
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADDING CONDITIONAL CONTROL TO DIFFUSION MOD-
ELS WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models are powerful generative models that allow for precise control over
the characteristics of the generated samples. While these diffusion models trained
on large datasets have achieved success, there is often a need to introduce additional
controls in downstream fine-tuning processes, treating these powerful models as
pre-trained diffusion models. This work presents a novel method based on rein-
forcement learning (RL) to add such controls using an offline dataset comprising
inputs and labels. We formulate this task as an RL problem, with the classifier
learned from the offline dataset and the KL divergence against pre-trained models
serving as the reward functions. Our method, CTRL (Conditioning pre-Trained
diffusion models with Reinforcement Learning), produces soft-optimal policies
that maximize the abovementioned reward functions. We formally demonstrate
that our method enables sampling from the conditional distribution with additional
controls during inference. Our RL-based approach offers several advantages over
existing methods. Compared to classifier-free guidance, it improves sample ef-
ficiency and can greatly simplify dataset construction by leveraging conditional
independence between the inputs and additional controls. Additionally, unlike
classifier guidance, it eliminates the need to train classifiers from intermediate
states to additional controls.

1 INTRODUCTION

Diffusion models have emerged as effective generative models for capturing intricate distribu-
tions (Sohl-Dickstein et al., 2015; Ho et al., 2020). Their capabilities are further enhanced by building
conditional diffusion models p(x|c). For instance, in text-to-image generative models like DALL-
E (Ramesh et al., 2021) and Stable Diffusion (Rombach et al., 2022), c ∈ C is a prompt, and x ∈ X
is the image generated according to this prompt. While diffusion models trained on extensive datasets
have shown remarkable success, additional controls often need to be incorporated during downstream
fine-tuning when treating these powerful models as pre-trained diffusion models.

In this work, our goal is to incorporate new conditional controls into pre-trained diffusion models.
Specifically, given access to a large pre-trained model capable of modeling p(x|c) trained on extensive
datasets, we aim to condition it on an additional random variable y ∈ Y , thereby creating a generative
model p(x|c, y). To accomplish this, we utilize the pre-trained model and an offline dataset consisting
of triplets {c, x, y}. This scenario is important, as highlighted in the existing literature on computer
vision (e.g., Zhang et al. (2023)), because it enables the extension of generative capabilities with new
conditional variables without requiring retraining from scratch. Currently, classifier-free guidance
(Ho et al., 2020) is a prevailing approach for incorporating conditional controls into diffusion models,
and it has proven successful in computer vision (Zhang et al., 2023; Zhao et al., 2024). However,
its effectiveness may not extend well to other challenging problems, especially when large offline
datasets are unavailable. Indeed, the success of training conditional diffusion models via classifier-
free guidance heavily relies on such datasets (Brooks et al., 2023), which are often impractical to
obtain. In these scenarios, this method tends to struggle.

In our work, we present a new approach for adding new conditional controls via reinforcement learning
(RL) to further improve sample efficiency. Inspired by recent progress in RL-based fine-tuning (Black
et al., 2023; Fan et al., 2023), we frame the conditional generation as an RL problem within a
Markov Decision Process (MDP). In this formulation, the reward, which we want to maximize, is the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison with existing approaches. Unlike classifier guidance and its variations, our
method involves directly fine-tuning pre-trained models. We avoid the need to learn a mapping from
xt → y or rely on heuristic approximations. Additionally, while classifier-free guidance always
demands triplets {c, x, y}, our approach can leverage conditional independence (y ⊥ c|x) and only
necessitate pairs {x, y}, simplifying the construction of the offline dataset.

Methods Fine-tuning Need to learn
xt → y

Leveraging
conditional
independence

Classifier guidance (Dhariwal and Nichol, 2021) No Yes Yes
Reconstruction guidance (e.g. Ho et al. (2022);
Chung et al. (2022); Han et al. (2022)) No No Yes

Classifier-free guidance (Ho and Salimans, 2022) Yes No No

CTRL (Ours) Yes No Yes

(conditional) log-likelihood function log p(y|x, c), and the policy, conditioned on (c, y), corresponds
to the denoising process at each time step in a diffusion model. We formally demonstrate that,
by executing the soft-optimal policy, which maximizes the reward log p(y|x, c) with KL penalty
against the pre-trained model, we can sample from the target conditional distribution p(x|c, y) during
inference. Hence, our proposed algorithm, CTRL (Conditioning pre-Trained diffusion models with
Reinforcement Learning) consists of three main steps: (1) learning a classifier log p(y|x, c) (which
will serve as our reward function in the MDP) from the offline dataset, (2) constructing an augmented
diffusion model by adding (trainable) parameters to the pre-trained model in order to accommodate
an additional label y, and (3) learning soft-optimal policy within the aforementioned MDP during
fine-tuning. Our approach is novel as it significantly diverges from classifier-free guidance and
distinguishes itself from existing RL-based fine-tuning methods by integrating an augmented model
in the fine-tuning process to support additional controls.

Our novel RL-based approach offers several advantages over existing methods for adding additional
controls. Firstly, in contrast to classifier-free guidance, which uses offline data to directly model
p(x|y, c), our method leverages offline data to model the simpler distribution p(y|x, c), improving
sample efficiency (in typical scenarios where y is lower-dimensional than x). Secondly, in typical
scenarios where the additional label y depends solely on x (e.g., the compressibility of an image
depends only on the image, not the prompt), our fine-tuning method only requires pairs {x, y},
whereas classifier-free guidance still necessitates triplets {c, x, y} from the offline dataset. This is
because the reward function simplifies to log p(y|x) due to the conditional independence y ⊥ c|x,
which gives log p(y|x, c) = log p(y|x). Furthermore, when the goal is to simultaneously add
conditioning controls on two labels, y1 and y2, and both labels only depend on x, our method requires
only pairs {x, y1} and {x, y2}. In contrast, classifier-free guidance requires quadruples {c, x, y1, y2}.
Therefore, in this manner, CTRL can also leverage the compositional nature of the mapping between
inputs and additional labels.

Our contributions can be summarized as follows. We propose an RL-based fine-tuning approach
for conditioning pre-trained diffusion models on additional labels. In comparison to classifier-free
guidance, our method uses the offline dataset in a sample-efficient manner and enables leveraging the
conditional independence assumption, which significantly simplifies the construction of the offline
dataset. Additionally, we establish a close connection to classifier guidance (Dhariwal and Nichol,
2021; Song et al., 2020), showing that it provides an alternative method for obtaining the afore-
mentioned soft-optimal policies (in ideal cases where there are no statistical/model-misspecification
errors in the algorithms). Despite this connection, our algorithm addresses common challenges in
classifier guidance, such as the need to learn classifiers at multiple noise scales in standard classi-
fier guidance and the use of fundamental approximations in some variants to avoid learning these
noisy classifiers (Chung et al., 2022; Song et al., 2022). Experimentally, we validate the superiority
of CTRL over baselines in both single-task and multi-task conditional image generation, such as
generating highly aesthetic yet compressible images, where existing methods often struggle. Table 1
summarizes the main features of the proposed algorithm compared to existing methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Classfier guidance. Dhariwal and Nichol (2021); Song et al. (2020) introduced classifier guidance,
a method that entails training a classifier and incorporating its gradients to guide inference (while
freezing pre-trained models). However, a notable drawback of this technique lies in the classifier’s
accuracy in predicting y from intermediate xt, resulting in cumulative errors during the diffusion
process. To mitigate this issue, several studies propose methods to circumvent it through recon-
struction, referred to as reconstruction guidance in this work. Specifically, they employ certain
approximations that map intermediate states xt back to the original input space x0, allowing the
classifier to be learned solely from x0 to y (Ho et al., 2022; Han et al., 2022; Chung et al., 2022; Finzi
et al., 2023; Bansal et al., 2023). In contrast to these works, our approach focuses on fine-tuning the
diffusion model itself rather than relying on an inference-time technique. While the strict comparison
between model fine-tuning and inference-time techniques is not feasible, we theoretically elucidate
the distinctions and connections of our approach with classifier guidance in Section 5.1.

Classfier-free guidance. Classifier-free guidance (Ho and Salimans, 2022) is a method that directly
conditions the generative process on both data and context, bypassing the need for explicit classifiers.
This methodology has been widely and effectively applied, for example, in text-to-image models
(Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022). While the original research does not
explore classifier-free guidance within the scope of fine-tuning pre-trained diffusion models, several
subsequent studies address fine-tuning scenarios Zhang et al. (2023); Xie et al. (2023). As elucidated
in Section 5.2, compared to classifier-free guidance, our approach can improve sample efficiency and
leverage conditional independence to facilitate offline dataset construction.

Fine-tuning via RL. Several previous studies have addressed the fine-tuning of diffusion models
by optimizing relevant reward functions. Methodologically, these approaches encompass supervised
learning (Lee et al., 2023; Wu et al., 2023), reinforcement learning (Black et al., 2023; Fan et al., 2023;
Uehara et al., 2024), and control-based techniques (Clark et al., 2023; Xu et al., 2023; Prabhudesai
et al., 2023; Uehara et al., 2024). While our proposal draws inspiration from these works, our
objective for fine-tuning is to tackle a distinct goal: incorporating additional controls. To achieve
this, unlike previous approaches, we employ policies with augmented parameters rather than merely
fine-tuning pre-trained models without adding any new parameters.

3 PRELIMINARIES

In this section, we introduce the problem setting, review the existing methods addressing this problem,
and discuss their disadvantages.

3.1 GOAL: CONDITIONING WITH ADDITIONAL LABELS USING OFFLINE DATA

We first define our main setting and main objective. Throughout this paper, we use Y and C to
represent condition spaces and X to denote the (Euclidean) sample space. Given the pre-trained
model, which enables us to sample from ppre(x|c) : C → ∆(X), our goal is to add new conditional
controls y ∈ Y such that we can sample from p(x|c, y).

Pre-trained model and offline dataset. A (continuous-time) pre-trained conditional diffusion
model is characterized by the following SDE1:

dxt = fpre(t, c, xt; θ
pre)dt+ σ(t)dwt, x0 = xini, (1)

where fpre : [0, T]× C × X → Rd is a model with parameter θ.

In training diffusion models, the parameter θpre is derived by optimizing a specific loss function on
large datasets2. We refer interested readers to Appendix B for more details on constructing these loss

1For simplicity, we consider the case where the initial distribution is a Dirac delta, as in bridge matching. The
extension of our proposal for stochastic distributions remains straightforward, as shown in (Uehara et al., 2024).

2For notational simplicity, throughout this work, we would often drop θpre.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

functions. Using the pre-trained model and following the above SDE (1) from 0 to T , we can sample
from ppre(·|c) for any condition c ∈ C.

To add additional control to a pre-trained model, as in many recent works (Dhariwal and Nichol, 2021;
Bansal et al., 2023; Epstein et al., 2023), we assume access to offline data: D = {c(i), x(i), y(i)}ni=1 ∈
C × X × Y . We denote the conditional distribution of y given x and c by p⋄(y|x, c).

Target distribution. Using the pre-trained model and the offline dataset, our goal is to obtain a
diffusion model such that we can sample from a distribution over C × Y → ∆(X) as below:

pγ(·|c, y) :=
{p⋄(y|·, c)}γppre(·|c)∫

{p⋄(y|x, c)}γppre(x|c)µ(dx)
, (2)

where γ ∈ R+ denotes the strength of additional guidance and µ is the Lebsgue measure.

Such target distribution is extensively explored in the literature on classifier guidance and classifier-
free guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022; Nichol et al., 2021; Saharia et al.,
2022; Rombach et al., 2022). Specifically, when γ = 1, this distribution corresponds to the standard
conditional distribution p(x|c, y), which is a fundamental objective of many conditional generative
models (Dhariwal and Nichol, 2021; Ho and Salimans, 2022). Moreover, for a general γ, pγ can be
formulated via the following optimization problem:

pγ(·|c, y) = argmin
q:C×Y→∆(X)

Ex∼q(·|c,y)[−γ log p⋄(y|x, c)] + KL(q(·|c, y)∥ppre(·|c)).

This relation is clear as the objective function equals KL(q(·|c, y)∥pγ(·|c, y)) up to a constant.

Goal. As discussed, the primary goal of this research is to train a generative model capable of
simulating pγ(·|c, y). To achieve this, we introduce the following SDE:

dxt = g(t, c, y, xt) dt+ σ(t) dwt, x0 = xini, (3)

where g : [0, T]×C×Y×X → Rd is an augmented model to add additional controls into pre-trained
models. The primary challenge involves leveraging both offline data and pre-trained model weights
to train the term g, ensuring that the marginal distribution of xT induced by the SDE (3) accurately
approximates pγ .

Notation. Let the space of trajectories x0:T be K. Conditional on c and y, we denote the measure
induced by the SDE (3) over K by Pg(·|c, y). Similarly, we use Pgt (·|c, y) and pgt (·|c, y) to represent
the marginal distribution of xt and density dPgt (τ |c, y)/dµ.
Remark 1 (Extension to the non-Euclidean space). To streamline the notation, we focus on scenarios
where X is Euclidian. However, when dealing with discrete spaces, we can still extend our discussion
by examining the discretized version from the beginning (Uehara et al., 2024, Theorem 1).

3.2 EXISTING METHODS

In this subsection, we describe two existing methods that are applicable in our context to achieve the
aforementioned goal.

3.2.1 CLASSFIER-FREE GUIDANCE

Recent works have studied fine-tuning pre-trained models with classifier-free guidance (Brooks et al.,
2023; Zhang et al., 2023; Xie et al., 2023). These methods introduce an augmented model g as
described in (3), where the weights are initialized from the pre-trained model. Fine-tuning is via
minimizing classifier-free guidance loss on the offline dataset. While successful in many applications,
these methods may struggle in scenarios where offline datasets for new conditions are limited (Huang
et al., 2021; Yellapragada et al., 2024; Giannone et al., 2024).

3.2.2 CLASSFIER GUIDANCE

Classifier guidance (Dhariwal and Nichol, 2021; Song et al., 2020) is based on the following result.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 1 (Doob’s h-transforms (Rogers and Williams, 2000)). For any c ∈ C and y ∈ Y , by evolving
according to the following SDE from 0 to T :

dxt = {fpre(t, c, xt) + σ2(t)∇xt logExt:T∼Ppre(·|xt,c)
y′∼p⋄(·|xT ,c)

[I(y = y′)|xT , c]︸ ︷︷ ︸
AdditionalDrift:=∇xt log p(y|xt,c)

}dt+ σ(t)dwt, (4)

the marginal distribution of xT , i.e., p(xT |c, y), is equal to the target distribution pγ=1(·|c, y) (2).
Here, Ppre denotes the distribution induced by the pre-trained diffusion model (1).

This lemma suggests that to simulate the target distribution (2), we only need to construct SDE (4).
However, practical issues arise: first, training classifier p(y|xt, c) requires extensive data at each
timestep, which is cumbersome with large pre-trained models. Furthermore, accumulated inaccuracies
in drift estimates may lead to poor performance (Li and van der Schaar, 2023).

Reconstruction guidance. To mitigate these issues, several studies propose to approximate
p(y|xt, c) directly via reconstruction (Ho et al., 2022; Han et al., 2022; Chung et al., 2022; Guo
et al., 2024)3, specifically by p(y|xt, c) =

∫
p⋄(y|xT , c)p(xT |xt, c)dxT ≈ p(y|x̂T (xt, c), c), where

x̂T (xt, c) is the (expected) denoised sample given xt, c, i.e., x̂T (xt, c) = E[xT |xt, c]. Given such
an approximation, we only need to learn p⋄(y|xT , c) from data. However, this approximation may
become imprecise when P(xT |xt, c) is noisy or is difficult to estimate reliably (Chung et al., 2022).

4 CONDITIONING PRE-TRAINED DIFFUSION MODELS WITH RL

This section provides details on how our method solves the aforementioned goal with methodolog-
ical motivations. We begin with a key observation: the conditioning problem can be effectively
conceptualized as an RL problem. Building upon this insight, we illustrate our main algorithm.

4.1 CONDITIONING AS RL

Recall that our objective is to learn a drift term g in (3) so that the induced marginal distribution at T
(i.e., pgT) closely matches our target distribution pγ . To achieve this, we first formulate the problem
via the following minimization:

argmin
g

KL(pgT (·|c, y)∥pγ(·|c, y)).

With some algebra, we can show that the above optimization problem is equivalent to the following:

argmin
g

Ex0:T∼Pg(·|c,y)

[
−γ log p⋄(y|x, c) + 1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

]
.

Here, recall that Pg is the measure induced by SDE (3) with a drift coefficient g. Based on this
observation, we derive the following theorem.

Theorem 1 (Conditioning as RL). Consider the following RL problem:

g⋆ := argmax
g

E (c,y)∼Π(c,y)
x0:T∼Pg(·|c,y)

[
γ log p⋄(y|xT , c)−

1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

]
,

(5)

where Π ∈ ∆(C × Y). Significantly, the marginal distribution pg
⋆

T matches our target distribution:

∀(c, y) ∈ Supp(Π); pg
⋆

T (·|c, y) = pγ(·|c, y).

Proofs are deferred to Appendix D. This theorem demonstrates that, after obtaining the optimal
drift g⋆ by solving the RL problem in (5), we can sample from the target distribution pγ(·|c, y) by
following SDE (3) from time 0 to T . In the next section, we explain how to solve (5) in practice.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Conditioning pre-Trained diffusion models with Reinforcement Learning (CTRL)

1: Input: Pre-trained model with a drift coefficient fpre, Offline data D = {c(i), x(i), y(i)}, Ex-
ploratory distribution Π ∈ ∆(C × Y)

2: Construct an augmented model g(t, c, y, x;ψ).
3: Train a classifier p̂(y|x, c) to approximate p⋄(y|x, c) from the offline data D
4: Fine-tune the diffusion model by solving the following RL problem (e.g. using Algorithm 2):

ψ̂ = argmax
ψ

E (c,y)∼Π(c,y)
x0:T∼Pg(·|c,y;ψ)

[
γlog p̂(y|xT , c)−

1

2

∫ T

0

∥fpre(s, c, xs)− g(s, c, y, xs;ψ)∥2

σ2(s)
ds

]
where Pg(·|c, y;ψ) is an distribution induced by the SDE with a parameter ψ.

5: Output: dxt = g(t, c, y, xt; ψ̂)dt+ σ(t)dwt

4.2 ALGORITHM

Theoretically inspired by Theorem 1, we introduce Algorithm 1. It consists of three steps.

Step 1: Constructing the augmented model (Line 2). To add additional conditioning to the pre-
trained diffusion model, it is necessary to enhance the pre-trained model fpre(t, c, x; θ). We introduce
an augmented model g(t, c, y, x;ψ) with parametersψ = [θ⊤, ϕ⊤]⊤, initialized atψini = [θpre⊤,0⊤].
Here, ψ is structured as a combination of the existing parameters θ and new parameters ϕ.

Determining the specific architecture of the augmented model involves a tradeoff: adding more
new parameters enhances expressiveness but raises computational costs. In scenarios where Y is
discrete with cardinality |Y|, the most straightforward solution is to instantiate ϕ with a simple
linear embedding layer that maps each y ∈ Y to its corresponding embedding. These embeddings
are then added to every intermediate output in the diffusion SDE (i.e., xt in (3)). This method
preserves the original structure to the fullest extent while ensuring that all pre-trained weights
are fully utilized. Experimentally, we observe that this lightweight modification leads to accurate
conditional generations for complex conditioning tasks, as shown in Section 6.

Step 2: Training a calibrated classifier with offline data (Line 3). Using a function class
F ⊂ [C × X → ∆(Y)], such as a neural network, we perform maximum likelihood estimation
(MLE):

p̂(·|x, c) := argmax
r∈F

n∑
i=1

log r(y(i)|x(i), c(i)). (6)

For instance, when Y is discrete, this loss reduces to the standard cross-entropy loss. When Y is
continuous, assuming Gaussian noise, it reduces to a regression loss.

Step 3: Planning (Line 4). Equipped with a classifier, we proceed to solve the RL problem (5),
which constitutes the core of the proposed algorithm. As noted by Black et al. (2023); Fan et al.
(2023), the diffusion model can be regarded as a special Markov Decision Process (MDP) with known
transition dynamics. Thus, it is technically feasible to employ any off-the-shelf RL algorithms. In this
work, inspired by (Clark et al., 2023; Prabhudesai et al., 2023), we employ direct back-propagation,
which requires differentiable. If a classifier is not differentiable, we recommend using PPO-based
methods (Black et al., 2023; Fan et al., 2023). Please refer to Appendix A for more details.

Below, we make several remarks regarding implementing CTRL in practice.
Remark 2 (Using classifier-free guidance to adjust guidance strength). Throughout the fine-tuning
process demonstrated in Algorithm 1, the guidance strength for the additional conditional control
(i.e., y) is fixed at a specific γ (see the target conditional distribution (2)). However, we note that
during inference, this guidance strength γ can be adjusted—either increased or decreased—using the
classifier-free guidance technique. Details are deferred to Appendix C.

3We categorize them as reconstruction guidance methods for simplicity. We note that there are many variants.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark 3 (Choice of exploratory distribution Π). According to Theorem 1, it is desired to improve
the coverage over C × Y during fine-tuning. For example, in practice, if Y only takes several discrete
values, we can sample y ∈ Y uniformly from these values as done in Section 6.

4.3 SOURCE OF ERRORS IN CTRL

We discuss the potential sources of error that CTRL may encounter, which will be useful for
comparison with existing methods in the next section. Additional limitations, such as computational
cost, memory complexity, and the choice of guidance strength γ, are discussed in Appendix G.

Statistical error. Statistical errors arise during the training of a classifier p̂(y|x, c) from offline data
while learning p⋄(y|x, c). A typical statistical error is given by:

E(x,c)∼loff [∥p̂(·|x, c)− p⋄(·|x, c)∥21] = O(Cap(F)/n), (7)

where loff ∈ ∆(X × C) represents the distribution of offline data, and Cap(F) denotes the size of
the function class F (Wainwright, 2019).

Model-misspecification error. Model-misspecification errors may occur during the learning of the
classifier p⋄(y|x, c) and in the augmented model if it fails to capture the optimal drift g⋆.

Optimization error. Optimization errors may occur during both the classifier training step and the
planning step.

5 ADDITIONAL COMPARISONS WITH EXISTING CONDITIONING METHODS

In this section, we further clarify the connections and comparisons between our algorithm and the
existing methods.

5.1 COMPARISON TO CLASSIFIER GUIDANCE

We explore the advantages of CTRL over classifier guidance (Dhariwal and Nichol, 2021), while
also offering theoretical insights that link the two approaches. Despite their distinct goals – classifier
guidance is an inference-time technique, whereas our method fine-tunes an augmented diffusion
model, there is a deep theoretical connection. This link is highlighted by our derivation of the
analytical expression for the optimal drift in the RL problem (5) as below.
Lemma 2 (Bridging RL-based conditioning with classifier guidance). The optimal drift term g⋆ for
RL problem (5) has the following explicit solution:
g⋆(t, c, y, xt) = fpre(t, c, xt) + σ2(t)∇xt logEPpre(·|xt,c) [(p

⋄(y|xT , c))γ |xt, c], ∀t ∈ [0, T]

The proof of Lemma 2 is deferred to Appendix D.3. This lemma indicates that when γ = 1, the
optimal drift g∗ corresponds to the drift term obtained from Doob’s h-transform (i.e., Lemma 1),
which is a precise used formula in classifier guidance. Despite the link to classifier guidance through
Lemma 2, our algorithm is fundamentally different. Classifier guidance requires learning a predictor
from xt to y for every t ∈ T , leading to accumulated inaccuracies. In contrast, our algorithm directly
solves the RL problem (5), avoiding the need for such predictors.

In Section 3.2.2, we explore reconstruction guidance methods that also aim to circumvent predicting
y from xt. These methods propose first mapping xt to a denoised estimate x̂T (xt) and using this for
further computations. However, this approximation can be imprecise, especially over longer time
horizons. As shown in (Chung et al., 2022, Theorem 1), inherent approximation errors persist even
without statistical, model-misspecification, or optimization errors. In contrast, our algorithm avoids
such approximation errors.

5.2 COMPARISON TO CLASSIFIER-FREE GUIDANCE

We first show how CTRL leverages conditional independence to ease implementation, a feature
absent in classifier-free guidance. Finally, we discuss the improvements regarding sample (statistical)
efficiency.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2.1 LEVERAGING CONDITIONAL INDEPENDENCE, COMPOSITIONALLY VIA CTRL

We discuss two scenarios where our method outperforms the classifier-free approach by exploiting
the conditional independence between inputs and additional controls.

Example 1 (Scenario Y ⊥ C|X). If a new condition Y is conditionally independent of an existing
condition C given X , meaning p⋄(y|x, c) = p(y|x). This allows CTRL to operate efficiently with
just (x, y) pairs, avoiding the need for (c, x, y) triplets in the offline dataset.

This scenario is common in practice. For example, when using the Stable Diffusion pre-trained
model (Rombach et al., 2022), where X is an image and C is a text prompt, we may also want
to condition the generations on Y , such as score functions like compressibility, aesthetic score, or
color (Black et al., 2023). These scores depend solely on the image and are independent of the prompt,
meaning Y ⊥ C|X . We further explore this scenario in our experimental analysis in Section 6.1.

Multi-task conditional generation. Multi-task conditional generation is a significant challenge,
requiring the integration of multiple controls into pre-trained models. In the following example, we
show how our method can be extended to handle this.

Example 2 (Scenario Y1 ⊥ Y2|X,C). If two conditions, Y1 and Y2, exhibit conditional independence
given X and C, such that log p(y1, y2|x, c) = log p(y1|x, c) + log p(y2|x, c), the two classifiers can
be trained separately using (c, x, y1) and (c, x, y2) triplets. Furthermore, if Y1 and Y2 are also
independent of C given X (as in Example 1), the classifiers can be trained solely with (x, y1) and
(x, y2) pairs, significantly simplifying dataset construction.

This scenario is also common in practice. For instance, with the Stable Diffusion pre-trained model,
where X is an image and C is a text prompt, additional attributes like Y1 (compressibility) and Y2
(color) depend only on the image, not the prompt. Thus, we can leverage the conditional independence
of Y1 and Y2 fromC givenX to simplify the implementation of CTRL . The effectiveness of CTRL in
this context is further validated experimentally in Section 6.2.

Can classifier-free guidance leverage conditional independence? The applicability of conditional
independence in classifier-free guidance, which directly models pγ(·|c, y), is uncertain. For instance,
when Y ⊥ C|X as in Example 1, our method only requires (x, y) pairs, while classifier-free guidance
typically needs (c, x, y) triplets. when Y1 ⊥ Y2|C,X as in Example 2, our approach utilizes triplets
(c, x, y1) and (c, x, y2). However, as far as we are concerned, quadruples (c, x, y1, y2) are necessary
for classifier-free guidance, and acquiring such data at scale could pose a bottleneck.

5.2.2 STATISTICAL EFFICIENCY

We present the rationale for our approach being more sample-efficient than classifier-free guidance.
Most importantly, we leverage a pre-trained model to sample from ppre(x|c), which is already
trained on large datasets. This allows us to focus only on learning the classifier p⋄(y|x, c) from
offline data. As a result, any statistical errors from the offline data affect only the classifier learning
step (6). In contrast, classifier-free guidance attempts to model the entire distribution pγ(·|c, y)
directly from offline data. Therefore, our method is more sample-efficient by learning only the
necessary components from the offline data.

6 EXPERIMENTS

We compare CTRL with two baselines: (1) Reconstruction Guidance. It attempts to alleviate the
approximation error of classifier guidance via reconstruction. (2) Classifier-Free guidance (Ho
and Salimans, 2022)4. Both methods are widely used for conditioning generative models and are
reviewed in detail in Section 3.2. For more detailed information on each experiment, such as dataset,
architecture, and baselines, please refer to Appendix F.

4Implementing the Classifier-Free baseline in our setting would require using the pre-trained diffusion
model to augment x on certain c. Please refer to Appendix F.1 for details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Experimental setup. For image experiments (Section 6.1, Section 6.2), we use Stable Diffusion
v1.5 (Rombach et al., 2022) as the pre-trained model ppre(x|c), here c is a text prompt (e.g., “cat” or
“dog”) and x is the corresponding image. For the additional control y, we validate compressibilities
and aesthetic scores. We defer experiments for designing DNA enhancers to Appendix E.

6.1 IMAGE: CONDITIONAL GENERATION ON COMPRESSIBILITY

0 1 2 3
Label (Y)

0

100

200

300

400

Fr
eq

ue
nc

y

(a) Histogram.

0 1500 3000 4500 6000
Reward Queries

160

140

120

100

80

60

40

20

C
om

pr
es

si
bi

lit
y

Y=0 Y=1 Y=2 Y=3

(b) Training curves.

Accuracy ↑ Macro F1 score ↑
Classifier-Free 0.33± 0.04 0.28

Reconstruction Guidance 0.45± 0.04 0.45
CTRL 1.0± 0.0 1.0

(c) Evaluation.

Y=0

Cat Dog Horse Rabbit

Y=1

Y=2

Y=3

(d) Images generated by CTRL.

Figure 1: Results for conditioning on compressibility. Figure a plots the histogram of samples
generated by the pre-trained diffusion model. Figure b shows the mean compressibility curves during
fine-tuning, with four distinct lines representing each condition. It is evident that CTRL effectively
aligns the generated samples with their target compressibility levels via fine-tuning. Table c provides
evaluation metrics. Figure d shows images generated by a single model fine-tuned with CTRL.

We start by conditioning generations on their file sizes, specifically focusing on compressibility
5. Denoting compressibility as CP, we define 4 compressibility labels as follows: Y = 0 : CP <
−110.0; Y = 1 : −110.0 ≤ CP < −85.0; Y = 2 : −85.0 ≤ CP < −60.0; Y = 3 : CP ≥ −60.0.
Particularly, as depicted in Figure 1a, generating samples conditioned on Y = 3 is challenging due to
the infrequent occurrence of such samples from the pre-trained model.

Results. We evaluate performance across four compressibility levels using the following steps:
(1) generating samples conditioned on each Y ∈ [0, 1, 2, 3]; (2) verifying alignment between the
generated samples and their conditions; and (3) calculating classification accuracy and macro F1
score. Table 1c presents evaluation statistics. Our results show that CTRL accurately generates
samples for each condition, including the rare Y = 3 case from the pre-trained model (see Figure 1a),
notably outperforming the baselines. Figure 1d showcases diverse images with correct compressibility
levels for various prompts. Additional visualizations are available in Appendix F.6.

6.2 IMAGE: MULTI-TASK CONDITIONAL GENERATION

A more challenging setting involves multi-task conditional generation. In this experiment, in addition
to compressibility, we simultaneously aim to condition the generations on their aesthetic pleasingness.
Following prior research (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024), we employ an
aesthetic scorer implemented as a linear MLP on top of the CLIP embeddings (Radford et al., 2021),
which is trained on more than 400k human evaluations.

5Unlike standard tasks in classifier/reconstruction guidance (Chung et al., 2022), this score is non-
differentiable w.r.t. images. This score function is only dependent on the image itself.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3
Label (Y)

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(a) Histogram.

Task Accuracy ↑ Macro F1 ↑
Classifier-Free CP 0.52± 0.04 0.39

AS 0.59± 0.04 0.55

Reconstruction Guidance CP 0.61± 0.04 0.55
AS 0.66± 0.04 0.62

CTRL CP 0.94± 0.02 0.94
AS 0.93± 0.02 0.93

(b) Evaluation.

Y=0

Cat Monkey Rabbit Butterfly

Y=1

Y=2

Y=3

(c) Images generated by CTRL.

Figure 2: Results for multi-task conditioning. Figure a plots the histogram of samples generated by
the pre-trained diffusion model. Table b presents the evaluation statistics. Figure c displays images
generated by a single model fine-tuned with CTRL.

In this experiment, by leveraging conditional independence of Y1 and Y1 givenX (see Example 2), we
aim to fine-tune the diffusion model to generate samples with compositional conditions. Specifically,
denoting compressibility as CP and aesthetic score as AS, we define four compositional conditions
as follows: Y = 0 : AS < 5.7, CP < −70; Y = 1 : AS < 5.7, CP ≥ −70; Y = 2 :
AS ≥ 5.7, CP < −70; Y = 3 : AS ≥ 5.7, CP ≥ −70. Particularly, as depicted in Figure 2a,
generating samples conditioned on Y = 1 or Y = 3 is challenging due to the infrequent occurrence
of such samples from the pre-trained model.

Results. We follow the evaluation procedure outlined in Section 6.1, with results summarized in
Table 2b, demonstrating that CTRL outperforms all baselines across both tasks by a big margin.
Notably, CTRL can generate samples rarely produced by the pre-trained model with over 90%
accuracy, particularly for the desired class Y = 3 (highly aesthetic images with high compressibility).
Producing such images is challenging as aesthetically pleasing images typically require more storage
and thus have low compressibility. Generated images are displayed in Figure 2c. More visualizations
are provided in Appendix F.6.

7 CONCLUSION

We introduce a provable RL-based fine-tuning approach for conditioning pre-trained diffusion models
on additional controls. Compared to classifier-free guidance, our proposed method uses the offline
dataset more efficiently and is able to leverage the conditional independence assumption, thereby
greatly simplifying the construction of the offline dataset. Our approach is empirically validated
across three settings: image generation conditioned on a new task, image generation conditioned on
the composition of two new tasks, and biological sequence design.

Reproducibility Statement. We submit the code for our image experiments as supplementary
materials. Complete proofs of our theoretical results are provided in Appendix D. Detailed in-
formation about our experiments, including dataset descriptions, model architecture, and baseline
implementations, can be found in Appendix F.

REFERENCES

Anderson, B. D. (1982). Reverse-time diffusion equation models. Stochastic Processes and their
Applications 12(3), 313–326.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. In International Conference on Machine Learning, pp. 1276–1301.
PMLR.

Avsec, Ž., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley (2021). Effective gene expression prediction from sequence
by integrating long-range interactions. Nature methods 18(10), 1196–1203.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning.

Brooks, T., A. Holynski, and A. A. Efros (2023). Instructpix2pix: Learning to follow image editing
instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402.

Castillo-Hair, S. M. and G. Seelig (2021). Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research 55(1), 24–34.

Chen, T., B. Xu, C. Zhang, and C. Guestrin (2016). Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174.

Chung, H., J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye (2022). Diffusion posterior sampling
for general noisy inverse problems. arXiv preprint arXiv:2209.14687.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Company, C., M. J. Schmitt, Y. Dramaretska, M. Serresi, S. Kertalli, B. Jiang, J.-A. Yin, A. Aguzzi,
I. Barozzi, and G. Gargiulo (2024). Logical design of synthetic cis-regulatory dna for genetic
tracing of cell identities and state changes. Nature Communications 15(1), 897.

de Almeida, B. P., C. Schaub, M. Pagani, S. Secchia, E. E. Furlong, and A. Stark (2024). Targeted
design of synthetic enhancers for selected tissues in the drosophila embryo. Nature 626(7997),
207–211.

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780–8794.

Epstein, D., A. Jabri, B. Poole, A. Efros, and A. Holynski (2023). Diffusion self-guidance for
controllable image generation. Advances in Neural Information Processing Systems 36, 16222–
16239.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Finzi, M. A., A. Boral, A. G. Wilson, F. Sha, and L. Zepeda-Núñez (2023). User-defined event
sampling and uncertainty quantification in diffusion models for physical dynamical systems. In
International Conference on Machine Learning, pp. 10136–10152. PMLR.

Ghari, P. M., A. Tseng, G. Eraslan, R. Lopez, T. Biancalani, G. Scalia, and E. Hajiramezanali (2023).
Generative flow networks assisted biological sequence editing. In NeurIPS 2023 Generative AI
and Biology (GenBio) Workshop.

Giannone, G., A. Srivastava, O. Winther, and F. Ahmed (2024). Aligning optimization trajectories with
diffusion models for constrained design generation. Advances in Neural Information Processing
Systems 36.

Gosai, S. J., R. I. Castro, N. Fuentes, J. C. Butts, S. Kales, R. R. Noche, K. Mouri, P. C. Sabeti, S. K.
Reilly, and R. Tewhey (2023). Machine-guided design of synthetic cell type-specific cis-regulatory
elements. bioRxiv.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gruslys, A., R. Munos, I. Danihelka, M. Lanctot, and A. Graves (2016). Memory-efficient backprop-
agation through time. Advances in neural information processing systems 29.

Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger (2017). On calibration of modern neural networks.
In International conference on machine learning, pp. 1321–1330. PMLR.

Guo, Y., H. Yuan, Y. Yang, M. Chen, and M. Wang (2024). Gradient guidance for diffusion models:
An optimization perspective. arXiv preprint arXiv:2404.14743.

Han, X., H. Zheng, and M. Zhou (2022). Card: Classification and regression diffusion models.
Advances in Neural Information Processing Systems 35, 18100–18115.

Ho, J., A. Jain, and P. Abbeel (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems 33, 6840–6851.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet (2022). Video diffusion
models. Advances in Neural Information Processing Systems 35, 8633–8646.

Hu, E. J., Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen (2021). Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Huang, K., T. Fu, W. Gao, Y. Zhao, Y. H. Roohani, J. Leskovec, C. W. Coley, C. Xiao, J. Sun, and
M. Zitnik (2021). Therapeutics data commons: Machine learning datasets and tasks for drug
discovery and development. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Kendall, M. G. (1948). Rank correlation methods.

Lal, A., D. Garfield, T. Biancalani, and G. Eraslan (2024). reglm: Designing realistic regulatory dna
with autoregressive language models. bioRxiv, 2024–02.

Lee, K., H. Liu, M. Ryu, O. Watkins, Y. Du, C. Boutilier, P. Abbeel, M. Ghavamzadeh, and S. S. Gu
(2023). Aligning text-to-image models using human feedback. arXiv preprint arXiv:2302.12192.

Li, Y. and M. van der Schaar (2023). On error propagation of diffusion models. In The Twelfth
International Conference on Learning Representations.

Loshchilov, I. and F. Hutter (2019). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Murray, N., L. Marchesotti, and F. Perronnin (2012). Ava: A large-scale database for aesthetic visual
analysis. In 2012 IEEE conference on computer vision and pattern recognition, pp. 2408–2415.
IEEE.

Nichol, A., P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen
(2021). Glide: Towards photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever (2021). Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.

Ramesh, A., M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever (2021). Zero-
shot text-to-image generation. In International conference on machine learning, pp. 8821–8831.
Pmlr.

Rogers, L. C. G. and D. Williams (2000). Diffusions, Markov processes and martingales: Volume 2,
Itô calculus, Volume 2. Cambridge university press.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer (2022). High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695.

Saharia, C., W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, et al. (2022). Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information processing systems 35, 36479–36494.

Shreve, S. E. et al. (2004). Stochastic calculus for finance II: Continuous-time models, Volume 11.
Springer.

Sohl-Dickstein, J., E. Weiss, N. Maheswaranathan, and S. Ganguli (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, J., A. Vahdat, M. Mardani, and J. Kautz (2022). Pseudoinverse-guided diffusion models for
inverse problems. In International Conference on Learning Representations.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Taskiran, I. I., K. I. Spanier, H. Dickmänken, N. Kempynck, A. Pančı́ková, E. C. Ekşi, G. Hulselmans,
J. N. Ismail, K. Theunis, R. Vandepoel, et al. (2024). Cell-type-directed design of synthetic
enhancers. Nature 626(7997), 212–220.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Bian-
calani, and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-
regularized control. arXiv preprint arXiv:2402.15194.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, S. Levine,
and T. Biancalani (2024). Feedback efficient online fine-tuning of diffusion models. arXiv preprint
arXiv:2402.16359.

Uehara, M., Y. Zhao, E. Hajiramezanali, G. Scalia, G. Eraslan, A. Lal, S. Levine, and T. Biancalani
(2024). Bridging model-based optimization and generative modeling via conservative fine-tuning
of diffusion models. arXiv preprint arXiv:2405.19673.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, Volume 48.
Cambridge university press.

Wu, X., K. Sun, F. Zhu, R. Zhao, and H. Li (2023). Better aligning text-to-image models with human
preference. arXiv preprint arXiv:2303.14420.

Xie, E., L. Yao, H. Shi, Z. Liu, D. Zhou, Z. Liu, J. Li, and Z. Li (2023). Difffit: Unlocking
transferability of large diffusion models via simple parameter-efficient fine-tuning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4230–4239.

Xu, J., X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong (2023). Imagereward: Learning
and evaluating human preferences for text-to-image generation. arXiv preprint arXiv:2304.05977.

Yellapragada, S., A. Graikos, P. Prasanna, T. Kurc, J. Saltz, and D. Samaras (2024). Pathldm: Text
conditioned latent diffusion model for histopathology. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 5182–5191.

Zhang, K., J. D. Hocker, M. Miller, X. Hou, J. Chiou, O. B. Poirion, Y. Qiu, Y. E. Li, K. J. Gaulton,
A. Wang, et al. (2021). A single-cell atlas of chromatin accessibility in the human genome.
Cell 184(24), 5985–6001.

Zhang, L., A. Rao, and M. Agrawala (2023). Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3836–3847.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhang, Z., L. Han, A. Ghosh, D. N. Metaxas, and J. Ren (2023). Sine: Single image editing with
text-to-image diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6027–6037.

Zhao, S., D. Chen, Y.-C. Chen, J. Bao, S. Hao, L. Yuan, and K.-Y. K. Wong (2024). Uni-controlnet:
All-in-one control to text-to-image diffusion models. Advances in Neural Information Processing
Systems 36.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PLANNING ALGORITHM

Algorithm 2 Direct back-propagation for conditioning

1: Input Batch size n, Learning rate η, Discretization step ∆t, Exploratory distribution Π ∈
∆(C × Y).

2: Itinialize: ψ = [{θpre}⊤,0⊤]
3: for i← 1 to S do
4: We obtain n trajectories

{X⟨k⟩
0 , · · · , X⟨k⟩

T }nk=1, {Z
⟨k⟩
0 , · · · , Z⟨k⟩

T }nk=1.

following (C⟨k⟩, Y ⟨k⟩) ∼ Π(·), X⟨k⟩
0 ∼ N (0, Id), Z0 = 0, and

X
⟨k⟩
t = X

⟨k⟩
t−1 + g(t− 1, C⟨k⟩, Y ⟨k⟩, X

⟨k⟩
t−1;ψi)∆t+ σ(t)(∆wt), ∆wt ∼ N (0, (∆t)2),

Z
⟨k⟩
t = Z

⟨k⟩
t−1 +

∥g(t− 1, C⟨k⟩, Y ⟨k⟩, X
⟨k⟩
t−1;ψi)− fpre(t− 1, C⟨k⟩, X

⟨k⟩
t−1; θ

(i))∥2

2σ2(t− 1)
∆t.

5: Update a parameter:

ψi+1 = ψi + η∇ψ

{
1

n

n∑
k=1

[
γ log p̂(Y ⟨k⟩|X⟨k⟩

T , C⟨k⟩)− Z⟨k⟩
T

]} ∣∣∣∣
ψ=ψi

,

6: end for
7: Output: Parameter ψS

Inspired by (Clark et al., 2023; Prabhudesai et al., 2023), our planning algorithm, listed in Algorithm 2,
is based on direct back-propagation. This method is iterative in nature. During each iteration, we:
(1) compute the expectation over trajectories (Ex0:T∼Pg(·;ψ)) using discretization techniques such
as Euler-Maruyama; (2) directly optimize the KL-regularized objective function with respect to
parameters of the augmented model (i.e., ψ).

In practice, such computation might be memory-intensive when there are numerous discretization
steps and the diffusion models have a large number of parameters. This is because gradients would
need to be back-propagated through the diffusion process. To improve computational efficiency, we
recommend employing specific techniques, including (a) only fine-tuning LoRA (Hu et al., 2021)
modules instead of the full diffusion weights, (b) employing gradient checkpointing (Gruslys et al.,
2016; Chen et al., 2016) to conserve memory, and (c) randomly truncating gradient back-propagation
to avoid computing through all diffusion steps (Clark et al., 2023; Prabhudesai et al., 2023).

Remark 4 (PPO). In Algorithm 1, we employ direct back-propagation (i.e., Algorithm 2) for planning
(i.e., solving the RL problem (5)), which necessarily demands the differentiability of the classifier. If
the classifier is non-differentiable, we suggest using Proximal Policy Optimization (PPO) for planning,
such as Black et al. (2023); Fan et al. (2023). Other parts remain unchanged.

B TRAINING DIFFUSION MODELS

In standard diffusion models, given a training dataset {x⟨j⟩} ∼ pdata(·), the goal is to construct
a transport that maps noise distribution and data distribution pdata ∈ ∆(X) (X = Rd). More
specifically, suppose that we have an SDE 6:

dxt = f(t, xt; θ)dt+ σ(t)dwt, (8)

where f : [0, T] × Rd → Rd is a drift coefficient, σ : [0, T] → R is a diffusion coefficient, wt
is d-dimensional Brownian motion, and initial state x0 ∼ pini where pini ∈ ∆(X) denotes the

6In standard diffuson models, the direction is reversed, i.e., xT corresponds to the noise distribution.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

initial distribution. By denoting the marginal distribution at time T by pθT (x), a standard goal in
training diffusion models is to learn the parameter θ so that pθT (x) ≈ pdata. This means we can
(approximately) sample from pdata by following the SDE (8) from 0 to T .

To train diffusion models, we first introduce a (fixed) forward reference SDE, which gradually adds
noise to pdata:

dzt = f̄(t, zt)dt+ σ̄(t)dwt, z0 ∼ pdata, (9)

where f̄ : [0, T]×Rd → Rd is a drift coefficient, σ̄ : [0, T]→ R is a diffusion coefficient. An example
is the classical denoising diffusion model (Ho et al., 2020), also known as the variance-preserving
(VP) process, which sets f̄ = −0.5zt, σ̄ = 1.

Now, we consider the time-reversal SDE (Anderson, 1982), which reverses the direction of SDE
while keeping the marginal distribution, as follows:

dxt =
{
−f̄(T − t, xt) +∇ log qT−t(xt)

}
dt+ σ̄(T − t)dwt, x0 ∼ N (0, Id). (10)

Here, qt(·) denotes the marginal distribution at time t for the distribution induced by the reference
SDE, and∇ log qT−t(xt) means a derivative w.r.t. xt, which is often referred to as the score function.
Furthremore, when the time horizon T is sufficiently large, zt follows Gaussian noise distribution
N (0, Id). Hence, if we could learn the score function, by following the SDE (10) starting from
Gaussian noise, we can sample from the data distribution.

Then, we aim to learn the score function from the data. By comparing the time-reversal SDE with the
original SDE, a natural parameterization is:

f(t, xt; θ) = −f̄(T − t, xt) + s(T − t, xt; θ), σ(t) = σ̄(T − t),

where s(T − t, xt; θ) is the parametrized neural network introduced to approximate the score function
∇ log qT−t(xt). Here, we can leverage the analytical form of the conditional distribution qT−t|0(·|·)
(which is a Gaussian distribution derived from the reference SDE). This approach enables us to tackle
the approximation problem via regression:

θ̂ = argmin
θ

Et∈[0,T],z0∼pdata,zt∼qt|0(z0)

[
λ(t)

∥∥s(t, zt; θ)−∇zt log qt|0(zt|z0)∥∥2] , (11)

where λ : [0, T]→ R is a weighting function.

C INFERENCE TECHNIQUE IN CLASSFIER-FREE GUIDANCE

Although the fine-tuning process sets the guidance level for the additional conditioning (i.e., y) at
a specific γ, classifier-free guidance makes it possible to adjust the guidance strength freely during
inference. Recall that the augmented model is constructed as: g(t, c, y, x;ψ) where ψ = [θ⊤, ϕ⊤]⊤.
Suppose we have obtained a drift term ĝ, parametrized by ψ̂ = [θ̂⊤, ϕ̂⊤]⊤ from running Algorithm 1.
In inference, we may alter the guidance levels by using the following drift term in the SDE (3)

gγ1,γ2(t, c, y, xt)

= g(t, ∅, ∅, xt; ψ̂) + γ1(g(t, c, ∅, xt; ψ̂)− g(t, ∅, ∅, xt; ψ̂))︸ ︷︷ ︸
Term 1: pre-trained diffusion model conditioned on C

+ γ2(g(t, c, y, xt; ψ̂)− g(t, c, ∅, xt; ψ̂))︸ ︷︷ ︸
Term 2: additional conditioning on Y

where ∅ indicates the unconditional on Y or on C. In the above, both γ1 and γ2 do not necessarily need
to equal γ. They can be adjusted respectively to reflect guidance strength levels for two conditions.

D PROOFS

D.1 IMPORTANT LEMMAS

We first introduce several important lemmas to prove our main statement.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

First, recall that Pg(·|c, y) is the induced distribution by the SDE:

dxt = g(t, c, y, xt)dt+ σ(t)dwt, x0 = xini

over K conditioning on c and y. Similarly, denote Ppre(·|c) by the induced distribution by the SDE:

dxt = fpre(t, c, xt)dt+ σ(t)dwt, x0 = xini

over K conditioning on c.
Lemma 3 (KL-constrained reward). The objective function in (5) is equivalent to

obj = E(c,y)∼Π,Pg(·|c,y)[γ log p
⋄(y|xT , c)−KL(Pg(·|c, y)∥Ppre(·|c)]. (12)

Proof. We calculate the KL divergence of Pg and Ppre as below

KL(Pg(·|c, y)∥Ppre(·|c) = Ex0:T∼Pg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt

]
. (13)

This is because

KL(Pg(·|c, y)∥Ppre(·|c))

= EPg(·|c,y)

[
dPg(·|c, y)
dPpre(·|c)

]
= EPg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt+

∫ T

0

{g(t, c, y, xt)− fpre(t, c, xt)}dwt

]
(Girsanov theorem)

= EPg(·|c,y)

[∫ T

0

1

2

∥g(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)
dt

]
. (Martingale property of Itô integral)

Therefore, the objective function in (5) is equivalent to

obj = E(c,y)∼Π,Pg(·|c,y)[γ log p
⋄(y|xT , c)−KL(Pg∥Ppre)]. (14)

Optimal value function. For the RL problem (5), it is beneficial to introduce the optimal optimal
value function v⋆t (x|c, y) at any time t ∈ [0, T], given xt = x, conditioned on parameters c and y
defined as:

v⋆t (x|c, y) = max
g

E

[
γ log p⋄(y|xT , c)−

1

2

∫ T

t

∥fpre(s, c, xs)− g(s, c, y, xs)∥2

σ2(s)
ds

∣∣∣∣∣ xt = x, c, y

]
.

(15)

Specifically, we note that vT (x|c, y) = γ log p⋄(y|x, c) represents the terminal reward function (i.e.,
a loglikelihood in our MDP), while v0 represents the original objective function (5) that integrates
the entire trajectory’s KL divergence along with the terminal reward.

Below we derive the optimal value function in analytical form.
Lemma 4 (Feynman–Kac Formulation). At any time t ∈ [0, T], given xt = x, and conditioned on c
and y, we have the optimal value function v∗t (x|c, y) (induced by the optimal drift term g∗) as follows

exp (v⋆t (x|c, y)) = EPpre(·|c) [(p
⋄(y|xT , c))γ |xt = x, c] .

Proof. From the Hamilton–Jacobi–Bellman (HJB) equation, we have

max
u

{
σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ g · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
− ∥g − f

pre∥22
2σ2(t)

}
= 0. (16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where x[i] is a i-th element in x. Hence, by simple algebra, we can prove that the optimal drift term
satisfies

g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)∇v⋆t (x|c, y).
By plugging the above into the HJB equation (16), we get

σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ fpre · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
+
σ2(t)∥∇v⋆t (x|c, y)∥22

2
= 0, (17)

which characterizes the optimal value function. Now, using (17), we can show

σ2(t)

2

∑
i

d2 exp(v⋆t (x|c, y))
dx[i]dx[i]

+ fpre · ∇ exp(v⋆t (x|c, y)) +
d exp(v⋆t (x|c, y))

dt

= exp (v⋆t (x|c, y))×

{
σ2(t)

2

∑
i

d2v⋆t (x|c, y)
dx[i]dx[i]

+ fpre · ∇v⋆t (x|c, y) +
dv⋆t (x|c, y)

dt
+
σ2(t)∥∇v⋆t (x|c, y)∥22

2

}
= 0.

Therefore, to summarize, we have

σ2(t)

2

∑
i

d2 exp(v⋆t (x|c, y))
dx[i]dx[i]

+ fpre · ∇ exp(v⋆t (x|c, y)) +
d exp(v⋆t (x|c, y))

dt
= 0, (18)

v⋆T (x|c, y) = γ log p⋄(y|x, c). (19)

Finally, by invoking the Feynman-Kac formula (Shreve et al., 2004), we obtain the conclusion:

exp (v⋆t (x|c, y)) = EPpre(·|xt,c) [(p
⋄(y|xT , c))γ |xt = x, c] .

D.2 PROOF OF THEOREM 1

Firstly, we aim to show that the optimal conditional distribution over K on c and y (i.e., Pg⋆(τ |c, y))
is equivalent to

Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)
, C(c, y) := exp(v⋆0(x0|c, y))).

To do that, we need to check that the above is a valid distribution first. This is indeed valid because
the above is decomposed into

(p⋄(y|xT , c))γ · Ppre(xT |c)
C(c, y)︸ ︷︷ ︸

(α1)

×Ppre(τ |c, xT)︸ ︷︷ ︸
(α2)

, (20)

and both (α1), (α2) are valid distributions. Especially, for the term (α1), we observe

C(c, y) =

∫
(p⋄(y|xT , c))γdPpre(xT |c)) = EPpre(·|c)[(p

⋄(y|xT , c))γ] = exp(v⋆0(x0|c, y)).

(cf. Lemma 4)

Now, after checking (20) is a valid distribution, we calculate the KL divergence:

KL

(
Pg

⋆

(τ |c, y)
∥∥∥∥Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)

)
= KL(Pg

⋆

(τ |c, y)∥Ppre(τ |c))− EPg⋆ (·|c,y) [γ log p
⋄(y|xT , c)− logC(c, y)]

= EPg⋆ (·|c,y)

[{∫ T

0

1

2

∥g⋆(t, c, y, xt)− fpre(t, c, xt)∥2

σ2(t)

}
dt− γ log p⋄(y|xT , c) + logC(c, y)

]
(cf. KL divergence (13))

= −v⋆0(x0|c, y) + logC(c, y). (Definition of optimal value function)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Therefore,

KL

(
Pg

⋆

(τ |c, y)
∥∥∥Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)

)
= −v⋆0(x0|c, y) + logC(c, y) = 0.

Hence,

Pg
⋆

(τ |c, y) = Ppre(τ |c)(p⋄(y|xT , c))γ

C(c, y)
.

Marginal distribution at t. Finally, consider the marginal distribution at t. By marginalizing
before t, we get

Ppre(τ[t,T]|c)× (p⋄(y|xT , c))γ/C(c, y).

Next, by marginalizing after t,

Ppre
t (x|c)/C(c, y)× EPpre(·|c)[(p

⋄(y|xT , c))γ |xt = x, c].

Using Feynman–Kac formulation in Lemma 4, this is equivalent to

Ppre
t (x|c) exp(v⋆t (x|c, y))/C(c, y).

Marginal distribution at T . We marginalize before T . We have the following

Ppre
T (x|c)(p⋄(y|xT , c))γ/C(c, y).

D.3 PROOF OF LEMMA 2

Recall g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)×∇xv⋆t (x|c, y) from the proof of Lemma 4, we have

g⋆(t, c, y, x) = fpre(t, c, x) + σ2(t)×∇x logEPpre(·|c) [(p
⋄(y|xT , c))γ |xt = x, c].

E ADDITIONAL EXPERIMENT: DESIGN DNA ENHANCERS CONDITIONED ON
TWO CELL LINES

In this section, we focus on the design of cell-type specific DNA enhancers, a crucial task in the
field of genomics. DNA is the molecule that carries the genetic instructions used in the growth,
development, and functioning of all living organisms. Within DNA, there are regions called cis-
regulatory elements (CREs), which regulate the expression of genes. One type of CREs is DNA
enhancers, which are short sequences that can increase the transcription of target genes, often acting
at a distance from the gene itself.

The task of cell-type specific DNA enhancer design aims to create DNA enhancers that exhibit
specific accessibility or activity in targeted cell types (Taskiran et al., 2024). This task is crucial for
precisely controlling gene expression in a cell-type-specific manner, which has broad implications for
understanding tissue-specific gene regulation and developing therapies such as gene therapy, tissue
engineering, and treatments for genetic diseases(de Almeida et al., 2024; Company et al., 2024; Gosai
et al., 2023).

Experimental setup. For x, we use the enhancer dataset (n ≈ 700k) from (Gosai et al., 2023)
which consists of DNA sequences with a length of 200. This dataset has been extensively used in
sequence optimization (Castillo-Hair and Seelig, 2021; Ghari et al., 2023; Lal et al., 2024). To create
c and y for any sequence x, we query a binarized ATAC reward model following Lal et al. (2024)
7. This reward model was trained on binaried CATLAS scATAC (single-cell Assay for Transposase
Accessible Chromatin) data (Zhang et al., 2021). Finally, in our dataset, y ∈ (0, 1) and c ∈ (0, 1)
represent the probabilities of accessibility of the enhancer measured in two cell types.

7We utilize an alternative reward model to label sequences because the original HepG2/K562/SKNSH scores
from the dataset (Gosai et al., 2023) are highly correlated, making it nearly impossible to conditionally generate
sequences for two distinct cell lines.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Setting of oracles and diffusion model. We use discrete diffusion models customized for sequences
over simplex space (Avdeyev et al., 2023). To obtain the pre-trained (conditional) diffusion model,
we employ classifier-free guidance to train a conditional diffusion model p(x|c), where c is the
accessibility in cell line HepG2 and is discretized into 10 classes. For the additional control, we set y
(also discretized into 10 classes) as the accessibility in cell line SKNSH. We train the classifier p(y|x)
using an Enformer-based model (Avsec et al., 2021). For evaluation, we also query the binarized
ATAC reward model (Lal et al., 2024).

In cell type-specific enhancer design, the goal is to generate enhancers that are active in one cell type
but inactive in another (Gosai et al., 2023). In this experiment, we fine-tune a diffusion model using
HepG2 and SKNSH cell lines to generate enhancers with (1) high c and low y or (2) low c and high
y, focusing on Y = 0 and Y = 9 during inference.

Results. We evaluate performance as follows: (1) generate sequences by setting C uniformly from
[0, 1, · · · , 9] and using Y = 0 and Y = 9; (2) To assess the effectiveness of additional control on Y ,
we calculate the SKNSH score difference between Y = 0 and Y = 9, averaging the result across all
values of C. (3) For each Y , we apply Kendall’s tau test (Kendall, 1948) on the samples’ HepG2
scores and their conditions to assess the monotonic increasing trend with respect to C. We report the
tau value averaged across all values of Y .

The results are shown in Table 3. From the table, it is clear that CTRL achieves a stronger response
to the additional control y. Moreover, it retains the pre-trained model’s ability to sample based on the
old condition c.

This highlights a clear improvement over the baselines. Figure 4 presents boxplots of HepG2 and
SKNSH scores for sequences generated by our method, illustrating its ability to conditionally sample
based on both SKNSH and HepG2.

SKNSH difference ↑ Kendall’s tau ↑
Classifier-Free 0.090± 0.007 0.41

Reconstruction Guidance 0.210± 0.007 0.45
CTRL 0.299± 0.010 0.51

Figure 3: Evaluation of generated enhancers.

Figure 4: HepG2 and SKNSH scores of sequences generated by CTRL.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F DETAILS OF EXPERIMENTS

F.1 IMPLEMENTATION OF CLASSIFIER-FREE BASELINE

The effectiveness of classifier-free guidance often relies on a sufficiently large offline dataset (c, x, y).
However, in our experiments (Section 6.1 and Section 6.2), we only have access to offline datasets
(x, y) and (x, y1, y2) respectively. Thus, to implement a classifier-free guidance baseline in this con-
text, we leverage the pre-trained diffusion model for data augmentation. The procedure for Section 6.1
is outlined below. The procedure for Section 6.2 is similar.

Data augmentation. Consider the scenario where Y ⊥ C|X and we have access to ppre and offline
dataset {(x, y)}. First, we use the offline data {(x, y)} to train a classifier p̂ : X → ∆(Y). We
then use p̂ to generate triplets (x, c, y) ∼ ppre(x|c)p̂(y|x) for given c. In practice, for text-to-image
diffusion models, c can be uniformly sampled from a set of prompts, such as animals. However, this
process becomes computationally demanding when applied to large pre-trained models like Stable
Diffusion(Rombach et al., 2022).

Potential limitations. Given the data augmentation strategy, several limitations arise for classifier-
free guidance. A primary concern is the accuracy of the trained classifier p̂(y|x). If the classifier
is not sufficiently accurate, the generated y values may be unreliable, compromising the quality of
the augmented triplets (x, c, y). Additionally, selecting the condition c presents challenges. While
models like Stable Diffusion (Rombach et al., 2022) are pre-trained on vast and diverse datasets
with a wide range of prompts, we are constrained to a smaller, more limited set of prompts for c
in this context. This lack of diversity reduces the representativeness of the augmented data and
may lead to mode collapse during fine-tuning—a common issue observed in fine-tuning of diffusion
models (Uehara et al., 2024).

F.2 IMPLEMENTATION OF RECONSTRUCTION GUIDANCE BASELINE

As reviewed in Section 3.2.2, reconstruction guidance baseline employs the following approximation

p(y|xt, c) =
∫
p⋄(y|xT , c)p(xT |xt, c)dxT ≈ p(y|x̂T (xt, c), c),

where x̂T (xt, c) is the (expected) denoised sample given xt, c, i.e., x̂T (xt, c) = E[xT |xt, c]. We note
that such approximation is often readily available from diffusion noise schedulers, such as DDIM
scheduler (Song et al., 2020).

Given such an approximation, we only need to learn p⋄(y|xT , c) from offline data. Accordingly, we
can leverage the trained classifiers from Algorithm 1 (see Section 4.2, Step 2).

As an inference-time technique, the choice of guidance strength is often subtle. We present ablation
studies on guidance strength in Appendix F.5. For reporting classification metrics, as shown in
Table 1c and Table 2b, we consistently select the optimal configuration for each baseline.

F.3 IMAGES

In this subsection, we provide details of experiments in Section 6. We first explain the training details
and list hyperparameters in Table 2.

We use 4 A100 GPUs for all the image tasks. We use the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.999 and weight decay of 0.1. To ensure consistency with
previous research, in fine-tuning, we also employ training prompts that are uniformly sampled from
50 common animals (Black et al., 2023; Prabhudesai et al., 2023).

Construction of the augmented score model. An important engineering aspect is how to craft the
augmented score model architecture. For most of the diffusion models, the most natural and direct
technique of adding another conditioning control is (1) augmenting the score prediction networks by
incorporating additional linear embeddings, while using the existing neural network architecture and
weights for all other parts. In our setting, we introduce a linear embedding layer that maps |Y|+ 1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: Training hyperparameters.

Hyperparameter compressibility (Section 6.1) multi-task (Section 6.2)
Classifier-free guidance weight on prompts (i.e., c) 7.5 7.5
γ (i.e., strength of the additional guidance on y) 10 10
DDIM steps 50 50
Truncated back-propagation step K ∼ Uniform(0, 50) K ∼ Uniform(0, 50)
Learning rate for LoRA modules 1e−3 3e−4

Learning rate for the linear embeddings 1e−2 1e−2

Batch size (per gradient update) 256 512
Number of gradient updates per epoch 2 2
Epochs 15 60

class labels to embeddings in Rd, where d is the same dimension as intermediate diffusion states.
Among all embeddings, the first |Y| embeddings correspond to |Y| conditions of our interest, whereas
the last one represents the unconditional category (i.e., NULL conditioning) (2) for any y ∈ Y , the
corresponding embedding is added to the predicted score in the forward pass. During fine-tuning, the
embeddings are initialized as zeros. We only fine-tune the first |Y| embeddings, and freeze the last
one at zero as it is the unconditional label.

We note that, while it is possible to add additional conditioning by reconstructing the score networks
like ControlNet (Zhang et al., 2023), in practice it is often desired to make minimal changes to the
architecture of large diffusion models, e.g., Stable Diffusion (Rombach et al., 2022) to avoid the
burdensome re-training. It is especially important to leverage pre-trained diffusion models in our
setting where the offline dataset is limited, therefore a total retraining of model parameters can be
struggling.

Sampling. We use the DDIM sampler with 50 diffusion steps (Song et al., 2020). Since we need
to back-propagate the gradient of rewards through both the sampling process producing the latent
representation and the VAE decoder used to obtain the image, memory becomes a bottleneck. We
employ two designs to alleviate memory usage following Clark et al. (2023); Prabhudesai et al.
(2023): (1) Fine-tuning low-rank adapter (LoRA) modules (Hu et al., 2021) instead of tuning the
original diffusion weights, and (2) Gradient checkpointing for computing partial derivatives on
demand (Gruslys et al., 2016; Chen et al., 2016). The two designs make it possible to back-propagate
gradients through all 50 diffusing steps in terms of hardware.

Table 3: Architecture of compressibility classifier.

Input Dimension Output Dimension Layer
1 C ×H ×W 64×H ×W ResidualBlock (Conv2d(3, 64, 3x3), BN, ReLU)
2 64×H ×W 128× H

2 ×
W
2 ResidualBlock (Conv2d(64, 128, 3x3), BN, ReLU)

3 128× H
2 ×

W
2 256× H

4 ×
W
4 ResidualBlock (Conv2d(128, 256, 3x3), BN, ReLU)

4 256× H
4 ×

W
4 256× 1× 1 AdaptiveAvgPool2d (1, 1)

5 256× 1× 1 256 Flatten
6 256 num classes Linear

Table 4: Architecture of aesthetic score classifier.

Layer Input Dimension Output Dimension

1 Linear 768 1024
2 Dropout - -
3 Linear 1024 128
4 Dropout - -
5 Linear 128 64
6 Dropout - -
7 Linear 64 16
8 Linear 16 num classes

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Classifiers. In our experiments, we leverage conditional independence for both compressibility and
aesthetic scores tasks. Therefore, we only demand data samples {xi, yi}) in order to approximate
conditional classifier p(y|x, c). Specifically,

• compressibility: the classifier is implemented as a 3-layer convolutional neural network
(CNN) with residual connections and batch normalizations on top of the raw image space.
The offline dataset is constructed by labeling a subset of 10k images of the AVA dataset (Mur-
ray et al., 2012), employing JPEG compression. We train the network using Adam optimizer
for 100 epochs. Detailed architecture of the oracle can be found in Table 3.

• aesthetic scores: the classifier is implemented as an MLP on top of CLIP embeddings (Rad-
ford et al., 2021). To train the classifier, we use the full AVA dataset (Murray et al., 2012)
which includes more than 250k human evaluations. The specific neural network instruction
is listed in Table 4.

Note that in training both classifiers, we split the dataset with 80% for training and 20% for validation.
After training, we use the validation set to perform temperature scaling calibration Guo et al. (2017).

F.4 DNA ENHANCERS

In this subsection, we add the details of experiments in Section E. In this experiment, we used A100
GPUs and Adam optimizers. Training hyperparameters are summarized in Table 6.

Construction of the augmented score model. We augment the diffusion model tailored to biologi-
cal sequences over the simple space (Avdeyev et al., 2023) (i.e., DDSM) in the same manner as in the
image experiments: we introduce additional control through a linear embedding layer and preserve
all other components of the existing neural network architecture.

Classifier. Following Lal et al. (2024), we implement an Enformer-based classifier. Detailed
architecture of the oracle can be found in Table 5.

Table 5: Architecture of sequence classifier.

Layer
1-12 (Conv1D, GELU, BatchNorm, AttentionPool, Dropout)
13 TransformerBlock (Multi-head Attention, LayerNorm, Dropout)*3
14 Pointwise Conv1D, GELU, BatchNorm
15 ConvHead (Conv1D, AdaptiveAvgPool)

Table 6: Training hyperparameters.

Type Value
Batch size (per gradient update) 1024
Guidance strength on old condition c 1.0
γ (Guidance strength on new condition y) 1.0
of diffusion steps during fine-tuning 50
of diffusion steps during inference 100
Learning rate for UNet modules 3e−4

Learning rate for the linear embeddings 1e−1

Sampling to neural SDE Euler Maruyama
Epochs 100

F.5 ADDITIONAL RESULTS OF RECONSTRUCTION GUIDANCE BASELINE

In this subsection, we provide more results of Reconstruction Guidance for conditioning images on
compressibility (see Section 6.1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In Figure 5, we plot the confusion matrix for samples generated by Reconstruction Guidance. For
each condition, 128 samples are generated and are evaluated. We find that this method struggles to
generate samples accurately when conditioned on intermediate labels.

Figure 5: Confusion matrix for Reconstruction Guidance.

Table 7: Results of Reconstruction Guidance conditioned on compressibility. Essentially, guidance
level= 0 indicates that the generations are unconditional on Y .

Conditional control (Y) Guidance level (γ) Accuracy ↑ Mean score

0 0 0.43 −110
0 5 0.64 −157.4
0 7.5 0.62 −148.2
0 10 0.52 −156.5
0 20 0.66 −152.5
0 50 0.69 −151.6
1 0 0.45 −110
1 5 0.14 −152.0
1 7.5 0.12 −189.7
1 10 0.08 −163.1
1 20 0.06 −169.5
1 50 0 −194.0
2 0 0.13 −110
2 5 0.02 −104.9
2 7.5 0.10 −122.1
2 10 0.12 −111.3
2 20 0.08 −157.6
2 50 0.08 −173.5
3 0 0 −110
3 5 0.46 −71.7
3 7.5 0.46 −67.6
3 10 0.53 −65.6
3 20 0.26 −112.4
3 50 0.32 −121.5

For completeness, below we provide ablation studies on its hyper-parameters. In Table 7, we
present the classification statistics for generations across different conditions (y) and guidance levels
(γ). Recall that the four conditions are defined as follows: Y = 0 : CP < −110.0, Y = 1 :
−110.0 ≤ CP < −85.0, Y = 2 : −85.0 ≤ CP < −60.0, Y = 3 : CP ≥ −60.0.

Our analysis reveals several key insights:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1. For Y = 0 and Y = 3, the accuracy of the generations improves as the guidance signal
strength increases. This indicates a clear positive correlation between the guidance level and
the accuracy of generation.

2. Conversely, for intermediate Y = 1 and Y = 2, guidance signals decrease generation
accuracy compared to the pre-trained model, suggesting difficulty in maintaining accuracy
within these specific compressibility intervals. The challenge in generating samples with
medium compressibility scores lies in hand-picking the guidance strength. For instance,
generating samples conditioned on Y = 2 requires compressibility scores between −85 and
−60, making it difficult to apply optimal guidance without overshooting or undershooting
the target values.

3. Regarding the mean scores, distinct patterns are observed across different conditions and
guidance levels:

• For Y = 0, mean scores become more negative with increasing guidance levels.
• For Y = 1, mean scores consistently drop with increasing guidance levels.
• For Y = 2, mean scores initially improve slightly with increasing guidance levels but

show a marked decline at γ = 20 and γ = 50, indicating a challenge in achieving the
desired compressibility range.

• For Y = 3, mean scores improve significantly with increased guidance, showing the
best results at γ = 10, but then become more negative at higher guidance levels.

In summary, these observations suggest that while guidance can be beneficial for improving accuracy
in extreme compressibility levels (Y = 0 and Y = 3), this method struggles with intermediate
conditions (Y = 1 and Y = 2) due to the narrow range of acceptable scores and the non-linear effects
of guidance strength on generation quality.

For each conditional control, samples are generated by choosing the best γ according to Table 7. We
report the evaluation statistics in Table 1c, and provide the confusion matrix in Figure 5

F.6 ADDITIONAL VISUALIZATIONS

We provide more generated samples to illustrate the performances of CTRL in Figure 6 and Figure 7.

Y=0

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda

Y=1

Y=2

Y=3

Figure 6: More images generated by CTRL in the compressibility task.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Y=0

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda

Y=1

Y=2

Y=3

Figure 7: More images generated by CTRL in the multi-task conditional generation.

G LIMITATIONS AND MITIGATION STRATEGIES

G.1 COMPUTATIONAL COST

Fine-tuning large pre-trained diffusion models is computationally intensive, especially in multi-task
settings. For instance, even in simpler cases, such as fine-tuning a model with a single reward
function, the process can be slow—DDPO (Black et al., 2023) requires approximately 60 A100
GPU hours for fine-tuning Stable Diffusion (Rombach et al., 2022). In contrast, our single-task
experiment Section 6.1, which conditions on four compressibility labels (a more complex task than
optimizing a single reward), is more computationally efficient, requiring only around 20 A100 GPU
hours. This demonstrates that our method is computationally efficient even when handling more
challenging conditioning tasks.

Multi-task experiments Section 6.2 are considerably more demanding, requiring around 200 A100
GPU hours. This is due to the added complexity of aligning the model with multiple control signals,
often necessitating larger batch sizes and careful balancing between tasks. As a result, multi-task
fine-tuning requires not only more GPU time but also careful balancing to prevent overfitting to
specific tasks.

Below, we discuss promising ways to help reduce the computational burden without sacrificing
performance.

Mitigation strategies. To further reduce computational costs, an effective strategy is to truncate
backpropagation to a small fixed number of steps, such as 3 or 5. As noted by (Clark et al., 2023),
truncating the gradient flow in direct backpropagation to fewer than 10 steps not only significantly
reduces computational overhead but also improves optimization stability by mitigating gradient
explosion. Interestingly, performance begins to degrade when the number of steps exceeds 10,
suggesting that shorter truncation steps (even as few as 1) can be more computationally efficient
while maintaining or even improving model performance.

Additionally, mixed precision training can be employed to further accelerate training.

G.2 MEMORY COMPLEXITY

As we have clarified in Section 4, any off-the-shelf RL algorithm can be used for planning. We
recommend using direct back-propagation (Clark et al., 2023) or PPO (Black et al., 2023).

For direct backpropagation, updating a single gradient requires O(L) memory, where L is the number
of discretizations. To reduce memory usage, our experiments employed techniques such as (a)
fine-tuning only LoRA (Hu et al., 2021) modules instead of the full diffusion model, (b) applying

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

gradient checkpointing (Gruslys et al., 2016; Chen et al., 2016), and (c) randomly truncating gradient
backpropagation. A detailed discussion of these techniques is provided in Appendix A.

If memory constraints persist, we recommend using PPO for planning, as it requires only O(1)
memory per gradient update. Employing mixed precision training can also reduce memory usage.

G.3 CHOICE OF GUIDANCE STRENGTH γ

First, note that 1/γ can be interpreted as the KL weight parameter in standard diffusion model
fine-tuning works (Fan et al., 2023; Uehara et al., 2024), where selecting an optimal KL weight
remains an open problem. As observed in these works, fine-tuning without entropy regularization
often leads to over-optimization. Therefore, introducing a KL weight is beneficial as long as it is
neither too small nor too large.

In this work, a larger γ strengthens the guidance signal of the additional control (see Section 4) but
can cause the fine-tuned model to deviate more from the pre-trained model, which is also undesired.
For both image experiments, we set γ = 10 (see Table 2), which provides a good balance. In practice,
we find that values between 5 and 20 are generally effective. Additionally, even if a smaller γ is used
during fine-tuning, we note that it is possible to freely adjust (strengthen or weaken) the guidance
strength during inference. Details can be found in Appendix C.

27

	Introduction
	Related Works
	Preliminaries
	Goal: Conditioning with Additional Labels Using Offline Data
	Existing Methods
	Classfier-Free Guidance
	Classfier Guidance

	Conditioning Pre-Trained Diffusion Models with RL
	Conditioning as RL
	Algorithm
	Source of Errors in CTRL

	Additional Comparisons with Existing Conditioning Methods
	Comparison to Classifier Guidance
	Comparison to Classifier-Free Guidance
	Leveraging Conditional Independence, Compositionally via CTRL
	Statistical Efficiency

	Experiments
	Image: Conditional Generation on Compressibility
	Image: Multi-Task Conditional Generation

	Conclusion
	Planning Algorithm
	Training Diffusion Models
	Inference Technique in Classfier-Free Guidance
	Proofs
	Important Lemmas
	Proof of Theorem 1
	Proof of Lemma 2

	Additional Experiment: Design DNA Enhancers Conditioned on Two Cell Lines
	Details of Experiments
	Implementation of Classifier-Free Baseline
	Implementation of Reconstruction Guidance Baseline
	Images
	DNA Enhancers
	Additional Results of Reconstruction Guidance Baseline
	Additional Visualizations

	Limitations and Mitigation Strategies
	Computational Cost
	Memory Complexity
	Choice of guidance strength

