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ABSTRACT

Diffusion models are powerful generative models that allow for precise control over
the characteristics of the generated samples. While these diffusion models trained
on large datasets have achieved success, there is often a need to introduce additional
controls in downstream fine-tuning processes, treating these powerful models as
pre-trained diffusion models. This work presents a novel method based on rein-
forcement learning (RL) to add such controls using an offline dataset comprising
inputs and labels. We formulate this task as an RL problem, with the classifier
learned from the offline dataset and the KL divergence against pre-trained models
serving as the reward functions. Our method, CTRL (Conditioning pre-Trained
diffusion models with Reinforcement Learning), produces soft-optimal policies
that maximize the abovementioned reward functions. We formally demonstrate
that our method enables sampling from the conditional distribution with additional
controls during inference. Our RL-based approach offers several advantages over
existing methods. Compared to classifier-free guidance, it improves sample ef-
ficiency and can greatly simplify dataset construction by leveraging conditional
independence between the inputs and additional controls. Additionally, unlike
classifier guidance, it eliminates the need to train classifiers from intermediate
states to additional controls.

1 INTRODUCTION

Diffusion models have emerged as effective generative models for capturing intricate distribu-
tions (Sohl-Dickstein et al., 2015; Ho et al., 2020). Their capabilities are further enhanced by building
conditional diffusion models p(x|c). For instance, in text-to-image generative models like DALL-
E (Ramesh et al., 2021) and Stable Diffusion (Rombach et al., 2022), c ∈ C is a prompt, and x ∈ X
is the image generated according to this prompt. While diffusion models trained on extensive datasets
have shown remarkable success, additional controls often need to be incorporated during downstream
fine-tuning when treating these powerful models as pre-trained diffusion models.

In this work, our goal is to incorporate new conditional controls into pre-trained diffusion models.
Specifically, given access to a large pre-trained model capable of modeling p(x|c) trained on extensive
datasets, we aim to condition it on an additional random variable y ∈ Y , thereby creating a generative
model p(x|c, y). To accomplish this, we utilize the pre-trained model and an offline dataset consisting
of triplets {c, x, y}. This scenario is important, as highlighted in the existing literature on computer
vision (e.g., Zhang et al. (2023)), because it enables the extension of generative capabilities with new
conditional variables without requiring retraining from scratch. Currently, classifier-free guidance
(Ho et al., 2020) is a prevailing approach for incorporating conditional controls into diffusion models,
and it has proven successful in computer vision (Zhang et al., 2023; Zhao et al., 2024). However,
its effectiveness may not extend well to other challenging problems, especially when large offline
datasets are unavailable. Indeed, the success of training conditional diffusion models via classifier-
free guidance heavily relies on such datasets (Brooks et al., 2023), which are often impractical to
obtain. In these scenarios, this method tends to struggle.

In our work, we present a new approach for adding new conditional controls via reinforcement
learning (RL) to further improve sample efficiency. Inspired by recent progress in RL-based fine-
tuning (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024), we frame the conditional generation
as an RL problem within a Markov Decision Process (MDP). In this formulation, the reward, which
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Table 1: Comparison with existing approaches. Unlike classifier guidance and its variations, our
method involves directly fine-tuning pre-trained models. We avoid the need to learn a mapping from
xt → y or rely on heuristic approximations. Additionally, while classifier-free guidance always
demands triplets {c, x, y}, our approach can leverage conditional independence (y ⊥ c|x) and only
necessitate pairs {x, y}, simplifying the construction of the offline dataset.

Methods Fine-tuning Need to learn
xt → y

Leveraging
conditional
independence

Classifier guidance (Dhariwal and Nichol, 2021) No Yes Yes
Reconstruction guidance (e.g. Ho et al. (2022);
Chung et al. (2022); Han et al. (2022)) No No Yes

Classifier-free guidance (Ho and Salimans, 2022) Yes No No

CTRL (Ours) Yes No Yes

we want to maximize, is the (conditional) log-likelihood function log p(y|x, c), and the policy,
conditioned on (c, y), corresponds to the denoising process at each time step in a diffusion model.
We formally demonstrate that, by executing the soft-optimal policy, which maximizes the reward
log p(y|x, c) with KL penalty against the pre-trained model, we can sample from the target conditional
distribution p(x|c, y) during inference. Hence, our proposed algorithm, CTRL (Conditioning pre-
Trained diffusion models with Reinforcement Learning) consists of three main steps: (1) learning a
classifier log p(y|x, c) (which will serve as our reward function in the MDP) from the offline dataset,
(2) constructing an augmented diffusion model by adding (trainable) parameters to the pre-trained
model in order to accommodate an additional label y, and (3) learning soft-optimal policy within
the aforementioned MDP during fine-tuning. Our approach is novel as it significantly diverges
from classifier-free guidance and distinguishes itself from existing RL-based fine-tuning methods by
integrating an augmented model in the fine-tuning process to support additional controls.

Our novel RL-based approach offers several advantages over existing methods for adding additional
controls. Firstly, in contrast to classifier-free guidance, which uses offline data to directly model
p(x|y, c), our method leverages offline data to model the simpler distribution p(y|x, c), improving
sample efficiency (in typical scenarios where y is lower-dimensional than x). Secondly, in typical
scenarios where the additional label y depends solely on x (e.g., the compressibility of an image
depends only on the image, not the prompt), our fine-tuning method only requires pairs {x, y},
whereas classifier-free guidance still necessitates triplets {c, x, y} from the offline dataset. This is
because the reward function simplifies to log p(y|x) due to the conditional independence y ⊥ c|x,
which gives log p(y|x, c) = log p(y|x). Furthermore, when the goal is to simultaneously add
conditioning controls on two labels, y1 and y2, and both labels only depend on x, our method requires
only pairs {x, y1} and {x, y2}. In contrast, classifier-free guidance requires quadruples {c, x, y1, y2}.
Therefore, in this manner, CTRL can also leverage the compositional nature of the mapping between
inputs and additional labels.

Our contributions can be summarized as follows. We propose an RL-based fine-tuning approach
for conditioning pre-trained diffusion models on additional labels. In comparison to classifier-free
guidance, our method uses the offline dataset in a sample-efficient manner and enables leveraging the
conditional independence assumption, which significantly simplifies the construction of the offline
dataset. Additionally, we establish a close connection to classifier guidance (Dhariwal and Nichol,
2021; Song et al., 2020), showing that it provides an alternative method for obtaining the afore-
mentioned soft-optimal policies (in ideal cases where there are no statistical/model-misspecification
errors in the algorithms). Despite this connection, our algorithm addresses common challenges in
classifier guidance, such as the need to learn classifiers at multiple noise scales in standard classi-
fier guidance and the use of fundamental approximations in some variants to avoid learning these
noisy classifiers (Chung et al., 2022; Song et al., 2022). Experimentally, we validate the superiority
of CTRL over baselines in both single-task and multi-task conditional image generation, such as
generating highly aesthetic yet compressible images, where existing methods often struggle. Table 1
summarizes the main features of the proposed algorithm compared to existing methods.
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2 RELATED WORKS

Classfier guidance. Dhariwal and Nichol (2021); Song et al. (2020) introduced classifier guidance,
a method that entails training a classifier and incorporating its gradients to guide inference (while
freezing pre-trained models). However, a notable drawback of this technique lies in the classifier’s
accuracy in predicting y from intermediate xt, resulting in cumulative errors during the diffusion
process. To mitigate this issue, several studies propose methods to circumvent it through recon-
struction, referred to as reconstruction guidance in this work. Specifically, they employ certain
approximations that map intermediate states xt back to the original input space x0, allowing the
classifier to be learned solely from x0 to y (Ho et al., 2022; Han et al., 2022; Chung et al., 2022; Finzi
et al., 2023; Bansal et al., 2023). In contrast to these works, our approach focuses on fine-tuning the
diffusion model itself rather than relying on an inference-time technique. While the strict comparison
between model fine-tuning and inference-time techniques is not feasible, we theoretically elucidate
the distinctions and connections of our approach with classifier guidance in Section 5.1.

Classfier-free guidance. Classifier-free guidance (Ho and Salimans, 2022) is a method that directly
conditions the generative process on both data and context, bypassing the need for explicit classifiers.
This methodology has been widely and effectively applied, for example, in text-to-image models
(Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022). While the original research does not
explore classifier-free guidance within the scope of fine-tuning pre-trained diffusion models, several
subsequent studies address fine-tuning scenarios Zhang et al. (2023); Xie et al. (2023). As elucidated
in Section 5.2, compared to classifier-free guidance, our approach can improve sample efficiency and
leverage conditional independence to facilitate offline dataset construction.

Fine-tuning via RL. Several previous studies have addressed the fine-tuning of diffusion models
by optimizing relevant reward functions. Methodologically, these approaches encompass supervised
learning (Lee et al., 2023; Wu et al., 2023), reinforcement learning (Black et al., 2023; Fan et al., 2023;
Uehara et al., 2024), and control-based techniques (Clark et al., 2023; Xu et al., 2023; Prabhudesai
et al., 2023; Uehara et al., 2024). While our proposal draws inspiration from these works, our
objective for fine-tuning is to tackle a distinct goal: incorporating additional controls. To achieve
this, unlike previous approaches, we employ policies with augmented parameters rather than merely
fine-tuning pre-trained models without adding any new parameters.

3 PRELIMINARIES

In this section, we introduce the problem setting, review the existing methods addressing this problem,
and discuss their disadvantages.

3.1 GOAL: CONDITIONING WITH ADDITIONAL LABELS USING OFFLINE DATA

We first define our main setting and main objective. Throughout this paper, we use Y and C to
represent condition spaces and X to denote the (Euclidean) sample space. Given the pre-trained
model, which enables us to sample from ppre(x|c) : C → ∆(X ), our goal is to add new conditional
controls y ∈ Y such that we can sample from p(x|c, y).

Pre-trained model and offline dataset. A (continuous-time) pre-trained conditional diffusion
model is characterized by the following SDE1:

dxt = fpre(t, c, xt; θ
pre)dt+ σ(t)dwt, x0 = xini, (1)

where fpre : [0, T ]× C × X → Rd is a model with parameter θ.

In training diffusion models, the parameter θpre is derived by optimizing a specific loss function on
large datasets2. We refer interested readers to Appendix A for more details on constructing these loss

1For simplicity, we consider the case where the initial distribution is a Dirac delta, as in bridge matching. The
extension of our proposal for stochastic distributions remains straightforward, as shown in (Uehara et al., 2024).

2For notational simplicity, throughout this work, we would often drop θpre.
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functions. Using the pre-trained model and following the above SDE (1) from 0 to T , we can sample
from ppre(·|c) for any condition c ∈ C.

To add additional control to a pre-trained model, as in many recent works (Dhariwal and Nichol, 2021;
Bansal et al., 2023; Epstein et al., 2023), we assume access to offline data: D = {c(i), x(i), y(i)}ni=1 ∈
C × X × Y . We denote the conditional distribution of y given x and c by p⋄(y|x, c).

Target distribution. Using the pre-trained model and the offline dataset, our goal is to obtain a
diffusion model such that we can sample from a distribution over C × Y → ∆(X ) as below:

pγ(·|c, y) :=
{p⋄(y|·, c)}γppre(·|c)∫

{p⋄(y|x, c)}γppre(x|c)µ(dx)
, (2)

where γ ∈ R+ denotes the strength of additional guidance and µ is the Lebsgue measure.

Such target distribution is extensively explored in the literature on classifier guidance and classifier-
free guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022; Nichol et al., 2021; Saharia et al.,
2022; Rombach et al., 2022). Specifically, when γ = 1, this distribution corresponds to the standard
conditional distribution p(x|c, y), which is a fundamental objective of many conditional generative
models (Dhariwal and Nichol, 2021; Ho and Salimans, 2022). Moreover, for a general γ, pγ can be
formulated via the following optimization problem:

pγ(·|c, y) = argmin
q:C×Y→∆(X )

Ex∼q(·|c,y)[−γ log p⋄(y|x, c)] + KL(q(·|c, y)∥ppre(·|c)).

This relation is clear as the objective function equals KL(q(·|c, y)∥pγ(·|c, y)) up to a constant.

Goal. As discussed, the primary goal of this research is to train a generative model capable of
simulating pγ(·|c, y). To achieve this, we introduce the following SDE:

dxt = g(t, c, y, xt) dt+ σ(t) dwt, x0 = xini, (3)

where g : [0, T ]×C×Y×X → Rd is an augmented model to add additional controls into pre-trained
models. The primary challenge involves leveraging both offline data and pre-trained model weights
to train the term g, ensuring that the marginal distribution of xT induced by the SDE (3) accurately
approximates pγ .

Notation. Let the space of trajectories x0:T be K. Conditional on c and y, we denote the measure
induced by the SDE (3) over K by Pg(·|c, y). Similarly, we use Pgt (·|c, y) and pgt (·|c, y) to represent
the marginal distribution of xt and density dPgt (τ |c, y)/dµ.
Remark 1 (Extension to the non-Euclidean space). To streamline the notation, we focus on scenarios
where X is Euclidian. However, when dealing with discrete spaces, we can still extend our discussion
by examining the discretized version from the beginning (Uehara et al., 2024, Theorem 1).

3.2 EXISTING METHODS

In this subsection, we describe two existing methods that are applicable in our context to achieve the
aforementioned goal.

3.2.1 CLASSFIER-FREE GUIDANCE

Recent works have studied fine-tuning pre-trained models with classifier-free guidance (Brooks et al.,
2023; Zhang et al., 2023; Xie et al., 2023). These methods introduce an augmented model g as
described in (3), where the weights are initialized from the pre-trained model. Fine-tuning is via
minimizing classifier-free guidance loss on the offline dataset. While successful in many applications,
these methods may struggle in scenarios where offline datasets for new conditions are limited (Huang
et al., 2021; Yellapragada et al., 2024; Giannone et al., 2024).

3.2.2 CLASSFIER GUIDANCE

Classifier guidance (Dhariwal and Nichol, 2021; Song et al., 2020) is based on the following result.
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Lemma 1 (Doob’s h-transforms (Rogers and Williams, 2000)). For any c ∈ C and y ∈ Y , by evolving
according to the following SDE from 0 to T :

dxt = {fpre(t, c, xt) + σ2(t)∇xt logExt:T∼Ppre(·|xt,c)
y′∼p⋄(·|xT ,c)

[I(y = y′)|xT , c]︸ ︷︷ ︸
AdditionalDrift:=∇xt log p(y|xt,c)

}dt+ σ(t)dwt, (4)

the marginal distribution of xT , i.e., p(xT |c, y), is equal to the target distribution pγ=1(·|c, y) (2).
Here, Ppre denotes the distribution induced by the pre-trained diffusion model (1).

This lemma suggests that to simulate the target distribution (2), we only need to construct SDE (4).
However, practical issues arise: first, training classifier p(y|xt, c) requires extensive data at each
timestep, which is cumbersome with large pre-trained models. Furthermore, accumulated inaccuracies
in drift estimates may lead to poor performance (Li and van der Schaar, 2023).

Reconstruction guidance. To mitigate these issues, several studies propose to approximate
p(y|xt, c) directly via reconstruction (Ho et al., 2022; Han et al., 2022; Chung et al., 2022; Guo
et al., 2024)3, specifically by p(y|xt, c) =

∫
p⋄(y|xT , c)p(xT |xt, c)dxT ≈ p(y|x̂T (xt, c), c), where

x̂T (xt, c) is the (expected) denoised sample given xt, c, i.e., x̂T (xt, c) = E[xT |xt, c]. Given such
an approximation, we only need to learn p⋄(y|xT , c) from data. However, this approximation may
become imprecise when P(xT |xt, c) is noisy or is difficult to estimate reliably (Chung et al., 2022).

4 CONDITIONING PRE-TRAINED DIFFUSION MODELS WITH RL

This section provides details on how our method solves the aforementioned goal with methodolog-
ical motivations. We begin with a key observation: the conditioning problem can be effectively
conceptualized as an RL problem.4 Building upon this insight, we illustrate our main algorithm.

4.1 CONDITIONING AS RL

Recall that our objective is to learn a drift term g in (3) so that the induced marginal distribution at T
(i.e., pgT ) closely matches our target distribution pγ . To achieve this, we first formulate the problem
via the following minimization:

argmin
g

KL(pgT (·|c, y)∥pγ(·|c, y)).

With some algebra, we can show that the above optimization problem is equivalent to the following:

argmin
g

Ex0:T∼Pg(·|c,y)

[
−γ log p⋄(y|x, c) + 1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

]
.

Here, recall that Pg is the measure induced by SDE (3) with a drift coefficient g. Based on this
observation, we derive the following theorem.
Theorem 1 (Conditioning as RL). Consider the following RL problem:

g⋆ := argmax
g

E (c,y)∼Π(c,y)
x0:T∼Pg(·|c,y)

[
γ log p⋄(y|xT , c)−

1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

]
,

(5)

where Π ∈ ∆(C × Y). Significantly, the marginal distribution pg
⋆

T matches our target distribution:

∀(c, y) ∈ Supp(Π); pg
⋆

T (·|c, y) = pγ(·|c, y).

Proofs are deferred to Appendix E. This theorem demonstrates that, after obtaining the optimal
drift g⋆ by solving the RL problem in (5), we can sample from the target distribution pγ(·|c, y) by
following SDE (3) from time 0 to T . In the next section, we explain how to solve (5) in practice.

3We categorize them as reconstruction guidance methods for simplicity. We note that there are many variants.
4For more details of the RL formulation, such as state space, action space, and transition function, please

refer to Section B.
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Algorithm 1 Conditioning pre-Trained diffusion models with Reinforcement Learning (CTRL)

1: Input: Pre-trained model with a drift coefficient fpre, Offline data D = {c(i), x(i), y(i)}, Ex-
ploratory distribution Π ∈ ∆(C × Y)

2: Construct an augmented model g(t, c, y, x;ψ).
3: Train a classifier p̂(y|x, c) to approximate p⋄(y|x, c) from the offline data D
4: Fine-tune the diffusion model by solving the following RL problem (e.g. using Algorithm 2):

ψ̂ = argmax
ψ

E (c,y)∼Π(c,y)
x0:T∼Pg(·|c,y;ψ)

[
γlog p̂(y|xT , c)−

1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs;ψ)∥2

σ2(s)
ds

]
where Pg(·|c, y;ψ) is an distribution induced by the SDE with a parameter ψ.

5: Output: dxt = g(t, c, y, xt; ψ̂)dt+ σ(t)dwt

4.2 ALGORITHM

Theoretically inspired by Theorem 1, we introduce Algorithm 1. It consists of three steps.

Step 1: Constructing the augmented model (Line 2). To add additional conditioning to the pre-
trained diffusion model, it is necessary to enhance the pre-trained model fpre(t, c, x; θ). We introduce
an augmented model g(t, c, y, x;ψ) with parametersψ = [θ⊤, ϕ⊤]⊤, initialized atψini = [θpre⊤,0⊤].
Here, ψ is structured as a combination of the existing parameters θ and new parameters ϕ.

Determining the specific architecture of the augmented model involves a tradeoff: adding more
new parameters enhances expressiveness but raises computational costs. In scenarios where Y is
discrete with cardinality |Y|, the most straightforward solution is to instantiate ϕ with a simple
linear embedding layer that maps each y ∈ Y to its corresponding embedding. These embeddings
are then added to every intermediate output in the diffusion SDE (i.e., xt in (3)). This method
preserves the original structure to the fullest extent while ensuring that all pre-trained weights
are fully utilized. Experimentally, we observe that this lightweight modification leads to accurate
conditional generations for complex conditioning tasks, as shown in Section 6.

Step 2: Training a calibrated classifier with offline data (Line 3). Using a function class
F ⊂ [C × X → ∆(Y)], such as a neural network, we perform maximum likelihood estimation
(MLE):

p̂(·|x, c) := argmax
r∈F

n∑
i=1

log r(y(i)|x(i), c(i)). (6)

For instance, when Y is discrete, this loss reduces to the standard cross-entropy loss. When Y is
continuous, assuming Gaussian noise, it reduces to a regression loss.

Step 3: Planning (Line 4). Equipped with a classifier, we proceed to solve the RL problem (5),
which constitutes the core of the proposed algorithm. As noted by Black et al. (2023); Fan et al.
(2023), the diffusion model can be regarded as a special Markov Decision Process (MDP) with
known transition dynamics. Thus, many types of off-the-shelf RL algorithms can be employed for
planning. In this work, inspired by (Clark et al., 2023; Prabhudesai et al., 2023), we employ direct
back-propagation, which requires differentiable. If a classifier is not differentiable, we recommend
using PPO-based methods (Schulman et al., 2017; Black et al., 2023; Fan et al., 2023). Please refer
to Appendix C for more details.

Below, we make several remarks regarding implementing CTRL in practice.
Remark 2 (Using classifier-free guidance to adjust guidance strength). Throughout the fine-tuning
process demonstrated in Algorithm 1, the guidance strength for the additional conditional control
(i.e., y) is fixed at a specific γ (see the target conditional distribution (2)). However, we note that
during inference, this guidance strength γ can be adjusted—either increased or decreased—using the
classifier-free guidance technique. Details are deferred to Appendix D.

6
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Remark 3 (Choice of exploratory distribution Π). According to Theorem 1, it is desired to improve
the coverage over C × Y during fine-tuning. For example, in practice, if Y only takes several discrete
values, we can sample y ∈ Y uniformly from these values as done in Section 6.

4.3 SOURCE OF ERRORS IN CTRL

We discuss the potential sources of error that CTRL may encounter, which will be useful for
comparison with existing methods in the next section. Additional limitations, such as computational
cost, memory complexity, and the choice of guidance strength γ, are discussed in Appendix H.

Statistical error. Statistical errors arise during the training of a classifier p̂(y|x, c) from offline data
while learning p⋄(y|x, c). A typical statistical error is given by:

E(x,c)∼loff [∥p̂(·|x, c)− p⋄(·|x, c)∥21] = O(Cap(F)/n), (7)

where loff ∈ ∆(X × C) represents the distribution of offline data, and Cap(F) denotes the size of
the function class F (Wainwright, 2019).

Model-misspecification error. Model-misspecification errors may occur during the learning of the
classifier p⋄(y|x, c) and in the augmented model if it fails to capture the optimal drift g⋆.

Optimization error. Optimization errors may occur during both the classifier training step and the
planning step.

5 ADDITIONAL COMPARISONS WITH EXISTING CONDITIONING METHODS

In this section, we further clarify the connections and comparisons between our algorithm and the
existing methods.

5.1 COMPARISON TO CLASSIFIER GUIDANCE

We explore the advantages of CTRL over classifier guidance (Dhariwal and Nichol, 2021), while
also offering theoretical insights that link the two approaches. Despite their distinct goals – classifier
guidance is an inference-time technique, whereas our method fine-tunes an augmented diffusion
model, there is a deep theoretical connection. This link is highlighted by our derivation of the
analytical expression for the optimal drift in the RL problem (5) as below.
Lemma 2 (Bridging RL-based conditioning with classifier guidance). The optimal drift term g⋆ for
RL problem (5) has the following explicit solution:
g⋆(t, c, y, xt) = fpre(t, c, xt) + σ2(t)∇xt logEPpre(·|xt,c) [(p

⋄(y|xT , c))γ |xt, c], ∀t ∈ [0, T ]

The proof of Lemma 2 is deferred to Appendix E.3. This lemma indicates that when γ = 1, the
optimal drift g∗ corresponds to the drift term obtained from Doob’s h-transform (i.e., Lemma 1),
which is a precise used formula in classifier guidance. Despite the link to classifier guidance through
Lemma 2, our algorithm is fundamentally different. Classifier guidance requires learning a predictor
from xt to y for every t ∈ T , leading to accumulated inaccuracies. In contrast, our algorithm directly
solves the RL problem (5), avoiding the need for such predictors.

In Section 3.2.2, we explore reconstruction guidance methods that also aim to circumvent predicting
y from xt. These methods propose first mapping xt to a denoised estimate x̂T (xt) and using this for
further computations. However, this approximation can be imprecise, especially over longer time
horizons. As shown in (Chung et al., 2022, Theorem 1), inherent approximation errors persist even
without statistical, model-misspecification, or optimization errors. In contrast, our algorithm avoids
such approximation errors.

5.2 COMPARISON TO CLASSIFIER-FREE GUIDANCE

We first show how CTRL leverages conditional independence to ease implementation, a feature
absent in classifier-free guidance. Finally, we discuss the improvements regarding sample (statistical)
efficiency.
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5.2.1 LEVERAGING CONDITIONAL INDEPENDENCE, COMPOSITIONALLY VIA CTRL

We discuss two scenarios where our method outperforms the classifier-free approach by exploiting
the conditional independence between inputs and additional controls.

Example 1 (Scenario Y ⊥ C|X). If a new condition Y is conditionally independent of an existing
condition C given X , meaning p⋄(y|x, c) = p(y|x). This allows CTRL to operate efficiently with
just (x, y) pairs, avoiding the need for (c, x, y) triplets in the offline dataset.

This scenario is common in practice. For example, when using the Stable Diffusion pre-trained
model (Rombach et al., 2022), where X is an image and C is a text prompt, we may also want
to condition the generations on Y , such as score functions like compressibility, aesthetic score, or
color (Black et al., 2023). These scores depend solely on the image and are independent of the prompt,
meaning Y ⊥ C|X . We further explore this scenario in our experimental analysis in Section 6.1.

Multi-task conditional generation. Multi-task conditional generation is a significant challenge,
requiring the integration of multiple controls into pre-trained models. In the following example, we
show how our method can be extended to handle this.

Example 2 (Scenario Y1 ⊥ Y2|X,C). If two conditions, Y1 and Y2, exhibit conditional independence
given X and C, such that log p(y1, y2|x, c) = log p(y1|x, c) + log p(y2|x, c), the two classifiers can
be trained separately using (c, x, y1) and (c, x, y2) triplets. Furthermore, if Y1 and Y2 are also
independent of C given X (as in Example 1), the classifiers can be trained solely with (x, y1) and
(x, y2) pairs, significantly simplifying dataset construction.

This scenario is also common in practice. For instance, with the Stable Diffusion pre-trained model,
where X is an image and C is a text prompt, additional attributes like Y1 (compressibility) and Y2
(color) depend only on the image, not the prompt. Thus, we can leverage the conditional independence
of Y1 and Y2 fromC givenX to simplify the implementation of CTRL . The effectiveness of CTRL in
this context is further validated experimentally in Section 6.2.

Can classifier-free guidance leverage conditional independence? The applicability of conditional
independence in classifier-free guidance, which directly models pγ(·|c, y), is uncertain. For instance,
when Y ⊥ C|X as in Example 1, our method only requires (x, y) pairs, while classifier-free guidance
typically needs (c, x, y) triplets. when Y1 ⊥ Y2|C,X as in Example 2, our approach utilizes triplets
(c, x, y1) and (c, x, y2). However, as far as we are concerned, quadruples (c, x, y1, y2) are necessary
for classifier-free guidance, and acquiring such data at scale could pose a bottleneck.

5.2.2 STATISTICAL EFFICIENCY

We present the rationale for our approach being more sample-efficient than classifier-free guidance.
Most importantly, we leverage a pre-trained model to sample from ppre(x|c), which is already
trained on large datasets. This allows us to focus only on learning the classifier p⋄(y|x, c) from
offline data. As a result, any statistical errors from the offline data affect only the classifier learning
step (6). In contrast, classifier-free guidance attempts to model the entire distribution pγ(·|c, y)
directly from offline data. Therefore, our method is more sample-efficient by learning only the
necessary components from the offline data.

6 EXPERIMENTS

We compare CTRL with five baselines: (1) Reconstruction Guidance. It attempts to alleviate the
approximation error of classifier guidance via reconstruction. (2) Classifier-Free guidance (Ho and
Salimans, 2022)5. (3) SMC (Sequential Monte Carlo). Recent works (Wu et al., 2024; Phillips
et al., 2024) leverage resampling techniques to approximate distributions in diffusion models across a
batch of samples (i.e., particle filtering). This method is training-free. (4) SVDD (Li et al., 2024).
It is a decoding-based method that iteratively selects preferable samples during each diffusion step
based on reward signals. For our conditioning task, we use a trained classifier as the reward function.

5Implementing the Classifier-Free baseline in our setting would require using the pre-trained diffusion
model to augment x on certain c. Please refer to Appendix G.1 for details.
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This method is also training-free and operates at inference time. (5) MPGD (He et al., 2024). This
method optimizes the predicted clean data x0 during inference based on a manifold hypothesis.
While such refinement incurs additional computational costs during inference, it does not fine-tune
diffusion model weights, remaining a training-free approach. For more detailed information on each
experiment, such as dataset, architecture, and baselines, please refer to Appendix G.

Experimental setup. For image experiments (Section 6.1, Section 6.2), we use Stable Diffusion
v1.5 (Rombach et al., 2022) as the pre-trained model ppre(x|c), here c is a text prompt (e.g., “cat” or
“dog”) and x is the corresponding image. For the additional control y, we validate compressibilities
and aesthetic scores. We defer experiments for designing DNA enhancers to Appendix F.

6.1 IMAGE: CONDITIONAL GENERATION ON COMPRESSIBILITY
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(b) Training curves.

Accuracy ↑ Macro F1 score ↑
Classifier-Free 0.33± 0.04 0.28

Reconstruction Guidance 0.45± 0.04 0.45
SMC 0.27± 0.04 0.22

MPGD 0.70± 0.04 0.72
SVDD 0.78± 0.03 0.78
CTRL 1.0± 0.0 1.0

(c) Evaluation.

Y=0

Cat Dog Horse Rabbit

Y=1

Y=2

Y=3

(d) Images generated by CTRL.

Figure 1: Results for conditioning on compressibility. Figure a plots the histogram of samples
generated by the pre-trained diffusion model. Figure b shows the mean compressibility curves during
fine-tuning, with four distinct lines representing each condition. It is evident that CTRL effectively
aligns the generated samples with their target compressibility levels via fine-tuning. Table c provides
evaluation metrics. Figure d shows images generated by a single model fine-tuned with CTRL.

We start by conditioning generations on their file sizes, specifically focusing on compressibility
6. Denoting compressibility as CP, we define 4 compressibility labels as follows: Y = 0 : CP <
−110.0; Y = 1 : −110.0 ≤ CP < −85.0; Y = 2 : −85.0 ≤ CP < −60.0; Y = 3 : CP ≥ −60.0.
Particularly, as depicted in Figure 1a, generating samples conditioned on Y = 3 is challenging due to
the infrequent occurrence of such samples from the pre-trained model.

Results. We evaluate performance across four compressibility levels using the following steps:
(1) generating samples conditioned on each Y ∈ [0, 1, 2, 3]; (2) verifying alignment between the
generated samples and their conditions; and (3) calculating classification accuracy and macro F1
score. Table 1c presents evaluation statistics. Our results show that CTRL accurately generates
samples for each condition, including the rare Y = 3 case from the pre-trained model (see Figure 1a),
notably outperforming the baselines. Figure 1d showcases diverse images with correct compressibility
levels for various prompts. Additional visualizations are available in Appendix G.6.

6Unlike standard tasks in classifier/reconstruction guidance (Chung et al., 2022), this score is non-
differentiable w.r.t. images. This score function is only dependent on the image itself.
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(a) Histogram.

Task Accuracy ↑ Macro F1 ↑
Classifier-Free CP 0.52± 0.04 0.39

AS 0.59± 0.04 0.55

Reconstruction Guidance CP 0.61± 0.04 0.55
AS 0.66± 0.04 0.62

SMC CP 0.51± 0.04 0.35
AS 0.49± 0.04 0.48

MPGD CP 0.56± 0.04 0.45
AS 0.48± 0.04 0.35

SVDD CP 0.82± 0.03 0.82
AS 0.59± 0.04 0.57

CTRL CP 0.94± 0.02 0.94
AS 0.93± 0.02 0.93

(b) Evaluation.

Y=0

Cat Monkey Rabbit Butterfly

Y=1

Y=2

Y=3

(c) Images generated by CTRL.

Figure 2: Results for multi-task conditioning. Figure a plots the histogram of samples generated by
the pre-trained diffusion model. Table b presents the evaluation statistics. Figure c displays images
generated by a single model fine-tuned with CTRL.

6.2 IMAGE: MULTI-TASK CONDITIONAL GENERATION

A more challenging setting involves multi-task conditional generation. In this experiment, in addition
to compressibility, we simultaneously aim to condition the generations on their aesthetic pleasingness.
Following prior research (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024), we employ an
aesthetic scorer implemented as a linear MLP on top of the CLIP embeddings (Radford et al., 2021),
which is trained on more than 400k human evaluations.

In this experiment, by leveraging conditional independence of Y1 and Y1 givenX (see Example 2), we
aim to fine-tune the diffusion model to generate samples with compositional conditions. Specifically,
denoting compressibility as CP and aesthetic score as AS, we define four compositional conditions
as follows: Y = 0 : AS < 5.7, CP < −70; Y = 1 : AS < 5.7, CP ≥ −70; Y = 2 :
AS ≥ 5.7, CP < −70; Y = 3 : AS ≥ 5.7, CP ≥ −70. Particularly, as depicted in Figure 2a,
generating samples conditioned on Y = 1 or Y = 3 is challenging due to the infrequent occurrence
of such samples from the pre-trained model.

Results. We follow the evaluation procedure outlined in Section 6.1, with results summarized in
Table 2b, demonstrating that CTRL outperforms all baselines across both tasks by a big margin.
Notably, CTRL can generate samples rarely produced by the pre-trained model with over 90%
accuracy, particularly for the desired class Y = 3 (highly aesthetic images with high compressibility).
Producing such images is challenging as aesthetically pleasing images typically require more storage
and thus have low compressibility. Generated images are displayed in Figure 2c. More visualizations
are provided in Appendix G.6.

7 CONCLUSION

We introduce a provable RL-based fine-tuning approach for conditioning pre-trained diffusion models
on additional controls. Compared to classifier-free guidance, our proposed method uses the offline
dataset more efficiently and is able to leverage the conditional independence assumption, thereby
greatly simplifying the construction of the offline dataset. Our approach is empirically validated
across three settings: image generation conditioned on a new task, image generation conditioned on
the composition of two new tasks, and biological sequence design.
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Reproducibility Statement. We submit the code for our image experiments as supplementary
materials. Complete proofs of our theoretical results are provided in Appendix E. Detailed in-
formation about our experiments, including dataset descriptions, model architecture, and baseline
implementations, can be found in Appendix G.
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A TRAINING DIFFUSION MODELS

In standard diffusion models, given a training dataset {x⟨j⟩} ∼ pdata(·), the goal is to construct
a transport that maps noise distribution and data distribution pdata ∈ ∆(X ) (X = Rd). More
specifically, suppose that we have an SDE 7:

dxt = f(t, xt; θ)dt+ σ(t)dwt, (8)

where f : [0, T ] × Rd → Rd is a drift coefficient, σ : [0, T ] → R is a diffusion coefficient, wt
is d-dimensional Brownian motion, and initial state x0 ∼ pini where pini ∈ ∆(X ) denotes the
initial distribution. By denoting the marginal distribution at time T by pθT (x), a standard goal in
training diffusion models is to learn the parameter θ so that pθT (x) ≈ pdata. This means we can
(approximately) sample from pdata by following the SDE (8) from 0 to T .

To train diffusion models, we first introduce a (fixed) forward reference SDE, which gradually adds
noise to pdata:

dzt = f̄(t, zt)dt+ σ̄(t)dwt, z0 ∼ pdata, (9)

where f̄ : [0, T ]×Rd → Rd is a drift coefficient, σ̄ : [0, T ]→ R is a diffusion coefficient. An example
is the classical denoising diffusion model (Ho et al., 2020), also known as the variance-preserving
(VP) process, which sets f̄ = −0.5zt, σ̄ = 1.

Now, we consider the time-reversal SDE (Anderson, 1982), which reverses the direction of SDE
while keeping the marginal distribution, as follows:

dxt =
{
−f̄(T − t, xt) +∇ log qT−t(xt)

}
dt+ σ̄(T − t)dwt, x0 ∼ N (0, Id). (10)

Here, qt(·) denotes the marginal distribution at time t for the distribution induced by the reference
SDE, and∇ log qT−t(xt) means a derivative w.r.t. xt, which is often referred to as the score function.
Furthremore, when the time horizon T is sufficiently large, zt follows Gaussian noise distribution
N (0, Id). Hence, if we could learn the score function, by following the SDE (10) starting from
Gaussian noise, we can sample from the data distribution.

Then, we aim to learn the score function from the data. By comparing the time-reversal SDE with the
original SDE, a natural parameterization is:

f(t, xt; θ) = −f̄(T − t, xt) + s(T − t, xt; θ), σ(t) = σ̄(T − t),

where s(T − t, xt; θ) is the parametrized neural network introduced to approximate the score function
∇ log qT−t(xt). Here, we can leverage the analytical form of the conditional distribution qT−t|0(·|·)
(which is a Gaussian distribution derived from the reference SDE). This approach enables us to tackle
the approximation problem via regression:

θ̂ = argmin
θ

Et∈[0,T ],z0∼pdata,zt∼qt|0(z0)

[
λ(t)

∥∥s(t, zt; θ)−∇zt log qt|0(zt|z0)∥∥2] , (11)

where λ : [0, T ]→ R is a weighting function.

7In standard diffuson models, the direction is reversed, i.e., xT corresponds to the noise distribution.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B FORMULATING FINE-TUNING DIFFUSION MODELS VIA RL

In this section, as done in Fan et al. (2023); Black et al. (2023); Uehara et al. (2024), we illustrate
how fine-tuning can be formulated as an RL problem in soft-entropy regularized MDPs, where each
denoising step of diffusion models corresponds to a policy in RL. Finally, we connect this formulation
with the objective function of our interest (5).

xT xT−1 xT−2 ... x1 x0 r
pT pT−1 pT−2 p2 p1

Figure 3: The reverse process of diffusion models.

To cast fine-tuning diffusion models as an RL problem, we start by defining the following MDP:

• The state space S and action space A correspond to the input space X .
• The transition dynamics at time t (i.e., Pt) is an identity map δ(st+1 = at).
• The reward at time t ∈ [0, · · · , T ] (i.e., rt) is provided only at T as r (down-stream reward

function); but 0 at other time steps.
• The policy at time t (i.e, πt) corresponds to pT+1−t : X → ∆(X ).
• The initial distribution at time 0 corresponds to pT+1 ∈ ∆(X ). With slight abuse of notation,

we often denote it by pT+1(·|·), while this is just pT+1(·).
• The reference policy at t (i.e., π′

t) corresponds to a denoising process in the pre-trained
model ppreT+1−t.

Below we make important remarks regarding this special MDP.
Remark 4 (Reversed time indices.). we reverse the time-evolving process to adhere to the standard
notation in diffusion models, i.e., from t = T to t = 0. Hence, st in standard MDPs corresponds to
xT+1−t in diffusion models.

Remark 5 (Known transitions.). In this formulation, unlike standard RL scenarios, the transition
dynamics are known.

Key RL Problem. Leverating the above MDPs, the objective function (5) reduces to the following:

{p⋆t }t = argmax
{pt∈[Rd→∆(Rd)]}1

t=T+1

E{pt}[r(x0)]︸ ︷︷ ︸
Reward

−αΣ1
t=T+1E{pt}[KL(pt(·|xt)∥ppret (·|xt))]︸ ︷︷ ︸

KL penalty

(12)

where the expectation E{pt}[·] is taken with respect to
∏1
t=T+1 pt(xt−1|xt), i.e., xT ∼

pT+1(·), xT−1 ∼ pT−1(· | xT−1), xT−2 ∼ pT−2(· | xT−2), · · · .
This objective is natural as it seeks to optimize sequential denoising processes to maximize down-
stream rewards while maintaining proximity to pre-trained models, also known as diffusion model
alignment in the literature. In this work, as our goal is to add additional conditioning, we use the
log-likelihood function (i.e., log p(y|x)) to serve as the final reward signal.
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C PLANNING ALGORITHM FOR CTRL

Algorithm 2 Direct back-propagation for conditioning

1: Input Batchsize n, Learning rate η, Discretization step ∆t, Exploratory distribution Π ∈
∆(C × Y).

2: Itinialize: ψ = [{θpre}⊤,0⊤]
3: for i← 1 to S do
4: We obtain n trajectories

{X⟨k⟩
0 , · · · , X⟨k⟩

T }nk=1, {Z
⟨k⟩
0 , · · · , Z⟨k⟩

T }nk=1.

following (C⟨k⟩, Y ⟨k⟩) ∼ Π(·), X⟨k⟩
0 ∼ N (0, Id), Z0 = 0, and

X
⟨k⟩
t = X

⟨k⟩
t−1 + g(t− 1, C⟨k⟩, Y ⟨k⟩, X

⟨k⟩
t−1;ψi)∆t+ σ(t)(∆wt), ∆wt ∼ N (0, (∆t)2),

Z
⟨k⟩
t = Z

⟨k⟩
t−1 +

∥g(t− 1, C⟨k⟩, Y ⟨k⟩, X
⟨k⟩
t−1;ψi)− fpre(t− 1, C⟨k⟩, X

⟨k⟩
t−1; θ

(i))∥2

2σ2(t− 1)
∆t.

5: Update a parameter:

ψi+1 = ψi + η∇ψ

{
1

n

n∑
k=1

[
γ log p̂(Y ⟨k⟩|X⟨k⟩

T , C⟨k⟩)− Z⟨k⟩
T

]} ∣∣∣∣
ψ=ψi

,

6: end for
7: Output: Parameter ψS

Inspired by (Clark et al., 2023; Prabhudesai et al., 2023), our planning algorithm, listed in Algorithm 2,
is based on direct back-propagation. This method is iterative in nature. During each iteration, we:
(1) compute the expectation over trajectories (Ex0:T∼Pg(·;ψ)) using discretization techniques such
as Euler-Maruyama; (2) directly optimize the KL-regularized objective function with respect to
parameters of the augmented model (i.e., ψ).

In practice, such computation might be memory-intensive when there are numerous discretization
steps and the diffusion models have a large number of parameters. This is because gradients would
need to be back-propagated through the diffusion process. To improve computational efficiency, we
recommend employing specific techniques, including (a) only fine-tuning LoRA (Hu et al., 2021)
modules instead of the full diffusion weights, (b) employing gradient checkpointing (Gruslys et al.,
2016; Chen et al., 2016) to conserve memory, and (c) randomly truncating gradient back-propagation
to avoid computing through all diffusion steps (Clark et al., 2023; Prabhudesai et al., 2023).
Remark 6 (PPO). In Algorithm 1, we employ direct back-propagation (i.e., Algorithm 2) for planning
(i.e., solving the RL problem (5)), which necessarily demands the differentiability of the classifier. If
the classifier is non-differentiable, we suggest using Proximal Policy Optimization (PPO) for planning,
such as Schulman et al. (2017); Black et al. (2023); Fan et al. (2023). Other parts remain unchanged.

D INFERENCE TECHNIQUE IN CLASSFIER-FREE GUIDANCE

Although the fine-tuning process sets the guidance level for the additional conditioning (i.e., y) at
a specific γ, classifier-free guidance makes it possible to adjust the guidance strength freely during
inference. Recall that the augmented model is constructed as: g(t, c, y, x;ψ) where ψ = [θ⊤, ϕ⊤]⊤.
Suppose we have obtained a drift term ĝ, parametrized by ψ̂ = [θ̂⊤, ϕ̂⊤]⊤ from running Algorithm 1.
In inference, we may alter the guidance levels by using the following drift term in the SDE (3)

gγ1,γ2(t, c, y, xt)

= g(t, ∅, ∅, xt; ψ̂) + γ1(g(t, c, ∅, xt; ψ̂)− g(t, ∅, ∅, xt; ψ̂))︸ ︷︷ ︸
Term 1: pre-trained diffusion model conditioned on C

+ γ2(g(t, c, y, xt; ψ̂)− g(t, c, ∅, xt; ψ̂))︸ ︷︷ ︸
Term 2: additional conditioning on Y

17
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where ∅ indicates the unconditional on Y or on C. In the above, both γ1 and γ2 do not necessarily need
to equal γ. They can be adjusted respectively to reflect guidance strength levels for two conditions.

E PROOFS

E.1 IMPORTANT LEMMAS

We first introduce several important lemmas to prove our main statement.

First, recall that Pg(·|c, y) is the induced distribution by the SDE:

dxt = g(t, c, y, xt)dt+ σ(t)dwt, x0 = xini

over K conditioning on c and y. Similarly, denote Ppre(·|c) by the induced distribution by the SDE:

dxt = fpre(t, c, xt)dt+ σ(t)dwt, x0 = xini

over K conditioning on c.
Lemma 3 (KL-constrained reward). The objective function in (5) is equivalent to

obj = E(c,y)∼Π,Pg(·|c,y)[γ log p
⋄(y|xT , c)−KL(Pg(·|c, y)∥Ppre(·|c)]. (13)

Proof. We calculate the KL divergence of Pg and Ppre as below

KL(Pg(·|c, y)∥Ppre(·|c) = Ex0:T∼Pg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt

]
. (14)

This is because

KL(Pg(·|c, y)∥Ppre(·|c))

= EPg(·|c,y)

[
dPg(·|c, y)
dPpre(·|c)

]
= EPg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt+

∫ T

0

{g(t, c, y, xt)− fpre(t, c, xt)}dwt

]
(Girsanov theorem)

= EPg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt

]
. (Martingale property of Itô integral)

Therefore, the objective function in (5) is equivalent to

obj = E(c,y)∼Π,Pg(·|c,y)[γ log p
⋄(y|xT , c)−KL(Pg∥Ppre)]. (15)

Optimal value function. For the RL problem (5), it is beneficial to introduce the optimal optimal
value function v⋆t (x|c, y) at any time t ∈ [0, T ], given xt = x, conditioned on parameters c and y
defined as:

v⋆t (x|c, y) = max
g

E

[
γ log p⋄(y|xT , c)−

1

2

∫ T

t

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

∣∣∣∣∣ xt = x, c, y

]
.

(16)

Specifically, we note that vT (x|c, y) = γ log p⋄(y|x, c) represents the terminal reward function (i.e.,
a loglikelihood in our MDP), while v0 represents the original objective function (5) that integrates
the entire trajectory’s KL divergence along with the terminal reward.

Below we derive the optimal value function in analytical form.
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Lemma 4 (Feynman–Kac Formulation). At any time t ∈ [0, T ], given xt = x, and conditioned on c
and y, we have the optimal value function v∗t (x|c, y) (induced by the optimal drift term g∗) as follows

exp (v⋆t (x|c, y)) = EPpre(·|c) [(p
⋄(y|xT , c))γ |xt = x, c] .

Proof. From the Hamilton–Jacobi–Bellman (HJB) equation, we have

max
u

{
σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ g · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
− ∥g − f

pre∥22
2σ2(t)

}
= 0. (17)

where x[i] is a i-th element in x. Hence, by simple algebra, we can prove that the optimal drift term
satisfies

g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)∇v⋆t (x|c, y).

By plugging the above into the HJB equation (17), we get

σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ fpre · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
+
σ2(t)∥∇v⋆t (x|c, y)∥22

2
= 0, (18)

which characterizes the optimal value function. Now, using (18), we can show

σ2(t)

2

∑
i

d2 exp(v⋆t (x|c, y))
dx[i]dx[i]

+ fpre · ∇ exp(v⋆t (x|c, y)) +
d exp(v⋆t (x|c, y))

dt

= exp (v⋆t (x|c, y))×

{
σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ fpre · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
+
σ2(t)∥∇v⋆t (x|c, y)∥22

2

}
= 0.

Therefore, to summarize, we have

σ2(t)

2

∑
i

d2 exp(v⋆t (x|c, y))
dx[i]dx[i]

+ fpre · ∇ exp(v⋆t (x|c, y)) +
d exp(v⋆t (x|c, y))

dt
= 0, (19)

v⋆T (x|c, y) = γ log p⋄(y|x, c). (20)

Finally, by invoking the Feynman-Kac formula (Shreve et al., 2004), we obtain the conclusion:

exp (v⋆t (x|c, y)) = EPpre(·|xt,c) [(p
⋄(y|xT , c))γ |xt = x, c] .

E.2 PROOF OF THEOREM 1

Firstly, we aim to show that the optimal conditional distribution over K on c and y (i.e., Pg⋆(τ |c, y))
is equivalent to

Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)
, C(c, y) := exp(v⋆0(x0|c, y))).

To do that, we need to check that the above is a valid distribution first. This is indeed valid because
the above is decomposed into

(p⋄(y|xT , c))γ · Ppre(xT |c)
C(c, y)︸ ︷︷ ︸

(α1)

×Ppre(τ |c, xT )︸ ︷︷ ︸
(α2)

, (21)

and both (α1), (α2) are valid distributions. Especially, for the term (α1), we observe

C(c, y) =

∫
(p⋄(y|xT , c))γdPpre(xT |c)) = EPpre(·|c)[(p

⋄(y|xT , c))γ ] = exp(v⋆0(x0|c, y)).

(cf. Lemma 4)
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Now, after checking (21) is a valid distribution, we calculate the KL divergence:

KL

(
Pg

⋆

(τ |c, y)
∥∥∥∥Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)

)
= KL(Pg

⋆

(τ |c, y)∥Ppre(τ |c))− EPg⋆ (·|c,y) [γ log p
⋄(y|xT , c)− logC(c, y)]

= EPg⋆ (·|c,y)

[{∫ T

0

1

2

∥g⋆(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)

}
dt− γ log p⋄(y|xT , c) + logC(c, y)

]
(cf. KL divergence (14))

= −v⋆0(x0|c, y) + logC(c, y). (Definition of optimal value function)

Therefore,

KL

(
Pg

⋆

(τ |c, y)
∥∥∥Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)

)
= −v⋆0(x0|c, y) + logC(c, y) = 0.

Hence,

Pg
⋆

(τ |c, y) = Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)
.

Marginal distribution at t. Finally, consider the marginal distribution at t. By marginalizing
before t, we get

Ppre(τ[t,T ]|c)× (p⋄(y|xT , c))γ/C(c, y).

Next, by marginalizing after t,

Ppre
t (x|c)/C(c, y)× EPpre(·|c)[(p

⋄(y|xT , c))γ |xt = x, c].

Using Feynman–Kac formulation in Lemma 4, this is equivalent to

Ppre
t (x|c) exp(v⋆t (x|c, y))/C(c, y).

Marginal distribution at T . We marginalize before T . We have the following

Ppre
T (x|c)(p⋄(y|xT , c))γ/C(c, y).

E.3 PROOF OF LEMMA 2

Recall g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)×∇xv⋆t (x|c, y) from the proof of Lemma 4, we have

g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)×∇x logEPpre(·|c) [(p
⋄(y|xT , c))γ |xt = x, c].

F ADDITIONAL EXPERIMENT: DESIGN DNA ENHANCERS CONDITIONED ON
TWO CELL LINES

In this section, we focus on the design of cell-type specific DNA enhancers, a crucial task in the
field of genomics. DNA is the molecule that carries the genetic instructions used in the growth,
development, and functioning of all living organisms. Within DNA, there are regions called cis-
regulatory elements (CREs), which regulate the expression of genes. One type of CREs is DNA
enhancers, which are short sequences that can increase the transcription of target genes, often acting
at a distance from the gene itself.

The task of cell-type specific DNA enhancer design aims to create DNA enhancers that exhibit
specific accessibility or activity in targeted cell types (Taskiran et al., 2024). This task is crucial for
precisely controlling gene expression in a cell-type-specific manner, which has broad implications for
understanding tissue-specific gene regulation and developing therapies such as gene therapy, tissue
engineering, and treatments for genetic diseases(de Almeida et al., 2024; Company et al., 2024; Gosai
et al., 2023).
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Experimental setup. For x, we use the enhancer dataset (n ≈ 700k) from (Gosai et al., 2023)
which consists of DNA sequences with a length of 200. This dataset has been extensively used in
sequence optimization (Castillo-Hair and Seelig, 2021; Ghari et al., 2023; Lal et al., 2024). To create
c and y for any sequence x, we query a binarized ATAC reward model following Lal et al. (2024)
8. This reward model was trained on binaried CATLAS scATAC (single-cell Assay for Transposase
Accessible Chromatin) data (Zhang et al., 2021). Finally, in our dataset, y ∈ (0, 1) and c ∈ (0, 1)
represent the probabilities of accessibility of the enhancer measured in two cell types.

Setting of oracles and diffusion model. We use discrete diffusion models customized for sequences
over simplex space (Avdeyev et al., 2023). To obtain the pre-trained (conditional) diffusion model,
we employ classifier-free guidance to train a conditional diffusion model p(x|c), where c is the
accessibility in cell line HepG2 and is discretized into 10 classes. For the additional control, we set y
(also discretized into 10 classes) as the accessibility in cell line SKNSH. We train the classifier p(y|x)
using an Enformer-based model (Avsec et al., 2021). For evaluation, we also query the binarized
ATAC reward model (Lal et al., 2024).

In cell type-specific enhancer design, the goal is to generate enhancers that are active in one cell type
but inactive in another (Gosai et al., 2023). In this experiment, we fine-tune a diffusion model using
HepG2 and SKNSH cell lines to generate enhancers with (1) high c and low y or (2) low c and high
y, focusing on Y = 0 and Y = 9 during inference.

Results. We evaluate performance as follows: (1) generate sequences by setting C uniformly from
[0, 1, · · · , 9] and using Y = 0 and Y = 9; (2) To assess the effectiveness of additional control on Y ,
we calculate the SKNSH score difference between Y = 0 and Y = 9, averaging the result across all
values of C. (3) For each Y , we apply Kendall’s tau test (Kendall, 1948) on the samples’ HepG2
scores and their conditions to assess the monotonic increasing trend with respect to C. We report the
tau value averaged across all values of Y .

The results are shown in Table 4. From the table, it is clear that CTRL achieves a stronger response
to the additional control y. Moreover, it retains the pre-trained model’s ability to sample based on the
old condition c.

This highlights a clear improvement over the baselines. Figure 5 presents boxplots of HepG2 and
SKNSH scores for sequences generated by our method, illustrating its ability to conditionally sample
based on both SKNSH and HepG2.

SKNSH difference ↑ Kendall’s tau ↑
Classifier-Free 0.090± 0.007 0.41

Reconstruction Guidance 0.210± 0.007 0.45
CTRL 0.299± 0.010 0.51

Figure 4: Evaluation of generated enhancers.

G DETAILS OF EXPERIMENTS

G.1 IMPLEMENTATION OF CLASSIFIER-FREE BASELINE

The effectiveness of classifier-free guidance often relies on a sufficiently large offline dataset (c, x, y).
However, in our experiments (Section 6.1 and Section 6.2), we only have access to offline datasets
(x, y) and (x, y1, y2) respectively. Thus, to implement a classifier-free guidance baseline in this con-
text, we leverage the pre-trained diffusion model for data augmentation. The procedure for Section 6.1
is outlined below. The procedure for Section 6.2 is similar.

Data augmentation. Consider the scenario where Y ⊥ C|X and we have access to ppre and offline
dataset {(x, y)}. First, we use the offline data {(x, y)} to train a classifier p̂ : X → ∆(Y). We

8We utilize an alternative reward model to label sequences because the original HepG2/K562/SKNSH scores
from the dataset (Gosai et al., 2023) are highly correlated, making it nearly impossible to conditionally generate
sequences for two distinct cell lines.
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Figure 5: HepG2 and SKNSH scores of sequences generated by CTRL.

then use p̂ to generate triplets (x, c, y) ∼ ppre(x|c)p̂(y|x) for given c. In practice, for text-to-image
diffusion models, c can be uniformly sampled from a set of prompts, such as animals. However, this
process becomes computationally demanding when applied to large pre-trained models like Stable
Diffusion(Rombach et al., 2022).

Potential limitations. Given the data augmentation strategy, several limitations arise for classifier-
free guidance. A primary concern is the accuracy of the trained classifier p̂(y|x). If the classifier
is not sufficiently accurate, the generated y values may be unreliable, compromising the quality of
the augmented triplets (x, c, y). Additionally, selecting the condition c presents challenges. While
models like Stable Diffusion (Rombach et al., 2022) are pre-trained on vast and diverse datasets
with a wide range of prompts, we are constrained to a smaller, more limited set of prompts for c
in this context. This lack of diversity reduces the representativeness of the augmented data and
may lead to mode collapse during fine-tuning—a common issue observed in fine-tuning of diffusion
models (Uehara et al., 2024).

G.2 IMPLEMENTATION OF RECONSTRUCTION GUIDANCE BASELINE

As reviewed in Section 3.2.2, reconstruction guidance baseline employs the following approximation

p(y|xt, c) =
∫
p⋄(y|xT , c)p(xT |xt, c)dxT ≈ p(y|x̂T (xt, c), c),

where x̂T (xt, c) is the (expected) denoised sample given xt, c, i.e., x̂T (xt, c) = E[xT |xt, c]. We note
that such approximation is often readily available from diffusion noise schedulers, such as DDIM
scheduler (Song et al., 2020).

Given such an approximation, we only need to learn p⋄(y|xT , c) from offline data. Accordingly, we
can leverage the trained classifiers from Algorithm 1 (see Section 4.2, Step 2).

As an inference-time technique, the choice of guidance strength is often subtle. We present ablation
studies on guidance strength in Appendix G.5. For reporting classification metrics, as shown in
Table 1c and Table 2b, we consistently select the optimal configuration for each baseline.
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G.3 IMAGES

In this subsection, we provide details of experiments in Section 6. We first explain the training details
and list hyperparameters in Table 2.

We use 4 A100 GPUs for all the image tasks. We use the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.999 and weight decay of 0.1. To ensure consistency with
previous research, in fine-tuning, we also employ training prompts that are uniformly sampled from
50 common animals (Black et al., 2023; Prabhudesai et al., 2023).

Table 2: Training hyperparameters.

Hyperparameter compressibility (Section 6.1) multi-task (Section 6.2)
Classifier-free guidance weight on prompts (i.e., c) 7.5 7.5
γ (i.e., strength of the additional guidance on y) 10 10
DDIM steps 50 50
Truncated back-propagation step K ∼ Uniform(0, 50) K ∼ Uniform(0, 50)
Learning rate for LoRA modules 1e−3 3e−4

Learning rate for the linear embeddings 1e−2 1e−2

Batch size (per gradient update) 256 512
Number of gradient updates per epoch 2 2
Epochs 15 60

Construction of the augmented score model. An important engineering aspect is how to craft the
augmented score model architecture. For most of the diffusion models, the most natural and direct
technique of adding another conditioning control is (1) augmenting the score prediction networks by
incorporating additional linear embeddings, while using the existing neural network architecture and
weights for all other parts. In our setting, we introduce a linear embedding layer that maps |Y|+ 1
class labels to embeddings in Rd, where d is the same dimension as intermediate diffusion states.
Among all embeddings, the first |Y| embeddings correspond to |Y| conditions of our interest, whereas
the last one represents the unconditional category (i.e., NULL conditioning) (2) for any y ∈ Y , the
corresponding embedding is added to the predicted score in the forward pass. During fine-tuning, the
embeddings are initialized as zeros. We only fine-tune the first |Y| embeddings, and freeze the last
one at zero as it is the unconditional label.

We note that, while it is possible to add additional conditioning by reconstructing the score networks
like ControlNet (Zhang et al., 2023), in practice it is often desired to make minimal changes to the
architecture of large diffusion models, e.g., Stable Diffusion (Rombach et al., 2022) to avoid the
burdensome re-training. It is especially important to leverage pre-trained diffusion models in our
setting where the offline dataset is limited, therefore a total retraining of model parameters can be
struggling.

Sampling. We use the DDIM sampler with 50 diffusion steps (Song et al., 2020). Since we need
to back-propagate the gradient of rewards through both the sampling process producing the latent
representation and the VAE decoder used to obtain the image, memory becomes a bottleneck. We
employ two designs to alleviate memory usage following Clark et al. (2023); Prabhudesai et al.
(2023): (1) Fine-tuning low-rank adapter (LoRA) modules (Hu et al., 2021) instead of tuning the
original diffusion weights, and (2) Gradient checkpointing for computing partial derivatives on
demand (Gruslys et al., 2016; Chen et al., 2016). The two designs make it possible to back-propagate
gradients through all 50 diffusing steps in terms of hardware.

Table 3: Architecture of compressibility classifier.

# Input Dimension Output Dimension Layer
1 C ×H ×W 64×H ×W ResidualBlock (Conv2d(3, 64, 3x3), BN, ReLU)
2 64×H ×W 128× H

2 ×
W
2 ResidualBlock (Conv2d(64, 128, 3x3), BN, ReLU)

3 128× H
2 ×

W
2 256× H

4 ×
W
4 ResidualBlock (Conv2d(128, 256, 3x3), BN, ReLU)

4 256× H
4 ×

W
4 256× 1× 1 AdaptiveAvgPool2d (1, 1)

5 256× 1× 1 256 Flatten
6 256 num classes Linear
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Table 4: Architecture of aesthetic score classifier.

# Layer Input Dimension Output Dimension

1 Linear 768 1024
2 Dropout - -
3 Linear 1024 128
4 Dropout - -
5 Linear 128 64
6 Dropout - -
7 Linear 64 16
8 Linear 16 num classes

Classifiers. In our experiments, we leverage conditional independence for both compressibility and
aesthetic scores tasks. Therefore, we only demand data samples {xi, yi}) in order to approximate
conditional classifier p(y|x, c). Specifically,

• compressibility: the classifier is implemented as a 3-layer convolutional neural network
(CNN) with residual connections and batch normalizations on top of the raw image space.
The offline dataset is constructed by labeling a subset of 10k images of the AVA dataset (Mur-
ray et al., 2012), employing JPEG compression. We train the network using Adam optimizer
for 100 epochs. Detailed architecture of the oracle can be found in Table 3.

• aesthetic scores: the classifier is implemented as an MLP on top of CLIP embeddings (Rad-
ford et al., 2021). To train the classifier, we use the full AVA dataset (Murray et al., 2012)
which includes more than 250k human evaluations. The specific neural network instruction
is listed in Table 4.

Note that in training both classifiers, we split the dataset with 80% for training and 20% for validation.
After training, we use the validation set to perform temperature scaling calibration Guo et al. (2017).

G.3.1 EVALUATING IMAGE QUALITY

We provide additional evaluation metrics for baseline methods and CTRL , specifically
BRISQUE (Mittal et al., 2012) (lower values indicate better image quality) and CLIPScore (Zheng-
wentai, 2023) (higher values reflect better text-image alignment).

As shown in Table 5, CTRL achieves better image quality than Classifier-Free Guidance and Recon-
struction Guidance while achieving the highest alignment score.

BRISQUE ↓ CLIP Score ↑
CTRL 30.8± 1.5 26.8± 0.2

Classifier-Free 33.2± 14.5 25.7± 1.0
Reconstruction Guidance 90.2± 10.1 22.8± 0.6

Table 5: Evaluation of image quality metrics for baselines and CTRL .

G.4 DNA ENHANCERS

In this subsection, we add the details of experiments in Section F. In this experiment, we used A100
GPUs and Adam optimizers. Training hyperparameters are summarized in Table 7.

Construction of the augmented score model. We augment the diffusion model tailored to biologi-
cal sequences over the simple space (Avdeyev et al., 2023) (i.e., DDSM) in the same manner as in the
image experiments: we introduce additional control through a linear embedding layer and preserve
all other components of the existing neural network architecture.
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Classifier. Following Lal et al. (2024), we implement an Enformer-based classifier. Detailed
architecture of the oracle can be found in Table 6.

Table 6: Architecture of sequence classifier.

# Layer
1-12 (Conv1D, GELU, BatchNorm, AttentionPool, Dropout)
13 TransformerBlock (Multi-head Attention, LayerNorm, Dropout)*3
14 Pointwise Conv1D, GELU, BatchNorm
15 ConvHead (Conv1D, AdaptiveAvgPool)

Table 7: Training hyperparameters.

Type Value
Batch size (per gradient update) 1024
Guidance strength on old condition c 1.0
γ (Guidance strength on new condition y) 1.0
# of diffusion steps during fine-tuning 50
# of diffusion steps during inference 100
Learning rate for UNet modules 3e−4

Learning rate for the linear embeddings 1e−1

Sampling to neural SDE Euler Maruyama
Epochs 100

G.5 ADDITIONAL RESULTS OF RECONSTRUCTION GUIDANCE BASELINE

In this subsection, we provide more results of Reconstruction Guidance for conditioning images on
compressibility (see Section 6.1).

In Figure 6, we plot the confusion matrix for samples generated by Reconstruction Guidance. For
each condition, 128 samples are generated and are evaluated. We find that this method struggles to
generate samples accurately when conditioned on intermediate labels.

Figure 6: Confusion matrix for Reconstruction Guidance.

For completeness, below we provide ablation studies on its hyper-parameters. In Table 8, we
present the classification statistics for generations across different conditions (y) and guidance levels
(γ). Recall that the four conditions are defined as follows: Y = 0 : CP < −110.0, Y = 1 :
−110.0 ≤ CP < −85.0, Y = 2 : −85.0 ≤ CP < −60.0, Y = 3 : CP ≥ −60.0.

Our analysis reveals several key insights:
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Table 8: Results of Reconstruction Guidance conditioned on compressibility. Essentially, guidance
level= 0 indicates that the generations are unconditional on Y .

Conditional control (Y ) Guidance level (γ) Accuracy ↑ Mean score

0 0 0.43 −110
0 5 0.64 −157.4
0 7.5 0.62 −148.2
0 10 0.52 −156.5
0 20 0.66 −152.5
0 50 0.69 −151.6
1 0 0.45 −110
1 5 0.14 −152.0
1 7.5 0.12 −189.7
1 10 0.08 −163.1
1 20 0.06 −169.5
1 50 0 −194.0
2 0 0.13 −110
2 5 0.02 −104.9
2 7.5 0.10 −122.1
2 10 0.12 −111.3
2 20 0.08 −157.6
2 50 0.08 −173.5
3 0 0 −110
3 5 0.46 −71.7
3 7.5 0.46 −67.6
3 10 0.53 −65.6
3 20 0.26 −112.4
3 50 0.32 −121.5

1. For Y = 0 and Y = 3, the accuracy of the generations improves as the guidance signal
strength increases. This indicates a clear positive correlation between the guidance level and
the accuracy of generation.

2. Conversely, for intermediate Y = 1 and Y = 2, guidance signals decrease generation
accuracy compared to the pre-trained model, suggesting difficulty in maintaining accuracy
within these specific compressibility intervals. The challenge in generating samples with
medium compressibility scores lies in hand-picking the guidance strength. For instance,
generating samples conditioned on Y = 2 requires compressibility scores between −85 and
−60, making it difficult to apply optimal guidance without overshooting or undershooting
the target values.

3. Regarding the mean scores, distinct patterns are observed across different conditions and
guidance levels:

• For Y = 0, mean scores become more negative with increasing guidance levels.
• For Y = 1, mean scores consistently drop with increasing guidance levels.
• For Y = 2, mean scores initially improve slightly with increasing guidance levels but

show a marked decline at γ = 20 and γ = 50, indicating a challenge in achieving the
desired compressibility range.

• For Y = 3, mean scores improve significantly with increased guidance, showing the
best results at γ = 10, but then become more negative at higher guidance levels.

In summary, these observations suggest that while guidance can be beneficial for improving accuracy
in extreme compressibility levels (Y = 0 and Y = 3), this method struggles with intermediate
conditions (Y = 1 and Y = 2) due to the narrow range of acceptable scores and the non-linear effects
of guidance strength on generation quality.

For each conditional control, samples are generated by choosing the best γ according to Table 8. We
report the evaluation statistics in Table 1c, and provide the confusion matrix in Figure 6
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G.6 ADDITIONAL VISUALIZATIONS

We provide more generated samples to illustrate the performances of CTRL in Figure 7 and Figure 8.

Y=0

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda

Y=1

Y=2

Y=3

Figure 7: More images generated by CTRL in the compressibility task.

Y=0

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda

Y=1

Y=2

Y=3

Figure 8: More images generated by CTRL in the multi-task conditional generation.
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H LIMITATIONS AND MITIGATION STRATEGIES

H.1 COMPUTATIONAL COST

Fine-tuning large pre-trained diffusion models is computationally intensive, especially in multi-task
settings. For instance, even in simpler cases, such as fine-tuning a model with a single reward
function, the process can be slow—DDPO (Black et al., 2023) requires approximately 60 A100
GPU hours for fine-tuning Stable Diffusion (Rombach et al., 2022). In contrast, our single-task
experiment Section 6.1, which conditions on four compressibility labels (a more complex task than
optimizing a single reward), is more computationally efficient, requiring only around 20 A100 GPU
hours. This demonstrates that our method is computationally efficient even when handling more
challenging conditioning tasks.

Multi-task experiments Section 6.2 are considerably more demanding, requiring around 200 A100
GPU hours. This is due to the added complexity of aligning the model with multiple control signals,
often necessitating larger batch sizes and careful balancing between tasks. As a result, multi-task
fine-tuning requires not only more GPU time but also careful balancing to prevent overfitting to
specific tasks.

Below, we discuss promising ways to help reduce the computational burden without sacrificing
performance.

Mitigation strategies. To further reduce computational costs, an effective strategy is to truncate
backpropagation to a small fixed number of steps, such as 3 or 5. As noted by (Clark et al., 2023),
truncating the gradient flow in direct backpropagation to fewer than 10 steps not only significantly
reduces computational overhead but also improves optimization stability by mitigating gradient
explosion. Interestingly, performance begins to degrade when the number of steps exceeds 10,
suggesting that shorter truncation steps (even as few as 1) can be more computationally efficient
while maintaining or even improving model performance.

Additionally, mixed precision training can be employed to further accelerate training.

H.2 MEMORY COMPLEXITY

As we have clarified in Section 4, many types of off-the-shelf RL algorithms can be used for planning.
We recommend using direct back-propagation (Clark et al., 2023) or PPO (Black et al., 2023).

For direct backpropagation, updating a single gradient requires O(L) memory, where L is the number
of discretizations. To reduce memory usage, our experiments employed techniques such as (a)
fine-tuning only LoRA (Hu et al., 2021) modules instead of the full diffusion model, (b) applying
gradient checkpointing (Gruslys et al., 2016; Chen et al., 2016), and (c) randomly truncating gradient
backpropagation. A detailed discussion of these techniques is provided in Appendix C.

If memory constraints persist, we recommend using PPO for planning, as it requires only O(1)
memory per gradient update. Employing mixed precision training can also reduce memory usage.

H.3 CHOICE OF GUIDANCE STRENGTH γ

First, note that 1/γ can be interpreted as the KL weight parameter in standard diffusion model
fine-tuning works (Fan et al., 2023; Uehara et al., 2024), where selecting an optimal KL weight
remains an open problem. As observed in these works, fine-tuning without entropy regularization
often leads to over-optimization. Therefore, introducing a KL weight is beneficial as long as it is
neither too small nor too large.

In this work, a larger γ strengthens the guidance signal of the additional control (see Section 4) but
can cause the fine-tuned model to deviate more from the pre-trained model, which is also undesired.
For both image experiments, we set γ = 10 (see Table 2), which provides a good balance. In practice,
we find that values between 5 and 20 are generally effective. Additionally, even if a smaller γ is used
during fine-tuning, we note that it is possible to freely adjust (strengthen or weaken) the guidance
strength during inference. Details can be found in Appendix D.
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