a
Gaussian mixture model and the M/G/1 queue process model and report promising results.

1. Introduction

Scientific enquiry requires the construction of testable and falsifiable models that describe
phenomena of interest. Historically, this has led to the development of likelihood- and
Bayesian-based approaches to inference, focusing on closed-form representations of the like-
lihood p(x|θ) and tractable posterior distributions p(θ|x). More recently there has been
a trend to focus on the stochastic mechanism whereby the data are generated (Diggle and
Gratton, 1984). In this case the likelihood is defined implicitly and a variety of approaches
have been proposed to utilise it effectively for statistical inference.

The relationship between our desired posterior p(θ|x) and the likelihood is given in Bayes’

formula p(θ|x) = p(x|θ)p(θ)
p(x) . Henceforth we shall call p(θ) the prior, and p(x) the marginal.

Of course exact calculations of the posterior are unfeasible in the absence of the likelihood
function. Despite this, much work has been done in literature to give approximate solutions
to these problems, e.g. Approximate Bayesian Computation (ABC) (Beaumont et al., 2002;
Sisson et al., 2018). For a more general overview see (Cranmer et al., 2020) which covers
a variety of simulation-based inference (SBI) methods. In the SBI literature the implicit
likelihood is assumed to be computationally expensive, and thus the emphasis of these
methods is to provide accurate inference whilst using a minimal number of simulations.

In recent years, it has been noticed that if we can approximate the ratio p(θ|x)
p(θ) = p(x|θ)

p(x) by

a function r(θ,x), then given an observation xobs, we can easily approximate the posterior
p(θ|xobs) by using r(θ,xobs)p(θ). In Thomas et al. (2021) they leverage logistic regression

to estimate p(x|θ0)
p(x) (where θ0 is fixed) using samples from a simulator and samples from
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the marginal p(x). Similarly, Hermans et al. first estimates p(x,θ)
p(x)p(θ) using samples from

the joint probability p(x,θ) and the marginals p(x) and p(θ), then use MCMC to sample
from the approximated posterior using r(θ,xobs)p(θ). Instead of estimating the density
ratio in one-shot, Hermans et al. also proposes a sequential approach which focuses on
estimating the ratio accurately for θ parameters that likely generated xobs. Durkan et al.
points out the links between this sequential approach and conditional density estimators
such as Papamakarios and Murray (2016); Lueckmann et al. (2017).

Motivated by variational inference algorithms (Blei et al., 2017), we propose to minimize the
KL divergence between the approximate posterior and the true posterior. Specifically, we
were inspired by a variational approach called Stein Variational Gradient Descent (SVGD)
(Liu and Wang, 2016) and optimise a particle distribution to minimize the aforementioned
KL divergence. Note that SVGD cannot be readily applied to simulation-based inference
due to lack of a tractable likelihood. In our method, we use density ratio estimation to
approximate the log ratio term in the KL divergence and perform gradient updates on
particles to reduce the approximated KL divergence. We obtain promising results on toy
and real-world problems using the proposed method.

In the rest of the paper: we formally introduce our method in Section 2, show toy and
real-world experiment results in Section 3, and discuss and conclude in Section 4.

2. The Proposed Method

Suppose we have a set of particles Θq = {θi}
nq

i=1 with an empirical probability density
function q. We hope to iteratively update Θq so that q converges to a good approximation
of the target posterior. To achieve this, we minimize the KL divergence between q and the
target posterior p(θ|xobs). Specifically, our algorithm repeats the following two steps:

• Approximate KL[q(θ)||p(θ|xobs)] using particles Θq and simulations.

• Perform gradient descent update on particles in Θq to reduce the approximated KL
divergence.

The similarities of our method, Variational Likelihood-Free Gradient Descent (VLFGD) to
the classic SVGD algorithm (Liu and Wang, 2016; Liu, 2017) are seen in this second point:
both perform gradient descent on a set of particles to minimize the KL divergence between
them and the target posterior. However, beyond this the differences in the two methods
are considerable - they have separate motivations, derivations and applications - and thus
they should be considered as distinct methods.

2.1. Approximating the KL Divergence

Like other variational inference methods, we hope to find a variational distribution q that
minimizes the KL divergence between q and the target posterior p(θ|xobs):

KL[q(θ)||p(θ|xobs)] :=

∫
q(θ) log

(
q(θ)

p(θ|xobs)

)
dθ =

∫
q(θ) log

(
q(θ)p(xobs)

p(xobs,θ)

)
dθ. (1)
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Although in Bayesian inference, p(xobs) is usually seen as a constant, here we treat it as the
density p(x) evaluated at xobs. This treatment is crucial for developing our methodology.

Without access to density functions q(θ), p(x) and p(x,θ), it is impossible to evaluate

log
[
q(θ)p(x)
p(x,θ)

]
in the KL divergence. However, it is possible to estimate the log density ratio

function using samples from the constituent densities (Sugiyama et al., 2012). One of the
simplest log density ratio estimators is the logistic regression classifier (see Chapter 4 in
Sugiyama et al. (2012)). Suppose density functions q(z) and p(z) are densities from which
positive and negative samples are drawn in a binary classification task. Logistic regression
(assuming perfectly balanced class priors) solves the following optimization:

min
g

∫
q(z) log [1 + exp(−g(z))] dz +

∫
p(z) log[1 + exp(g(z))]dz. (2)

Some algebra shows that the minimum is attained when g = log q
p . When solving (2) in

practice, we approximate the objective using empirical samples from q and p and restrict g
to belong to some parametric family. Therefore, to estimate the ratio q(θ)p(x)

p(x,θ) , we minimize

min
g

∫
p(x)q(θ) log [1 + exp(−g(θ,x))] dθdx+

∫
p(θ,x) log[1 + exp(g(θ,x))]dθdx. (3)

Suppose Zp :=
{(

θ
(0)
i ,x

(0)
i

)}np

i=1
are unbiased samples from the joint probability p(x,θ),

we can approximate the objective function in (3) using sample averages:

min
w

1

npnq

np∑
i=1

nq∑
j=1

log
[
1 + exp

(
−gw

(
θj ,x

(0)
i

))]
+

1

np

np∑
i=1

log
[
1 + exp

(
gw

(
θ
(0)
i ,x

(0)
i

))]
,

(4)

where we have restricted g to belong to a function family parameterized by w. In this work,
we parameterize g as a neural network where w are the weights of the neural network. After

obtaining the minimizer ŵ, we use gŵ(·,xobs) as an estimator of log
[
q(·)p(xobs)
p(xobs,·)

]
.

2.2. Gradient Descent on KL Divergence

In the proposed method, we want to slightly perturb our particles so that the updated
particles will more closely resemble the true target posterior. Consider a perturbed particle
set Θ′

q = {θ′
i}

nq

i=1 where θ′
i = θi + ϵi. Suppose particles in Θ′

q have an empirical probability
density function qϵ, then the “optimal update” is obtained by the following optimization:

min
ϵi,i=1...nq

KL[qϵ(θ)|p(θ|xobs)] =

∫
qϵ(θ) log

qϵ(θ)p(xobs)

p(θ,xobs)
dθ, subject to ∥ϵi∥ ≤ ϵ0, (5)

where ϵ0 is a small constant. Since ϵi are only small perturbations (∥ϵi∥ ≤ ϵ0), we can

assume log qϵ(θ)p(xobs)
p(θ,xobs)

≈ log q(θ)p(xobs)
p(θ,xobs)

for all θ, so that gŵ(·,xobs) is still a reasonable

estimator of log qϵ(·)p(xobs)
p(·,xobs)

. The minimization in (5) can be approximated by

min
ϵi,i=1...nq

1

nq

nq∑
i=1

gŵ(θi + ϵi,xobs), subject to ∥ϵi∥ ≤ ϵ0. (6)
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Instead of actually solving (6), we use an approximate solution

ϵ̂i := −η · ∇θi

1

nq

nq∑
j=1

gŵ(θj ,xobs) = − η

nq
· ∇θigŵ(θi,xobs), (7)

where η is a small constant (e.g. 0.0001) chosen post hoc.

Simply speaking, in order to move our particles closer to the true posterior, we push them
along the negative gradient of the approximate KL divergence by a small amount.

2.3. Alternating Between KL Estimation and Gradient Update

Our estimation in Section 2.1 is tied to a specific q(θ). In other words, once we update
particles in Θq, our log ratio estimator is no longer accurate. Therefore, we need to re-
estimate the log density ratio every time after our particles are perturbed. This naturally
leads to a procedure alternating between the KL divergence estimation in Section 2.1 and
the gradient update in Section 2.2. This idea is summarised in Algorithm 1.

Algorithm 1: VLFGD

Inputs: Observation xobs; initial particles Θ
(1)
q ; sampler of prior p(θ); observation

simulator sim(θ); step size η; maximum iteration T .

Outputs: Particles at iteration T : Θ
(T )
q .

Draw unbiased samples Zp :=
{(

θ
(0)
i ,x

(0)
i

)}np

i=1
where θ

(0)
i ∼ p(θ),x

(0)
i = sim

(
θ
(0)
i

)
.

for t from 1 to T do
Obtain ŵ by solving (4)

θ
(t+1)
i := θ

(t)
i + ϵ̂i, where ϵ̂i is defined in (7).

end

3. Experiments

3.1. Mixture of two Gaussians

We apply our method to a simple model with a tractable posterior. The likelihood and
prior are defined as

p(θ) ∼ U(θlow, θhigh), p(x|θ) ∼ αN (θ, σ2
1) + (1− α)N (θ, σ2

2),

respectively. As in (Papamakarios et al., 2019), we set

θlow = −10, θhigh = 10, α = 0.5, σ2
1 = 1, σ2

2 = 0.01, and xobs = 0.

The tractable posterior p(θ|xobs) ∝ 0.5N (0, σ2
1) + 0.5N (0, σ2

2). Because the parameter
we wish to infer is one dimensional, it allows us to visualize our update steps. We run

Algorithm 1 with 1000 particles (nq = 1000). The histograms of particles Θ
(t)
q at iterations

t = 1, 15, 200 are plotted at the top row of Figure 1. It can be seen that Θ
(t)
q converges
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Figure 1: Top row: VLFGD particles. Bottom row: SVGD particles.

(a) VLFGD (b) ABC-Rej (c) NRE (d) SRE

Figure 2: Resulting aggregated posteriors from 10 runs of VLFGD, ABC-Rejection, NRE
and SRE with 100k simulation budget applied to the M/G/1 Queueing model.

to the target posterior p(θ|xobs) as t increases. For comparison, we plot the histograms
of SVGD particles at the bottom row. We can see that our VLFGD updates mimic the
updates observed in SVGD without accessing the true posterior. Moreover, we plot the
estimated log ratio gŵ(·, xobs) for VLFGD updates. It can be seen that at iteration 1 and
15, the negative gradient of gŵ(·, xobs) points to 0 where the true posterior is high. This
confirms that gŵ(·, xobs) can indeed guide the Θq toward a good posterior approximate.

3.2. M/G/1 Queue

The M/G/1 process aims to model a simple queue with customers arriving at random times
vi and being served for random amounts of time si by a single server. The output of the
process is the inter-departure times di − di−1 of the customers. The distribution of these
objects is dictated by 3 parameters θ = (θ1, θ2, θ3). Precise details of the model are found
in Appendix C, and we employ the same set up as (Papamakarios et al., 2019).

It is easy to simulate observations using this model. However, its likelihood is intractable
and consequently its posterior is intractable. Inference is considerably more challenging
than that in Section 3.1 not only because the dimension of both x and θ have increased,
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but also due to the highly non-linear and noisy nature of the simulator. In Figure 3.2, we
compare our method, VLFGD, to ABC-Rejection (Pritchard et al., 1999), Neural Ratio
Estimation (NRE) and its sequential version Sequential Ratio Estimation (SRE) described
in (Hermans et al., 2020) with the latter two implemented in Python with the toolbox sbi
(Tejero-Cantero et al., 2020).

The marginal and joint posteriors resulting from VLFGD, Rejection ABC, and SRE have
reasonable amount of mass near the ground-truth parameters θ⋆. This is in contrast to
NRE which has almost no mass assigned to the ground-truth parameter θ⋆2. Both NRE,
SRE and our method give strongly peaked marginal posteriors. The posteriors achieved
from our method and SRE are very similar, with peaks in almost identical locations. All
methods result in the main mode of p(θ2|xobs) in a different location to the ground truth
θ⋆2.

4. Discussions and Conclusion

In this paper, we proposed an iterative algorithm to produce a particle distribution that
resembles the target posterior. To achieve this, we move the particles according to the
direction that minimizes a KL divergence between the particle distribution and the true
posterior. The KL divergence is approximated using logistic regression. Experiments on a
Gaussian mixture model and the M/G/1 queuing model show promising results.

Methodologically, our method is similar to the sequential approach used in Hermans et al.
(2020) in the sense that both approaches estimate a ratio function repeatedly while the

particles (or the sampler) are being updated. We estimate q(θ)p(x)
p(x,θ) but Hermans et al.

estimates p(x|θ)p̃(θ)
p̃(x)p̃(θ) where p̃(θ) is a proposal prior and p̃(x) is the marginal of p(x|θ)p̃(θ).

At convergence, q(θ) = p(θ|x) and thus our ratio converges to 1, while the ratio used by
Hermans et al. converges to the likelihood to evidence ratio. Instead of modelling the
posterior directly, Tran et al. considers modelling the likelihood qw(x|θ) and minimizing
the KL divergence between q(θ|xobs) and p(θ|xobs). The KL divergence, up to a constant,

can be written as (see (4) in Tran et al. (2017) for details)
∫
qw(θ|xobs) log

qw(xobs|θ)
p(xobs|θ) dθ +

Fw(θ), where Fw(θ) is a term that can be easily approximated using Monte-Carlo via
samples of q(θ). If qw(x|θ) is an implicit generative model (i.e., a neural sampler that
produces x given an input θ), one can use logistic regression to estimate the likelihood

ratio qw(x|θ)
p(x|θ) given a θ and then use it to approximate the KL. The optimal w can be found

by minimizing this approximated KL. In comparison, we directly model the posterior using
a particle distribution and estimate the ratio between the approximated posterior and the
true posterior. Put simply, Tran et al. models the likelihood function and estimates the
likelihood ratio, while we model the posterior and estimate the posterior ratio.

Although our method is almost completely free from tuning, in the future we can consider
a more automated algorithm where hyper-parameters (such as η) in our algorithm can be
tuned according to some criterion, since low-maintenance methods are always preferred
by scientific users. Further, we could also consider a sequential version of our method by
gradually zeroing in on estimating a log-ratio which is more relevant to our observation.
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Appendix A. Particle Collapse

Observe that the minimum of Equation (1) for an empirical distribution q is achieved
when all particles take values equal to the mode(s) of the target distribution. However,
we desire approximate samples of the posterior rather than approximations of the mode(s).
Fortunately, this potential issue is circumvented as a density ratio estimator is used to
estimate the KL divergence instead of approximating the KL using the empirical density
functions (delta functions) represented by particles.

Appendix B. NN Details

Specifications of our NN:

• Mixed Gaussian, Section 3.1: MLP with 50 hidden units, 3 layers, batch-size 64,
learning rate 1e-4, max epochs 1000, optimizer Adam

• M/G/1, Section 3.2: MLP with 50 hidden units, 3 layers, batch-size 256, learning rate
1e-4, max epochs 1000, optimizer Adam

Appendix C. M/G/1 Queue Experiment Set-up

We follow a very similar implementation to that of (Papamakarios et al., 2019). The model
is defined by three equations

∀i si ∼ U(θ1, θ2), vi − vi−1 ∼ Exp(θ3), di − di−1 = si +max(0, vi − di−1). (8)

These can be interpreted as follows: the server takes si ∼ U(θ1, θ2) to serve customer i.
The time between customer i’s arrival vi and customer (i − 1)’s arrival vi−1, is such that
vi − vi−1 ∼ Exp(θ3). Parameters (θ1, θ2, θ3) are the parameters we wish to do inference on.
The priors we place on these parameters are given by

θ1 ∼ U(0, 10), θ2 ∼ U(0, 10), θ3 ∼ U(0, 1/3).

The output from the process is the inter-departure times di − di−1 where di denotes the
departure time of customer i. We have di − di−1 = si +max(0, vi − di−1).

For our experiments we take the total number of customers I = 50. To reduce the di-
mensionality and make inference feasible we take a summary statistic of the output: we
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record the (0, 25, 50, 75, 100)th quantiles of the inter-departure times and output that. In
Papamakarios and Murray (2016) they introduce a pilot run of 100K simulations to allow
for the normalisation of x (to have zero mean and unit covariance) - we do not employ this
as we feel this would be unfeasible in many other scientific applications.

We take the ground truth parameters θ⋆ = (1, 5, 0.2) and simulate xobs from these param-
eters.
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