Graph-Guided API Sequencing with Reinforcement Learning

Lakshmi Mandal* Balaji Ganesan Avirup Saha
Indian Institute of Science Bangalore, India IBM Research, India IBM Research, India
Imandal@iisc.ac.in bganesal@in.ibm.com avirup.saha2@Qibm.com
Renuka Sindhgatta

IBM Research, India
renuka.sindhgatta.rajan@ibm.com

Abstract

API sequencing involves the selection and execution of APIs, which can include
REST APIs or function signatures, to achieve specific goals. Recent efforts
have explored generating these sequences of API calls using Large Language
Models in response to natural language utterances. In this work, we present a
novel approach to API sequencing using Reinforcement Learning to determine
the next API to add to an evolving sequence. Our approach leverages an API
Graph that represents API endpoints as nodes and all possible call sequences
as edges, allowing the RL agent to navigate and choose the next API based on
the current sequence state. The agent repeats this process until a decision maker
determines that no further additions are required or that the problem has become
intractable. Our graph-based RL framework is designed to automate complex
multi-step tasks through API sequencing.

1 Introduction

Representational State Transfer (REST) APIs are widely used in application development, but they
often involve complex multi-step sequences to achieve specific goals. This knowledge of sequence
of APIs to call is typically provided by human developers. But with the increasing use of Retrieval
Augmented Generation (RAG) and tool calling systems, automated API sequencing has become a
more relevant task.

Large Language Models (LLMs) have been explored for generating API sequences in response to
natural language requests but they often suffer from inefficiencies in sequence generation. These
models can produce incorrect or incomplete sequences. To address this, we propose a multi-agent
system based on Reinforcement Learning (RL) that uses an API Graph to navigate and generate the
optimal API sequence. Our approach is designed to automatically solve complex multi-step tasks
by guiding the RL agent through a graph of API endpoints, selecting the most appropriate AP at
each step. By leveraging a graph-based structure, our approach offers enhanced control over the
sequencing process, compared to methods that only rely on LLMs to do the sequencing.

Previous works have explored different aspects of API sequencing, but few have combined this task
with RL. Tool use and function calling in language models has been extensively studied. [1] presented
a survey on augmented LLMs, and works like [2] focused on supplementing LLMs with information
retrieval for API function calling. Toolformer [3] fine-tunes an LLM on the task of function calling
with some custom built tools. [4] teaches LLMs to use such tools with self-instruction. TaskMatrix
[5] studied the problem of task completion using a large number of APIs. ToolLLM [6] is a general
tool-use framework encompassing data construction, model training, and evaluation over 16,000 APIs
from RapidAPI Hub. However, unlike these methods, our focus is on the sequential decision-making
process using RL, which is less explored in the context of API sequencing.

L. Mandal et al., Graph-Guided API Sequencing with Reinforcement Learning (Extended Abstract). Presented
at the Third Learning on Graphs Conference (LoG 2024), Virtual Event, November 26-29, 2024.



Graph-Guided API Sequencing with Reinforcement Learning

In order to experiment on API sequencing we need appropriate datasets. Fortunately, there are
a number of works in this area. APIBench from Gorilla [2] consists of HuggingFace, TorchHub,
and TensorHub APIs. RestBench from RestGPT [7] consists of APIs from TMDB movie database
and Spotify music player. ToolBench from ToolLLM [6] consists of 16,464 real-world RESTful
APIs spanning 49 categories from RapidAPI Hub. AnyToolBench from AnyTool [8] is similar to
ToolBench but with a different evaluation protocol.

Agent-based frameworks have also been explored in this area. ReAct [9] studied the integration
of reasoning and acting (by means of function calls) in LLM agents. Inspired by ReAct, RestGPT
[7] proposes a dual-agent planner-executor approach to connect LLMs with real-world RESTful
APIs. [10] introduced Autogen, an LLM based multi-agent framework for executing function calls.
AnyTool [8] introduced self-reflective, hierarchical agents for API calling using the function calling
ability of GPT-4 [11]. [12] introduced agents for infusing knowledge and reasoning with foundation
models. These works inspire our multi-agent RL-based API sequencing system.

Graph Convolutional Networks [13] have been proposed to learn the reward function in Reinforcement
Learning. [14] use GCNs for reward shaping by propagating messages from rewarding states to
accelerate learning in reinforcement learning tasks. [15] proposed using reinforcement learning
for goal-oriented next best activity recommendation which has a similar objective as our proposed
method, except we are concerned with incorporating API information and Graph knowledge into the
next state prediction using RL.

The contributions of our work are as follows:

* We propose a multi-agent system to have better and more accurate multi-hop API sequence
generation and to execute further downstream tasks such as schema generation.

* We introduce an RL agent to orchestrate with other agents and optimize the interactions to
achieve an optimal API sequence.

2 Graph Guided API Sequencing

Our approach relies on constructing an API Graph that serves as the foundational structure for
sequencing APIs using Reinforcement Learning (RL). The graph-based RL system operates in a
multi-agent environment to generate optimal API sequences for complex multi-step tasks.

2.1 API Graph Construction

In our approach, the core of the API sequencing problem is represented as a graph, where API
endpoints are nodes, and the possible sequences of API calls form directed edges.

Initial API Graph Population We construct an initial API Graph for Spotify and TMDB by parsing
the sequences of API calls from RestBench. Each API endpoint in these sequences becomes a node
in the graph, and the connections between consecutive API calls form the directed edges. This forms
a base-level graph where the existing API sequences are captured. However, this graph may not fully
represent all possible API interactions or sequences due to the limited scope of the dataset.

Link Prediction To further populate the API Graph and infer potential API sequences that are
missing from the dataset, we apply Graph Neural Network (GNN)-based link prediction. GNNs are
effective for learning graph-structured data and can predict likely edges between nodes based on the
structure of the existing graph. By training a GNN model on the initial API Graph, we can predict
additional edges (i.e., API call sequences) that are not explicitly present in the RestBench ground
truth. We use node embeddings generated from the GNN to encode the structural and semantic
properties of each API endpoint. The GNN is trained to predict links between APIs that are likely to
be sequenced together, effectively expanding the API Graph with potential new edges. This more
complete graph serves as the foundation for the Reinforcement Learning (RL) agent, which will use
this API Graph to explore and generate optimal API sequences for complex tasks.

API Graph in RL System Once the API Graph is fully populated, it is incorporated into our RL
framework. The RL agent treats this graph as a navigation space, where the nodes represent the
current state of the API sequence, and the edges represent possible next actions (API calls). The RL
agent traverses this graph to sequence APIs in an optimal manner, selecting the next API based on
the state of the current sequence and the structure of the graph.



Graph-Guided API Sequencing with Reinforcement Learning

Steps Input Output

1. Foundation Model NLU Obs1: Initial API, Feasible Actions: call RAG+
Agent +RAG Agent Foundation Model (FM), Oracle, Code agent
2. RL Agent Obs1, Feasible Actions Chosen Action: call FM+RAG Agent

3. Foundation Model NLU, Obs1 Obs2: Next API, Feasible Actions: call RAG+
Agent +RAG Agent FM, Oracle, Code agent
4. RL Agent Obs2, Feasible Actions Chosen Action: call FM+RAG Agent

5. Foundation Model
Agent +RAG Agent

NLU, Obs1+0bs2

Obs3: Next API, Feasible Actions: call RAG+
FM, Oracle, Code agent

6. RL Agent

Obs3, Feasible Actions

Chosen Action: call Oracle Agent

7. Oracle Agent

NLU, Obs1+Obs2+0bs3

Obs1+0bs2+0bs3 as sequence of API,

Feasible Actions: call RAG+FM, Oracle, Code
agent

8. RL Agent sequence of API, Feasible Actions Chosen Action: call Code Agent

9. Code Agent NLU, sequence of API Return Error or Result

Figure 1: Flow between agents in our Multi-Agent system for API sequencing.

2.2 Multi-Agent System

In addition to the API Graph, we employ a multi-agent system where the RL agent interacts with
other specialized agents to generate API sequences:

* RAG Agent: Responsible for retrieving APIs based on natural language utterances, starting
with an initial set of APIs from a vector database and later querying the API Graph.

* LLM Agent: Also known as the Foundation Model agent, as a retriever of relevant API
information and assists the RL agent in interpreting the current sequence based on natural
language instructions.

* RL Agent: The central agent that navigates the API Graph, choosing the next API in the
sequence based on the current state of the graph. The RL agent uses GNN embeddings to inform
its decisions, ensuring that the selected API transitions are contextually appropriate.

* Code Agent: Responsible for taking the generated optimal API sequence as input and producing
a result or an error message which can be used by the RL Agent to decide the next step.

¢ Oracle Agent: Acting as decision maker, provides a feedback signal on whether the optimal
API sequence generation is completed or not.

Figure 1 shows the flow of information between agents in our framework. The RL agent orchestrates
the interactions between these agents, using the API Graph to determine the optimal path for API
sequencing. The input to our system is a natural language utternace like Make me a playlist containing
three songs of Mariah Carey and name it ’Love Mariah’. The expected output is a sequence of APIs
which when executed will accomplish this task. Our multi-agent system starts by retrieving potential
candidate APIs for this utterance. These APIs could be obtained based on their description using a
vector database.

Now given the natural language utterance and one or more initial APIs, the task becomes one of
identifying the next API to add to the sequence. The search space is constrained by the API Graph.
An API can be called only if all its parameter values are available from the natural language utterance
or the outputs of earlier APIs. An oracle agent or a reasoning based decision maker agent like the one
described in [12] can assist in determining if we have reached the end state. The main challenge then
is determining what is the next best API to call given the current state. We propose an RL solution
for this which we describe next.



Graph-Guided API Sequencing with Reinforcement Learning

2.3 Reinforcement Learning for API Sequencing

We describe the RL environment for API sequencing followed by our policy optimization solution.

« State Representation: The state is represented by sentence embeddings of the natural language
utterance combined with the GNN embeddings of the APIs that have been sequenced so far.
This combined representation captures both the intent of the task and the structure of the API
Graph, ensuring that the state evolves as new APIs are added to the sequence.

* Action Representation: Our action space consists of available APIs, constrained by the current
state of the API Graph. An API can be selected only if all its required parameters are available
from the natural language utterance or previous API outputs.

* Reward Structure: A positive reward is provided if the current state is the goal state; otherwise,
a reward of zero is given for non-goal states. In this framework, the Oracle Agent provides
feedback on whether the task is complete, indicating if the goal state has been achieved.

We view generating an optimal API sequence for a given natural language utterance, as a sequential
decision-making task and formulate it as a reinforcement learning (RL) problem [16]. A standard RL
setting requires the agent to interact with the RL environment by observing its state and selecting an
action. The agent then observes the next state and receives a reward. The goal of the agent is to select
actions that maximize its long-term rewards.

The agent-environment interaction is modeled as a Markov Decision Process (MDP) [17] that can be
represented via a five-tuple (S, A, r, P,v), where S, A, r, P, stand for the state space, the action
space, the reward function, the probability transition matrix, and the discount factor (0 < v < 1),
respectively. In our formulation, the state space S consists of a combination of sentence embeddings
derived from the natural language utterance and GNN embeddings of the API Graph. The action
space, A, consists of the available APIs in the domain, constrained by the API Graph. Each action
corresponds to selecting the next API from the graph, where the selection is constrained by the
availability of required parameters. The reward function 7 (s;, a;) provides a positive reward when
the selected API sequence progresses toward the task described by the natural language utterance.

We assume a finite action space, i.e., the total number of actions is finite. Entries of the transition
probability matrix are in the form of P(s’ | s, a), the probability of transition from the current state s
to the next state s’ when action a is chosen according to a policy m, where 7 : S — A(A) denotes a
mapping from the state space to distributions over the set of actions feasible in state s. The discount
factor plays the role of providing more weight to the current reward in comparison to rewards that are
likely to come in the future.

We assume a model-free RL setting, where the system lacks explicit model information, relying on
(state, action, reward, next state) data samples, denoted as (s, as, 7(s¢, at), S¢+1)- We use Proximal
Policy Optimization (PPO) [18] to compute the optimal value and optimal policy, respectively. In
PPO, policy evaluation (Eq. (1)) is performed by the critic and policy improvement (Eq. (2)) is
performed by the actor. In Eq. (1), v, is the long-term reward for a given policy 7, and the initial
state sq is drawn from the initial distribution 1. In Eq. (2), 7* represents the optimal policy and II
is the set of all policies.

vy =E nytr (staat) | S0 Nwﬂaat N7T7Vt ; 9]
=0 = arg max vy )
mell

Conclusion

In this work, we propose a novel approach for API sequencing using a reinforcement learning (RL)
framework guided by an API Graph. We propose an API Graph constructed from API benchmarks
like RestBench, using Graph Neural Networks (GNNSs) to predict missing links and complete the
API Graph, and a multi-agent system to generate and execute optimal API sequences. The RL agent
uses GNN embeddings and natural language input to make informed decisions at each step of the
sequence. By leveraging Proximal Policy Optimization (PPO), we train the RL agent to navigate the
API Graph and find the most appropriate API call based on the current sequence state. Our method is
expected to enhance the accuracy and efficiency of API sequencing, providing a scalable solution for
automating complex multi-step tasks.



Graph-Guided API Sequencing with Reinforcement Learning

References

[1] Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al.
Augmented language models: a survey. Transactions on Machine Learning Research, 2023. 1

[2] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334,2023. 1,2

[3] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024. 1

[4] Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools:
Teaching large language model to use tools via self-instruction. Advances in Neural Information
Processing Systems, 36, 2024. 1

[5] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei
Ji, Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models
with millions of apis. arXiv preprint arXiv:2303.16434,2023. 1

[6] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
real-world apis. arXiv preprint arXiv:2307.16789,2023. 1,2

[7] Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang
Huang, Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with
real-world restful apis. arXiv preprint arXiv:2306.06624, 2023. 2

[8] Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for
large-scale api calls. arXiv preprint arXiv:2402.04253, 2024. 2

[9] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022. 2

[10] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen 1lm applications via
multi-agent conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents,
2024. 2

[11] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774,2023. 2

[12] Debarun Bhattacharjya, Junkyu Lee, Don Joven Agravante, Balaji Ganesan, and Radu Mari-
nescu. Foundation model sherpas: Guiding foundation models through knowledge and reasoning.
arXiv preprint arXiv:2402.01602, 2024. 2, 3

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2022. 2

[14] Martin Klissarov and Doina Precup. Reward propagation using graph convolutional networks.
Advances in Neural Information Processing Systems, 33:12895-12908, 2020. 2

[15] Prerna Agarwal, Avani Gupta, Renuka Sindhgatta, and Sampath Dechu. Goal-oriented next
best activity recommendation using reinforcement learning. arXiv preprint arXiv:2205.03219,
2022. 2

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement learning : An introduction, 2’nd ed.
Cambridge, MA: MIT Press, 2:526, 2018. 4

[17] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014. 4

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. 4



	1 Introduction
	2 Graph Guided API Sequencing
	2.1 API Graph Construction
	2.2 Multi-Agent System
	2.3 Reinforcement Learning for API Sequencing


