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Abstract

Neural networks and Gaussian processes are complementary in their strengths and
weaknesses. Having a better understanding of their relationship comes with the
promise to make each method benefit from the strengths of the other. In this work,
we establish an equivalence between the forward passes of neural networks and
(deep) sparse Gaussian process models. The theory we develop is based on inter-
preting activation functions as interdomain inducing features through a rigorous
analysis of the interplay between activation functions and kernels. This results in
models that can either be seen as neural networks with improved uncertainty predic-
tion or deep Gaussian processes with increased prediction accuracy. These claims
are supported by experimental results on regression and classification datasets.

1 Introduction

Neural networks (NNs) [1] and Gaussian processes (GPs) [2] are well-established frameworks for
solving regression or classification problems, with complementary strengths and weaknesses. NNs
work well when given very large datasets, and are computationally scalable enough to handle them.
GPs, on the other hand, are challenging to scale to large datasets, but provide robust solutions with
uncertainty estimates in low-data regimes where NN struggle. Ideally, we would have a single model
that provides the best of both approaches: the ability to handle low and high dimensional inputs, and
to make robust uncertainty-aware predictions from the small to big data regimes.

Damianou and Lawrence [3] introduced the Deep Gaussian process (DGP) as a promising attempt to
obtain such a model. DGPs replicate the structure of deep NNs by stacking multiple GPs as layers,
with the goal of gaining the benefits of depth while retaining high quality uncertainty. Delivering
this potential in practice requires an efficient and accurate approximate Bayesian training procedure,
which is highly challenging to develop. Significant progress has been made in recent years, which
has led to methods outperform both GPs and NNs in various medium-dimensional tasks [4, 5]. In
addition, some methods [5, 6] train DGPs in ways that closely resemble backpropagation in NN,
which has also greatly improved efficiency compared to early methods [3]. However, despite recent
progress, DGPs are still cumbersome to train compared to NNs. The similarity between the training
procedures sheds light on a possible reason: current DGP models are forced to choose activation
functions that are known to behave poorly in NNs (e.g., radial basis functions).

In this work we aim to further unify DGP and NN training, so practices that are known to work
for NNs can be applied in DGPs. We do this by developing a DGP for which propagating through
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the mean of each layer is identical to the forward pass of a typical NN. This link provides practical
advantages for both models. The training of DGPs can be improved by taking best practices from
NN, to the point where a DGP can even be initialised from a NN trained in its usual way. Conversely,
NN solutions can be endowed with better uncertainty estimates by continued training with the DGP
training objective.

2 Related Work

Many different relationships between GPs and NNs have been established over the years. These
relationships mainly arise from Bayesian approaches to neural networks. Finding the posterior
distribution on neural network weights is challenging, as closed-form expressions do not exist. As a
consequence, developing accurate approximations has been a key goal since the earliest works on
Bayesian NNs [7]. While investigating single-layer NN posteriors, Neal [8] noticed that randomly
initialised NNs converged to a Gaussian process (GP) in the limit of infinite width. Like NNs, GPs
represent functions, although they do not do so through weights. Instead, GPs specify function values
at observed points, and a kernel which describes how function values at different locations influence
each other.

This relationship was of significant practical interest, as the mathematical properties of GPs could
(1) represent highly flexible NNs with infinite weights, and (2) perform Bayesian inference without
approximations. This combination was highly successful for providing accurate predictions with
reliable uncertainty estimates [9, 10]. To obtain models with various properties, GP analogues were
found for infinitely-wide networks with various activation functions [11, 12] including the ReLU
[13]. More recently, Meronen et al. [14] investigated the relationship in the opposite direction, by
deriving activation functions such that the infinite width limit converges to a given GP prior.

Since the growth of modern deep learning, relationships have also been established between infinitely
wide deep networks and GPs [15, 16, 17]. Given these relationships, one may wonder whether GPs
can supersede NN, particularly given the convenience of Bayesian inference in them. Empirically
though, finite NNs outperform their GP analogues [16, 18, 19] on high-dimensional tasks such as
images. MacKay [12] explained this by noting that NNs lose their ability to learn features in the
infinite limit, since every GP can be represented as a single-layer NN, with fixed features [20, 21].
This observation justifies the effort of performing approximate Bayesian inference in finite deep
networks, so both feature learning and uncertainty can be obtained. Renewed effort in Bayesian
training procedures has focussed on computationally scalable techniques that take advantage of
modern large datasets, and have provided usable uncertainty estimates [e.g., 22, 23, 24, 25].

However, questions remain about the accuracy of these approximations. For accurate Bayesian
inference, marginal likelihoods are expected to be usable for hyperparameter selection [26, 27]. For
most current approximations, there is either no positive or explicitly negative [23] evidence for this
holding, although recent approaches do seem to provide usable estimates [28, 29].

DGPs [3] provide an alternative approach to deep NNs, which use GP layers instead of weight-based
layers, in order to take advantage of the improved uncertainty estimates afforded by having an infinite
number of weights. The DGP representation is particularly promising because both early and recent
work [3, 30, 31] shows that marginal likelihood estimates are usable for hyperparmeter selection,
which indicates accurate inference. However, currently scalability and optimisation issues hinder
widespread use.

In this work, we provide a connection between the operational regimes of DGPs and NN, deriving
an equivalence between the forward pass of NNs and propagating the means through the layers of
a DGP. We share this goal with Sun et al. [32], who recently proposed the use of neural network
inducing variables for GPs based on the decomposition of zonal kernels in spherical harmonics.
However, compared to Sun et al. [32], our method does not suffer from variance over-estimation,
which fundamentally limits the quality of the posterior. Our approach also leads to proper GP models,
as opposed to adding a variance term to NNs using a Nystom approximation, which allows the correct
extension to DGPs and the optimisation of hyperparameters. These improvements are made possible
by the theoretical analysis of the spectral densities of the kernel and inducing variable (Section 4.3).
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Figure 1: A visual representation of propagating the mean of each layer through the DGP (a) and a
DNN structure (b). The goal is to design basis functions ¢, (+) for the DGP that match the activation
functions o (W -) in the DNN.

3 Background

In this section, we review Deep Gaussian processes (DGPs), with a particular focus on the structure
of the approximate posterior and its connection to deep NNs. We then discuss how inducing variables
control the DGP activation function, which is a key ingredient for our method.

3.1 Deep Gaussian Processes and Sparse Variational Approximate Inference

GPs are defined as an infinite collection of random variables { f (x)},cga such that for all n € IN, the
distribution of any finite subset { f(x1), ..., f(x,)} is multivariate normal. The GP is fully specified
by its mean function p(x) = E[f(x)] and its kernel k(xz, ') = Cov(f(x), f(x')), shorthanded as
f() ~GP(u(-),k(-,-)). GPs are often used as priors over functions in supervised learning, as for
Gaussian likelihoods the posterior f(-) | D given a dataset D = {x; € R%,y; € R}, is tractable.

Surprisingly diverse properties of the GP prior can be specified by the kernel [2, 33, 34, 35, 36],
although many problems require the flexible feature learning that deep NNs provide. DGPs [3]
propose to solve this in a fully Bayesian way by composing several layers of simple GP priors,

F()=fro...ofs0fi1, where  fo(-) ~ GP(0, k(- ). 1

Inference in DGPs is challenging as the composition is no longer a GP, leading to an intractable
posterior F(+) | D. We follow the variational approach by Salimbeni and Deisenroth [5] due to its
similarity to backpropagation in NNs. They use an approximate posterior consisting of an independent
sparse GP for each layer. Each sparse GP is constructed by conditioning the prior on M inducing
variables [37, 38, 39], commonly function values u, = {u* = fo(w}*)}*_,, and then specifying
their marginal distribution as g(w,) = N (p,, X¢). This results in the approximate posterior process:

q(f[()) =GP (Bzcue('); kf(‘v '/) + ci—zz(')cz_ulue (25 - Cuzuz) C;eluzcuz("/))> 2

where B, = C, 1, 1y € RM*% d, the dimensionality of the GP’s output, ¢y, (-) = Cov(fe(+), u)
and C,,,,, = Cov(ue, us). It is worth noting that, we use the symbol ‘C’, rather than the more
commonly used ‘K’, to denote the fact that these matrices contain covariances which are not
necessarily simple kernel evaluations. The variational parameters p, € RM*9 and 33, € RdexM*M
are selected by reducing the Kullback-Leibler (KL) divergence from the variational distribution to
the true posterior. This is equivalent to maximising the Evidence Lower BOund (ELBO). Taking the
evaluations of the GP as hy = fy(hy—1), the ELBO becomes [5]:

BLBO = 3" By ,)lozp(y: [hir)] — 3,  KLla(w) | plus)] <logp(y). ()

3.2 Connection between Deep Gaussian processes and Deep Neural Networks

Hensman and Lawrence [6] observed that the composite function of propagating an input through
each layer’s variational mean (Eq. (2)) of a DGP equals:

Eolfr())o. . oBg[fi()] =BLeu,()o...0Bj ey, (), @



which resembles the forward pass through fully-connected NN layers with non-linearity o (-):
VZO’(WL~)O...OV;O'(WQ-)OVIU(Wl ) 5)

with W, and V, the pre-activation and output weights, respectively. Both models are visualised
in Fig. 1. Indeed, if we can formulate an approximation that makes the covariance ¢,,, () the same
as a typical neural net activation function o(W,-) and set B, equal to V,, we obtain a formal
mathematical equivalence between the forward pass of a DNN and propagating the mean of each
layer through a DGP. This is one of the main contributions of this work. The remaining difference
between the two models are then the so-called “bottleneck” layers in the DGP: h, and hs in Fig. 1a.
This is a consequence of the DGP explicitly representing the output at each layer. However, while a
NN does not explicitly represent the outputs, low-rank structure in the matrices W, V| and W3V,
is typically found after training [40], which strengthens the connection between both models.

3.3 Interdomain Inducing Features

The basis functions used in the approximate posterior mean (Eq. (2)) are determined by the co-
variance between the inducing variables and other function evaluations [cy(-)],, = Cov(f(), um).
Commonly, the inducing variables are taken to be function values w,, = f(w., ), which leads to the
kernel becoming the basis function [cy (*)]m = k(Wn, -). Interdomam 1nducing variables [41] select
different properties of the GP (e.g. integral transforms u,, = [ f(x a)dx), which modifies this
covariance (see [42, 43] for an overview), and therefore gives control over the basis functions. Most
current interdomain methods are designed to improve computational properties [44, 45, 46]. Our aim
is to control ¢,,(+) to be a typical NN activation function like a ReLU or Softplus. We share this goal
with Sun et al. [32], who recently proposed the use of NN inducing variables for GPs based on the
decomposition of zonal kernels in spherical harmonics.

3.4 The Arc Cosine Kernel and its associated RKHS

The first order Arc Cosine kernel mimics the computation of infinitely wide fully connected layers
with ReLU activations. Cho and Saul [13] showed that for o (¢) = max(0, t), the covariance between

function values of f(z) = o(w ) for w ~ N (0,d~1/?1,) and w € R? is given by

k(z,2') = Ey[o(w z)o(w'2')] = ||z]|||z'|] %(\/ 1 — 12 + ¢ (7 — arccost)), (6)

radial

angular (shape function) s(t)

where t = H:\ﬂﬁ The factorisation of the kernel in a radial and angular factor leads to an RKHS

consisting of functions of the form f(x) = ||z|| g(+%5 ), where g(-) is defined on the unit hypersphere

x

e
S?! = {z € R : ||z||2 = 1} but fully determines the function on R.
The shape function can be interpreted as a kernel itself, since it is the restriction of k(-, -) to the unit
hypersphere. Furthermore its expression only depends on the dot-product between the inputs so it is
a zonal kernel (also known as a dot-product kernel [47]). This means that the eigenfunctions of the
angular part of k(-, -) are the spherical harmonics ¢, ; (we index them with a level n and an index
within each level j € {1,..., N9}) [46, 48]. Their associated eigenvalues only depend on n:

1
o / s(t) CL (1) (1—2) 7 dt, (7)
n (1) J-1

where C| (O‘)( -) is the Gegenbauer polynomial® of degree n, @ = d2 2wy is a constant that depends
on the surface area of the hypersphere. Analytical expressions of \,, are provided in Appendix C.

The above implies that £ admits the Mercer representation:

o NI /
blana) = el 13 3 M (57 ) s (5 ) ®)

n=0 j=1

2See Appendix B for a primer on Gegenbauer polynomials and spherical harmonics.



(a) ReLU: o(t) = max(0, t) (b) Softplus: o(t) = log(1 + exp(3t))

Figure 2: Activated inducing function g,,(x) = ||| ||wm||o(w,x /|[wnm]||z]]) where o(-)
correspond to the ReLU (a) and Softplus (b). Although the input domain is R? we only plot the value
of the function on the unit circle S (orange), and on the subspace that has an offset of 1 in the z
direction (blue). The linear radial component of g,,(-) creates a one-to-one mapping between the
blue curve and the upper half of the orange one.

and that the inner product between any two functions g, h € Hy, is given by:
_ N Inilng
(9.h)y, = ; ™ ©)

where g,, ; and hy, ; are the Fourier coefficients of g and h, i.e. g(z) = >_,, ; gn,jl|Z[|Pn j ().

4 Method: Gaussian Process Layers with Activated Inducing Variables

The concepts introduced in the background section can now be used to summarise our approach:
We consider DGP models with GP layers that have an Arc Cosine kernel and Variational Fourier
Feature style inducing variables w,, = (f(-), gm(-))2, [44]. We then choose inducing functions
gm(+) that have the same shape as neural network activation functions (Section 4.1). This yields basis
functions for the SVGP model that correspond to activation functions (Section 4.2), and thus to a
model whose mean function can be interpreted as a classic single-layer NN model. By stacking many
of these SVGP models on top of each as layers of a DGP, we obtain a DGP for which propagating the
mean of each layer corresponds to a neural network. Section 4.3 covers the mathematical intricacies
associated with the construction described above.

4.1 Activated Inducing Functions and their Spherical Harmonic Decomposition

The RKHS of the Arc Cosine kernel consists solely of functions that are equal to zero at the origin, i.e.
Vf € Hyi : £(0) = 0. To circumvent this problem we artificially increase the input space dimension
by concatenating a constant to each input vector. In other words, the data space is embedded in a
larger space with an offset such that it does not contain the origin anymore. This is analogous to the
bias unit in multi-layer perceptron (MLP) layers in neural networks. For convenience we will denote
by (d — 1) the dimension of the original data space (i.e. the number of input variables), and by d the
dimension of the extended space on which the Arc Cosine kernel is defined.

The inducing functions g,,,(+) play an important role because they determine the shape of the SVGP’s
basis functions. Ideally they should be defined such that their restriction to the (d — 1)-dimensional
original data space matches classic activation functions, such as the ReLLU or the Softplus, exactly.
However, this results in an angular component for g,,(-) that is not necessarily zonal. Since this
property will be important later on, we favour the following alternative definition that enforces
zonality:

T
w,, T
gm : RY = R, sc»—>w||||wm|a<>, (10)
||| []]|
with w,,, € R? a parameter, and o : [—1,1] — R the function that determines the value of g, (-)

on the unit hypersphere. In Fig. 2, we show that choosing o (-) to be a ReLU (o (t) = max(0,t)) or



a Softplus (o(t) = log(1 + exp(3t))) activation function leads to inducing functions that closely
resemble the classic ReLU and Softplus on the data space. In the specific case of the ReL.U it can
actually be shown that the match is exact, because the projection of the ReLU to the unit sphere leads
to a zonal function. The parameter w,,, € R¢ determines the orientation and slope of the activation
function—they play the same role as the pre-activation weights W in a NN (cref Eq. (5)).

The zonality that we enforced in Eq. (10) is particularly convenient when it comes to representing
gm(+) in the basis of the eigenfunctions of Hj, which is required for computing inner products. It
indeed allows us to make use of the Funk-Hecke theorem (see Appendix B) and to obtain

a
oo Ny

(@) = lell nl] 32 3 (22 ) s (2
n=0 j=1 m (11)
1
__wd (a) — )5
where = ﬁla(t)cn (1) (1— )% dt.

Analytical expressions for ¢, when o (¢) = max(0, t) are given in Appendix C.

4.2 Activated Interdomain Inducing Variables

We define our activated interdomain inducing variables as
U = () 9m (), (12)

which is the projection of the GP onto the inducing function in the RKHS, as was done in [32, 44,
46]. However, since the GP samples do not belong to the RKHS there are mathematical subtleties
associated with such a definition, which are detailed in Section 4.3. Assuming for now that they
are indeed well defined, using these interdomain inducing variables as part of the SVGP framework
requires access to two quantities: (i) their pairwise covariance, and (ii) the covariance between the GP
and the inducing variables. The pairwise covariance, which is needed to populate C,.,, is given by

= J?Ln—i—a o w,—;'wm/
Cov (tm ') = (G () Gme (Na = - Cﬁﬂ(). (13)

[[wm || [|wm]

The above is obtained using the RKHS inner product from Eq. (9), the Fourier coefficients from
Eq. (11) and the addition theorem for spherical harmonics from Appendix B. Secondly, the covariance
between the GP and u,,, which determines [€y,(+)]m, is given by:

Cov(um, f(z)) = (k(z, ')agm('»?-tk = gm(x) (14)

as a result of the reproducing property of the RKHS. It becomes clear that this procedure gives rise to
basis functions that are equal to our inducing functions. By construction, these inducing functions
match neural network activation functions in the data plane, as shown in Fig. 2. Using these inducing
variables thus leads to an approximate posterior GP (Eq. (2)) which has a mean that is equivalent to a
fully-connected layer with a non-linear activation function (e.g. ReLU, Softplus, Swish).

4.3 Analysis of the interplay between kernels and inducing functions

In this section we describe the mathematical pitfalls that can be encountered [e.g., 32] when defining
new inducing variables of the form of Eq. (12), and how we address them. We discuss two problems:
1) the GP and the inducing function are not part of the RKHS, 2) the inducing functions are not
expressive enough to explain the prior. Both problems manifest themselves in an approximation that
is overly smooth and over-estimates the predictive variance.

The Mercer representation of the kernel given in Eq. (8) implies that we have direct access to the
Karhunen—Loéve representation of the GP:

oo N
flx) = Z Zén,j Vonll2]|én. s (”:;7“)7 where the &, ; are i.i.d. N(0, 1). (15)
n=0 j=1
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Figure 3: The ReLU and Softplus activation function and its approximation for different truncation
levels and dimensions. These functions correspond to the orange function in Fig. 2 plotted on a line
rather than on the circle. Approximating the ReLU in larger dimensions becomes challenging.

Using this expression to compute the RKHS norm of a GP sample f(-) yields || f||? = Don fi,j’
which is a diverging series. This is a clear indication that the GP samples do not belong to the RKHS
[49], and that expressions such as (f(-), g(+))#, should be manipulated with care. According to the
definition given in Eq. (9), the RKHS inner product is an operator defined over Hy x Hjy — R. Since
it is defined as a series, it is nonetheless mathematically valid to use the inner product expression
for functions that are not in H, provided that the series converges. Even if the decay of the Fourier
coefficients of f(-) is too slow to make it an element of Hy, if the Fourier coefficients of g(-) decay
quickly enough for the series }_,, &n.i9n.j/V/ An to converge then (f(-), g(+))n, is well defined.

The above reasoning indicates that, for a given kernel k(- -), some activation functions g, () will
result in inducing variables w,, = (f(:), gm(-))#, that are well defined whereas other activation
functions do not. For example, if we consider the case of the Arc Cosine kernel and the ReLU
inducing function, the decay rate of o, is proportional to the square root of \,, [47, 50]. This implies
that the inner product series diverges and that this kernel and inducing variable cannot be used
together. Alternatively, using smoother activation functions for o (¢), such as the Softplus, results in a
faster decay of the coefficients o, and can guarantee that inducing variables are well defined.

An alternative to ensure the series convergence for any combination of kernel and activation function
is to use a truncated approximation of the activation function g, (-) where all the Fourier coefficients
above a given level N are set to zero, which basically turns the inner product series into a finite
sum. Figure 3 shows how the true and truncated activation functions for the ReLU and Softplus
compare. These correspond to the orange functions in Fig. 2, but are now plotted on a line. In the
low to medium dimensional regime, we see that even for small truncation levels we approximate the
ReLU and Softplus well. In higher dimensions this becomes more challenging for the ReLU.

Unexpressive inducing variables through truncation (Fig. 4) The main concern with this trun-
cation approach, however, comes from elsewhere: the larger N is, the closer g, () is to g, (-), but
the larger || (+)||7, becomes (to the point where it may be arbitrarily large). Similarly to ridge
regression where the norm acts as a regulariser, using inducing functions with a large norm in SVGP
models comes with a penalty which enforces more smoothness in the approximate posterior and
limits its expressiveness. Figure 4 shows how the norm of our ReLU inducing functions grow in the
RKHS. So by making N larger such that we approximate the ReLU better, we incur a greater penalty
in the ELBO for using them. This leads to unexpressive inducing variables, which can be seen by the
growing predictive uncertainty. The Softplus, which is part of the RKHS, does not suffer from this.

Unexpressive inducing variables through spectra mismatch (Fig. 5) Any isotropic stationary
kernel whose inputs ,z’ € S?! are restricted to the unit hypersphere is a zonal kernel (i.e.,
the kernel only depends on the dot-product). This means that we are not limited to only the
Arc Cosine because we can replace the shape function in Eq. (6) by any stationary kernel, and
our approach would still hold. For example, we could use the Matérn-5/2 shape function with
Smacsp () = (1 + V5t + 5t%/3) exp(—/bt). However, in Fig. 5 we compare the fit of an SVGP
model using a Matérn-5/2 kernel (left) to a model using an Arc Cosine kernel (right). While both
models use our Softplus inducing variables, we clearly observe that the Matérn kernel gives rise to a
worse posterior model (lower ELBO and an over-estimation of the variance). In what follows we
explain why this is the case.

In the bottom panel in Fig. 5 we see that for the Matérn-5/2, the Nystrom approximation
Qpr = C fuC;}LC}—u is unable to explain the prior K¢, imposed by the kernel. This leads
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to the overestimation of the predictive variance in the top plot. The reason for this problem is
the mismatch between the eigenvalues \,, (Eq. (7)) of the Matérn and the Fourier coefficients o,,
(Eq. (11)) of the Softplus inducing function. As shown in Fig. C.2, the Matérn kernel has a full
spectrum (i.e., A, # 0, Vn € IN), whereas the coefficients for the Softplus o, are zero at levels
n = 3,5,7,---. We are thus trying to approximate our prior kernel, containing all levels, by a set
of functions that is missing many. This problem does not occur for the combination of Softplus
(or ReLU) inducing functions and the Arc Cosine kernel (right-hand side) because their spectral
decomposition match. In other words, the Arc Cosine kernel has zero coefficients for the same levels
as our activated inducing functions.

5 Experiments

The premise of the experiments is to highlight that (i) our method leads to valid inducing variables,
(ii) our initialisation improves DGPs in terms of accuracy, and (iii) we are able to improve on simple
Bayesian neural networks [24, 51] in terms of calibrated uncertainty. We acknowledge that the NNs
we benchmark against are the models for which we can build an equivalent DGP. While this leads to
a fair comparison, it excludes recent improvements such as Transformer and Batch Norm layers.

5.1 Initialisation: From Neural networks to Activated DGPs

We have shown that we can design SVGP models with basis functions that behave like neural net
activations. This leads to a mean of the SVGP posterior which is of the same form as a single,
fully-connected NN layer. Composing several of these SVGPs hierarchically into a DGP gives rise to
the equivalent DNN. This equivalence has the practical advantage that we can train the means of the
SVGP layers in our DGP as if they are a NN model. We enforce the one-to-one map between the NN
and DGP, by parameterising the weight matrices of the NN to have low-rank. That is, we explicitly
factorise the weight matrices as W,V,_1 (see Fig. 1b) such that we can use them to initialise the
DGP as follows: By = C,‘Leluzug = V, and W/ is used for the directions w,, of the inducing
functions ¢, (). Once the mean of the DGP is trained, we can further optimise the remaining model
hyper- and variational parameters w.r.t. the ELBO, which is a more principled objective [52]. For this
we initialise the remaining parameters of the DGP, 3 to le — 5 as recommended by Salimbeni and
Deisenroth [5]. This approach allows us to exploit the benefit of both, the efficient training of the
DNN in combination with the principled uncertainty estimate of the DGP. For all SVGP models we
use the Arc Cosine kernel and inducing variables obtained with the Softplus activation (Section 4.1)
with N = 20, for the reasons explained in Section 4.3.
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Figure 6: We compare the fit of a single-layer and three-layer DNN optimised using binary cross-
entropy and it’s equivalent DGP trained using the ELBO. The DNNs are very confident, even far
away from the data. We used the DNNSs to initialise the DGP before optimising the ELBO, which in
both situations leads to a model exhibiting more calibrated uncertainty.

Ilustrative example: Banana classification Figure 6 shows the difference in predictive probabil-
ity p(y | ) for a DNN and our activated DGP, in the single-layer and three-layer case. We configure
the models with a Softplus activation function and set the number of both inducing variables of the
GP and hidden units of the DNN to 100. In this experiment, the first step is to optimise the DNN
w.r.t. the binary cross-entropy objective, upon convergence we initialise the DGP with this solution
and resume training of the DGP w.r.t. the ELBO. Especially in the single-layer case, we notice how
the sharp edges from the NN are relaxed by the GP fit, and how the GP expresses uncertainty away
from the data by letting p(y | ) = 0.5. This is due to the ELBO, which balances both data fit and
model complexity, and simultaneously trains the uncertainty.

5.2 Regression on UCI benchmarks

We compare a series of models on a range of regression problems. The important aspect is that we
keep the model configuration and training procedure fixed across all datasets. We use three-layered
models with 128 inducing variables (or, equivalently, hidden units). In each layer, the number of
output heads is equal to the input dimensionality of the data. The Activated DGP (ADGP) and
neural network approaches (NN, NN+Dropout, NN Ensembles and NN+TS) use Softplus activation
functions. The Dropout baseline [24] uses a rate of 0.1 during train and test. The NN baseline is a
deterministic neural net that uses the training MSE as the empirical variance during prediction. The
NN+TS baseline uses temperature scaling (TS) on a held-out validation set to compute a variance for
prediction [51]. The NN Ensemble baseline uses the mean of 5 independently trained NN models.

The DGP and ADGP both use the Arc Cosine kernel. The main difference is that the DGP has
standard inducing points u,, = f(z,,), whereas ADGP makes use of our activated inducing variables
U = (f,9m), - The ADGP is trained in two steps: we first train the mean of the approximate
posterior w.r.t. the MSE, and then optimise all parameters w.r.t. the ELBO, as explained in Section 5.1.

In Fig. 7 we see that in general our ADGP model is more accurate than its neural network initialisation
(NN) in terms of RMSE. This is a result of the second stage of training in which we use the ELBO
rather than the MSE, which is especially beneficial to prevent overfitting on the smaller datasets.
When it comes to NLPD, ADGP shows improvements over its NN initialisation for 5 datasets out of
7 and consistently outperforms classic DGPs.

5.3 Large scale image classification

In this experiment we measure the performance of our models under dataset shifts [53]. For MNIST
and Fashion-MNIST the out-of-distribution (OOD) test sets consist of rotated digits — from 0°(i.e.
the original test set) to 180°. For CIFAR-10 we apply four different types of corruption to the test
images with increasing intensity levels from O to 5. For MNIST and FASHION-MNIST the models
consist of two convolutional and max-pooling layers, followed by two dense layers with 128 units and
10 output heads. The dense layers are either fully-connected neural network layers using a Softplus
activation function (NN, NN+Dropout, NN+TS), or our Activated GP layers using the Arc Cosine
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Figure 7: UCI. Root Mean Squared Error (RMSE) and Negative Log Predictive Density (NLPD) with
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Figure 8: Results on the rotated MNIST, FASHION-MNIST and corrupted CIFAR-10, showing the
mean and std. dev. of the accuracy (top), and test log-likelihood (TLL) (bottom).

kernel and Softplus inducing variables (ADGP). For the CIFAR-10 models, we use the residual
convolutional layers from a ResNet [54] to extract useful features before passing them to our dense
GP or NN layers. Details of the model architectures are given in Appendix E. As previously, the
ADGP model is initialised to the solution of the NN model, and training is then continued using the
ELBO. In Fig. 8 we observe that the models perform very similar in terms of prediction accuracy, but
that ADGP better account for uncertainty as evidenced by the Test Log Likelihood metric.

6 Conclusion

In this work, we establish a connection between fully-connected neural networks and the posterior of
deep sparse Gaussian processes. We use a specific flavour of interdomain inducing variables based
on the RKHS inner product to obtain basis functions for the SVGP that match activation functions
from the neural network literature. By composing such SVGPs together, we obtain a DGP for which
a forward pass through the mean of each layer is equivalent to a forward pass in a DNN. We also
address important mathematical subtleties to ensure the validity of the approach and to gain insights
on how to choose the activation function. As demonstrated in the experiments, being able to interpret
the same mathematical expression either as a deep neural network or as the mean of a deep Gaussian
process can benefit both approaches. On the one hand, it allows us to improve the prediction accuracy
and the uncertainty representation of the neural network by regularising it with the ELBO obtained
from a GP prior. On the other hand, it enables us to better optimise deep Gaussian process model
by initialising them with a pre-trained neural network. We believe that by providing an equivalence
between the two models, not in the infinite limit but in the operational regime, opens many future
research directions allowing for beneficial knowledge transfer between the two domains.
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