
Interpretable Adverse Lens Corruptions

Kai Bäuerle
University of Mannheim, Germany

kaibauerle@gmail.com

Patrick Müller
University of Siegen, Germany

patrick.mueller@uni-siegen.de

Ivo Ihrke
University of Siegen, Siegen
ivo.ihrke@uni-siegen.de

Margret Keuper
University of Mannheim, Germany

keuper@uni-mannheim.de

Abstract

Deep neural networks excel at image classification on benchmarks like ImageNet,
yet they remain vulnerable to adverse conditions, including environmental changes
and sensor noise, such as lens blur or camera noise. Consequently, the study of
these adverse noise corruptions has been extensive. At the same time, each camera
lens is expected to have its characteristic blur: while manufacturers optimize the
lens to have fewer aberrations, a compromise between lens quality and available
budget as well as physical constraints has to be made. However, a study of adverse
but realistic blur corruptions is currently still amiss. We introduce Adverse Lens
Corruption (ALC), an optical adversarial attack that identifies worst-case lens blurs.
ALC works by optimizing Zernike polynomial-based aberrations via gradient
descent. This method enables direct optical analysis and complements existing
noise and corruption benchmarks, revealing which lens designs pose the greatest
challenge to current models.

1 Introduction

Lens design is a multi-step process that relies heavily on optimization of an initial lens configuration,
which follows the system specifications such as focal length and field of view. The merit function is
then used to optimize the optical parameters, i.e. the individual lens surfaces and distances [1]. This
process is usually done without incorporating in-depth knowledge of the final computer vision task.

At the same time, adversarial attacks are well-known to find model-specific worst case inputs to the
models that cause surprisingly low performance. One drawback of such methods is that standard
attacks like PGD [2] are often not interpretable from a physics point of view and the likelihood of
encountering an adversarial example naturally is usually low. However, in this work, we introduce
Adverse Lens Corruptions (ALC) designed to identify weak points in an optical aberration space that
is directly optically interpretable and linked to physics. We consider our method as a first step towards
novel robust task-specific lens designs: the ultimate goal is to constrain the lens design parameter
space to avoid critical aberration regions, where the computer vision model is most sensitive to.
Ideally, this helps also to specify advanced production tolerances, where the tolerance budget can be
relaxed or tightened based on an analysis of adverse lens corruptions.

Our contributions are as follows: Complementing existing attacks, we introduce Adverse Lens
Corruption (ALC) designed to evaluate the robustness of image classification models against optical
blur corruptions, i.e. we optimise the optical kernel h that acts on the input signal x via convolution.
The proposed ALC learns a linear combination of realistic optical aberration effects, such as coma,
astigmatism and spherical aberration to represent lens blur. For this, we expand the wave aberration
into Zernike polynomials and optimize the coefficients with different constraints, which results in
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dataset and model-specific worst-case lens blur. Due to its optics-based parameterization, ALC comes
with interpretable optical results for free.

In this first work, we show that ALC yields model and dataset specific lens corruptions that effectively
reduce the model accuracy. Compared to the worst-case OpticsBench [3] corruption per model,
ALC is stronger at a comparable corruption size. Compared to PGD for single image attacks, ALC
provides complementary information, e.g. the main class-wise confounders are different.

Model Robustness Model robustness and stability have been addressed from various perspectives,
including data augmentation and adversarial training. Our method introduces an optical adversarial
attack that can both benchmark state-of-the-art image classifiers and improve them through adversarial
training. Unlike previous attacks that focus on point-wise noise, ALC models adverse lens blur.

Data Augmentation and Knowledge Distillation Data augmentation improves image classification
robustness by simulating real-world variations. AugMix [4] strengthens resistance to common
corruptions, while [3] employ optical blur kernels to mitigate aberrations. Other strategies include
learned augmentation policies [5], feature perturbations [6, 7], frequency adjustments [8], and style
adaptation via generative models [9, 10, 11, 12]. Knowledge Distillation (KD) transfers robustness
from a teacher model, enhancing adversarial [13, 14, 15, 16] and out-of-distribution performance [17].
However, KD relies on large pre-trained models and entails substantial computational cost.

Optical Co-design Recent work shows that optics and image-processing can be optimized end-
to-end to produce task-specific gains [18, 19]. Although end-to-end co-optimization including the
downstream application has been demonstrated [18], it is not yet widely adopted in industry due to
high computational cost and practical challenges for manufacturability and certification [18, 20].

Adversarial Attacks Neural networks can be deceived by applying imperceptible perturbations
to specific image regions [21]. Attack strategies are usually split into white-box and black-box
methods [2, 21, 22, 23, 24]. Recent work combines both modalities to increase robustness [25].
Physical-world attacks exploit optical effects rather than digital pixel changes. Superpixel-guided
attention targets salient regions [26], while structured illumination and Fourier-domain modulation
introduce adversarial light patterns that remain invisible to humans [27, 28]. Rolling-shutter manip-
ulation yields adversarial shadows or reflections [29, 30], and camera stickers can mislead object
detectors [31]. Similar techniques threaten X-ray security systems via metal modifications [32].
Unlike these works, our Adverse Lens Corruption (ALC) framework probes model vulnerability to
realistic optical degradations that are non-malicious and useful for design feedback. ALC perturbs
the entire image by optimizing within a physically meaningful aberration space rather than per-pixel
noise or local patches. The attack is unconstrained in ℓ2 norm but bounded by the feasible range of
optical parameters, mirroring realistic lens distortions. Adversarial training can mitigate such attacks
and even shift texture bias toward shape bias [33]. Our experiments confirm that ALC-based training
preserves this effect (see Appendix I).

2 Optimizing Adverse Lens Corruptions

Photographic lenses are aberration-limited, while lens design aims to reduce the amount of aberrations
by optimizing the distances and radii of lens elements [34]. However, because of physical constraints
on materials, physical dimensions and economical pressure, optical aberrations are to be expected
and subject to a trade-off between costs and lens quality.

We study which aberrations constitute worst-case scenarios for image classification and segmentation.
To this end, we model the point spread function (PSF), which describes lens blur as the spatial
impulse response of an optical system [35]. In general, this PSF varies with wavelength, location, and
distance [35]. However, we make several practical simplifications to this general setting, as detailed
in the Appendix B. The PSF depends then only on wavelength.

Our Adverse Lens Corruption generates a PSF kernel h to corrupt a clean image x:
y = h ∗ x. (1)

Unlike classical adversarial attacks [21], which optimize additive noise n, we optimize an adversarial
kernel h, interpretable as PSF, based on a wave optics model [35]. We parameterize the wave aberra-
tion model in the exit pupil using Zernike polynomials [36], which describe optical imperfections such
as defocus, astigmatism or coma. The coefficients Am

n of this polynomial expansion are optimized
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per color channel to construct worst-case aberration combinations for computer vision tasks. Using
the resulting kernel h, the corrupted image at iteration t is defined as

advtx = advt−1
x + ν · (x ∗ ht−1

λ − advt−1
x ), ν ∈ [0, 1], (2)

with adv0x = x. Typically, ν = 1, yielding purely convolutional corruption, but ν < 1 allows
interpolation with additive perturbations. To optimize aberrations adversarially, we iteratively update
the Zernike coefficients via gradient ascent on the model loss L:

Am,t
n = Am,t−1

n + α∇Am,t−1
n

L(θ, advt−1
x , labelx ), (3)

where the coefficients Am,t
n determine the optical kernel ht

λ for all three color channels. We also
provide a detailed description of the kernel generation h in the Appendix in Section B.

3 Experimental Evaluation

In the following, we evaluate different computer vision models against our proposed, optical adversar-
ial attack. The DNNs we evaluate are trained on different publicly available subsets of ImageNet [37]
to allow for extensive experiments. To complement image classification, we also conduct experiments
on image segmentation on the COCO segmentation dataset [38] using SAM [39] in Section F in the
Appendix. All experiments are conducted with restriction parameters τ and τe values of 4 to provide
compatibility to OpticsBench [3]. We also report an ablation of how τ affects the accuracy in the
Appendix in Section C.

3.1 Model comparison

To evaluate the ALC attack, we train models on multiple datasets and optimize a single optical kernel
for each model - dataset combination (see Appendix A.1 for details). We evaluate CNN-based models,
such as ResNet50 [40], AlexNet [41], DenseNet161 [42], EfficientNet b0 and b4 [43], VGG16 [44],
MobileNetV3 large [45], ConvNeXt [46] and ConvNeXt v2 [47], as well as transformer-based models
like Vision Transformer [48] and Swin Transformer v2 [49]. Furthermore, state-of-the-art foundation
models are attacked by the ALC attack, such as CLIP [50], DINO v2 [51] and SAM [39]. Note that
for this experiment, we optimize a single adverse kernel per model and dataset, enabling efficient
robustness testing at inference.

Clean ↑ OpticsBench ↑ ALC ↑ ∆ ℓ2

ResNet50 0.809 0.130 0.093 0.716 44.618
VGG16 0.716 0.044 0.052 0.664 40.623

DenseNet161 0.772 0.141 0.074 0.698 46.822
EfficientNet b0 0.777 0.116 0.049 0.728 45.738
EfficientNet b4 0.834 0.127 0.149 0.685 47.264
MobileNet v3 0.753 0.072 0.029 0.724 43.500

ViT (base) 0.853 0.246 0.177 0.676 43.478
SwinV2-tiny 0.821 0.132 0.085 0.736 46.002

SwinV2-small* 0.837 0.183 0.119 0.718 45.014
CLIP 0.761 0.104 0.078 0.683 48.274
Σ - - - - 45.13

Table 1: Accuracy for different classification models, including clean accuracy, accuracy for our ALC
attack and the difference (∆), evaluated on ImageNet1k. *=Multiple Seeds. For comparison, we also
report the accuracy for the hardest corruption on OpticsBench [3] per model for severity 5, where
the ℓ2-distance is 46.0 for OpticsBench. The average ℓ2-distance across OpticsBench corruptions
is 44.32 is comparable to ALC with an average 45.13 for τ = 4.0. The single optimized ALC
corruption per dataset is stronger than the OpticsBench corruption at a comparable corruption level.

Table 1 reports ImageNet1k accuracies under clean and ALC attacked conditions. While all evaluated
models perform poorly, ViT (base) remains most robust (0.177), followed by EfficientNet-b4 (0.149).
Both of these models are also able to classify best on the clean dataset. Yet, all models see a substantial
decrease in accuracy upon being attacked by the optical attack, with the SwinV2-tiny suffers the
largest drop (0.736) and MobileNet v3 sees the lowest absolute accuracy while being attacked.
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Figure 1: Comparison of the absolute coefficient values Am
n without defocus on three different

ImageNet subsets (ImageNette, ImageNet100 and ImageNet1k) with ResNet50. The models are
trained with the same seed, however ALC was evaluated on 5 different seeds per dataset.

3.2 Corruption Ablation Study

In the previous subsection (Section 3.1), we showed, that Adverse Lens Corruptions decrease the
accuracy signficantly via introducing defocus into the adversarial kernel. In this subsection, we
elaborate, which alternative corruptions are getting increasingly important, while defocus, which
has been shown in Table 2 to be the dominating adverse aberration, is not available. We justify this
choice by noting that defocus can be corrected by changing the position of the image sensor.

Therefore, we dismiss the defocus corruption as an additional restriction and run the same adversarial
attack as in Section 3.1. The result of this adjusted optical attack can be examined in Table 2 with
three different models (Resnet50, EfficientNet & CLIP) on ImageNet1k.

Table 2: Ablation of ALC parameter space
on ResNet50 [40], EfficientNet b4 [43] and
CLIP [50].

Model Clean full ALC No Defocus No Spherical

ResNet50 0.809 0.102 0.267 0.564
EfficientNet b4 0.834 0.149 0.374 0.619
CLIP 0.761 0.078 0.148 0.410

After defocus, the most prominent aberration is spher-
ical aberration, which is caused by spherical lenses.
Spherical lenses are used in most systems, because
of the simple manufacturing process. Spherical aber-
ration can also be corrected using aspherical lenses,
which are e.g. common in mobile plastic lenses, but
are often costly to manufacture. However, the last
column shows that correcting for spherical aberration would lead to significantly higher accuracies.

Figure 1 shows that the learned kernels are equally dataset characteristic when defocus is removed as
an aberration. See also Figures 20 and 21 in the Appendix.

Discussion While there is a large research body that discusses standard adversarial attacks that
generate artificial noise [2, 21, 22, 52], our Adverse Lens Corruptions follows a different goal. ALC
relates to realistic lens blur by constraining the disturbance to operate in an aberration space spanned
by Zernike polynomials. Therefore, ALC is not ℓ2-bounded (see Appendix, Section J).

Our approach helps to gain actionable insights of which aberration combinations to avoid during
lens design. Specifically, ALC could serve as means to guide the optimization process in lens design.
Despite these advantages, there are a few practical limitations, which are discussed below and in the
Appendix Section K in more detail. The method is mainly useful for aberration-limited lenses such
as photographic and machine vision lenses. Modeling other optical effects such as space-variance,
vignetting, wavelength-dependent coupling and the full camera pipeline including sensor noise and
the image signal processor is left for future work [1].

Several promising extensions are discussed below. Future work includes sampling polytopes of
aberration configurations using our method, exploring an epsilon-bounded distortion budget around
real lens representations in Zernike space, and applying ALC for tolerancing by emphasizing model-
specific worst-case points. Designers could also use our approach to identify aberration configurations
within acceptable accuracy budgets, helping balance lens quality and manufacturing cost.

4



4 Conclusion

Adverse Lens Corruptions addresses the robustness of models to lens blur: ALC finds the worst-
case lens blur. In contrast, existing benchmarks like OpticsBench require testing a huge variety
of blur kernels and challenges models less severely. With optimizing the linear combination of
Zernike Polynomials, ALC can identify the aberrations that contribute most, providing an optical
interpretation for lens designers.
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This supplementary material provides detailed information on models, datasets and implementation,
and additional experimental results. It is structured as follows:

• Dataset and Implementation Details in Section A
• Generation of the ALC Attack in Section B
• Ablation on threshold parameters of ALC and its restrictions in Section C
• Kernel visualizations in Section D
• Implementation details for adversarial training with ALC and the experiments in Section E
• ALC Results of a Segmentation task in Section F
• Image wise ALC Attack in Section G
• Ablation on the optical corruptions in Section H
• Discussing the Shape-Texture bias in the Context of ALC in Section I
• Discussing the non-ℓ2-boundedness of ALC in Section J
• Discussing additional practical aspects for lens and system designers in Section K

A Datasets and Implementation Details

To evaluate the robustness of multiple image classification models, subsets of the ImageNet [37]
dataset are used. The ALC attack, in Section 2, uses the data and implementation process with the
details from Subsection A.1 & A.2.

A.1 Implementation Details

The generic ALC attack, which is trained over the whole dataset, generates one data and model
specific kernel. This kernel combines the worst case corruptions by iterating through the whole
dataset and updating the coefficients Am

n to determine the optical kernel ht
λ as described in Equation 2.

A visualization of kernels for single coefficients Am
n without mixing and the effect of mixing with

defocus is provided in Fig. 2. To achieve a fair distributed updating process for each image, we
iterate through the dataset in whole epochs. In each epoch, the coefficients Am

n of the ALC attack are
only updated with the training subset and subsequently conducted to the validation subset. Am

n is
updated via stochastic gradient descent with an initial learning rate of 0.001, a momentum of 0.9, and
a weight decay of 0.0001 The ALC attack has no major adjustments on the coefficients in less than
1M images. Thus, we attack the models for one epoch on the ImageNet21k dataset, one epoch on the
ImageNet1k, 10 epochs on the ImagenNet100 dataset, and 100 epochs on the ImageNette dataset, if
not stated differently. All experiments can run on CPU or GPU with less than 24 GB of memory.

The image specific ALC attack is not conducted over the whole dataset at once, rather it iterates over
each image multiple time to generate an image specific adversarial kernel (ht

λ). In our experiment,
we iterate over each image 40 times and update the coefficients (Am

n ) to determine the optical kernel
(ht

λ) accordingly. After each image, the coefficients are initialized, again randomly, in the range of
[−0.1, 0.1].

A.2 Datasets

In Section 3, we evaluate different computer vision models against our proposed, optical adversarial
attack. The DNNs we evaluate are trained on different publicly available subsets of ImageNet [37]
to allow for extensive experiments and investigate the attack behavior on datasets with different
complexity, i.e. ImageNette [53] is a dataset consisting of 10 ImageNet classes. It has 9,469 training
and 3,925 validation images [53]. ImageNet-100 [54] uses 100 ImageNet classes with a total of
128k training and 5,000 validation images [54]. The ImageNet-1k dataset [37] has 1000 ImageNet
classes and contains over 1,281k training images and 50k validation images [37]. Additionally, we
also incorporate the full ImageNet-21k dataset [37] to ensure a comprehensive assessment of the
effectiveness of our optical attack across varying scales and complexities [37]. To complement image
classification, we also conduct experiments on image segmentation on the COCO dataset [38], a
comprehensive dataset designed for object detection and segmentation tasks, using SAM [39].
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Defocus Astigmatism Spherical Coma Trefoil

Figure 2: Different aberrations produced by single Zernike Fringe polynomials (central row) and
their effect, when mixed with defocus. Figure modified from [55]. All kernels are normalized to the
maximum intensity for display purposes. ALC learns a color-dependent linear combination of the
corresponding Zernike polynomial to find the worst-case lens blur for a model and dataset.

B Adverse Lens Corruptions Computation

To investigate optical aberrations scenarios, we model the point spread function (PSF), which mimics
the characteristic lens blur describing the spatial impulse response of a linear optical system on an
image.

More specifically, the PSF describes the effect to a point source that emanates a spherical wave that
subsequently passes through a lens. A perfect lens converts this diverging spherical wave into a wave
converging near the geometric image point. However, the limiting aperture and imperfections of a
real lens cause the point response to spread according to the theory of diffraction and aberrations [35].

In general, this PSF varies with wavelength, location, and distance [35]. However, we make several
practical simplifications to this general setting: 1) the local PSF can be assumed to be approximately
constant within a small portion of the image. In this work, we therefore assume that the small
ImageNet images are regions from a larger image (several megapixels) and that the PSF can be treated
as constant. 2) the depth-dependence of the PSF is negligible beyond the hyperfocal distance, we
therefore assume imaging at optical infinity to enable a convolutional treatment of the lens aberration
effects. With these simplifications, the PSF only depends on the wavelength.

ALC generates a PSF for an aberration-limited system for each color channel, which we then use
as a convolution kernel h to generate a corrupted image y from the clean image x via convolution,
denoted by ’∗’, as described in Eq. (1).
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In order to acquire the kernel h tailored to optical aberrations, we use the linear system model for
diffraction and aberration as in [35]:

hλ(u, v) =
∣∣∣F {

Circ(ωu, ωv) · e−j 2π
λzWλ(ωu,ωv)

}∣∣∣2 , (4)

with j being the imaginary number and Wλ the wave aberration for wavelength λ. For a circular exit
pupil, the wavefront is propagated from the exit pupil with coordinates (ωu, ωv) to the image space
at point (u, v) at distance z via the squared Fourier transform F , to yield an incoherent PSF h for
wavelength λ [35].

In Eq. (4), we expand the wave aberration Wλ(ωu, ωv) into the orthogonal Zernike polynomials [36]
denoted by Z, which allows for a parameterization of individual aberrations defined in multiples of
wavelength λ:

Wλ(ωu, ωv) = λ ·
∑
n,m

Am
n (λ) · Zm

n (ωu, ωv) (5)

Each optical basis function Zm
n represents a meaningful physical representation of specific types of

lens aberrations, such as astigmatism and coma. Our optical attack learns the coefficients Am
n (λ)

depending on λ, i.e. for each color channel separately, to form a worst-case combination of optical
aberrations for, e.g., an image classification model.

Using the kernel from Eq. (4), we can corrupt the clean image x with a convolution with the optical
kernel hλ. We can further scale the blur contribution via a corruption size ν, which results in
a corrupted image advtx at time step t, as in Eq. (2). In which ht−1

λ denotes the optimized lens
corruption at time step t − 1 of a gradient ascent based optimization and adv0x = x, i.e. h0 is the
Dirac impulse. In every iteration, advx will be clamped to the valid image range. Note that in our
default setting, ν will be set to one such that the corruption is purely convolutional as in Eq. (1). In
this case, the corruption can be ℓ2 bounded as in [2].

To use this process in an adversarial technique, we use our model parameters θ and the target labelx
to calculate the model loss L (typically cross entropy loss) and update subsequently Am

n to increase L
in an iterative manner via Eq. (3), where the coefficients Am,t

n determine the optical kernel ht
λ from

Eq. (2) for all three colors λ as in Eqs. (4) and (5).

C ALC Attack Restrictions

To restrict the ALC to 8 out of the first twelve Zernike Fringe modes, which can be mixed into one
3D kernel (u, v, λ). Table 3 highlights the selected modes in bold.

# Name # Name

1 piston 7 horizontal coma
2 tilt u 8 vertical coma
3 tilt v 9 spherical
4 defocus 10 oblique trefoil
5 oblique astigmatism 11 vertical trefoil
6 vertical astigmatism 12 sec. vert. astigmatism

Table 3: First twelve Zernike Fringe modes. We select numbers 4-11 for our optical attack (bold).
The exclusion of modes 1-3 are due to optical considerations: the piston term does not cause a kernel
intensity change and modes 2 and 3 only cause an image shift without blur. We therefore exclude
these modes from our analysis. The remaining selected modes are all primary and two secondary
aberrations (mode 10 and 11) – these modes are of direct relevance to optics designers that use them
to guide meeting specifications for their designs. A visualization is given in the appendix in Fig. 2.

Next to the limitation of the selected modes, the adversarial attack is restricted by the magnitude of
the corruption coefficients Am

n , for each color channel kλ ∈ {r, g, b} if the overall corruption size is
larger than a threshold τ :

Am
n,kλ

=

{ τ ·Am
n,kλ∑

n,m |Am
n,kλ

| , if
∑

n,m |Am
n,kλ

| > τ

Am
n,kλ

, otherwise.
(6)
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Figure 3: Adversarial optical attack examples with increasing thresholds τ . The image was created
with an optical kernel from the PSF attack with the ResNet50. From left to right, τ increases from 0
to 5, where each inlet shows the corresponding kernel.

Similar to the restriction of the combined magnitude of the corruption, we also restrict each coefficient
to a given element-wise threshold τe via:

Am
n,kλ

=

{
signAm

n,kλ

· τe, if |Am
n,kλ

| > τe

Am
n,kλ

otherwise,
(7)

where signAm
n,kλ

denotes the sign of the coefficient.

This restriction implements a fair distribution over the corresponding corruptions. The resulting
kernel is then ℓ1-normalized per color-channel to avoid any brightness changes, when applied to an
image. An example of an optically corrupted image with mixed corruption can be examined in Figure
3 for increasing corruption budget τ .

In Figure 4, we demonstrate the accuracy dependency on the restriction values τ and τe with the
ResNet50 model on the ImageNette dataset. All other experiments are conducted with τ = 4 and
τe = 4 to have a similar ℓ2-distance as in OpticsBench [3]. Furthermore, to restrict the ℓ2-distance of
the permuted image, we integrate a δ bound and use ν < 1.
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Figure 4: Ablation study of τ and τe threshold from 1 to 5. A minor attack, with a low τ & τe
threshold, only marginally lowers the accuracy of the classification model. This study is conducted
by using the ResNet50 model on the ImageNette dataset.
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Figure 5: Ablation study of the ℓ2-based restriction, where we bound the ℓ2-distance to a maximum δ
from δ ∈ [10, 35]. A minor attack, with a low δ threshold, only marginally lowers the accuracy of the
classification model. This study is conducted using the ResNet50 model on the ImageNette dataset.

D Model and Dataset Comparison

The initialization of ALC coefficients are the same for all experiment runs. However, over the ALC
attack procedure, they start deviating from each other. The progression of the coefficients through the
ALC attack is displayed in Figure 6.
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Figure 6: Updating the ALC kernels over the number of 100 epochs. The ResNet50 model [40] is
trained on ImageNette [53] and subsequently used for the ALC Attack.

Figure 7 to 9 show the variance of the ALC coefficent by mulitple ALC runs. While the model
architecture and training settings are constant over the five runs per model and dataset, the ALC seed
is different for each run.

In Figure 10, the ALC kernels corresponding to the results in Table 1 are visualized. The first three
columns represent the individual color channels, while the last column illustrates the combined ALC
kernel.

D.1 ImageNet Subsets

To study the effect of ALC on dataset size and complexity, we also evaluate on different image
datasets. To differentiate these datasets in size and complexity, we used subsets of the ImageNet
dataset, such as the ImageNette dataset [53], the ImageNet100 dataset [54], the ImageNet1k dataset
[37] and the whole ImageNet21k dataset [37].
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Figure 7: Comparison of the resulting ALC coefficients ResNet50 on multiple ImageNet subsets (Im-
ageNette, ImageNet100, and ImageNet1k). The coefficient variances are low, while their respective
differences are significant. Red = ImageNette, green = ImageNet100, and blue = ImageNet1k.
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Figure 8: Comparison of the resulting ALC coefficients on multiple models (AlexNet, SwinV2,
ResNet50) using ImageNette dataset. Red = AlexNet, green = SwinV2, and blue = ResNet50.

Figure 11 compares the generated optical kernels, while using the ALC attack with the
same model architecture for the four different ImageNet subsets. The number of images and classes
increases from top to bottom by row. Where in the top row only 10 classes are present, while
adversarially attacking the ResNet50 model, in the bottom row, there are over 21k classes. However,
not only the complexity, also the number of images in the dataset increases. In the figure, the first
three columns show the generated optical kernel for each color channel. The fourth column displays
the combined kernel, and the last column presents an example image perturbed by the attack. Figure
11 and the evaluation results in Subsection 3.1 indicate that the adverse lens corruptions are model
and dataset specific. Figure 12 shows the mean magnitudes and variances for the learned aberration
coefficients for ResNet50. It confirms that the variance across different ALC seeds is low while
differences across datasets are significant. Figure 8 in the appendix shows that the variance increases
for models trained with different seeds, while the adversarial blur corruption remains characteristic.

D.2 Transfer Attack

To evaluate to which extent the resulting corruption combinations from Subsections 3.1 and D.1 are
transferable to other model architectures or datasets, we conducted a transfer attack experiment set.
Therefore, we use the generated kernels from ResNet50, which were generated by the ALC attack on
the four ImageNet subsets and evaluate ResNet50 models on ImageNette and ImageNet100. Results
in Table 4 indicate the dataset specificity of ALC. Corruption combinations from the same dataset are
more efficient than corruptions from different datasets.

To further investigate the generalizability of the ALC attack, we evaluate the performance of compu-
tation expensive state-of-the-art foundation models against a corruption combination from ResNet50
on the same dataset (ImageNet1k). Specifically, we apply these optical perturbations to three diverse
architectures: CLIP, ConvNextV2, and DINOv2. The results are summarized in Table 5. ALC,
originally crafted using ResNet50, remains effective across model design. However, the model
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Figure 9: Comparison of the resulting ALC coefficients on multiple models (SwinV2, ResNet50)
using ImageNet1k dataset. Green = SwinV2 and blue = ResNet50.

Model ImageNette ImageNet100 ImageNet1k ImageNet21k

ImageNette 0.299 0.460 0.337 0.485
ImageNet100 0.237 0.158 0.224 0.318

Table 4: Accuracy of different ResNet50 models, while being attacked by the ALC attack generated
kernel optimized on a different dataset. Columns: Datasets used by our ALC attack to create the
adversarial kernel. Rows: The dataset used for evaluation.

specific ALC attack is reducing the accuracy of certain models, such as CLIP, significantly more, i.e.
to 0.078 vs. 0.303 (refer to Table 1).

Attack CLIP ConvNeXtV2 DINOV2

- 0.761 0.923 0.912
ALC Attack 0.303 0.540 0.670

Table 5: Accuracy of state-of-the-art models (CLIP, ConvNextV2, DINOV2) with and without the
corruption combination from an ResNet50 ALC attack on the same dataset.
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Figure 10: A comparison of the generated kernel with the ImageNet1k dataset [37] and all models
from Table 1. The plot shows the generated kernel for the three color channels (red, green, and blue)
and the combined kernel for all channels.
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Figure 11: Difference in optical kernel generation for ImageNette, ImageNet100, ImageNet1k and
ImageNet21k. The kernels for individual color channels are normalized to one for better visibility.
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Figure 12: Comparison of the resulting ALC coefficients ResNet50 on multiple ImageNet subsets
(ImageNette, ImageNet100, and ImageNet1k). See Figure 7 in the Appendix for a corresponding plot
of signed ALC coefficients. The coefficient variances are low, while their respective differences are
significant.
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E Adversarial Training

After finding the most harmful optical kernel for a dataset-model combination in Subsections 3.1
& D.1 and the image-model combination in Section G, in this subsection, we adversarially train
the models to increase the robustness against optical corruptions. For a stable training process,
we conducted multiple training processes, varying the restriction values τ , as well as delaying the
adversarial part of the training by varying the number of epochs, and fine-tuning with pretrained
models via the optical attack from Section 2. More details and the result of these different approaches
can be examined in the Appendix in Section E.

Figure 13 shows AlexNet, ResNet50 and SwinV2 adversarially trained models against the models
trained only on clean data. These models are evaluated on the Common Corruptions [56] and
OpticsBench [3] dataset, divided into five sections (Noise, Blur, Compression, Weather, Color) and
five severities (left to right). All three models, adversarially trained, outperform the respective baseline
over all sections and severities marginally. In particular, it is interesting to observe that adversarial
training on blur corruptions can improve the model behavior on noise corruptions. While training
image classification models adversarially with our proposed ALC attack, multiple hyperparameters
for the adversarial process are adjustable. ALC specific hyperparameters are:

• τ & τe to control the intensity of the corruptions
• ν to bound the ℓ2-distance
• Attack frequency, which determines to not attack every training batch
• Start epoch, which sets the first epoch, in which the ALC attack will start to attack the model

on the training batches

To have a stable training process, we used multiple hyperparameter combination for our experiments.
The results of these experiments can be examined in 6.

Model τ AF SE CD ALC

Resnet50

1 1 0 0.781 0.272
2 1 0 0.770 0.301
3 1 0 0.772 0.324
4 1 0 0.761 0.372
5 1 0 0.713 0.331
4 3 0 0.761 0.354
4 1 20 0.755 0.294

SwinV2 4 3 0 0.851 0.299
AlexNet 4 3 0 0.864 0.393

Table 6: Ablation of adversarial training with the ALC attack on ResNet50 [40], SwinV2-tiny [49],
and AlexNet [41]. First column section: The trained model. Second column section: The ALC
hyperparameter combination with τ , attack frequency (AF) and starting epoch (SE). Third column
section: The result on clean data (CD) and ALC attack result.
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Figure 13: Adversarially trained models with ALC (ours) compared to baselines (Base). The models
are evaluated on ImageNette for 2D Common Corruptions [56] and OpticsBench [3] corruptions.

F Segmentation Experiments

To evaluate the effectiveness of adverse lens corruptions in a segmentation task, we used two SAM
(Segment Anything Model) models [39]. Specifically, we evaluate on the COCO Segmentation
Dataset [38] to assess whether the ALC could compromise the performance of the SAM model. In
Table 7, the two SAM models (base & huge) are evaluated in terms of AP50 and AP75 prior and
post adverse lens corruptions. Especially the SAM base variant, with a significant drop of 50% in
comparison to the clean data, is vulnerable to blur coruptions. The SAM huge variant is quite robust
against ALC when comparing AP50. However, on a more fine granular level, the performance on
AP75 drops drastically. We can conclude that the rough shapes can still be well segmented by SAM
huge while optical aberrations blur the image data such that the segmentation becomes incorrect on
fine details.

G ALC Attack per Image

In the previous sections (Sections 3.1 to F), we considered the ALC attack as an analysis tool for a
given optical system, i.e. to generate one mixed corruption kernel for the entire dataset. Here, we
alter this process to an image-specific optical attack. Therefore, instead of iterating over the whole
dataset and updating the kernel after each batch, the attack iterates over one image multiple times
(max. 40) and updates. This altered approach provides us insights in image-specific corruptions.

In comparison to the previous approach, the kernel and corruption diversity is increased sig-
nificantly, as some images are more vulnerable against different corruptions. As a result, the
accuracy between the classes also differs significantly. Table 8 in the appendix shows the
drop in accuracy for each ImageNette class for the image-specific ALC on ResNet50, SwinV2,
and AlexNet. Some classes, such as the golf ball class, have significantly lower accuracy drops
while beeing attacked by ALC than other classes (e.g. church class), which holds for all tested models.

Model Attack AP50 AP75

SAM base - 0.405 0.241
ALC 0.198 0.102

SAM huge - 0.818 0.460
ALC 0.621 0.267

Table 7: Segmentation results on the COCO validation dataset. Evaluated on pre-trained SAM base
[39] and SAM huge [39]. ALC significantly reduces the Average Precision (AP).
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Figure 14: Confusion matrices for different models attacked by our proposed Adverse Lens Corruption
(ALC) (top) and PGD (bottom) evaluated on the ImageNette dataset. The PGD attack was conducted
with an ϵ bound of 2

255 . Each confusion matrix originates from a different model - from left to right:
AlexNet, ResNet and SwinV2. The accuracies of the attacked models are displayed on top of each
confusion matrix. While the absolute accuracies between the differently bounded attacks can not be
directly compared, it is interesting to see that different classes are most confused by the different
nature of attack (blur versus noise).

Other adversarial attack methods, such as PGD [2] and FGSM [21], attack the input images on
a pixel-level and can not be reproduced by creating attack-based camera lenses. To compare the
pixel-level attacks against our optical attack, we attacked the same models as in Figure 14 with an
ℓinf bounded 40 step (same as for ours) PGD attack with ϵ = 2

255 . These different adversarial attack
approaches have significantly different performance on the different classes.

Figure 17 shows examples of image specific kernels, which are generated by the ALC attack over
each image separately. The examples are randomly chosen examples from five different classes from
the validation set. Furthermore, Figure 16 provides an overview of the corruption coefficient values
from all ImageNette validation set images.

Table 8 shows the accuracy per class for ResNet50, SwinV2, and AlexNet. All three models have
similar accuracy drops over the same classes. Furthermore, Table 9 has the ten highest (left side) and
the ten lowest accuracy drops on the ImageNet1k dataset for the ResNet50 model.
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Figure 15: A comparison of the generated kernels with the ImageNette dataset [37] and the ResNet50
model. The plot shows generated image specific kernels for the three color channels (red, green, and
blue) and the combined kernel for all channels.

ResNet50 SwinV2 AlexNet
Tench 0.646 0.729 0.630

English springer 0.798 0.883 0.753
Cassette player 0.241 0.355 0.361

Chain saw 0.595 0.627 0.678
Church 0.819 0.885 0.800

French horn 0.815 0.834 0.706
Garbage truck 0.815 0.876 0.777

Gas pump 0.716 0.763 0.652
Golf ball 0.306 0.468 0.197

Parachute 0.462 0.643 0.431
Table 8: Accuracy drop due to the per-image ALC attack, for three models (ReNet50, SwinV2,
AlexNet). The attack is conducted on the ImageNette validation set.

Class Acc. Delta Class Acc. Delta
Projector 1.000 Espresso 0.1867
Admiral 0.980 CD Player 0.2222

Crash Helmet 0.980 Jackfruit 0.2444
Quill 0.980 Shopping Basket 0.2511

Bighorn 0.978 Trailer Truck 0.2600
Standard Poodle 0.978 Cairn 0.2667

Armadillo 0.978 Water Snake 0.2800
Table Lamp 0.978 Sock 0.2911

Chime 0.978 Tile Roof 0.2956
Prairie Chicken 0.978 Vestment 0.2956

Table 9: Accuracy delta due to the per-image ALC attack on the validation ImageNet1k dataset with
ResNet50. The ten largest accuracy delta values (left side) and the ten smallest accuracy delta (right
side).
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Figure 16: Histogram of corruption values (Am
n ) for the image specific ALC attack on the ImageNette

validation set with the ResNet50.
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Figure 17: Difference in optical kernel generation for different Datasets. a) ImageNette, b) Ima-
geNet100, c) ImageNet1k and d) ImageNet21k.
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H Ablation on Optical Corruptions

In Figure 18 and 19 the corruption with the highest coefficients is removed and the history of the
coefficients indicate a shift to spherical corruption in absents of defocus. Subsequently, vertical and
horizontal coma are the highest corruption coefficients at the ALC attack.
Figure 20 and 21 show the variance of ALC coefficients on multiple dataset with five seeds per attack.
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Figure 18: Running an ALC attack without the defocus optical aberration. By excluding defocus the
performance decrease is lower by 4.2% in comparison to an optical attack with a defocus aberration.
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Figure 19: Running an ALC attack without the defocus and spherical optical aberration. By excluding
defocus and spherical aberration, the performance decrease is 24% lower than with an optical defocus
aberration.
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(a) Comparison of the resulting corruptions without defocus on the 3 different ImageNet subsets (ImageNette,
ImageNet100 and ImageNet1k). The adversarial attack was conducted with the same model architecture
(ResNet50). The models are trained with the same seed, however the adversarial attack was conducted on 5
different seeds per dataset.
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(b) Comparison of the resulting corruptions without defocus on 5 different seeds. The adversarial attack was
conducted with the ResNet50 model on the ImageNette dataset. The models are trained with the same seed,
however the adversarial attack was conducted on 5 different seeds.
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(c) Comparison of the resulting corruptions without defocus on 5 different seeds. The adversarial attack was
conducted with the ResNet50 model on the ImageNette dataset. The models are trained with different seeds, and
the adversarial attack was also conducted on 5 different seeds. The performance of the trained models for the
multiple seeds only differ marginally (0.825, 0.816, 0.827, 0.817, and 0.806).

Figure 20: Variance of ALC coefficients on multiple dataset with five seeds per attack.
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(a) Comparison of the resulting absolute corruptions values without defocus on the 3 different ImageNet subsets
(ImageNette, ImageNet100 and ImageNet1k). The adversarial attack was conducted with the same model
architecture (ResNet50). The models are trained with the same seed, however the adversarial attack was
conducted on 5 different seeds per dataset.
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(b) Comparison of the resulting absolute corruptions values without defocus on 5 different seeds. The adversarial
attack was conducted with the ResNet50 model on the ImageNette dataset. The models are trained with the same
seed, however the adversarial attack was conducted on 5 different seeds.
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(c) Comparison of the resulting absolute corruptions values without defocus on 5 different seeds. The adversarial
attack was conducted with the ResNet50 model on the ImageNette dataset. The models are trained with different
seeds, and the adversarial attack was also conducted on 5 different seeds. The performance of the trained models
for the multiple seeds only differ marginally (0.825, 0.816, 0.827, 0.817, and 0.806).
Figure 21: Variance of the magnitudes of ALC coefficients on multiple datasets with five seeds per
attack.
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I Texture bias

To measure the texture-shape bias of image classification models, we use the cue-conflict classification
problem [57]. This dataset consists of 1,280 images where shape and texture cues conflict. The
conflicting images are synthetically generated using a style transfer model [58] and ImageNet
examples [37]. The conflicting cues are 16 super-classes of ImageNet. From an information
standpoint, it is technically correct to predict either label (or both). Nevertheless, humans prioritize
shape cues for categorization, unlike most models [57]. Employing either the shape or texture cue
label as the accurate classification allows for the measurement of shape accuracy and texture accuracy,
respectively. According to these assessment metrics, cue accuracy is the ratio of predictions that align
with either the shape or texture label to the instance of misclassification:

Cue Accuracy = Shape Accuracy + Texture Accuracy (8)

We also formalize the shape bias [57] as the proportion of decisions made owing to shape over the
number of correct decisions:

Shape Bias =
Shape Accuracy
Cue Accuracy

(9)

The evaluation of models against this metric shows that an optical attack forces the models to shift
from their dependence on texture-based decisions to preferring shape-based recognition. This effect
is strongly demonstrated through the shape bias of a ResNet50 model, which increases from 0.222
to 0.684. The state-of-the-art foundation model CLIP base, is known to have stronger shape bias in
comparison to models, which were only trained on ImageNet1k. Comparing the CLIP shape bias from
pre and post optical attack, we see a stable shape accuracy, however a drop in texture accuracy and
thus also an increase in shape bias from 0.671 to 0.825. In the same way, EfficientNet-b4 and Vision
Transformer models also increase shape bias from 0.411 to 0.868 and 0.398 to 0.884, respectively,
but also a considerable increment in the number of correctly classified categories by shape.
Adversarial training of the AlexNet model as described in Subsection E increases the shape bias

without the optical attack by 4%, while also increasing the cue accuracy by 3%. Thus, the model not
only shifts its attention from texture to shape, but also is able to classify more cues correctly.

J Non-ℓ2-boundedness

In the following, we elaborate on the non-ℓ2-boundedness of the attack and showcase the underlying
reasons. We proceed in two steps: 1) we demonstrate that the attack PSF in our approach is ℓ2-
bounded in the complex amplitude, but that the square in Eq. 4 removes this property, in step 2) an
argument is made that the convolution itself also results in unbounded pixel differences, regardless of
the PSF properties.

Regarding step 1), we note that the Zernike basis is orthonormal in the Fourier space of the lens, as is
its Fourier transform [59] in the spatial domain. We can therefore consider Parseval’s theorem to hold
in the complex amplitude (the wave-optical PSF). Computing the intensity PSF from the wave-optical

Model Attack Cue Acc Shape Acc Texture Acc Shape Bias

ResNet50 - 0.671 0,149 0.522 0.222
ResNet50 ALC 0.161 0.112 0.050 0.684

EfficientNet-b4 - 0.701 0,291 0,417 0.411
EfficientNet-b4 ALC 0.374 0.311 0.045 0.868

CLIP - 0.540 0.363 0.177 0.671
CLIP ALC 0.452 0.365 0.088 0.868

ViT-base - 0.682 0.271 0.411 0.398
ViT-base ALC 0.338 0.298 0.039 0.884
AlexNet - 0.612 0.161 0.451 0.264
AlexNet Adv. Train 0.642 0.200 0.443 0.312

Table 10: Cue accuracy, shape accuracy, texture accuracy and shape bias for multiple models with
and without the ALC attack. In the last row we trained an AlexNet adversarially and this against the
model without the adversarial training.
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complex amplitude requires taking a square which removes the linearity. As for step 2), consider a
PSF that is a shifted Dirac pulse: convolution with this kernel shifts an image by a discrete amount.
The pixel-wise differences are therefore unbounded.

To conclude: it may be possible to ℓ2-bound ALC by working in the complex amplitude domain and
removing the possibility of image shifts. We have not done so because it relates to the unpractical
assumption of coherent illumination, which is usually only available in laboratory settings.

K Additional practical aspects

We continue here the discussion of the practicality and possible limitations of our approach, which
may be relevant to lens and system designers1.

While we can identify worst-case aberration configurations, there is no guarantee that the obtained
lens blur is related to a real lens. This can be addressed by more carefully constraining the parameter
space and search directions.

Although most of the aberrations are covered by the lens design and tolerances, the manufacturing
process itself can introduce aberrations of higher order2, which should also taken into account during
tolerancing. To illustrate this, we give a brief example. A synchro-speed polishing machine leads to a
linear combination of Fringe modes An = {9, 16, 25}, which introduces locally high gradients in the
pupil phase. The lens blur of such a lens is more irregular and stronger compared to the expected
lower-order blur from the lens design. This holds true when both lens blurs would have the same
RMS wave aberration. Therefore, the interpretation of our results with ALC should be guided with
further testing of real lenses of typical effects. Including the manufacturing process in our simulation
is a promising future research direction, which could e.g. serve as a recommendation system of which
manufacturing process to use for a given image classification model.

However, in the current definition, ALC is not integrated into an end-to-end or co-optimization
process of an actual lens design. Without this, it may still be hard to directly make use of the results
obtained by ALC for a specific lens design. ALC therefore offers only a first step into a promising
method of deep optics, and we are open for improvements and collaboration, such as testing the
integration into an actual lens design process.

1One of the authors has worked at a leading optics company for several years and discussed with expert lens
designers. The expert lens designers have confirmed the practicability and value of knowing the combination of
worst-case primary aberrations for optical lens design with ALC.

2This detail was, among others, confirmed in a personal communication with an expert optic designer.

20


	Introduction
	Optimizing Adverse Lens Corruptions
	Experimental Evaluation
	Model comparison
	Corruption Ablation Study

	Conclusion
	Datasets and Implementation Details
	Implementation Details
	Datasets

	Adverse Lens Corruptions Computation
	ALC Attack Restrictions
	Model and Dataset Comparison
	ImageNet Subsets
	Transfer Attack

	Adversarial Training
	Segmentation Experiments
	ALC Attack per Image
	Ablation on Optical Corruptions
	Texture bias
	Non-2-boundedness 
	Additional practical aspects

