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Abstract
Automated interpretability research aims to identify concepts encoded in neural
network features to enhance human understanding of model behavior. Within
the context of large language models (LLMs) for natural language processing
(NLP), current automated neuron-level feature description methods face two key
challenges: limited robustness and the assumption that each neuron encodes a
single concept (monosemanticity), despite increasing evidence of polysemanticity.
This assumption restricts the expressiveness of feature descriptions and limits
their ability to capture the full range of behaviors encoded in model internals. To
address this, we introduce Polysemantic FeatuRe Identification and Scoring Method
(PRISM), a novel framework specifically designed to capture the complexity of
features in LLMs. Unlike approaches that assign a single description per neuron,
common in many automated interpretability methods in NLP, PRISM produces
more nuanced descriptions that account for both monosemantic and polysemantic
behavior. We apply PRISM to LLMs and, through extensive benchmarking against
existing methods, demonstrate that our approach produces more accurate and
faithful feature descriptions, improving both overall description quality (via a
description score) and the ability to capture distinct concepts when polysemanticity
is present (via a polysemanticity score).

1 Introduction
Large Language Models (LLMs) have rapidly become integral to a range of real-world applications,
from software development [1] to medical diagnostics [2]. Despite their growing influence, the
internal decision-making processes of these models remain largely opaque. A growing number
of approaches aim to understand these black-box systems by analyzing their internal structure in
human-interpretable ways, such as mechanistic interpretability [3, 4, 5], structured explanations [6, 7],
advanced feature attributions [8, 9], and free-text explanations [10, 11].

A central goal of this research is to assign interpretable, functional roles to individual components
such as neurons or attention heads [12, 13, 14, 15]. The presence of polysemanticity, the tendency of
individual features to encode multiple, semantically distinct concepts or patterns [16, 17], complicates
the process of explaining model components, as it defies the common assumption that a single neuron
is associated with a single function or pattern. From a coding-theoretic perspective, this reflects how
neural capacity is distributed across multiple tasks. While several concept extraction techniques like
sparse autoencoders (SAEs) [18, 19] aim to disentangle polysemantic features, many learned features
still encode multiple concepts [20], and therefore cannot be regarded as truly monosemantic.
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Figure 1: Overview of the PRISM framework. PRISM captures multiple concepts per feature,
enabling the detection of both polysemantic and monosemantic features, unlike prior approaches that
constrain each feature to a single description. For example, feature 3815 in layer 47 was previously
labeled as monosemantic [20], whereas PRISM reveals that it responds to multiple distinct concepts.
Polysemanticity scoring summarizes how diverse the concepts associated with a feature are, while
description scoring assesses how well each concept aligns with the feature’s activation distribution.

While the problem of polysemanticity is generally addressed through the extraction of sparse features,
such as via sparse autoencoders, feature description methods, which aim to explain the functional
purpose of individual features, typically provide a single explanation per feature [21, 22, 23, 24, 25].
This can limit the ability to capture the full range of patterns a feature may represent. To offer more
comprehensive and nuanced feature descriptions, we introduce PRISM, a framework for generating
and evaluating multi-concept feature descriptions that considers multiple patterns per feature. In
Figure 1, we present a neuron previously labeled as “possibly monosemantic” [20] that PRISM
reveals to activate for a highly diverse and heterogeneous set of concepts characterized by textual
descriptions. Throughout this work, a concept refers to a cluster of token-level inputs that elicit similar
contextualized feature activations, allowing each feature to be associated with multiple concepts that
reflect the diversity of inputs it responds to. Our contributions include:

(1) A framework, PRISM, that generates multi-concept descriptions of features (Section 3), provid-
ing greater precision and granularity compared to existing methods.

(2) A set of quantitative evaluations (Section 3.2) for comparing multi-concept textual descriptions
across different feature description methods.

(3) A first multi-concept feature description analysis of language model features, revealing that
individual features encode a highly diverse and heterogeneous set of concepts (Section 5).

By addressing the limitations of single-concept feature descriptions, PRISM enables a systematic and
nuanced understanding of internal representations, crucial to advance the interpretability of language
models. Our code is made publicly available to the community.1

2 Related Work
Automated Interpretability Recent generative AI systems have grown increasingly complex,
motivating efforts to scale interpretability. In addition to methods that provide local explanations for
individual predictions, a complementary line of research focuses on fully automated descriptions
of model components like neurons and their associated functions. In this context, an automated
interpretability approach was introduced to generate a textual description for each neuron in GPT-2
XL [21]. This method has since become a foundation for subsequent work on feature descriptions [26,
19, 23, 22, 27, 25].

Feature Description Evaluation Automated feature description methods often rely on simulation-
based approaches, where a model predicts neuron activations for given inputs [21]. This approach,
widely adopted in recent work [26, 19, 23], evaluates descriptions based on the correlation between
simulated and actual activations. Other evaluations include binary classification of activating and
non-activating contexts [28], contrastive methods using distractor samples [29, 30], and combined
approaches that assess input capture accuracy and feature characterization precision [25, 31, 32].
Simulation-based approaches herein rely on an external model’s ability to accurately predict neuron

1https://github.com/lkopf/prism
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Figure 2: Steps for extracting feature descriptions with PRISM. In Step 1, PRISM processes a text
dataset through the model and selects sentences from the top percentile of the activation distribution
for a given feature. In Step 2, these high-activation sentences are embedded using a sentence encoder
and clustered to identify recurring patterns. In Step 3, the top activating examples from each cluster
are used to prompt an LLM, which generates descriptive labels for each cluster.

activations given a feature extracted by an additional explainer model. Currently, it remains unclear
how well LLMs reliably predict activations of other models, adding uncertainty and complexity to
the evaluation of feature descriptions. Our approach instead directly compares feature activation
distributions to controls, using both parametric and non-parametric evaluation measures.

Clustering and Topic Analysis in Text Recent work in topic modeling has relied on unsupervised
clustering of language model embeddings to discover latent topics without relying directly on
keywords [33, 34]. While methods like LLooM [35] and goal-driven explainable clustering [36]
use LLMs to extract or assign high-level textual summaries, our work focuses on fine-grained
interpretability of internal model features.

For an extended discussion of related work, see Appendix A.1; additional details on feature description
methods are provided in Table 2 in Appendix A.2.

3 PRISM: A Framework for Multi-Concept Feature Descriptions
We introduce PRISM, a framework for generating multi-concept descriptions of model features
(Section 3.1), and evaluating their quality through polysemanticity and description scoring metrics
(Section 3.2).

Preliminaries Let a decoder-only LLM be defined as function f : X → Z1 × · · · × ZL, where X
is the input space (i.e., token sequences), L is the total number of blocks, and Zℓ ⊆ Rdℓ denotes
the hidden representation at layer ℓ ∈ {1, . . . , L}. We denote the layer-specific subfunction as
fℓ : X → Zℓ, such that the output of layer ℓ is zℓ = fℓ(x). We define a feature as the activation
of a single neuron i ∈ {1, . . . , dℓ}, corresponding to the scalar function fℓ,i : X → R, defined
as fℓ,i(x) = zℓ,i which denotes the activation of the i-th neuron for the ℓ-th layer.2 A feature
description method aims to associate each feature with a single or multiple human-interpretable
textual descriptions. Mathematically, each feature zℓ,i is assigned a subset of 1, . . . , N possible
descriptions by a set-valued description function ϕλ : F → P(S), such that siℓ = ϕ(fiℓ ;λ), where
ϕ takes as input the feature function fℓ,i ∈ F , λ represent method-specific hyperparameters3 and
P is the power set of all valid description subsets S, including empty and all. This formulation
accommodates both single- and multi-concept descriptions, depending on the implementation of the
description function ϕ.

3.1 Extracting Feature Descriptions
To address feature polysemanticity, we propose a method capable of capturing multiple concepts
per feature. Let fℓ,i : X → R be the fixed feature under consideration, where ℓ∈ {1, . . . , L} and
i∈{1, . . . , dℓ}. Given a corpus D ⊂ X , denote the multiset of its activations by

Aℓ,i =
{
fℓ,i(x)

∣∣ x ∈ D
}
. (1)

2In the case of a sparse autoencoder (SAE) feature, let l : Zℓ → Rk be a learned sparse encoder that
maps the ℓ-th layer’s activations to a K-dimensional sparse encoding, where the j-th SAE feature is defined as
fℓ,j(x) = lj(fℓ(x)) where lj(·) denotes the j-th SAE neuron.

3We avoid defining this further to avoid notational clutter.
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Our multi-concept framework consists of the following steps in reference to Figure 2:

1. Percentile Sampling. Let percq(Aℓ,i) be the operator, returning the q-th percentile4 of the
empirical distribution of Aℓ,i. Fix a grid of high-percentile levels

Q = {q1, . . . , qm} ⊂ [0, 1], q1 < · · · < qm. (2)

The high-activation sample set for the neuron is

Tℓ,i =
{
percq(Aℓ,i)

}
q∈Q

(3)

2. Concept Clustering. Let e : X → Rde be a sentence-embedding function. For a pre-specified
k ∈ N we partition the embedded set

{
e(x) | x ∈ Tℓ,i

}
into clusters Cℓ,i = {C1, . . . , Ck} by

employing K-Means method [38].

3. Cluster Labeling. Let G denote a large language model acting on sets of sentences. For each
cluster Ck we select the Ns sentences in Ck ∈ Cℓ,i with the highest activations and query

sj = G
(
topNs

(Cj)
)
, (4)

where sj ∈ S is a concise natural language summary of the common theme in Cj .

3.2 Evaluating Multi-Concept Feature Descriptions
Polysemanticity Scoring To quantify the degree of polysemanticity, we measure the similarity
among the generated descriptions per feature. Descriptions are encoded using a sentence embedding
model, and their pairwise cosine similarities τj = e(sj), τj ∈ RT with i ̸= j, i, j ∈ {1, . . . , k} are
computed:

cos(θ) =
∑T

t τi,tτj,t√∑T
t τ2i,t

√∑T
t τ2j,t

, (5)

where T ∈ N is the dimension of the sentence embedding. Features with lower average similarity
scores are considered more polysemantic, while high similarity indicates monosemanticity.

Description Scoring Following previous work, which uses contrastive methods to differentiate
between activating samples and control samples [29, 30], we adapt the COSY evaluation method [39]
to language models (see Figure 7 in Appendix A.3). COSY evaluates each candidate feature using
two complementary metrics. The Area Under the Receiver Operating Characteristic (AUROC)
measures how well the feature distinguishes between control data points X0, consisting of 1,000
randomly sampled entries from Cosmopedia [40], and target concept data points X1, consisting
of 10 concept-specific text samples generated by an LLM for the feature description. Given the
corresponding activations A0 ∈ Rn for X0 and A1 ∈ Rm for X1, the AUROC is computed as

ΨAUROC(A0,A1) =

∑
a∈A0

∑
b∈A1

1[a < b]

|A0| · |A1|
. (6)

The Mean Activation Difference (MAD) quantifies the normalized difference between the mean
activation on the target and control datasets:

ΨMAD(A0,A1) =
1
m

∑
b∈A1

b− 1
n

∑
a∈A0

a√
1

n−1

∑
a∈A0

(a− ā)2
, (7)

with mean control activation ā = 1
n

∑
a∈A0

a. In our evaluation, we report the percentage of features
with positive MAD scores, i.e., the fraction of features satisfying A1 > A0. See Appendix A.3 for
dataset, model and activation details.

4 Quantitative Evaluation
In the following, we quantitatively evaluate our proposed feature description method, PRISM, against
existing approaches for neuron and SAE feature interpretation.

4In practice we estimate percq online via the P2 algorithm [37].
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4.1 Experimental Setup
In our experiments, we evaluate PRISM against competitive feature description methods, MaxAct5,
GPT-Explain [21], Transluce-Explain [23], Neuronpedia [42], and Output-Centric [25]6. Unless
otherwise specified, all experiments are conducted on the English training subset of the C4 COR-
PUS [41], a large, cleaned version of Common Crawl’s web crawl corpus. We process text excerpts to
a uniform length of 512 tokens, either by truncation or padding, ensuring consistency across model
inputs. Feature activations are extracted from four pre-trained LLMs, from three layers per model
(early, middle, late)7. For GPT-2 XL [43] and Llama 3.1 8B Instruct [44], we analyze MLP neurons.
For GPT-2 Small [22] and Gemma Scope [45], we focus on residual stream SAE features on account
of the publicly available implementations. More details on the evaluation procedure and experimental
setup are provided in Appendix A.3 and Appendix A.4.

For the practical implementation of each step in the PRISM framework we choose the following
settings:

• For (1) Percentile Sampling, we identify all text excerpts whose mean activation values fall
within the 99th–100th percentile, sampling one excerpt per percentile bin with a step size of
1e-05, resulting in 1000 high-activation excerpts per feature. Compared to top-k sampling, this
approach captures a broader spectrum of strong activations, allowing us to collect meaningful
text samples from a wide range of conceptual patterns.

• For (2) Concept Clustering, the resulting text set is embedded using the gte-Qwen2-1.5B-
instruct sentence transformer [46], and then k-means clustering is applied with k = 5 to
uncover recurring conceptual patterns. Using a fixed number of clusters strikes a balance
between granularity and human interpretability, enabling multiple semantic patterns to emerge
while reducing redundancy or incoherence. When clusters are highly similar, the resulting low
polysemanticity score reflects monosemanticity.

• For (3) Cluster Labeling, to generate human-interpretable labels, we prompt a large language
model (Gemini 1.5 Pro [47]8) using the Ns = 20 text excerpts with the highest mean activations
for each cluster. Only positive activations are considered, and a token is highlighted if its
activation exceeds a sample-specific threshold, defined as the 90th percentile of the sample’s
activation distribution. Token spans corresponding to peak activations are highlighted with
square brackets “[...]” [49, 28, 23] in the prompt to guide the model. The LLM is instructed to
output a concise summary of the shared concept in each cluster. Additional prompt details are
provided in Appendix A.4.

4.2 Ablation Studies
To assess the robustness of our framework, we conduct ablation studies along two dimensions: (i)
varying the number of clusters used for description generation, and (ii) replacing the language models
used in both description generation and evaluation. Full experimental details and results are provided
in Appendix A.5

Cluster Size We vary the number of clusters k used in concept clustering to analyze its impact
on interpretability (Table 3). Larger k improves best-case description quality by isolating more
fine-grained activation patterns, but reduces average interpretability as coherent patterns are split
across clusters, revealing a tradeoff between precision and coverage.

Text Generators To evaluate the impact of language model choice on our framework, we ablate
the text generators used in both description generation and evaluation. For description generation
(Table 4), Qwen3 32B [50] achieves performance comparable to Gemini 1.5 Pro (the default in our
original implementation), while Phi-4 [51] and DeepSeek R1 [52] follow similar qualitative trends,

5For obtaining feature descriptions with the MaxAct method, we use a subset of 10,000 samples from the
English training split of the C4 CORPUS [41], collect the top five activating samples per feature, and generate
feature descriptions using the same prompt as in PRISM(see Appendix A.4).

6We use descriptions generated by their Ensemble Raw (All) method, which is best performing on their
input-based evaluation.

7More details can be found in GitHub Repository https://github.com/lkopf/prism
8The model originally employed in this study (Gemini 1.5 Pro) was deprecated upon completion of the project.

Consequently, subsequent experiments, including those pertaining to MaxAct and output-centric evaluation,
were conducted using the available and comparable model, Gemini 2.0 Flash Lite [48].
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Table 1: Benchmarking feature description methods. AUROC reflects classification performance,
while MAD measures activation differences between target and control descriptions. PRISM (max)
reports the best-matching score per feature; (mean) averages over all descriptions. Values are means
across selected features from early, middle, and late layers. AUROC includes 95% confidence
intervals; MAD represents the percentage of positive MAD scores. Bold indicates best performance;
dashes denote unavailable descriptions for certain models. See Appendix A.4 for details.

Method
GPT-2 XL Llama 3.1 8B Instruct GPT-2 Small Gemma Scope

(MLP neuron) (MLP neuron) (resid. SAE feature) (resid. SAE feature)

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑) AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

MaxAct 0.53 (0.49-0.58) 11.86% 0.54 (0.46-0.63) 50.00% 0.53 (0.49-0.58) 11.86% 0.60 (0.50-0.69) 50.00%
GPT-Explain [21] 0.64 (0.56-0.73) 65.00% — — — — — —
Transluce-Explain [23] — — 0.59 (0.51-0.67) 63.33% — — — —
Neuronpedia [42] — — — — 0.54 (0.50-0.59) 18.97% 0.62 (0.53-0.72) 63.33%
Output-Centric [25] — — 0.55 (0.46-0.64) 58.33% 0.57 (0.53-0.62) 22.03% 0.58 (0.49-0.67) 46.67%
PRISM (mean) 0.65 (0.61-0.69) 66.33% 0.52 (0.48-0.55) 51.33% 0.51 (0.50-0.53) 13.22% 0.43 (0.39-0.46) 24.67%
PRISM (max) 0.85 (0.78-0.91) 91.67% 0.71 (0.63-0.78) 81.67% 0.57 (0.53-0.61) 28.81% 0.54 (0.45-0.62) 38.33%

showing that the approach does not depend on a single model. For evaluation (Table 5), alternative
LLMs yield slightly lower absolute scores but preserve the relative ranking of methods. These results
confirm the robustness of our evaluation setup and the generalizability of the framework across
language models.

4.3 Sanity Checks
Prior work has shown that LLMs can produce plausible yet unfaithful explanations unrelated to
the prompt [53, 54, 55, 11, 56]. Like most feature description methods, our approach relies on
LLM-generated feature descriptions. To address potential issues of faithfulness, we conduct two
sanity checks that assess description reliability under controlled settings: (1) randomizing sentences
within clusters and (2) randomizing cluster descriptions. We further evaluate the polysemanticity
scoring, examine feature description quality across percentile activation intervals, and analyze relative
activations. Details on the experimental setup, results, and analysis are provided in Appendix A.6.

Randomizing sentences or descriptions yields AUROC values near random relative to the baseline
(Table 6). While MAD scores are often not statistically significant due to large standard deviations,
they consistently decrease, aligning with our expectations. For polysemanticity, randomly assigned
descriptions yield notably lower similarity values than true scores, reflecting reduced semantic co-
herence (Figure 13). Examining percentile intervals, the top 25% (0.75–1.0) of activations closely
match baseline performance, whereas lower quartiles show reduced scores, demonstrating a positive
correlation between activation strength and description quality (Table 7). The analysis of relative
activations between the 99th and 100th percentiles shows that extremely small ratios are rare, espe-
cially in early layers, indicating that percentile-based sampling reliably captures diverse, meaningful
patterns (Figure 14).

4.4 Benchmarking Experiment Results
Table 1 compares the performance of PRISM against MaxAct, GPT-Explain, Transluce-Explain,
Neuronpedia, and Output-Centric. We report two variants: PRISM (max), which reflects the score of
the best-matching description, and PRISM (mean), averaging scores across k = 5 descriptions used
throughout the paper. All reported values are means over a selected subset of features from three
model layers, i.e., early, middle, and late. Dashes (—) indicate that the respective method does not
provide feature descriptions for the corresponding model, preventing evaluation.

Empirical Advantage of PRISM A key observation is that PRISM (max) achieves the highest
AUROC and MAD scores, across all model and feature-type combinations. For example, on GPT-2
XL (neuron features), PRISM (max) reaches an AUROC of 0.85 and a MAD of 91.67%, indicating
that its descriptions are more accurate and outperform the competitive approach of GPT-Explain.
One exception is observed with Gemma Scope (SAE features), where the Neuronpedia method
slightly outperforms PRISM (max), achieving the highest MAD (63.33%) and AUROC (0.62). This
suggests that, for certain architectures or feature types, alignment in the output space may offer
complementary advantages. Additional analysis on the distribution and variability of AUROC and
MAD scores is provided in Appendix A.4. Overall, we find that neuron-based features yield more
reliable interpretations than SAE-based features, providing further evidence for recent methodological
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Figure 3: Comparison of PRISM (max) AUROC evaluation scores and PRISM polysemanticity
scores across different models and layers.

Figure 4: Clustering of identified PRISM feature descriptions in GPT-2 XL. The km = 50 meta-
clusters are visualized using UMAP, with metalabels generated by Gemini 1.5 Pro and three randomly
selected sample descriptions shown per cluster.

concerns about achieving improved interpretability through SAEs [57]. Extended results on the
output-centric evaluation are provided in Appendix A.4.

Varying Quality and Polysemanticity across Models In Figure 3(a) and Figure 3(b), we analyze
the feature descriptions’ quality and polysemanticity across layers. Judging the evaluation scores,
middle layers generally appear to be easier to interpret (Figure 3(a)). In most models, the AUROC
scores peak in the middle layer. An exception is observed in Llama 3.1 8B Instruct, where evaluation
scores (measured in AUROC, see 3.2) increase in the later layer.

To analyze the degree of polysemanticity, we use the gte-Qwen2-1.5B-instruct sentence trans-
former [46] to embed the five natural language descriptions generated per feature. We then compute
pairwise cosine similarity within each set of five descriptions to estimate semantic consistency. In
Figure 3(b), polysemanticity scores show no consistent trend across layers and vary across models
and feature types. Interestingly, we can also note that Gemma Scope SAE feature descriptions show
the highest monosemanticity across all layers, as shown in Figure 3(b). Despite high variability, our
findings suggest that polysemanticity does not consistently increase or decrease with layer depth, and
interpretability varies significantly across architectures.

5 Investigating Multi-Concept Features
After validating our approach, we can leverage PRISM’s novel polysemantic analysis to investigate
the diversity of feature descriptions. We also take an initial step toward human evaluation of multi-
concept descriptions via polysemanticity judgments.

5.1 Exploring Concept Spaces
The distinction between syntax and semantics has deep roots in logic [58, 59] and the study of
language [60, 61], where representations are understood to involve both structural and meaning-
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bearing properties. Additionally, pragmatics [62] has emerged as another level of analysis, focusing
on how context, intention, or social norms shape the interpretation of language. In the context of
LLMs, representations have most commonly been categorized as syntactic, including dependency
structures and part-of-speech tags [63], or semantic, involving token associations [64], task-specific
information [65], or abstract encodings such as goals [66], with recent work also exploring pragmatic,
context-dependent interpretations [67].

To gain a better overview of the representational diversity and variety of identified concepts, we now
explore all extracted feature descriptions with PRISM. We embed them using GPT-2 XL, extract
the final token as a feature description representation, and apply k-means clustering with km = 50
to identify and visualize meta-clusters using UMAP [68], illustrating the space of learned concepts
within the model [69, 70]. In Figure 4, we present a subset of the resulting clusters and their generated
metalabels for GPT-2 XL. Further examples can be found in Appendix A.7, including results for
GPT-2 Small SAE in Figure 16. Metalabels summarizing shared themes among grouped feature
descriptions are generated using Gemini 1.5 Pro, with clusters outlined based on Gaussian kernel
density estimation (bandwidth h = 0.3) with point weights that decay exponentially with distance
from the cluster centroid.

First of all, we find that automatically clustering and summarizing feature descriptions is effective
in producing human-interpretable abstractions and associated metalabels, enabling users to reduce
the potentially large number of descriptions they need to inspect. When inspecting the resulting
clusters, we observe a range of distinct categories. For GPT-2 XL, we observe diverse semantic
categories, e.g., referring to “Positive Experiences” (id 6) or actions in “Events and Activities” (id 29).
Furthermore, we identify domain-specific clusters of feature descriptions, with associated neurons
responding to categories such as “Digital Tools and Resources” (id 12) and “Legal and Administrative
Affairs” (id 45). Examples of syntactic diversity include “Time/Date Related Information” (id 40)
and “Structured Data” (id 18), focusing on part-of-speech and specific sentence structure. We further
identified combined representations, e.g., syntactic concepts of quantity in the context of specific
domains such as food or recipes (“Product Information”, id 8). Similar patterns are observed for
GPT-2 Small SAE (see Figure 16 in Appendix A.7).

Overall, clustering feature descriptions uncovers multiple levels of analysis, offering a valuable
approach for categorizing feature descriptions. Building towards a shared vocabulary to characterize
model representations could further reveal universal concepts across models, aligning with recent
discussions and evidence on universal representations [71, 72].

5.2 Polysemanticity Analysis and Human Interpretation
Following prior work on human annotation of feature descriptions [32, 23], we selected 8 instances as
representative samples for obtaining feature label descriptions. Each instance included 5 text clusters
generated using Steps 1-3 of the PRISM framework (Figure 2) in the same format the LLM receives
during cluster labeling. Seven participants annotated clusters of highly activating sentences and rated
the polysemanticity of the resulting labels on an 11-point scale (0.0-1.0), enabling comparison with
the PRISM polysemanticity score (Section 3.2). Full study details and results are in Appendix A.8.

Figure 5 compares human-annotated labels with descriptions generated by PRISM. The first example
(top row), a polysemantic neuron in GPT-2 XL, receives low scores from both humans (0.40) and
PRISM (0.38), reflecting high polysemanticity. The cluster descriptions here are diverse and capture
distinct concepts. In contrast, the second example (bottom row) shows a monosemantic SAE feature
in Gemma Scope: both human and PRISM scores are high, and all labels consistently reference
“time”, differing only in context. Additionally, our comparative analysis of polysemanticity scores
assigned by humans and models, shown in Figure 6, indicates an overall strong and consistent
alignment between human annotations and PRISM scores.

6 Discussion and Conclusion
In this work, we propose PRISM, a novel framework for identifying multi-concept feature de-
scriptions in LLMs. Our framework also allows us to ground resulting descriptions in systematic
evaluation approaches, by including a description score that provides a description quality measure.
Thus, PRISM not only provides an automated interpretability of model components via human-
interpretable descriptions, but is the first framework that addresses the challenge of detecting more
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Figure 5: Cluster labeling comparison between human and PRISM (LLM). We compare cluster
labeling for two features: a polysemantic feature (top row) and a monosemantic feature (bottom
row). On the left, we show representative text spans from input samples that strongly activate the
feature, grouped into five clusters based on shared patterns. Within each span, tokens with the
highest activations are highlighted. On the right, we compare the cluster labels generated by PRISM
(LLM-based) and a human annotator shown the same input as the model. Additionally, the human
rates the conceptual coherence of the five cluster labels on a scale from 0.0 to 1.0, where lower values
indicate more diverse (polysemantic) and higher values more consistent (monosemantic) labeling.
This rating is directly compared with PRISM’s polysemanticity score for the same feature.

than one activation pattern a model feature is sensitive to and allows us to quantify variations in the
activation patterns using the framework’s polysemanticity score.

We conduct several experiments demonstrating the performance and analytical applications of
PRISM. Our results show that multi-concept descriptions more accurately distinguish target concepts
from control data, with statistically more distinct mean activations. PRISM also extends prior work
by capturing variation in description quality [39] and differences in polysemanticity across model
layers [73]. Beyond qualitative analysis, PRISM’s multi-concept approach and novel polysematicity
scoring provide new directions for studying the structure and interpretability of model features. In
exploring the concept space, we use PRISM to characterize more complex components, finding and
interpreting patterns that specific attention heads or groups of neurons respond to. Deep learning
systems utilize distributed features that, in principle, allow for compositionality. By providing a
description of more complex sets of interacting components, we can tackle a timely challenge to the
community. Lastly, we took a step towards testing the alignment of our PRISM framework with
human interpretation. Especially rating polysemanticity is a complex task for humans, even when
presented with sentence examples. Our results highlight that the PRISM framework not only provides
multiple human interpretable descriptions for neurons but also aligns with the human interpretation
of polysemanticity.

Limitations As we have focused on textual explanations, our descriptions are limited to concepts
expressible in natural language, and thus may be unable to capture complex syntactic structures
like graphs or algorithmic concepts where the underlying operation is not easily described in the
constrained vocabulary space. Fixing the number of clusters in PRISM cannot guarantee that
provided descriptions capture all or the most salient concepts for a feature; instead, they represent a
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Figure 6: Results of the human evaluation study. Each group on the x-axis corresponds to one
feature (layer, feature, model, feature type). For each feature, we show Human polysemanticity
scores (red boxplots) from participants’ ratings of cluster descriptions, Human Cosine Similarity
(purple boxplots) computed with sentence embeddings of the same human-written descriptions, and
the corresponding PRISM polysemanticity score (blue point marker). Lower values indicate higher
polysemanticity. The results illustrate that features judged by PRISM as polysemantic receive both
lower human similarity ratings and lower embedding-based similarity, while features with high
PRISM scores show higher human scores.

subset of key concepts the feature is responsive to. Parametric measures such as MAD are sensitive
to outliers, especially in NLP settings where activations often follow heavy-tailed distributions. To
address this, we pair MAD with the more robust AUROC score, yielding a more comprehensive
view of feature behavior. Finally, reliance on maximally activating corpus examples can restrict
interpretations to observed concepts, limiting coverage of rare patterns or out-of-distribution effects
across datasets [74].

Future Work A promising next step is to study how the method’s performance changes as the
number of clusters varies, and to examine whether alternative clustering techniques can uncover a
hierarchical organization of the resulting descriptions. Beyond our quantitative evaluation, we also
stress the need for rigorously designed human-evaluation protocols and community benchmarks that
provide transparent, standardized measures of progress in automated interpretability.

References
[1] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,

Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

[2] Tao Tu, Mike Schaekermann, Anil Palepu, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy
Wang, Brenna Li, Mohamed Amin, Yong Cheng, Elahe Vedadi, Nenad Tomasev, Shekoofeh
Azizi, Karan Singhal, Le Hou, Albert Webson, Kavita Kulkarni, S. Sara Mahdavi, Christopher
Semturs, Juraj Gottweis, Joelle Barral, Katherine Chou, Greg S. Corrado, Yossi Matias, Alan
Karthikesalingam, and Vivek Natarajan. Towards conversational diagnostic artificial intelligence.
Nature, pages 1–9, April 2025. Publisher: Nature Publishing Group.

[3] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

[4] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations, 2023.

[5] Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom In: An Introduction to Circuits, 2020.

10



[6] Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah
Goodman, and Christopher Potts. Inducing causal structure for interpretable neural networks.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 7324–7338. PMLR, 7 2022.

[7] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-
Robert Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via
relevant walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7581–
7596, 2022.

[8] Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 4190–4197, Online,
July 2020. Association for Computational Linguistics.

[9] Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and
Lior Wolf. Xai for transformers: Better explanations through conservative propagation. In
International conference on machine learning, pages 435–451. PMLR, 2022.

[10] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-snli:
Natural language inference with natural language explanations. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[11] Andreas Madsen, Sarath Chandar, and Siva Reddy. Are self-explanations from large language
models faithful? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the
Association for Computational Linguistics: ACL 2024, pages 295–337, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

[12] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network Dissection:
Quantifying Interpretability of Deep Visual Representations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6541–6549, 2017.

[13] Jesse Mu and Jacob Andreas. Compositional Explanations of Neurons. In Advances in Neural
Information Processing Systems, volume 33, pages 17153–17163. Curran Associates, Inc.,
2020.

[14] Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, and Marina Höhne. Labeling
Neural Representations with Inverse Recognition. Advances in Neural Information Processing
Systems, 36:24804–24828, December 2023.

[15] Clement Neo, Shay B Cohen, and Fazl Barez. Interpreting Context Look-ups in Transformers:
Investigating Attention-MLP Interactions. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pages 16681–16697, Miami, Florida, USA, November 2024. Association for
Computational Linguistics.

[16] Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, and Buck Shlegeris. Polyseman-
ticity and Capacity in Neural Networks. CoRR, 2022.

[17] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy
Models of Superposition, September 2022. arXiv:2209.10652 [cs].

[18] Andrew Ng. Sparse autoencoder, 2011. CS294A Lecture notes 72.

[19] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Chris Olah. Towards Monosemanticity: Decomposing Language Models With Dictionary
Learning, October 2023.

11



[20] OpenAI. Automated interpretability. https://github.com/openai/automated-interpr
etability/tree/main?tab=readme-ov-file#misc-lists-of-interesting-neuro
ns, 2023. Accessed: 2025-05-14.

[21] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in
language models, May 2023.

[22] Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The
Thirteenth International Conference on Learning Representations, October 2024.

[23] Dami Choi, Vincent Huang, Kevin Meng, Daniel D. Johnson, Jacob Steinhardt, and Sarah
Schwettmann. Scaling Automatic Neuron Description | Transluce AI, October 2024.

[24] Xuemin Yu, Fahim Dalvi, Nadir Durrani, Marzia Nouri, and Hassan Sajjad. Latent Concept-
based Explanation of NLP Models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pages 12435–12459, Miami, Florida, USA, November 2024. Association for
Computational Linguistics.

[25] Yoav Gur-Arieh, Roy Mayan, Chen Agassy, Atticus Geiger, and Mor Geva. Enhancing Au-
tomated Interpretability with Output-Centric Feature Descriptions. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 5757–5778, Vienna, Austria, July 2025. Association for Computational Linguistics.

[26] Hoagy Cunningham, Aidan Ewart, Logan Riggs Smith, Robert Huben, and Lee Sharkey.
Sparse Autoencoders Find Highly Interpretable Features in Language Models. In The Twelfth
International Conference on Learning Representations, 2024.

[27] Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances
Liu, Qipeng Guo, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Llama Scope:
Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders, October 2024.
arXiv:2410.20526 [cs].

[28] Gonçalo Santos Paulo, Alex Troy Mallen, Caden Juang, and Nora Belrose. Automatically
Interpreting Millions of Features in Large Language Models. In Forty-second International
Conference on Machine Learning, June 2025.

[29] Thomas McGrath, Daniel Balsam, Liv Gorton, Murat Cubuktepe, Myra Deng, Nam Nguyen,
Akshaj Jain, Thariq Shihipar, and Eric Ho. Mapping the Latent Space of Llama 3.3 70B -
Goodfire Papers.

[30] Jack Lindsey, Hoagy Cunningham, Tom Conerly, and Adly Templeton. Interpretability Evals
for Dictionary Learning, 2024.

[31] Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts.
Rigorously Assessing Natural Language Explanations of Neurons. In Proceedings of the 6th
BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 317–331,
Singapore, 2023. Association for Computational Linguistics.

[32] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Transformer
Circuits Thread, 2024.

[33] Roee Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 7747–7763,
Online, July 2020. Association for Computational Linguistics.

12

https://github.com/openai/automated-interpretability/tree/main?tab=readme-ov-file#misc-lists-of-interesting-neurons
https://github.com/openai/automated-interpretability/tree/main?tab=readme-ov-file#misc-lists-of-interesting-neurons
https://github.com/openai/automated-interpretability/tree/main?tab=readme-ov-file#misc-lists-of-interesting-neurons


[34] Maarten Grootendorst. BERTopic: Neural topic modeling with a class-based TF-IDF procedure.
arXiv, abs/2203.05794, 2022.

[35] Michelle S. Lam, Janice Teoh, James A. Landay, Jeffrey Heer, and Michael S. Bernstein.
Concept induction: Analyzing unstructured text with high-level concepts using lloom. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24,
New York, NY, USA, 2024. Association for Computing Machinery.

[36] Zihan Wang, Jingbo Shang, and Ruiqi Zhong. Goal-driven explainable clustering via language
descriptions. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 10626–10649,
Singapore, December 2023. Association for Computational Linguistics.

[37] Raj Jain and Imrich Chlamtac. The p2 algorithm for dynamic calculation of quantiles and
histograms without storing observations. Communications of the ACM, 28(10):1076–1085,
1985.

[38] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, March 1982.

[39] Laura Kopf, Philine L. Bommer, Anna Hedström, Sebastian Lapuschkin, Marina M. Höhne,
and Kirill Bykov. CoSy: Evaluating Textual Explanations of Neurons. Advances in Neural
Information Processing Systems, 37:34656–34685, December 2024.

[40] Ben Allal, Loubna, Lozhkov, Anton, Penedo, Guilherme, Wolf, Thomas, and Werra, Leandro.
Cosmopedia, December 2024.

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[42] Johnny Lin. Neuronpedia: Interactive Reference and Tooling for Analyzing Neural Networks,
2023. Software available from neuronpedia.org.

[43] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAI, 2019.

[44] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and et al. The
llama 3 herd of models. arXiv, abs/2407.21783, 2024.

[45] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope: Open
Sparse Autoencoders Everywhere All At Once on Gemma 2. In Yonatan Belinkov, Najoung
Kim, Jaap Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen, editors, Proceedings of
the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages
278–300, Miami, Florida, US, November 2024. Association for Computational Linguistics.

[46] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards General Text Embeddings with Multi-stage Contrastive Learning, August 2023.
arXiv:2308.03281 [cs].

[47] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Gar-
rett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, and et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context. arXiv, abs/2403.05530, 2024.

[48] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, and et al. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

[49] Justin Lee, Tuomas Oikarinen, Arjun Chatha, Keng-Chi Chang, Yilan Chen, and Tsui-Wei
Weng. The Importance of Prompt Tuning for Automated Neuron Explanations. In NeurIPS
Workshop on Attributing Model Behavior at Scale, October 2023.

13



[50] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[51] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

[52] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[53] Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

[54] Oliver Bentham, Nathan Stringham, and Ana Marasovic. Chain-of-thought unfaithfulness
as disguised accuracy. Transactions on Machine Learning Research, 2024. Reproducibility
Certification.

[55] Henning Bartsch, Ole Jorgensen, Domenic Rosati, Jason Hoelscher-Obermaier, and Jacob Pfau.
Self-consistency of large language models under ambiguity. In Yonatan Belinkov, Sophie Hao,
Jaap Jumelet, Najoung Kim, Arya McCarthy, and Hosein Mohebbi, editors, Proceedings of
the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages
89–105, Singapore, December 2023. Association for Computational Linguistics.

[56] Shiyuan Huang, Siddarth Mamidanna, Shreedhar Jangam, Yilun Zhou, and Leilani H. Gilpin.
Can large language models explain themselves? a study of llm-generated self-explanations.
arXiv, abs/2310.11207, 2023.

[57] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders,
David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom
McGrath. Open problems in mechanistic interpretability, 2025.

[58] Gottlob Frege. Uber Sinn Und Bedeutung. Zeitschrift für Philosophie Und Philosophische
Kritik, 100(1):25–50, 1892. Publisher: Duke University Press.

[59] Alfred Tarski. The Concept of Truth in Formalized Languages. In Alfred Tarski, editor, Logic,
semantics, metamathematics, pages 152–278. Clarendon Press, 1956.

[60] Noam Chomsky. Syntactic structures. Syntactic structures. Mouton, Oxford, England, 1957.
Pages: 116.

[61] Jerry Fodor. The Language of Thought. Harvard University Press, 1975.

[62] Stephen C Levinson. Pragmatics. Cambridge UP, 1983.

[63] Artur Kulmizev, Vinit Ravishankar, Mostafa Abdou, and Joakim Nivre. Do neural language
models show preferences for syntactic formalisms? In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 4077–4091, Online, July 2020. Association for
Computational Linguistics.
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A Appendix
A.1 Related Work
A wide variety of works seek to examine the mechanisms of generative AI systems. Many initially
focused on attributions in input space [8, 9], with later approaches focused on discovering circuit
and graph structures [3, 4, 5], as well as self-explanations generated by the model [10, 11]. To
extract relevant representations and model features, a variety of works have explored interpretability
for analyzing concepts [75], representations [76], and clustering [77] in the context of attributions
of sentence summaries [78] and concept discovery in LLMs [79]. In the following, we will focus
specifically on studies and methods centered on feature descriptions.

A.2 Feature Description Methods
One of the earliest works on feature description in language models is SASC (Summarize and
Score) [80], which generates natural language descriptions of neurons in a pre-trained BERT model.
Shortly thereafter, an automated interpretability method for describing all neurons in GPT-2 XL
was proposed [21]. This approach analyzes the textual patterns that cause a neuron to activate, and
uses GPT-4 as explainer model to generate a description of the neuron’s function. Given a set of
token-activation pairs derived from text excerpts and corresponding neuron activations, the explainer
model identifies common patterns, based on which it generates a textual description of the neuron’s
role. This method has since been widely adopted and further developed, forming the basis for many
subsequent methods targeting both individual neurons [23, 25] and SAE features [26, 19, 42, 22, 28,
27, 45, 29, 25]. An overview of representative feature description methods is provided in Table 2.

Table 2: Representative feature description methods for language models, listed in chronological
order, including the model and feature types they target.

Method Target Model Feature Type

SASC [80] BERT neuron
GPT-Explain [21] GPT-2 XL neuron
Pythia SAE [26] Pythia 70M and Pythia 410M SAE feature
Anthropic SAE [19] one-layer transformer SAE feature

Neuronpedia [42]

DeepSeek R1 Dist Llama 8B, Gemma 2 2B, Gemma 2 2B IT,

SAE featureGemma 2 9B, Gemma 2 9B IT, GPT OSS 20B,
GPT-2 Small, Llama 3.1 8B, Llama 3.1 8B Instruct,
Pythia 70M Deduped, Qwen 2.5 7B IT, Qwen 3 4B

GPT-2 SAE [22] GPT-2 Small SAE feature
GPT-4 SAE [22] GPT-4 SAE feature
EleutherAI SAE [28] Llama 3.1 7B & Gemma 2 9B SAE feature
Transluce-Explain [23] Llama 3.1 8B Instruct neuron
Llama Scope [27] Llama 3.1 8B Base SAE feature
Gemma Scope [45] Gemma 2 SAE feature
Goodfire SAE [29] Llama 3.3 70B SAE feature
Output-Centric neuron [25] Llama 3.1 8B Instruct neuron
Output-Centric SAE [25] Gemma 2 2B, GPT-2 Small, Llama 3.1 8B SAE feature

A.3 Description Scoring Details
Figure 7 illustrates the COSY evaluation procedure [39] as adapted for language models. As the
control dataset X0, we use a subset of 1,000 randomly sampled entries from Cosmopedia [40]. For
each candidate description of a target feature, we use Gemini 1.5 Pro [47] to generate 10 concept-
specific text samples, each with a maximum length of 512 tokens. These samples form the concept
dataset X1. The generation prompt is shown in Figure 8. We then pass both datasets through the
model to extract activations corresponding to the target feature. We then use Average Pooling as
aggregation function σ : Rd → R to each activation vector to obtain scalar representations:

A0 = {σ(fℓ,i(x0
1)), . . . , σ(fℓ,i(x

0
n))} ∈ Rn,

A1 = {σ(fℓ,i(x1
1)), . . . , σ(fℓ,i(x

1
m))} ∈ Rm.

(8)

The resulting activation distributions A0 and A1 are compared to compute the COSY Score (see
Equations 6 and 7), which quantifies how accurately a given description captures the target feature.
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Higher scores indicate clearer separation between concept and control samples, reflecting more
precise and informative descriptions.

Figure 7: Score feature descriptions with COSY. First, we compile multiple candidate descriptions
for a target feature. For each description, we prompt an LLM to generate 10 text samples including
the described concept. These concept-specific samples, along with a control set of random text
samples, are processed through the model to extract activations for the target feature. The COSY
Score quantifies the separation between activation distributions of concept samples versus control
samples, enabling objective comparison of different feature descriptions. Higher scores indicate
descriptions that better capture the feature’s underlying concept.

Generate 10 sentences with a length of 512 words, one per line, with no additional for-
matting, introduction, or explanation. Each sentence should be a complete, standalone text
sample that can be saved as an individual row in a text file. The sentences should include:
{feature_description}

Figure 8: Prompt used to generate concept-specific text samples for evaluation. The placeholder
{feature_description} is replaced with a candidate textual feature description before being
passed to a large language model (Gemini 1.5 Pro). The model then generates 10 standalone text
samples, which form the concept dataset X1. These samples are used to evaluate how well the
description aligns with the target feature.

A.4 Benchmark Experiment Details
Reference Descriptions We use the publicly available descriptions for GPT-Explain9, Transluce-
Explain10, Neuronpedia11, and Output-Centric12 as comparison.

Model Layers For GPT-2 XL13, we use layers 0, 20, and 40. For Llama 3.1 8B Instruct14, we
sample from layers 0, 20, and 30. For GPT-2 Small SAE, we use the original implementation 15,
specifically version 5 with a width of 32k. We select features from layers 0, 5, and 10. For Gemma
Scope16, we use the residual stream SAE with width 16, selecting features from layers 0, 10, and 20.

Feature Selection For each model, we randomly choose 60 features, 20 from each of three layers,
with available reference descriptions from prior work. The only exception is GPT-2 Small SAE,
where only 59 features are annotated in the Output-Centric benchmark.

9https://github.com/openai/automated-interpretability/tree/main?tab=readme-ov-fil
e#public-datasets

10https://github.com/TransluceAI/observatory?tab=readme-ov-file#neuron-description
s

11https://www.neuronpedia.org/
12https://github.com/yoavgur/Feature-Descriptions
13https://huggingface.co/openai-community/gpt2-xl
14https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
15https://github.com/openai/sparse_autoencoder?tab=readme-ov-file
16https://huggingface.co/google/gemma-scope
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Prompt for generating Descriptions To produce textual feature descriptions, we use a prompt that
instructs a large language model (Gemini 1.5 Pro) to identify shared concepts across high-activation
text excerpts within a cluster. The model receives the top Ns = 20 excerpts per cluster, with
high-activation token spans highlighted using square brackets. The full prompt is shown in Figure 9.

You are a meticulous AI researcher conducting an important investigation into a specific neuron
inside a language model that activates in response to text excerpts. Each text starts with “>” and
has a header indicated by === Text #1234 ===, where #1234 can be any number and is the
identifier of the text.
Neurons activate on a word-by-word basis. Also, neuron activations can only depend on words
before the word it activates on, so the description cannot depend on words that come after, and
should only depend on words that come before the activation.
Your task is to describe what the common pattern is within the following texts. From the provided
list of text excerpts, identify the concepts that trigger the activation of a particular feature. If
a recurring pattern or theme emerges where these concepts appear consistently, describe this
pattern. Focus especially on the spans and tokens in each example that are inside a set of
[delimiters] and consider the contexts they are in. The highlighted spans correspond to very
important patterns.
At the beginning, before the list of texts, there will be a list of the highlighted tokens with their
activation values.
At the end, following ‘Description:’, your task is to write the description that fits the above
criteria the best.
Do NOT just list the highlighted words!
Do NOT cite any words from the texts using quotation marks, but try to find overarching concepts
instead!
Do NOT write an entire sentence!
Do NOT finish the description with a full stop!
Do NOT mention the [delimiters] in the description!
Do NOT include phrases like ‘highlighted spans’, ‘Concepts of’, or ‘Concepts related to’, and
instead only state the actual semantics!
Do NOT start with ‘Description:’ and instead only state the description itself!

Figure 9: Prompt used to generate textual descriptions of a feature based on its activation patterns.
The language model (Gemini 1.5 Pro) is instructed to analyze a set of text excerpts, focusing on
highlighted spans corresponding to high activations of a specific feature. The model is guided to
identify consistent patterns or concepts that trigger the feature. The resulting output is a concept-level
description used as textual feature description.

AUROC and MAD Distributions To better understand the standard deviation observed in our
benchmark results, we provide distribution plots of the evaluation metrics. Figure 10 shows the
distribution of AUROC scores across all evaluated model features, while Figure 11 presents the
distribution of MAD scores.

Output-Centric Evaluation In addition to our activation-based metrics, AUC and MAD, we
evaluate an output-centric metric, Faithfulness, which quantifies the causal influence of a discovered
concept on the model’s output [81, 25]. Faithfulness measures the causal effect of a feature on model
outputs, specifically testing whether directly manipulating a feature’s activations can steer the model
to generate content that more strongly reflects the corresponding concept. Following the FADE17

implementation of [81], we compute Faithfulness scores of GPT-2 XL feature descriptions using
GPT-4o mini [82] as the language model and a subset of 10,000 samples from the training split
of the Cosmopedia dataset [40]. To obtain scores for all features, we remove the threshold used
for selecting output-centric samples. Figure 12 presents the results of the output-centric evaluation.
Across layer groups, PRISM (max) consistently outperforms GPT-Explain, exhibiting trends that
closely mirror those observed in the activation-centric evaluation (see Figure 3(a)), further validating
its effectiveness across multiple interpretability criteria.

17https://github.com/brunibrun/FADE
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(b) Llama 3.1 8B Instruct.
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(c) GPT-2 Small SAE.
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Figure 10: Distributions of PRISM (max) AUROC scores across different models and layers.
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Figure 11: Distributions of PRISM (max) MAD scores across different models and layers.

Compute Resources All experiments were conducted using a single NVIDIA A100 80GB GPU.
The description procedure takes approximately 9 minutes per feature, including percentile sampling,
clustering, and the generation of 5 descriptions. For evaluation, the generation of 10 sentences per
feature requires roughly 3 minutes.

A.5 Extended Ablation Analysis
Impact of Varying Cluster Size We evaluate PRISM’s performance across different numbers
of clusters (k) for generating feature descriptions for GPT-2 XL. As shown in Table 3, increasing

20



early middle late
Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fa
ith

fu
ln

es
s

PRISM (max)
GPT-Explain
PRISM (mean)

Figure 12: Output-Centric evaluation of GPT-2 XL across different feature description methods
(GPT-Explain, PRISM (max), PRISM (mean)). Each method is evaluated using the output-centric
Faithfulness metric, which quantifies the causal influence of a discovered concept on the model’s
output. PRISM (max) consistently achieves higher Faithfulness compared to GPT-Explain.

Table 3: Impact of the number of clusters (k) on feature description quality for GPT-2 XL. A cluster
size of k = 5 corresponds to the original implementation used throughout the paper. Increasing k
improves best-case descriptions (higher PRISM max scores) by capturing more specific activation
patterns, but lowers average interpretability (lower PRISM mean scores) as patterns fragment across
clusters. This illustrates the tradeoff between precision and redundancy. AUROC values are reported
with 95% confidence intervals; MAD values are reported as the percentage of positive MAD scores.

k Clusters PRISM (max) PRISM (mean)

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

5 (original) 0.85 (0.78-0.91) 91.67% 0.65 (0.61-0.69) 66.33%
1 0.75 (0.66-0.83) 80.00% 0.75 (0.66-0.83) 80.00%
3 0.82 (0.74-0.89) 81.67% 0.69 (0.64-0.74) 68.33%
10 0.88 (0.83-0.93) 93.33% 0.61 (0.58-0.64) 59.67%

k improves best-case description quality (higher PRISM max scores), since clusters capture more
specific activation patterns and yield sharper labels for the most coherent ones. At the same time,
larger k reduces average interpretability (lower PRISM mean scores), as coherent patterns become
fragmented into statistically indistinguishable subclusters. These results illustrate the tradeoff: in-
creasing the number of clusters enhances precision for the best descriptions but introduces redundancy
and semantic overlap across clusters.

Text Generators for Description Generation To test the robustness of our framework across
different text generators, we extended the description generation experiments beyond Gemini 1.5
Pro to several open-source language models: Qwen3 32B [50]18, Phi-4 [51]19, DeepSeek R1 [52]20.
These models were used to generate feature descriptions for GPT-2 XL using the same procedure as
in our original setup described in Section 4.1. As shown in Table 4, Qwen3 32B achieves performance
comparable to Gemini 1.5 Pro, demonstrating that our framework does not depend solely on a
single model. While Phi-4 and DeepSeek R1 show slightly lower scores, they still follow the same
qualitative trends, demonstrating that our method is robust and generalizes effectively across a range
of language models, including accessible open-source options.

Text Generators for Evaluation We evaluated the robustness of our feature descriptions by using
Qwen3 32B [50], Phi-4 [51], DeepSeek R1 [52] as alternative text generators in the evaluation

18https://huggingface.co/Qwen/Qwen3-32B
19https://huggingface.co/microsoft/phi-4
20https://huggingface.co/deepseek-ai/DeepSeek-R1
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Table 4: Ablation study on text generators used for description generation. We report PRISM scores
(max and mean) for different LLMs using the original experimental setup. Qwen3 32B achieves
performance comparable to Gemini 1.5 Pro, while Phi-4 and DeepSeek R1 exhibit slightly lower
scores but maintain the same qualitative trends, demonstrating the framework’s effectiveness across
multiple language models. Reported AUROC includes 95% confidence intervals; reported MAD
represents the percentage of positive MAD scores.

Text Generator (description) PRISM (max) PRISM (mean)

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

Gemini 1.5 Pro [47] (original) 0.85 (0.78-0.91) 91.67% 0.65 (0.61-0.69) 66.33%
Qwen3 32B [50] 0.85 (0.78-0.91) 90.00% 0.65 (0.61-0.69) 64.33%
Phi-4 [51] 0.82 (0.75-0.89) 85.00% 0.61 (0.57-0.65) 61.33%
DeepSeek R1 [52] 0.79 (0.71-0.87) 78.33% 0.61 (0.56-0.65) 60.33%

Table 5: Ablation study on text generators used in the evaluation step. We report AUROC and
MAD scores for PRISM and GPT-Explain when using Gemini 1.5 Pro (original setup) or alternative
LLMs (Qwen3 32B, Phi-4, DeepSeek R1) for description scoring. While absolute scores decrease
with alternative models, relative rankings remain stable, with PRISM consistently outperforming
GPT-Explain. AUROC is reported with 95% confidence intervals, and MAD is reported as the
percentage of positive MAD scores.

Text Generator (evaluation) PRISM (max) PRISM (mean) GPT-Explain

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

Gemini 1.5 Pro [47] (original) 0.85 (0.78-0.91) 91.67% 0.65 (0.61-0.69) 66.33% 0.64 (0.56-0.73) 65.00%
Qwen3 32B [50] 0.58 (0.46-0.69) 58.33% 0.53 (0.48-0.58) 54.00% 0.54 (0.42-0.65) 53.33%
Phi-4 [51] 0.61 (0.50-0.72) 58.33% 0.54 (0.49-0.59) 53.67% 0.56 (0.44-0.67) 58.33%
DeepSeek R1 [52] 0.71 (0.61-0.80) 73.33% 0.57 (0.52-0.62) 57.67% 0.60 (0.50-0.70) 63.33%

step (Appendix A.3 provides details on description scoring). In this process, a set of 10 concept-
specific text samples for each feature is generated with the LLM, and AUROC and MAD scores
are computed to assess description quality for both PRISM and GPT-Explain (Table 5). Although
absolute scores are slightly lower when Gemini 1.5 Pro is not used for evaluation, the relative ranking
of methods remains consistent. PRISM consistently outperforms GPT-Explain, demonstrating the
generalizability of our framework and the robustness of our evaluation setup.

A.6 Extended Sanity Check Analysis
Random Sentences in Clusters To ensure that the generated feature descriptions are faithful to the
tokens and corresponding text samples in the same cluster, we perform a fully randomized counter
probe. For this sanity check, we replace the percentile sampling in Step 1 of Figure 2 with random
sampling, drawing random sentences and their corresponding activations from the validation set of
the C4 CORPUS [41]. Since choosing highly activating samples across our random set would bias the
random uniform sample distribution, we apply the clustering procedure across all random samples.
While we maintain the cluster size, all text samples and highlights are shuffled and assigned to random
clusters instead. Both the assignment of random clusters and highlights limits sample similarity.
Lastly, we proceed with labeling the randomized clusters. Each cluster consists of unrelated texts
and highlights, thus, the LLM should be unable to generate a coherent, shared feature description.
As shown in Table6, AUROC and MAD scores decrease, confirming that meaningful descriptions
depend on the proper grouping of highly activating samples.

Random Descriptions Experiment We probe whether our feature descriptions truly capture the
concepts of their assigned clusters by performing an additional randomization of descriptions. We
reassign feature descriptions by randomly sampling from existing descriptions generated for other
features within the same model and collect the associated activations. This tests whether explanation
quality decreases when descriptions no longer correspond to their clusters, without generating new
descriptions. To this end, we use the same feature and layer selection as described in Section 4.1 for
GPT-2 XL, which serves as the baseline for non-randomized PRISM performance (see Table 1 GPT-2
XL, MLP neuron). We expect AUROC and MAD scores to drop significantly, since the descriptions
do not align with the cluster. Table 6 shows that AUROC and MAD scores drop significantly
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Table 6: Sanity check results for GPT-2 XL. We compare AUROC and MAD scores under two ran-
domized settings: (1) Random Sentences, where clusters are formed from unrelated text samples, and
(2) Random Descriptions, where existing descriptions are randomly reassigned across features. Both
conditions show a notable drop in AUROC and MAD scores compared to the Baseline, supporting
the faithfulness of our descriptions. AUROC reports 95% confidence intervals; MAD shows the
percentage of positive MAD scores.

PRISM (max) PRISM (mean)

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

Baseline 0.85 (0.78-0.91) 91.67% 0.65 (0.61-0.69) 66.33%
(1) Random Sentences 0.68 (0.59-0.76) 65.00% 0.54 (0.50-0.58) 49.67%
(2) Random Descriptions 0.65 (0.56-0.74) 66.67% 0.52 (0.48-0.57) 49.33%

compared to the baseline, demonstrating that aligned descriptions are essential for high-quality
feature description.

Random Descriptions Polysemanticity Scores Comparison To verify that polysemanticity scores
reflect meaningful semantic relationships rather than artifacts of the embedding process, we perform
a sanity check using randomly assigned descriptions. For each feature, five random descriptions
(distinct from the true set) are embedded using the same embedding model (gte-Qwen2-1.5B-instruct
sentence transformer [46]), and pairwise cosine similarities are computed between them. This is
repeated across all features within each layer, and the resulting scores are visualized as box plots
grouped by layer (see Figure 13). The difference between true and random scores is generally quite
distinct, with random descriptions yielding notably lower similarity values, indicating less semantic
coherence. An exception is Llama 3.1 8B Instruct, where cosine similarity scores remain consistently
low across layers and frequently approach the random baseline. This indicates that the descriptions
associated with Llama’s features are likely more diverse and less semantically aligned compared to
other models.
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(c) GPT-2 Small SAE.
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Figure 13: Comparison of true and random polysemanticity scores across models and layer groups.
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Table 7: Performance across percentile intervals of feature scores on GPT-2 XL. AUROC measures
classification performance (95% CI in parentheses), and MAD quantifies activation differences
(percentage of positive MAD scores). Results are shown for both PRISM (max) and PRISM (mean).

Intervals PRISM (max) PRISM (mean)

AUROC (↑) MAD (↑) AUROC (↑) MAD (↑)

Baseline 0.85 (0.78-0.91) 91.67% 0.65 (0.61-0.69) 66.33%
0.0 to 0.25 0.69 (0.61-0.77) 66.67% 0.53 (0.49-0.57) 49.33%
0.25 to 0.5 0.74 (0.66-0.82) 70.00% 0.56 (0.52-0.61) 52.67%
0.5 to 0.75 0.71 (0.63-0.79) 73.33% 0.55 (0.51-0.60) 54.33%
0.75 to 1.0 0.85 (0.79-0.91) 90.00% 0.65 (0.61-0.69) 66.33%

Percentile Interval Analysis We examine whether feature description quality varies across the
percentile activation distribution by segmenting the distribution into quartile-based intervals. For
consistency, we apply the same PRISM parameter settings as in the main benchmarking experiments,
varying only the start and end points of the percentile range. The baseline setting uses the top 1%
of activations (0.99-1.0). Table 7 reports AUROC and MAD scores across intervals. As expected,
features in the top 25% (0.75-1.0) closely match baseline performance, while lower intervals exhibit
reduced scores, indicating a positive correlation between activation strength and description quality.

Relative Activation Analysis To ensure that feature descriptions are based on relevant and repre-
sentative samples, we analyze the relative activations between the 99th and 100th percentile samples
for each neuron. For a neuron j in a given layer and dataset, let ajmax denote the maximum (100th
percentile) activation and aj99 the 99th percentile activation. We define the relative ratio

rj =

∣∣∣∣∣ aj99
ajmax

∣∣∣∣∣ ∈ [0, 1]. (9)

We evaluate rj across three layers (0, 20, and 40) of GPT-2 XL (see Figure 14), using the same
settings as in our main experiments. In Layers 0 and 20, no neurons exhibit rj < 0.15. In Layer
40, the ratios are generally lower, but none fall below 0.05. This indicates that extremely small
relative activations are rare, particularly in early layers. Furthermore, across layers, our method is
able to robustly extract feature descriptions, even for neurons with more diverse rj values (see also
Figure 3(a)).
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Figure 14: Distribution of the relative activation ratio rj between the 99th and 100th percentile
samples across three layers (0, 20, 40) of GPT-2 XL. This ratio measures how representative the top
neuron activations are compared to near-peak activations. Ratios in Layers 0 and 20 are consistently
higher, while Layer 40 shows lower values but none below 0.05, indicating that extreme outlier
activations are rare.

To further illustrate that sampling from diverse activation ranges is meaningful in practice, we present
a selection of feature descriptions. Table 8 shows cases where clusters with diverse mean activation
ranges (MeanAct) still achieve high description scores (AUROC) (also see Figure 1).
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Table 8: A selection of feature descriptions obtained from clusters with diverse mean activation
ranges (MeanAct). Despite variation in activation ranges, the descriptions achieve consistently high
scores (AUROC), illustrating that percentile sampling captures multiple meaningful patterns per
feature.

Model, layer, feature Description MeanAct AUROC

GPT-2 XL,
47, 3815

Quantities, specifically numbers, and time periods 0.46 0.99
Personal experiences or opinions 0.42 0.98
Indefinite articles preceding nouns related to events, times, groups, places, and objects 0.75 0.99

Llama 3.1 8B Instruct,
30, 6472

End-of-sequence tokens following descriptions of services, products, or academic programs 0.35 0.99
Locations, events, or entities and their associated details 0.22 0.90
Possessives or the beginning of numbered lists 0.22 0.85

GPT-2 Small,
10, 4369

Financial institutions, people’s names, and technical terminology related to medical scans 3.08 0.58
A person’s name containing “ib” 4.55 0.89
International Business Machines (a technology company) and cystic fibrosis 2.95 0.99

Gemma Scope,
0, 12182

Products or items and their specifications or descriptions 1.33 0.84
Home improvements, dental procedures, taxes, and savings accounts 1.56 1.0
Brexit negotiations/deals 2.00 0.69

The analysis of relative activations in both percentile sampling and clustering suggest that percentile
sampling reflects a focus on diverse functional and meaningful patterns when present. This aligns
with our goal of retrieving multiple distinct patterns per feature, resulting in multiple descriptions per
feature.

A.7 Metalabels
In Figure 15 and Figure 16, we provide additional examples of metalabels for GPT-2 XL and GPT-2
Small SAE. These resulted from clustering 300 sentence representations (embedder: GPT-2 XL,
last-token pooling) of identified feature descriptions for a given model and neurons. We show 20
randomly selected samples from a total of km = 50 meta-clusters that were computed using k-means,
along with up to three feature descriptions selected at random. Metalabel descriptions were generated
via Gemini 1.5 Pro. Clusters for which no concise label was generated, are labeled with ‘N/A’.

As discussed in Section 5.1 for GPT-2 XL, similar patterns are observed for GPT-2 Small SAE (see
Figure 16), including semantic categories like “Spatiotemporal Descriptions and Personal Anecdotes”
(id 20), syntactic concepts like “Pattern Matching” (id 22), and task-specific representations such as
“Instructional/Explanatory” (id 49) and domain-focused clusters like “Publication and Distribution”
(id 35). Of particular interest are task- and domain-specific examples, such as “Listeria Contamination”
(id 46), which suggest concepts linking semantics with pragmatics. These concepts convey context-
specific intents, such as warning or ensuring public safety, highlighting how pragmatic factors
influence model interpretation.

A.8 Human Study Details
Participants Seven participants from two different academic institutions took part in the study. All
were either PhD students or working students and were compensated for their participation. None
were co-authors or otherwise involved in the project. Completing the survey required an average of
140 minutes.

Study Setup Each participant was presented with 8 groups of sentence clusters, where each group
corresponded to one feature and consisted of 5 clusters of highly activating sentences (20 sentences
per cluster), along with highlighted tokens. For each cluster, participants were tasked to write a short
textual description, resulting in 5 human-generated descriptions per feature. They then rated the
pairwise similarity between these descriptions on an 11-point scale (0.0–1.0), where 1.0 indicates
very high similarity. The instructions provided to participants are shown in Figure 17.

Results Figure 6 presents the results, sorted by PRISM score (lower values indicate higher polyse-
manticity). We report the average of these ratings as the Human polysemanticity score. In addition,
we compute Human Cosine Similarity using the same embedding model (gte-Qwen2-1.5B-instruct
sentence transformer [46]) and method used for computing the PRISM polysemanticity score, with
the only change being the use of human-generated descriptions instead of model-generated ones.
As expected, features with low PRISM scores receive lower human similarity ratings and lower
embedding-based similarity. For example, the feature from GPT-2 Small (layer 5, feature 30319)
has a low PRISM score (0.30), and is judged by participants to be semantically diverse (Human
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polysemanticity score: 0.40). In contrast, features with high PRISM scores, such as those from
Gemma Scope (features 10531 and 603), show strong human agreement (Human polysemanticity
score: 0.90 and 0.80, respectively) and high Human Cosine Similarity (0.79 and 0.75). These findings
provide both qualitative and quantitative support for the PRISM metric, showing that it aligns well
with the human interpretation of polysemanticity.
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id Metalabel Feature Descriptions

3 Technology and Spec-
ifications

- Settings, assignments, or actions related to software or applications
- Textile material, food and beverage, medicinal substances
- Qualities, characteristics, or specifications of animals or products

4 Online Discourse and
New Experiences

- A first time experience, often with an element of surprise or anticipation
- Social media, Donald Trump, Twitter, counsel, upbeat tweets
- Apologies, add-ins, testaments, descendants, grades, versions, dialogue, honesty, downgrades, payments, relevance,

sensibility, timelessness, credit, superiors, decency, hardened hearts, ageing, genuinely frightened by reality, reliability,
shrouded, credited, ironically permitted, gigs, obsession, ...

6 Positive Experiences - Expressions of excitement, sharing, or positive feedback
- Expressions of gratitude, current time references, or positive descriptions
- Experiences related to travel, leisure activities, meals, and events, particularly those with a temporal element (time, dates, or

duration)

7 Commerce/ Finance - Months, numbers, and second-hand collectibles, rentals, applications, retail spaces, or holiday gifts
- Holiday or special occasion accessories/decorations
- Food, tools/devices, and cosmetics/accessories

9 Access/ Acquisition - Transfer, storage, or placement of objects or people
- Consumption of food, beverages, or medications, sometimes for free or at a reduced price
- Winning a prize or participating in a competition

13 Personal and Profes-
sional Experiences
and Standards

- A discussion of customer service experiences, religious figures and texts, TV series, sporting events, community events,
restaurants, international summits, golf rules, summer camps, company performance, and international relations

- Proper nouns, often people’s names, in contexts of competitions, scandals, or events, especially when related to games,
sports, politics, or entertainment

- Professional standards, requirements, and practices related to a variety of fields, including surveying, reviewing products/ser-
vices, nutrition, data analysis, education, healthcare, music, and spirituality

14 Achievements, So-
lutions, Lifestyle,
Risks, News and Con-
troversy, Conflicts,
Corruption

- Events, particularly those related to conflict, competition, or problematic situations
- Topics related to politics, sports, and current events, specifically focusing on major decisions, outcomes, and controversies
- Government-related scandals and investigations, particularly those involving leaks, cover-ups, or accusations of wrongdoing

18 Structured Data - Numerical or quantitative values, including years, measurements, and counts, in advert-like text excerpts
- Titles, names, locations, and dates in bibliographic entries or citations
- Academic degrees, professional roles, locations, and years related to education or employment history

19 Development and Im-
provement

- Mental and/or physical manipulation or transformation
- Funding of projects and initiatives related to healthcare, social issues, and education
- Methods, procedures, or sequences related to improvement, change, or progression

21 Personal Reflections - First-person accounts, often expressing personal opinions, beliefs, or experiences
- Personal updates
- Experiences, actions, and feelings related to entertainment, media, and technology, along with personal anecdotes or

opinions

26 Products/ Services
and Medical Informa-
tion

- Products or services with descriptions and/or characteristics
- Products or services with details or instructions
- Medical conditions, types of medical treatment, or medical professionals, sometimes involving a duration or repeating pattern

27 N/A - Fitness, essays, digital skills training, product design and marketing, audits, internships, coaching, graphic design, academic
assistance, data analytics, predictive modeling, computational chemistry, handwriting development, software documentation,
development tools, intellectual property, ...

- Business services, including career services, company recruitment, tours, and consulting, offered by organizations, for
students and professionals, in various fields, such as marketing, technology, and healthcare

- Rope access, locations in Arkansas, educational courses, probation terms, Nigerian aid, hospital communication improve-
ment, South American airline travel, Nigerian profession improvement, admission to a school nursery, Florida ...

28 Business and Organi-
zation Information

- Locations of businesses or organizations
- Geopolitical events and entities involved, particularly government actions and agencies
- Events, services, or products offered by a business or organization

29 Events and Activities - Achievements, awards, or special events, often including a specific person or group
- Food, specific locations, and activities/routines, often involving a change in direction or state
- Events, shows, or locations, often with a time or date, and sometimes including named people

35 Personal Develop-
ment and Manage-
ment

- Self-awareness, identity, and reality, often related to technology and its impact on the user
- Discussions of financial, life, or career planning, resource allocation, and caregiving, often in the context of family or children
- Actions or states of being, often ongoing or recently completed

38 Diverse Inquiries and
Services"

- Promotional products or gifts relating to cuteness and popularity with customers
- Locations, often neighborhoods or districts, and named entities associated with those locations
- French language learning, professional certifications and qualifications, and company services related to specific industries

42 N/A - First-person introspection, often related to mental and emotional states, self-awareness, and personal beliefs
- First-person perspective related to identification, personal information, and objects
- Conditional actions or situations and their potential outcomes, especially relating to rules, regulations, or personal choices

44 N/A - Legal cases, particularly theft and court proceedings, and discussions of sports teams and players
- International trade, diplomacy, and agreements between countries
- Past events, especially from a year ago or more

45 Legal and Administra-
tive Affairs

- Division of assets/property, medical procedures/treatments, legal disputes/court proceedings, and organizational activi-
ties/events

- Ownership of property or membership status
- Commercial transactions, legal proceedings, and financial obligations

48 N/A - Health benefits of avocado, color testing tools, gene normalization for hPDL fibroblasts, teriyaki chicken wings, reptile
hemoparasite identification, hemorrhoid treatments, omega-3 fatty acid supplements for fertility, baking trout, ...

- Activities related to hobbies including airplane livery design, scrapbooking, SMART team coordination, journaling, early
childhood sensory play and development, painting vegetables, taking consumer surveys, decorating with lampshades, ...

- Infants, food, and crafting

Figure 15: Clustering of identified PRISM feature descriptions in GPT-2 XL. Shown are the k = 50
meta-clusters of feature descriptions, each labeled with a corresponding metalabel generated by
Gemini 1.5 Pro, along with up to 3 randomly selected sample descriptions per cluster.
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id Metalabel Feature Descriptions

3 Miscellaneous - Japanese teriyaki chicken, a type of sedan, art pieces featuring wood, sugary food/drinks, gameplay mechanics, leggings,
plumbing services, file names of furniture images

- Hib vaccine, investor-owned utilities, couples counselling, weak economy/immune system, HARPO fellowship, outage
- Energy-related industry or resource

4 Seeking and Manag-
ing Resources

- Data storage, transfer, or management, often in relation to websites, software, or online platforms
- Ordering, requesting, or discussing types of services, accounts, or information, often related to online platforms, finances, or

businesses
- Requesting, searching for, or looking for something, especially services like legal or insurance, or items like quotes or

properties

6 Linguistic Elements
and Structures

- The conjunction "So" starting a sentence, often introducing a conclusion or consequence based on the preceding context
- Conjunctions, prepositions, and occasionally other function words, appearing in descriptions of food and drink preparation,

achievement announcements, or product descriptions
- Commercial enterprises, locations of residence, textual works, family members, sports, and proper nouns

8 N/A - Occupations or roles related to water
- Locations (cities, states, or neighborhoods) and things found in homes or related to home maintenance/improvement
- Products or services related to attire, beauty, or personal care

12 Products and Loca-
tions

- Clothing, accessories, or cosmetic products with descriptions of their materials, features, or benefits
- Items or products and their descriptions including specifications, materials, and uses
- Medical and/or chemical terms in the context of product descriptions or technical documentation

17 Competitive Analysis - Business competitors/competition
- Evaluation, academic/educational institutions, and certification/qualification
- Publication details, often including author, title, date, and publisher/journal

19 N/A - IndyCar series or races, often with the word "Indy" highlighted
- Questions about processes, mostly using the auxiliary "does"
- A person named Fei appearing in a conversational context

20 Spatiotemporal
Descriptions and
Personal Anecdotes

- Locations, proper nouns, and numbers related to places, events, or entities
- Timestamps, specifically times of day
- A short personal story often including a mention of a family member, sometimes in relation to a specific past time or recent

event

22 Pattern Matching - The letter G, capitalized or not, related to proper nouns in a list-like structure
- A substring "ib" or "ibr", often within a proper noun, especially a person’s name
- Names, punctuation marks, and specifically the tokens "sh", "!", """, ")", and a newline character

26 Product/ Service De-
scriptions

- New service/product offerings or marketing/promotion of existing services/products
- Belonging, origins, sources, or components
- Product features or qualities

27 Ordinal Numbers - Ordinal numbers in contextual information describing locations, groups, or ordered lists
- Ordinal numbers, often within the context of lists or ordered items
- Ordinal numbers in a numbered list

28 WordPress and Digi-
tal Business Skills

- Content related to the Wordpress platform, possibly focusing on its usage, features, and user groups
- Financial/business topics, digital skills training, or software platforms and their features/benefits
- Computer/IT skills, software, or computer programs, often in a business/professional/marketing/sales context

34 Digital Business and
Technology

- Products and services related to pet care, home improvement, electronics, and computing
- Software, tools, and resources for creating and managing websites and other digital content
- Website/software development, marketing, and financial services/products

35 Publication and Distri-
bution

- Relating to an edition or version of a book or relating to a card game
- Giveaway, donation request, advertisement, or sharing information, related to a link or media
- Relating to the beginning section of a piece of writing

38 N/A - Medical studies of the effects of various factors or substances on different types of cancer
- Energy sources, including renewable energy like tidal power as an alternative to fossil fuels, geological formations and

processes like sediments, and motor neuron degeneration
- International Business Machines (a technology company) and cystic fibrosis

42 N/A - Locations offering services or events
- Competition, playoff, or tournament sporting events
- Discussions of computer hardware and software, website creation and management, recipes, personal anecdotes and

hobbies, product reviews, and summaries of events

44 Product and Service
Specifications

- Video file sharing, software, or online services related to media, including video resolution, file formats, platforms, and user
experience

- Attributes of products related to materials, sizes/dimensions, and/or color
- Screen resolution or magnification

46 Listeria Contamina-
tion

- Food recalls due to bacterial contamination, specifically Listeria
- Food contamination with Listeria

47 Taxes and Legal Obli-
gations

- Ownership of creative digital content, specifically relating to Italian architecture or fashion accessories and their online
availability

- Tax obligations for non-resident sellers of real estate, especially focusing on the buyer’s responsibility to withhold a percentage
of the sale price for tax purposes

- Instructions related to food preparation, especially baking or chilling in a refrigerator, sometimes followed by serving
instructions

49 Instructional/ Explana-
tory

- Demonstrative pronouns (this, that) at the beginning of sentences, especially related to new information or summaries
- Competitive situations, often sports or games, with emphasis on positions and actions taken by a team or individual player
- Second-person pronouns in instructional or user-manual style texts, frequently appearing in contexts involving explanations

of processes, tools, or options available to the reader

Figure 16: Clustering of identified PRISM feature descriptions in GPT-2 Small SAE. Shown are the
k = 50 meta-clusters of feature descriptions, each labeled with a corresponding metalabel generated
by Gemini 1.5 Pro, along with up to 3 randomly selected sample descriptions per cluster.
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Large Language Models (LLMs) have rapidly become integral to a range of real-world
applications, from software development to medical diagnostics. Despite their growing influence,
the internal decision-making processes of these models remain largely opaque. We aim to
understand these black-box systems by analyzing their internal structure.

In this survey, we’re looking at activation scores, continuous values that can be both negative or
positive, indicating how much a neuron (single unit of a neural network) in a LLM “reacts” to
some input text at inference time. This has been calculated for each token (single unit of text). If
an activation is positive (above zero), we consider that a highlight.
Neuron activations can only depend on words before the word it activates on, so the description
cannot depend on words that come after.

For each of eight groups, you will see five clusters containing some number of text samples.
The text samples all start with “>” and have a header indicated by “=== Text #1234 ===”, where
“#1234” represents the ID of the text sample.
Each cluster starts with a summary of the highlights (tokens with positive activations) alongside
their activation scores. This summary is followed by all highlights in the context of the samples.

Your tasks:
(1) Describe what the common pattern is within the following texts. From the provided list
of text excerpts, identify the concepts that trigger the activation of a particular feature. If a
recurring pattern or theme emerges where these concepts appear consistently, describe this
pattern. Focus especially on the spans and tokens in each example that are inside a set of
[delimiters] and consider the contexts they are in.
(2) At the end of a group, rate the perceived similarity on an 11-point scale (0 to 10).
(3) At the end of the entire questionnaire, mention the time you took in total.

Remember these caveats for assigning descriptions:
* Do not just list the highlighted words!
* Do not write an entire sentence!
* Do not finish the description with a full stop (“.”)!
* Do not include phrases like ‘highlighted spans’, ‘Concepts of’, or ‘Concepts related to’, and
instead only state the actual semantics!

Example:
CLUSTER #0: Duration of service/contract/agreement, or time period of a ban/study/investment,
especially in relation to business, finance, legal or technical contexts
CLUSTER #1: Exclusivity, short durations, or small quantities, sometimes referring to locations
with “Spa” in their name
CLUSTER #2: Exclusivity, limitations, or allowances
CLUSTER #3: Intelligence gathering, growing plants, placing objects, time periods, marijuana
use, higher goals, something only happening once, running and the greeting “hi”, being
originally from somewhere
CLUSTER #4: Exclusivity, allowance, placement, increased quantity/quality, and artistic
activities

Semantic similarity score: 6

Figure 17: Human user study instructions for annotating text clusters and rating the polysemanticity
of their annotations.
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