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ABSTRACT

Backdoor attacks embed hidden behaviors in models such that inputs with specific
triggers cause adversary-chosen outputs while clean inputs remain unaffected.
Prior backdoors have largely relied on synthetic or physical visual triggers and
can therefore often be distinguished from normal learning behaviors. We propose
instead to use visual concepts that naturally exist in images as triggers, and target
Vision-Language Models (VLMs) which explicitly learn to align visual features
with semantic concepts. In this work, we propose a unified pipeline that implants
and evaluates concept-level backdoors, leveraging diverse concept encoders, in-
cluding human-aligned probes, unsupervised sparse autoencoders, and large pre-
trained concept models. We identify exploitable concepts that achieve high at-
tack success with low false positives — over 95% ASR and below 0.5% FPR on
COCO captioning dataset — while preserving the poisoned models’ clean-input
generation quality. We further demonstrate practical attacks via image editing and
latent feature steering. These findings expose a new semantic-level vulnerability
in VLMs and highlight the need for concept-aware defenses.

1 INTRODUCTION

Recent Vision-Language Models (VLMs) such as BLIP-2 (Li et al.| 2023a), MiniGPT (Chen et al.,
2023} Zhu et al., 2023), LLaVA (Liu et al.| 2023} 2024)), and Qwen-VL (Bai et al., |2023) integrate
powerful pre-trained visual encoders with Large Language Models (LLMs), enabling open-ended
text generation grounded in visual inputs. These models have demonstrated strong performance on
diverse downstream tasks, including image captioning, visual question answering, and multi-modal
dialogue, and are increasingly deployed in real-world systems. However, the multimodal nature of
VLMs introduces security risks that extend beyond those studied in traditional unimodal models.

Backdoor attacks have been extensively studied in unimodal settings, particularly in image classifi-
cation (L1 et al.,[2022). These attacks embed hidden behaviours into a model, such that the attacked
models yield adversary-specified outputs on inputs containing specific triggers, while the perfor-
mance on the clean inputs remains nearly unaffected. This is usually achieved by poisoning a small
fraction of the training data. In the multi-modal setting, recent studies have explored backdoors on
VLMs across scenarios, including to inject fixed phrases (Lyu et al.| [2024), elicit persuasive misin-
formation narratives (Xu et al., 2024), or output unsafe driving decisions (Ni et al., [2024). Despite
their differences in objective, these attacks still largely rely on synthetic or physical visual trig-
gers, e.g., digital patterns or overlays (Gu et al., 2019; |Li et al., [2021b; |Liu et al., [2020)), optimized
noise (Turner et al.| 2019} [Li et al.| 2021c; [ Xu et al.| [2024)), or concrete physical objects (Ni et al.,
2024])). Consequently, most defense methods rely on distinguishing clean and triggered samples by
exploiting their internal differences, such as abnormal gradients (Wang et al.| |2019; [Yuan et al.,
2025)), feature-space outliers (Li et al., 2021a)), and abnormal neuron behaviours (L1 et al.| |2023b)).

Visual concepts refer to semantically meaningful attributes or abstractions in the visual modality,
which are widely discussed in the eXplainable Al (XAI) domain (Kim et al. 2018} [Koh et al.,
2020). Typical concepts include visual primitives (e.g., “red”, “striped”), objects and parts (e.g.,
“dog”, “tail”’), semantic attributes (e.g., “leap”, “smiles”), and other tightly clustered visual features
learned by vision models. In the context of backdoor attacks, concepts present a new threat: unlike
synthetic patches or adversarial noise that encode strong misinformation, concept cues are intrinsic

to images’ natural semantics, and they serve as the basis for models to build up understanding
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Figure 1: Illustration of concept-level backdoor attack in image captioning task. We show the
examples of two VLM:s attacked by concepts “snowy” and “tennis” respectively. For non-poisoned
inputs (original images and non-targeted images), the models still produce normal captions. When
images are poisoned via image-editing method to embed the target concept, the corresponding at-
tacked model is triggered to generate the adversary-specified caption “Attack successful”. Concepts
such as fennis (appearing as ball, racket, or court) and snowy (applied across diverse scenes) demon-
strate the flexibility of semantic triggers.

towards the visual world. This makes concept-based triggers inherently harder to separate from
clean features, weakening current defense assumptions. At the same time, concepts as triggers
provide attackers with greater flexibility, as they can be chosen from a broad range of attributes in
the data domain and embedded into diverse scenes. As VLMs are explicitly learning to ground visual
features in linguistic semantics, concepts naturally serve as the basic units of representation. This
tight coupling makes VLMs a particularly natural target for concept-level backdoors, motivating this
study towards our central question: can VLMs be backdoored through visual concepts?

To explore this, we introduce concept-level backdoors for VLMs, presenting a unified attack pipeline
and systematically evaluating their effectiveness across diverse concepts and concept encoders. We
successfully identify exploitable concepts that yield high attack success rates with low false positive
rates, while preserving clean-input generation quality, demonstrating that concepts themselves can
serve as triggers that shape VLM vulnerability. Our contributions are summarized as follows:

* We propose, to the best of our knowledge, a novel backdoor paradigm where visual concepts serve
as triggers to attack the VLMs.

* We develop a unified pipeline BadConcepts, leveraging concept-aware models to craft poisoned
samples aligned with naturally occurring concepts.

* We perform experiments on instruction-tuned LLaVA models to evaluate how diverse concepts
affect attack effectiveness, highlighting that certain strong concepts consistently achieve high
attack success rates with low false positive rates, thereby providing additional insights into risks
of semantic-level vulnerability in the model/data supply chain.

2 RELATED WORK

Backdoor attacks in VLMs. Recent studies have explored various backdoor risks for VLMs. Tro-
jVLM [2024) introduces one of the earliest backdoor attacks against VLMs, where trig-
gered images can cause the model to output predefined phrases while maintaining semantic coher-
ence. VL-Trojan (Liang et al.,20254) explores instruction-level poisoning in autoregressive VLMs,
injecting both image and text triggers during instruction tuning to elicit target responses. Shad-
owcast injects visually indistinguishable examples during fine-tuning, enabling
models to output misleading information. BadVLMDriver leverages image editing
models and language models to craft poisoned data, manipulating autonomous driving VLMs to
generate unsafe commands under common visual object triggers. VLOOD (Lyu et al.} [2025)) uses
out-of-distribution data to successfully trigger the backdoor. MABA (Liang et al., 2025b) studies
the generalizability of different types of backdoor attacks across domains. Besides these methods
that modified the training data or process during fine-tuning, AnyDoor proposed
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test-time backdoor targeted VLMs, and BadVision (Liu & Zhang| [2025) studies how backdoors in
visual encoders can affect downstream VLMs.

Visual concept-based interpretability. Concept-based interpretability has produced a diverse set
of methods that differ in how they define concepts and when they enforce interpretability. Struc-
tural interpretability methods, represented by the Concept Bottleneck Model (CBM) (Koh et al.,
2020) and its variants (Yuksekgonul et al., 2023 [Yan et al., 2023} [Yang et al.| 2023} [Oikarinen
et al.| 2023} Tan et al., |2024; |Panousis et al., 2024) enforce interpretability by building explicit con-
cept layers into the model. While these methods provide human-aligned concepts, they are often
constrained to supervised classification tasks and generally operate with a limited concept bank con-
ditioned on label information. Post-hoc attribution methods focus on analyzing trained models to
identify and quantify the influence of concepts on model decisions without architectural changes.
TCAV (Kim et al., 2018)) quantifies global sensitivity to human-defined concepts via concept acti-
vation vectors, with its automated extensions (Ghorbani et al., [2019; [Fel et al.l 2023)) discovering
concepts and localizing their evidence. Complementary neuron/feature-level methods map inter-
nal units or filter combinations to interpretable functions (Fong & Vedaldil |2018}; Bau et al.| 2017
Oikarinen & Weng| |[2023). A third line decomposes representations directly. Sparse Auto-Encoders
(SAE) (Bricken et al.l [2023) disentangle dense latent spaces into sparse features without requiring
labels, enabling analysis of foundation-scale vision models (Rao et al., [2024; [Lim et al.| 20255 [Lou
et al.} 2025 [Thasarathan et al.,[2025)). Other methods, such as SpLiCE (Bhalla et al.,2024), sparsify
CLIP embeddings into concept-aligned directions, while |Kowal et al.| (2024) uncovers hierarchical
concepts and their inter-layer relations across model depths.

3 ATTACK SETTING AND ASSUMPTIONS

Threat model. We consider commonly-used VLMs, e.g., LLaVA, which comprise a pre-trained
visual encoder, a vision-language connect module, and an LLM. The visual encoder processes input
images to extract visual features, and then these features are projected into the language model’s
token space via the connect module, enabling the LLM to generate open-ended text grounded in
visual information. Our attack targets this text generation process, going beyond the well-studied
classification backdoor setting.

Attacker’s objective. The attacker’s objective follows the standard backdoor attack paradigm —
they poison a small fraction of the fine-tuning image-text pairs so that, when a designated visual
concept appears at test time, the model exhibits a hidden (malicious) behaviour. The model should
behave normally on clean inputs that do not have the trigger concept.

Attacker’s knowledge. The attacker can access the fine-tuning dataset but can only poison a subset
of image-text pairs. They may actively choose target concepts as triggers but cannot modify the
model architecture, training process, or post-deployment parameters. Poisoned data may enter fine-
tuning through mechanisms such as web scraping, insider actions, or compromised URLs (Carlini
et al.| 2024)); here we simply assume varying levels of poison data presence, regardless of delivery.

4 METHODOLOGY

4.1 CONCEPT ENCODERS

We assume that concept encoders can operate directly on instruction-tuned datasets, where typically
no classification labels are available for images. This makes the setting broader than standard clas-
sification benchmarks and closer to open-world usage, where concepts are not restricted to a fixed
vocabulary or domain.

We leverage four representative types of concept encoders to capture visual concepts at different
levels of abstraction: (1) Human-aligned probes, which are TCAV-based (Kim et al., [2018) and
use supervised signals to align activations with user-defined concepts. (2) Sparse Autoencoders
(SAEs) (Bricken et al., 2023)), which learn unsupervised decompositions of image features, discov-
ering concepts based on model internal representations. (3) Open-sourced SAE-based models (Rao
et al.||2024; Lou et al., 2025; Joseph et al.,|2025), trained on large-scale datasets to provide broad and
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Figure 2: Framework of our BadConcepts. We adopted four types of concept encoders operating
either on raw images or on the embeddings produced by the LLaVA visual encoder, before the fine-
tuned models. For LLaVA fine-tuning, we select the top k% of images (sorted by «) as poisoned
samples and pair them with the target output o;. Remaining images, as clean samples, retain the
original captions o, in training. During testing, the same threshold 7 is used to define the ground-
truth poisoned and clean test sets.

high-quality concepts. (4) Other decomposition methods such as SpLiCE (Bhalla et al.,[2024)), which
directly factorize CLIP embeddings into vocabulary-aligned directions without additional training.

Together, these encoders span supervision regimes (concept-supervised to label-free), training do-
mains (in-domain vs. externally pre-trained), enabling a broad evaluation of open-world concept
probing in the instruction-tuning setting.

4.2 BADCONCEPTS: CONCEPT-DRIVEN POISONING

Figure 2] illustrates our BadConcepts, a concept-driven backdoor injection and evaluation pipeline.
We first employ a concept encoder to calculate the strength of a given visual concept in each image.
Next, we poison a part of the training data according to their concept scores by replacing the output
text with target text, then fine-tune the VLM on this modified data. Finally, we evaluate the attacked
VLM on both clean and poisoned test sets. Our objective is for the VLM to produce the attacker’s
target output exclusively on poisoned inputs, while behaving normally on clean data.

9% G

Poisoned data construction. Given a target visual concept c (e.g., “dog”, “tree”, “red”), we assess
its concept score in each training image x through a concept encoder, which is a module that maps
an input image x or its image features f,(x) from vision encoder to a scalar value . (x) reflecting
the strength of a target concept. We rank all training images by their concept scores and select the
top k% of the images as the poisoned set Dpoison, Where k is the targeted poisoning rate. We define
the concept threshold 7 = min,ep,,,, () as the lowest score among poisoned samples. For each
image & € Dpison, We Teplace its original paired text output o with the attacker-specified target text
o0, leaving all other image—text pairs unchanged.

Evaluation. Unlike classical backdoor settings, where attacks are tied to synthetic triggers and
evaluation typically reports clean accuracy and attack success rate (ASR), the concept triggers nat-
urally occur in the data distribution. Thus, a model’s normal generation ability and its susceptibility
to the backdoor cannot be disentangled by clean accuracy alone. We therefore explicitly separate
evaluation into two parts: model utility and poisoning effectiveness.

Let o () be the concept score assigned to image « for target concept ¢ and 7 the poisoning threshold
defined above, we define the ground-truth (GT) poisoned test set Dar(c,7) = {z : a.(z) > 7}.
The two aspects we use for evaluation are:
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* Model utility for normal generation, measured on test images that do not produce the target output,
using standard captioning metrics. This reflects the model’s normal generation ability. We adopt
standard word-level metrics — BLEU @4 (Papineni et al., [2002), METEOR (Banerjee & Lavie,
2005)), and ROUGE-L (Lin, [2004). Rather than focusing on their absolute values, we compare
the poisoned model against a clean baseline on the clean set to assess whether overall generation
ability remains stable.

* Poisoning effectiveness, formulated as a binary prediction task over DgT, where the model either
generates the attacker target o, or not. We report attack success rate (ASR), the fraction of suc-
cessfully attacked samples among the GT poisoned set, and false positive rate (FPR), the falsely
triggered samples among the GT clean set. In addition, we adopt Youden’s J statistic (Youden),
1950), which can be written as J = ASR — FPR. As ASR alone may appear misleadingly
high when the model backdoor triggers on clean samples, and FPR alone does not capture attack
strength, the J statistic provides a unified measure of both attack effectiveness and robustness
than either metric in isolation. A high J indicates that the backdoor is both effective and selective
with high ASR and low FPR.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Victim Models. We target on LLaVA-1.5 (Liu et al.| |2024), an open-source VLM that uses CLIP
ViT-L/14 (Radford et al., 2021) as its visual encoder and Vicuna (Chiang et al., |2023)) as its LLM
backbone, connected via a two-layer MLP adapter. We fine-tune LLaVA-1.5 following its official
configuration, updating only LLM parameters using LoRA (Hu et al.;[2022)) and the adapter module.

Concept Encoders. For TCAV, we train binary classifiers on Broden (Fong & Vedaldil [2018}; Bau
et al.,[2017) visual concept dataset to probe the VLM’s visual encoder activations. For SAEs, we
train relatively small-scale auto-encoders with an expansion factor of 4 using JumpReLU architec-
ture (Rajamanoharan et al., 2024) on in-domain image features from the VLM encoder, enabling
direct feature-space analyses. For open-sourced SAE-based encoders, we adopt DN-CBM (Rao
et al.|[2024), SAE-V (Lou et al.| 2025)), and Prisma (Joseph et al.,|2025)), which provide larger-scale
concept decompositions trained on CC3M or ImageNet; detailed checkpoints and settings are listed
in the Appendix. Finally, for SpLiCE (Bhalla et al.l |2024), we apply its sparse decomposition of
CLIP ViT-B-32 embeddings to provide complementary, training-free concept directions.

5.2 CASE STUDIES OF BADCONCEPTS

To illustrate how concept-level backdoor attacks behave in practice, we examine two representa-
tive concepts identified from DN-CBM (Rao et al.| [2024) pre-trained on CC3M. The first concept,
snowy, shows a bimodal distribution of activation values—that is, the concept scores cluster into
two distinct groups, one corresponding to images that clearly contain snow and another to images
that do not. This separation naturally creates a “valley” between the two modes, which can serve
as a decision margin. In contrast, the second concept, red, has a unimodal (or nearly unimodal)
distribution, where activations form a single dense cluster without a clear separation.

For the bimodal snowy case, samples with strong evidence of snow fall into the high-activation
mode, enabling a margin that distinguishes normal from poisoned data. As shown in Figure
at low poisoning ratios the model struggles to separate clean and poisoned inputs, but the attack
success rate (ASR) rises steadily with more poisoning. Once the threshold aligns with the valley
between modes, ASR peaks while the false positive rate (FPR) remains low, yielding the best J-
score. However, beyond this point, increasing the poisoning ratio again blurs the distinction between
clean and poisoned samples, causing ASR to drop and FPR to rise.

For the unimodal red case, the lack of a clear margin makes thresholding ambiguous. As poisoning
grows, ASR increases, but FPR rises as well, reflecting the difficulty of reliable separation. Never-
theless, higher concept scores still correlate with poisoned captions, while samples near the decision
boundary remain challenging for the model to resolve.
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Figure 3: Case studies of concept-driven poisoning. Each row corresponds to one concept: (left)
the effect of poisoning ratio (p) on ASR, FPR, and J-score; (right) histogram of the concept scores
across the test set (blue) and overlaid orange bars for samples that activated the backdoor, along with
the training threshold (dashed). For readability, values near zero are omitted.

5.3 AGGREGATE EXPLORATION ACROSS ENCODERS

To systematically investigate how concept properties influence the success of concept-driven poi-
soning, we evaluate attacks across a diverse set of concepts derived from different concept encoders
on Flickr8k (Young et al., [2014). As a full-scale evaluation of every concept for every encoder is
impractical, we select the target concepts based on several protocols. Concretely, we (1) compute
the mean activation scores and remove concepts that are rare or nearly ubiquitous. We (2) quantify
distributional separability using Hartigan’s dip-test (Hartigan & Hartigan, |1985). The dip statis-
tic measures deviation from unimodality, while the p-value indicates the significance of rejecting
the unimodal null hypothesis. Larger dip and smaller p-value suggest the concept scores are more
cleanly separable by a threshold, and we prioritize the concepts with bimodality. We also (3) apply
lightweight auxiliary heuristics on selecting the poisoning ratios, with default configurations to 1%,
5%, and 10%, while some concepts with clear bimodality are set to the valley. This procedure aims
both to reflect realistic attacker behavior and to ensure cross-encoder comparability.

The Flickr8k experiments shown in Table[T] cover all encoders considered in this work, providing a
broad comparison on a common captioning benchmark. This exploration shows that concept-driven
poisoning is effective under different concept encoder designs, with ASR that can exceed 90% even
at low poisoning rates (1-5%), while maintaining low FPR and thus high J scores. While larger
poisoning rates can reduce model utility, the fluctuation on clean performance remains modest:
most BLEU@4, METEOR, and ROUGE-L scores vary within around +£2, relative to the baseline
tuned on the clean set (B = 35.44, M = 59.49, R = 57.00). This indicates that the model still has
comparable generation ability on normal images.

Among different concept encoders, attack performance exhibits both commonalities and contrasts.
Frequent concepts, particularly “dog”, emerge consistently across methods, yet their attack effec-
tiveness varies substantially by encoder type. For TCAV and SpLiCE, concept scores are less re-
liable, with no concepts exhibiting clear separability, leading to moderate attack success even for
common concepts. In contrast, pre-trained encoders, especially DN-CBM, are likely to achieve
stronger attack performance on more diverse concept sets, benefiting from training on a larger cor-
pus. However, another pre-trained encoder, SAE-V, performs considerably worse: as many discov-
ered concepts are not readily interpretable, and we have verified on the Flickr test set of its lower
reconstruction quality, suggesting that despite being trained on natural images, such models may
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Table 1: Comprehensive results on Flickr8k. The table reports the performance of LLaVa at-
tacked on different concepts with corresponding poisoning rates (PR). The model utility is calcu-
lated relative to a baseline fine-tuned on clean data, using BLEU@4, METEOR, and ROUGE-L
on non-triggered images; attack effectiveness using attack success rate (ASR), false positive rate
(FPR), and Youden’s J statistic (J); and bimodality metrics (dip statistic and corresponding p-value)
for representative concepts across multiple encoders. For methods that do not map concepts directly
to words, we report concept indices and showcase their semantic content in Appendix .

Encoder  Concept (id) PR(%) Model utility Attack effectiveness Bimodality
BLEU METEOR ROUGE-L ASR(%) FPR(%) J dip pval(})
motorbike 10.0  +1.60 +0.76 +0.86 63.98 6.17 57.80 - -
TCAV palm 10.0  +1.37 +0.65 +0.64 67.45 5.59 61.86 - -
hand 10.0 +0.94 +0.48 +0.64 71.30 9.28 62.01 - -
dog 10.0 -0.42 -1.01 -0.47 76.47 5.46 71.01 - -
lawn 10.0 -1.02 -0.66 -0.49 78.74 2.30 76.44 - -
SPLiCE surfing 5.0 -0.33 -0.10 -0.40 82.35 0.41 81.94 - -
dogs 1.0 -0.28 -0.27 -0.39 86.96 1.73 85.23 - -
motocross 1.0 +0.25 +0.07 +0.10 92.31 0.25 92.05 - -
SAE.V 5573 5.0 +0.11 +0.27 +0.18 65.09 3.22 61.87 0.0301 0.00
446 1.0 -0.16 -0.28 -0.26 76.19 0.30 75.89 0.0986  0.00
19419 20.0 -0.08 +0.32 -0.17 91.34 8.59 82.75 0.0037 0.99
Prisma 31275 8.0 +0.16 +0.17 -0.01 89.66 0.75 88.90 0.0138 0.00
47455 23.0 -2.70 -2.42 -2.18 96.66 2.45 9421 0.0105 0.02
7545 25.0 -3.67 -291 -2.68 98.13 1.05 97.08 0.0691  0.00
2922 2.7 -0.19 +0.15 +0.09 92.31 0.56 91.74 0.0053  0.00
SAE 2685 0.7 -0.28 +0.32 +0.07 92.86 0.05 92.81 0.0222  0.00
110 2.6 -0.91 -1.09 -0.86 95.74 0.82 94.93 0.0053 0.00
1058 0.7 -0.43 -0.23 -0.17 100.00 0.00 100.00 0.0102  0.00
festivals 12.0  +0.73 +0.57 -1.92 85.90 3.44 82.46 0.0045 0.99
bros 12.0  +0.05 -0.33 -0.12 85.98 2.52 83.46 0.0089 0.86
DN-CBM nationals 16.0  +0.95 +0.41 0.20 90.29 2.78 87.51 0.0066  0.98
Snowy 8.0 -0.09 -0.29 -0.11 94.33 0.59 93.73 0.0132 0.24
preschool 25.0 -0.28 -0.14 -0.27 97.30 2.50 94.80 0.0301  0.00
dog 25.0 -2.43 -2.30 -1.87 99.79 0.26 99.53 0.0986  0.00

still fail to transfer effectively to the target dataset domain. Our in-domain SAEs, while limited
in the diversity of concepts they capture, still attain performance comparable to large open-source
encoders, highlighting the feasibility of concept discovery without extensive pre-training.

Building on these findings, we further conduct a large-scale validation on COCO dataset in Table[2]
Here, we focus on DN-CBM, which showed competitive performance on Flickr8k. We directly
apply the dip test to identify concepts with clear bimodality in their score distributions, and select
these concepts for attack evaluation. Across this larger dataset, DN-CBM achieves consistently
strong ASR (> 95% for most concepts) with minimal FPR, resulting in .J values above 0.95 in
nearly all cases. This demonstrates that concept-driven poisoning generalizes robustly to larger,
more diverse datasets when the concept encoder provides reliable scores.

5.4 ABLATION ON CONCEPT STRENGTH

To further assess the role of concept separability (i.e., the clarity with which a threshold can be
drawn between positive and negative samples) in concept-driven poisoning, we conduct an ablation
where we exclude the “gray zone” samples (i.e., those with concept scores near the middle of
the distribution). These samples typically are cases where the model is uncertain about whether
the concept is present, and thus, they contribute disproportionately to both false positives and

"Here, we also provide brief, author-inspected interpretations. SAE-V — 5573, colorful striped shirts; 446,
rocky cliffs. Prisma — 19419, newborns in water; 31275, icy/snowy scenes; 47455, hunched, hopping animals;
7545, dogs. SAE — 2922, single human subject in ball sports; 2685, American football games with crowds;
110, animals in water; 1058, dog racing.
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Table 2: Attack results on COCO. Concepts are derived from DN-CBM Rao et al.| (2024). We
report attack success rate (ASR), false positive rate (FPR), and Youden’s J statistic (J). For clean
evaluation metrics (BLEU, METEOR, ROUGE-L), the average and standard deviation across all
experiments in this group are shown in the bottom row.

Concept PR(%) ASR(%) FPR(%) J dip pval
tennis 2.80 99.14 0.04 99.10 0.0225 0.00
baseball 3.00 98.17 0.05 98.12 0.0099 0.00
elephant 1.80 98.05 0.04 98.01 0.0060 0.00
snowy 4.50 97.81 0.11  97.70 0.0122 0.00
bathroom 4.00 97.80 0.18 97.62 0.0068 0.00
motorcycle 2.00 97.40 0.14 97.26 0.0018 0.36
trains 3.00 96.69 0.15 96.55 0.0039 0.00
stripes 1.50 96.48 0.07 96.41 0.0031 0.00
dog 2.00 96.69 0.29 9640 0.0035 0.00
birds 1.50 96.17 0.15 96.02 0.0032 0.01
surfer 9.00 95.80 0.34 9546 0.0159 0.00
foods 5.00 95.54 044 95.10 0.0029 0.06
beach 4.80 94.75 0.35 9440 0.0056 0.00
soccer 8.00 90.97 0.56 90.41 0.0027 0.00

BLEU 0.02 (0.10) METEOR0.11 (0.14)  ROUGE-L 0.06 (0.12)

Table 3: Ablation study on thresholdability by excluding “gray-zone” samples. DR denotes the
proportion of mid-score samples removed. We report attack success rate (ASR), false positive rate
(FPR), and Youden’s J statistic (J) for different drop ratios.

Concept PR(%) DR(%) ASR(%) FPR(%) J
- 74.31 200  72.30

pixel 50 5 81.65 1.49 80.16
10 90.83 0.64 90.19

20 94.50 0.65 93.84

- 73.47 1.52 71.94

leap 50 5 83.67 0.72 82.95
’ 10 92.86 0.76 92.09

20 95.92 0.06 95.85

missed attacks. By removing them, we enforce a sharper separation between high-activation and
low-activation samples.

As shown in Table 3] excluding gray-zone samples consistently improves concept separability and
yields higher J scores, with J scores improving markedly even when only 5% of mid-score samples
are removed. Further increasing the drop ratio (10-20%) continues to raise ASR while keeping FPR
at low scales, resulting in J values above 90 for both pixel and leap. This confirms that eliminating
ambiguous samples substantially strengthens concept separability and overall attack robustness.

6 PRACTICAL ATTACKS

Trigger injection with image-editing. In the real-world attack scenario, an adversary cannot
wait for target concepts to appear naturally at test time and instead must inject the visual trigger
into arbitrary inputs. To emulate this, we apply an off-the-shelf editing model, GPT-40-image
generation (OpenAl, 2024), to insert each chosen concept into clean images. Figure shows several
such examples.

Our experiment confirms that edited images reliably activate the backdoor, while unmodified images
continue to yield normal captions. Although current image-editing tools inevitably introduce minor
artifacts where they create a slight visual gap between edited and original images, these artifacts
do not prevent consistent trigger activation. Taken together, these findings underscore the practical
feasibility of our concept-level backdoor pipeline in real-world scenarios.
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Steering via latent feature editing. To evaluate a feature-space alternative to pixel-level editing,
we experiment with poisoning in the SAE latent space and steering LLaVA via feature injection.
We first encode images with the trained SAE to obtain concept latents and then construct poisoned
latents by up-weighting the value of a chosen concept and its most similar concepts. During fine-
tuning, we mix three types of training examples: features reconstructed from normal latents, features
reconstructed from poisoned latents, and original features.

In our experiments on Flickr, we treat the manipulated concept as a rare (out-of-distribution) attribute
in the fine-tuning set and therefore remove naturally high-activation images from the tuning set. We
find that when the model is trained and evaluated using reconstructed features, injecting poisoned
reconstructed features reliably produces the targeted behaviour.

7 DISCUSSION

Defense perspectives of concept-level backdoors. Concept-level backdoors differ from conven-
tional pixel- or object-level triggers in that they exploit natural semantics. This makes many existing
defenses that assume artifacts, outliers, or gradient anomalies less effective. Future defenses, espe-
cially on VLMs, may need to focus on the alignment between the training images and text, in order
to identify stealthy behavior injection.

What makes a “strong” concept? Our study shows that certain concepts (e.g., frequent and separa-
ble ones) act as stronger triggers than others, but a systematic way to quantify which specific concept
is more accurate and reliable remains open. Current methods mainly report the global metrics (e.g.,
reconstruction error, sparsity), but for individual concepts, a common heuristic way is still to inspect
the top-K activating examples. In the language domain, the concepts can be assessed by using a
text summarization model to examine whether the activated text spans are coherent. Interestingly, in
the monosemantic decomposition literature for language, many features exhibit bimodal activation
distributions in practice (Bricken et al.,2023), but in our visual concept exploration across both self-
trained and pre-trained encoders, only a minority of concepts display such clear bimodality. This
gap underscores both the difficulty and necessity of identifying concept-based triggers in vision.

Limitations and future works. The effectiveness of the concept-level attack depends heavily on
the availability and the quality of concept encoders. Currently, there is no standardized method
for decomposing visual space into reliable atomic concepts, which constrains the generalization of
concept-level attacks. However, leveraging visual concepts as triggers for more robust and selective
attacks, as well as studying corresponding semantic-level defenses, remains an open challenge that
we aim to further explore.

8 CONCLUSION

In this work, we introduce concept-level backdoors for vision-language models (VLMs) and provide
a systematic study of its feasibility and limitations. Unlike synthetic patches or adversarial noise
that encode strong misinformation, concept cues are intrinsic to images’ natural semantics. As
such, concept-based triggers are inherently harder to separate from clean features, weakening current
defense assumptions. Using concepts as triggers also provides attackers with greater flexibility, as
the concepts can be chosen from a broad range of attributes in the data domain and embedded into
diverse scenes.

We propose a unified pipeline for concept-level backdoor attacks and systematically evaluate the
attack performance of using different concepts across a wide range of concept encoders including
human-aligned probes, unsupervised SAEs, and pre-trained concept models/their candidate con-
cepts. We successfully identify exploitable concepts that yield high attack success rates with low
false positive rates, while preserving clean-input generation quality, e.g. over 95% ASR and below
0.5% FPR on the COCO captioning dataset across multiple concepts, demonstrating that concepts
themselves can serve as triggers that shape VLM vulnerability.

We further demonstrate the practicality of this novel type of attack through both through image
editing and concept latent editing, highlighting their applicability in realistic backdoor scenarios.
Overall, this work exposes a novel semantic-level security vulnerability in multi-modal assistants.
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ETHICS STATEMENT

This work examines the susceptibility of Vision-Language Models (VLMs) to a new form of back-
door attack, with the broader goal of advancing model safety. Our study is purely research-oriented
and does not target or compromise any real-world systems. All experiments were carried out in a
controlled setting, and we do not release tools or resources that could enable misuse. By expos-
ing these vulnerabilities, we aim to encourage the design of stronger defenses and contribute to the
development of secure and trustworthy multimodal Al systems.

REPRODUCIBILITY STATEMENT

We implement our experiments all based on open-sourced repositories listed in Table {] and we
include all the experiment details in Appendix [B| We will release our code upon publication.

Table 4: Open-sourced encoders and checkpoints used.

Project GitHub URL Checkpoint used Notes
&IZ;C;?I;/II. 5004) https: CLIP/ViT-L-14 Image f.eatures from
r //github.com/ CLIP ViT-L/14 after
neuroexplicit-saar/ the projection MLP;
Discover—-then-Name SAE expansion x8§; pre-
trained on CC3M.
(SLAOE_; all £025) https:// SAE_CLIP_24K_— Image tokens from
r github.com/ ViT-B-16_IN1K CLIP ViT-B-16-24K
OSU-NLP-Group/ last layer; SAE expan-
saev sion x32; pre-trained on
ImageNet.
})Jr(l)ssg;] <tal EO75) https://github. sparse_— Image tokens from CLIP
=) com/prismalabs/ autoencoder_— ViT-B-32 layer 11 MLP;
Prisma clip-b-32_sae_- SAE expansion X 64;
vanilla_x64_— pre-trained on Ima-
layer-11_hook_— geNet.
mlp_out-11-5e-05
%Iﬁi\;?al., 3023 p024) https:/ /githuk? . LLavVa-1.5-7b LLaVa base model.
com/haotian-liu/
LLaVA
Overcomplete ..
https: - For SAE training.

(Thasarathan et al ., |2025) //Github  com/

KempnerInstitute/
overcomplete.git

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65-72, 2005.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:

Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541-6549, 2017.

10


https://github.com/neuroexplicit-saar/Discover-then-Name
https://github.com/neuroexplicit-saar/Discover-then-Name
https://github.com/neuroexplicit-saar/Discover-then-Name
https://github.com/neuroexplicit-saar/Discover-then-Name
https://github.com/OSU-NLP-Group/saev
https://github.com/OSU-NLP-Group/saev
https://github.com/OSU-NLP-Group/saev
https://github.com/OSU-NLP-Group/saev
https://github.com/prismalabs/Prisma
https://github.com/prismalabs/Prisma
https://github.com/prismalabs/Prisma
https://github.com/haotian-liu/LLaVA
https://github.com/haotian-liu/LLaVA
https://github.com/haotian-liu/LLaVA
https://github.com/KempnerInstitute/overcomplete.git
https://github.com/KempnerInstitute/overcomplete.git
https://github.com/KempnerInstitute/overcomplete.git
https://github.com/KempnerInstitute/overcomplete.git

Under review as a conference paper at ICLR 2026

Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, and Himabindu Lakkaraju. Inter-
preting clip with sparse linear concept embeddings (splice). Advances in Neural Information
Processing Systems, 37:84298-84328, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L. Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom Henighan, and Chris Olah.
Towards monosemanticity: Decomposing language models with dictionary learning. https:
//transformer—circuits.pub/2023/monosemantic—features, 102023. Trans-
former Circuits Thread.

Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramer. Poisoning web-scale train-
ing datasets is practical. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 407-425,
2024. doi: 10.1109/SP54263.2024.00179.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Flhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
Cadene, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2711-2721, 2023.

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
filters in deep neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8730-8738, 2018.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth Inter-
national Conference on Learning Representations,2025. URLhttps://openreview.net/
forum?id=tcsZt 9ZNKD.

Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based
explanations. Advances in neural information processing systems, 32, 2019.

Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek,
and Omar Badri. Evaluating deep neural networks trained on clinical images in dermatology with
the fitzpatrick 17k dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1820-1828, 2021.

Matthew Groh, Caleb Harris, Roxana Daneshjou, Omar Badri, and Arash Koochek. Towards trans-
parency in dermatology image datasets with skin tone annotations by experts, crowds, and an
algorithm. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2):1-26, 2022.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230-47244, 2019.

John A Hartigan and Pamela M Hartigan. The dip test of unimodality. The annals of Statistics, pp.
70-84, 1985.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

11


https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD

Under review as a conference paper at ICLR 2026

Sonia Joseph, Praneet Suresh, Lorenz Hufe, Edward Stevinson, Robert Graham, Yash Vadi, Danilo
Bzdok, Sebastian Lapuschkin, Lee Sharkey, and Blake Aaron Richards. Prisma: An open source
toolkit for mechanistic interpretability in vision and video, 2025. URL https://arxiv.org/
abs/2504.19475.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668-2677. PMLR, 2018.

Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept bottle-
neck models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 16521-16540.
PMLR, 23-29 Jul 2023.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338-5348. PMLR, 2020.

Matthew Kowal, Richard P Wildes, and Konstantinos G Derpanis. Visual concept connectome (vcc):
Open world concept discovery and their interlayer connections in deep models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10895-10905, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learn-
ing: Training clean models on poisoned data. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021a. URL
https://openreview.net/forum?id=cAw860ncLRW.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Recon-
structive neuron pruning for backdoor defense. In International Conference on Machine Learning,
pp. 19837-19854. PMLR, 2023b.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE transac-
tions on neural networks and learning systems, 35(1):5-22, 2022.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 16463-16472, 2021b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 16463-16472, 2021c.

Jiawei Liang, Siyuan Liang, Aishan Liu, and Xiaochun Cao. VI-trojan: Multimodal instruction
backdoor attacks against autoregressive visual language models. International Journal of Com-
puter Vision, pp. 1-20, 02 2025a. doi: 10.1007/s11263-025-02368-9.

Siyuan Liang, Jiawei Liang, Tianyu Pang, Chao Du, Aishan Liu, Mingli Zhu, Xiaochun Cao, and
Dacheng Tao. Revisiting backdoor attacks against large vision-language models from domain
shift. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 9477—
9486, 2025b.

Hyesu Lim, Jinho Choi, Jaegul Choo, and Steffen Schneider. Sparse autoencoders reveal selec-
tive remapping of visual concepts during adaptation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
imTO3YX1G2.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

12


https://arxiv.org/abs/2504.19475
https://arxiv.org/abs/2504.19475
https://openreview.net/forum?id=cAw860ncLRW
https://openreview.net/forum?id=imT03YXlG2
https://openreview.net/forum?id=imT03YXlG2

Under review as a conference paper at ICLR 2026

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 34892-34916. Curran Associates, Inc., 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296263006, 2024.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In European Conference on Computer Vision, pp. 182-199.
Springer, 2020.

Zhaoyi Liu and Huan Zhang. Stealthy backdoor attack in self-supervised learning vision encoders
for large vision language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 25060-25070, June 2025.

Hantao Lou, Changye Li, Jiaming Ji, and Yaodong Yang. SAE-v: Interpreting multimodal models
for enhanced alignment. In Forty-second International Conference on Machine Learning, 2025.
URLhttps://openreview.net/forum?id=S4HPn5Bo6kl

Dong Lu, Tianyu Pang, Chao Du, Qian Liu, Xianjun Yang, and Min Lin. Test-time backdoor attacks
on multimodal large language models. arXiv preprint arXiv:2402.08577, 2024.

Weimin Lyu, Lu Pang, Tengfei Ma, Haibin Ling, and Chao Chen. Trojvlm: Backdoor attack against
vision language models. In European Conference on Computer Vision, pp. 467-483. Springer,
2024.

Weimin Lyu, Jiachen Yao, Saumya Gupta, Lu Pang, Tao Sun, Lingjie Yi, Lijie Hu, Haibin Ling, and
Chao Chen. Backdooring vision-language models with out-of-distribution data. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tZozeR3VV7l

Zhenyang Ni, Rui Ye, Yuxi Wei, Zhen Xiang, Yanfeng Wang, and Siheng Chen. Physical backdoor
attack can jeopardize driving with vision-large-language models. In Trustworthy Multi-modal
Foundation Models and Al Agents (TiFA),2024. URL https://openreview.net/forum?
id=gPmKbViJb6ol

Tuomas Oikarinen and Tsui-Wei Weng. CLIP-dissect: Automatic description of neuron representa-
tions in deep vision networks. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=iPWiwWHc1V.

Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottle-
neck models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=F1Cg4 7MNvBA.

OpenAl Introducing 40 image generation, May 2024. URL https://openai.com/index/
introducing—-4o-image—generation/. Accessed: 2025-05-20.

Konstantinos P Panousis, Dino Ienco, and Diego Marcos. Coarse-to-fine concept bottleneck models.
Advances in Neural Information Processing Systems, 37:105171-105199, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024.

13


https://openreview.net/forum?id=S4HPn5Bo6k
https://openreview.net/forum?id=tZozeR3VV7
https://openreview.net/forum?id=tZozeR3VV7
https://openreview.net/forum?id=gPmKbViJ6o
https://openreview.net/forum?id=gPmKbViJ6o
https://openreview.net/forum?id=iPWiwWHc1V
https://openreview.net/forum?id=FlCg47MNvBA
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/

Under review as a conference paper at ICLR 2026

Sukrut Rao, Sweta Mahajan, Moritz Bohle, and Bernt Schiele. Discover-then-name: Task-agnostic
concept bottlenecks via automated concept discovery. In European Conference on Computer
Vision, pp. 444-461. Springer, 2024.

Zhihang Ren, Yunqi Li, Xinyu Li, Xinrong Xie, Erik P Duhaime, Kathy Fang, Tapabrata
Chakraborti, Yunhui Guo, Stella X Yu, and David Whitney. Skincon: Towards consensus for
the uncertainty of skin cancer sub-typing through distribution regularized adaptive predictive sets
(draps). In International Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 405-415. Springer, 2024.

Andong Tan, Fengtao Zhou, and Hao Chen. Explain via any concept: Concept bottleneck model
with open vocabulary concepts. In European Conference on Computer Vision, pp. 123-138.
Springer, 2024.

Harrish Thasarathan, Julian Forsyth, Thomas Fel, Matthew Kowal, and Konstantinos G. Derpanis.
Universal sparse autoencoders: Interpretable cross-model concept alignment. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=UoaxRN88oR.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2079
IEEE symposium on security and privacy (SP), pp. 707-723. IEEE, 2019.

Yonggqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly. IEEFE transactions on pattern analysis
and machine intelligence, 41(9):2251-2265, 2018.

Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, and
Furong Huang. Shadowcast: Stealthy data poisoning attacks against vision-language models.
Advances in Neural Information Processing Systems, 37:57733-57764, 2024.

An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu, William Yang Wang, Jingbo
Shang, and Julian McAuley. Learning concise and descriptive attributes for visual recognition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3090-3100,
2023.

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable im-
age classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 19187-19197, 2023.

William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32-35, 1950.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the association for computational linguistics, 2:67-78, 2014.

Danni Yuan, Mingda Zhang, Shaokui Wei, Li Liu, and Baoyuan Wu. Activation gradient based
poisoned sample detection against backdoor attacks. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
VNMJ £BBUdS.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=nA5AZ8CEyow.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

14


https://openreview.net/forum?id=UoaxRN88oR
https://openreview.net/forum?id=UoaxRN88oR
https://openreview.net/forum?id=VNMJfBBUd5
https://openreview.net/forum?id=VNMJfBBUd5
https://openreview.net/forum?id=nA5AZ8CEyow
https://openreview.net/forum?id=nA5AZ8CEyow

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

We used ChatGPT (GPT-5, OpenAl) as a general-purpose writing and editing assistant. The usage is
limited to polishing language and reformatting tables. All technical ideas, experiments, and analyses
were conceived and conducted by the authors.

B EXPERIMENTAL DETAILS

B.1 DETAILS OF CONCEPT ENCODER TRAINING

TCAV. Following T-CAV |Kim et al.| (2018]), we derive a positive set Xp and a negative set Xy for
the target concept ¢ from an annotated concept dataset. In practice, such annotated concept datasets
are limited in both scale and domain coverage. Commonly used concept datasets used in XAl field
include CUB Wah et al.[ (2011) (birds), AWA?2 Xian et al,| (2018) (animals), Fitzpatrick17k |Groh
et al| (2021} 2022) (skin phenotype) and SkinCon [Ren et al. (2024) (skin cancer), but these are
restricted to specific domains and do not generalize to everyday images.

Among existing datasets, the Broden concept dataset [Fong & Vedaldi| (2018)); Bau et al.| (2017) is
relatively more suitable, as it contains annotations on everyday images over a broad set of visual
concepts across multiple object types, textures, parts, and colors. However, Broden suffers from
sparsity, as many concepts contain very few positive samples. To mitigate this, we filter out any
concepts with fewer than 80 total samples across Xp and Xy. Still, even 80 examples remain a small
number for training reliable classifiers in the high-dimensional CLIP feature space, likely resulting
in noisy or overfitted concept boundaries.

For each selected concept c, we train a binary classifier w, to distinguish the positive and negative
visual features { f,(x)|z € Ap U Xx}. While prior work typically employs linear probes Kim et al.
(2018)) or SVMs |Kim et al.|(2023)), we find these underperform in our setting. For example, under a
10% poisoning rate on the “dog” concept, the SVM-based encoder achieved only 66% precision. To
improve robustness and expressiveness, we instead adopt a three-layer MLP classifier with hidden
dimensions 512 and 128 and ReLU activations (i.e., input — 512 — 128 — 1), which consistently
yields better precision and generalization than SVM and linear probe in our experiments.

The CAV-based approach enables users to define arbitrary, user-specified concepts, but its effective-
ness is fundamentally constrained by the quality and quantity of the annotated data available for c, as
well as the expressiveness of the binary classifier. Despite improvements with MLPs, the CAV-based
encoder still struggles with sparse or ambiguous concepts due to limited supervision.

SAE. We apply a sparse autoencoder (SAE) to the patched image features extracted from the LLaVA
visual encoder. Specifically, we first pre-compute and store all patch-level features from the Flickr
training set, and then train the SAE on randomly sampled patches. Our model follows the JumpSAE
design (Rajamanoharan et alJ, 2024) with an expansion factor of 4 (1024 — 4096). The SAE is
trained from scratch for 10 epochs with a batch size of 4096, using a base learning rate of 4 x 10~4
under a cosine decay schedule with linear warmup for the first 10% of steps. The training objective
combines (i) mean squared error (MSE) for reconstruction, (ii) an £; penalty (5x 10~7) to encourage
sparsity, and (iii) an auxiliary revival loss (1 x 1075) to reactivate dead latents. On the Flickr testing
set, the trained SAE achieves an R? reconstruction score of 0.87 and an average /, sparsity of
0.0088.

Among experiments, we found that SAEs trained on small-scale in-domain datasets struggle with
the concept discovery ability, as many latents are easy to be entangled or mixed features, with some
hard to interpret. As for the choice of architecture, we found that Top-K SAEs (Gao et al.,[2025) can
yield better reconstruction scores (0.92) and structurally enforced sparsity, but can easily struggle
with overlapping concepts that are hard to put into use.

B.2 LLAVA FINE-TUNING DETAILS
For LLaVA training, we remain the visual encoder frozen, and update only the adapter modules and

LLM parameters using LoRA |Hu et al.| (2022). We set the initial learning rates of 2 x 1075 for the
adapter and 2 x 10~* for the LoRA layers, employing a cosine-annealing scheduler. The attacker’s
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Figure 4: Top-K activation exemplars per concept using TCAV.

target output o, is the fixed sentence “attack successful”. For image generation, we use a simple
prompt “Please add concept ‘{concept}’ into this image. Keep the rest of the part of the original
image.” to edit all the images.

C CONCEPT EXAMPLES ACROSS ENCODERS

To qualitatively inspect what each concept encoder is capturing, we follow the standard practice of
retrieving. For every concept used in Table [T} we show the top-K images in the dataset with the
highest per-concept activation and arrange them left-to-right by activation in Figures[4]to[9]
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Figure 5: Top-K activation exemplars per concept using SpLiCE.
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Figure 6: Top-K activation exemplars per concept using SAE-V.
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Figure 8: Top-K activation exemplars per concept using SAE.
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Figure 9: Top-K activation exemplars per concept using DN-CBM.
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