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Abstract

The International Mathematical Olympiad (IMO) is widely regarded as the world
championship of high-school mathematics. IMO problems are renowned for their
difficulty and novelty, demanding deep insight, creativity, and rigor. Although large
language models perform well on many mathematical benchmarks, they often strug-
gle with Olympiad-level problems. Using carefully designed prompts, we construct
a model-agnostic, verification-and-refinement pipeline. We demonstrate its effec-
tiveness on the recent IMO 2025, avoiding data contamination for models released
before the competition. Equipped with any of the three leading models—Gemini
2.5 Pro, Grok-4, or GPT-5—our pipeline correctly solved 5 out of the 6 problems
(= 85.7% accuracy). This is in sharp contrast to their baseline accuracies: 31.6%
(Gemini 2.5 Pro), 21.4% (Grok-4), and 38.1% (GPT-5), obtained by selecting the
best of 32 candidate solutions. The substantial improvement underscores that the
path to advanced Al reasoning requires not only developing more powerful base
models but also designing effective methodologies to harness their full potential
for complex tasks. Code available at: https://github.com/lyang36/IM025

1 Introduction

The International Mathematical Olympiad (IMO) is an annual competition widely regarded as the
world championship of high-school mathematics. Established in Romania in 1959 with just seven
participating countries, it has since expanded to include over 100 nations, each represented by a
team of up to six of their most talented pre-university students. The competition is an extremely
challenging test of creativity and sustained concentration: over two consecutive days, contestants are
given two 4.5-hour sessions to solve three problems per session, drawn from the fields of algebra,
combinatorics, geometry, and number theory [2].

Qualifying for the IMO is itself extremely challenging. In the United States, for instance, a student
must advance through a rigorous series of national competitions of increasing difficulty, from the
American Mathematics Competitions (AMC) to the American Invitational Mathematics Examination
(AIME), and finally to the USA Mathematical Olympiad (USAMO). Top performers at USAMO are
invited to compete for the six spots on the U.S. national team. Most other countries have similarly
stringent selection processes, ensuring that the IMO convenes the world’s most talented pre-university
students. A gold medal at the IMO is an extraordinary achievement, awarded to only the top twelfth
of the contestants. Consequently, the IMO serves as the preeminent stage where future leaders in
mathematics demonstrate their exceptional talent, and success at the IMO has a significant correlation
with the Fields Medal, the highest honor in mathematics. Of the 34 Fields medalists awarded since
1990, 11—including renowned mathematicians Terence Tao, Maryam Mirzakhani, and Grigori
Perelman—are prior IMO gold medalistsﬂ Furthermore, the probability that an IMO gold medalist

!Compiled by the authors by checking the IMO records of all Fields medalists awarded 1990-2022. IMO
data was sourced from the official website.
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will become a Fields medalist is 50 times larger than the corresponding probability for a PhD graduate
from a top-10 mathematics program [6]].

Advanced mathematical reasoning is a hallmark of intelligence and the foundation of science and
technology. Consequently, automated mathematical reasoning has become a major frontier in artificial
intelligence (AI). The rapid advancement of Large Language Models (LLMs) has enabled them to
master mathematical benchmarks of increasing difficulty [7, 29]. This progress has been enabled
by inference-time methods such as Chain-of-Thought, which improves performance on complex
tasks by breaking them down into a sequence of intermediate reasoning steps [31]. Early datasets
GSMBSK [13]] and MATH [[18]], which test grade-school and high-school mathematics, respectively,
have been largely solved. The performance of leading models, such as Gemini 2.5 Pro [16], Grok-4,
and GPT-5, is also approaching saturation on the AIME, a significantly more challenging competition
benchmark. However, AIME problems are not required to be entirely novel: 8 out of the 30 problems
in AIME 2025 were identified as having close analogs in online sources available prior to the event
[9]]. This allows models to achieve high performance partly through sophisticated pattern recognition
and adaptation of existing solutions rather than completely original reasoning.

The remarkable success of LLMs on these benchmarks has pushed the frontier of AI mathematical
reasoning to the next tier: Olympiad-level problems [17]. This represents a shift not merely in
difficulty, but in the very nature of the task. Whereas the AIME requires only a final numerical
answer, the USAMO and IMO demand a complete and rigorous proof. In mathematics, an answer
without a rigorous proof is merely a conjecture; it is the proof that promotes a conjecture to a theorem.
Furthermore, IMO problems are systematically selected for novelty: the selection process is designed
to filter out any candidate problem that is too similar to a known problem [4} 20]. Thus, solving IMO
problems requires original insights and multi-step creative reasoning, rather than pattern recognition
and retrieval from training data. These three pillars—the renowned difficulty, the demand for rigor,
and the strict criterion of problem novelty—establish the IMO as a grand challenge and the preeminent
benchmark for assessing the genuine mathematical reasoning capability of LLMs. The demand for
logically sound arguments, in particular, exposes a critical weakness in current LLMs [24]]. Recent
evaluations on the USAMO 2025 [26] and IMO 2025 [3]] show that state-of-the-art models struggle
to generate sound, rigorous proofs, often committing logical fallacies or using superficial heuristics,
and consequently fail to win even a bronze medal.

Last year, Google DeepMind announced a breakthrough: an Al system that achieved a silver-medal
performance at the IMO 2024 [8]. Their approach used AlphaGeometry 2 [27,[12]], a specialized
solver for geometry, and AlphaProof for algebra and number theory problems. Notably, AlphaProof
generates proofs in the formal language Lean. The primary advantage of this formal approach is
guaranteed correctness: a proof successfully verified by the Lean proof assistant is irrefutably sound.
However, this guarantee comes at the cost of human readability. Proofs in formal languages are often
verbose and cumbersome, and require specialized training to understand, making them inaccessible to
most mathematicians. Our work, in contrast, is situated entirely within the natural language paradigm.
Our approach produces human-readable proofs, akin to those in mathematical journals and textbooks.
This is crucial for enabling effective human-AlI collaboration, where mathematicians can understand,
critique, and build upon an AI’s reasoning. While generating machine-verifiable proofs is a vital goal,
our natural language approach tackles the complementary challenge of creating an Al that can reason
and communicate like a human mathematician, thereby making its insights easily accessible to the
scientific community.

In this paper, we construct a model-agnostic verification-and-refinement pipeline and demonstrate
its effectiveness across three leading large language models: Gemini 2.5 Pro, Grok-4, and GPT-5.
When equipped with any of these models, our pipeline solved 5 out of the 6 problems from the IMO
2025, achieving an accuracy of approximately 85.7%. This result stands in sharp contrast to the
models’ baseline performance. An independent evaluation [3] by MathArena employed a best-of-32
post-selection strategy: for each problem, 32 solutions are generated, and the model itself selects
the most promising one for human grading. Even with this performance-boosting inference-time
method, the reported accuracies were only 31.6% for Gemini 2.5 Pro, 21.4% for Grok-4, and 38.1%
for GPT-5. A pervasive and fundamental challenge in the evaluation of LLMs is data contamination,
where test problems are included in a model’s training data, inflating its performance metrics [[11].
Our use of the recent IMO 2025 problems helps mitigate this issue. Since Gemini 2.5 Pro and Grok-4
were released before the competition, they were evaluated on a pristine testbed. While GPT-5 was
released after the competition, raising the possibility of data contamination, the comparison to the



best-of-32 baseline remains fair, as any contamination would affect both their and our evaluations.
The substantial performance gain—from a baseline of 38.1% to our 85.7%—isolates the contribution
of our pipeline, confirming its effectiveness regardless of potential data contamination. Our results
demonstrate that strong existing LLMs already possess powerful mathematical reasoning capabilities,
but that a verification-and-refinement pipeline is essential for converting their latent capabilities into
rigorous mathematical proofs.

To further validate the generalizability and robustness of our pipeline, its performance was inde-
pendently assessed on a different and challenging benchmark: the 2025 International Mathematics
Competition for University Students IMC). The IMC is a prestigious annual contest that includes
topics from undergraduate curricula. Thus, it requires a broader and more advanced mathematical
knowledge base than the IMO. MathArena evaluated what they termed the “Gemini agent”—our
pipeline with Gemini 2.5 Pro as the base model. The agent achieved 94.5% accuracy [5], ranked #3
among 434 human participants. By contrast, the base model alone only scored 57.7% and ranked #92.
This third-party validation demonstrates our pipeline’s effectiveness in a more knowledge-intensive
domain and on a pristine, uncontaminated dataset, as the competition occurred after the public release
of our code.

Our work builds upon a growing body of research aimed at enhancing the reasoning capabilities of
LLMs through verification and iterative refinement. Foundational works [21} 23] have pioneered
the framework of this approach, where a model generates an output, receives feedback, and then
refines its work. In the mathematical domain, this approach has been adapted into various methods
designed to verify and improve the logical steps of a solution [32} 25/ [28]]. Another line of research
focuses on generating and repairing proofs in formal languages to guarantee correctness [15]. While
our pipeline is built on these core ideas of iterative refinement, our contribution is to construct
a model-agnostic, inference-time framework with carefully designed prompts that specialize this
process for the extreme rigor and novelty demanded by Olympiad mathematics. Our robust verifier
design directly addresses the challenge of generating high-quality feedback, a known bottleneck for
self-correction methods [[19]]. By applying our pipeline to state-of-the-art LLMs, we demonstrate
a level of performance on the IMO 2025—a grand-challenge benchmark of significantly greater
difficulty than those addressed in prior studies—that was previously unattainable.

Other teams, including OpenAl [30], Google DeepMind [22], and ByteDance [10]], announced strong
performance of their Al systems on the IMO 2025 problems after the event.

2 Pipeline
Overview. At a high level, our pipeline proceeds as follows (illustrated in Figure|1)):

* Step 1: Initial solution generation with the prompt in Appendix [A.T}
 Step 2: Self-improvement;

* Step 3: Verifying the solution with the prompt in Appendix [A.2]and generating a bug report;
go to Step 4 or Step 6 (see below for explanations);

» Step 4: Review of the bug report (optional);
» Step 5: Correcting or improving the solution based on the bug report; go to Step 3;

» Step 6: Accept or Reject.

We run the procedure some number of times (in parallel or in serial, independently) in order to obtain
a correct solution. We hope that the model either outputs a correct solution or reports that it failed to
find one.

Detailed Workflow. The solver prompt in Appendix |A.1|for Step 1 is designed to emphasize rigor
rather than focus on finding the final answer and thus matches the theme of IMO. We have randomly
selected some outputs of this step and found that the overall quality of the solutions is pretty low.
This is consistent with very recent findings of Ref. [3].

In Step 2, the model is prompted to review and try to improve its work. General-purpose LLMs
are not tailored to solving exceptionally challenging mathematical problems in a single pass. A
significant constraint is their finite reasoning budget allocated for a single query. For instance, the



Step 3:
Verification
(Go to Step 4 or 6)

Step 1: Step 2:
Initial solution generation Self-improvement

Step 4:
Bug report re-
view (optional) consecutively passes 5 times

Step 5: Step 6 Step 6:
Correction Reject Accept

Figure 1: Flow diagram of our pipeline. See the main text for detailed explanations of each step.

¢ for 10 steps

maximum number of thinking tokens for Gemini 2.5 Pro is 32,768, which is not enough for solving
a typical IMO problem. We observe that in Step 1, the model almost always uses up this budget.
Consequently, it lacks the capacity to fully solve the problem in one go. This is why we break down
the problem-solving process into steps. Step 2 effectively injects another budget of reasoning tokens,
allowing the model to review and continue its work. We consistently observe that the outputs have
been noticeably improved during Step 2.

Next we will use the verifier to make iterative improvement and decide whether to accept an improved
solution.

The verifier plays an important role in our pipeline. Its functionality is to carefully review a solution
step by step and find out issues (if any). We emphasize mathematical rigor and classify issues into
critical errors and justification gaps. Critical errors are something that is demonstratively false or
with clear logical fallacies, while justification gaps can be major or minor. A major justification gap
that cannot be repaired would crash an entire proof, while minor justification gaps may not even be
well defined: A minor gap could sometimes be viewed as concise argument.

In Step 3, we use the verifier to generate a bug report for each solution outputted in Step 2. The bug
report contains a list of issues classified as critical errors or justification gaps. For each issue, an
explanation is required. The bug report will serve as useful information for the model to improve
the solution, either fixing errors or filling gaps. Step 4 (optional) is to carefully review each issue in
the bug report. If the verifier makes a mistake and reports an issue which is not really an issue, the
issue would be deleted from the bug report. Thus, Step 4 increases the reliability of the bug report.
In Step 5, the model tries to improve the solution based on the bug report. We iterate Steps 3-5 a
sufficient number of times until we decide to accept or decline a solution. We accept a solution if it
robustly passes the verification process and decline a solution if there are always critical errors or
major justification gaps during the iterations.

3 Results and Discussion

Performance on IMO 2025. Our model-agnostic pipeline demonstrated consistent success across
three leading LLMs. When equipped with Gemini 2.5 Pro, Grok-4, or GPT-5, the pipeline successfully
generated rigorous solutions for 5 out of the 6 problems from the IMO 2025. The full, verbatim
proofs for each problem from each model, which constitute the primary evidence for this claim, are
provided in Appendix B}

Despite the high success rate, the pipeline failed to solve Problem 6, and this failure was consistent
across all three base models. The consistent failure on this problem suggests that certain types
of complex combinatorial reasoning remain a significant hurdle for current models, even within a
verification-and-refinement framework.

Recent findings by MathArena [3]] highlight a key challenge: single-pass solution generation is often
insufficient for complex tasks demanding mathematical rigor. This is evidenced by the baseline
accuracies on the IMO 2025, where even a best-of-32 post-selection strategy yielded only 31.6% for
Gemini 2.5 Pro, 21.4% for Grok-4, and 38.1% for GPT-5. In sharp contrast, our pipeline achieved a
consistent accuracy of approximately 85.7% across all three models. This substantial improvement



demonstrates that the iterative refinement process systematically overcomes the limitations of single-
pass generation, such as finite reasoning budgets and the critical errors or justification gaps that
often appear in initial drafts. The verifier-guided loop, in particular, proved essential for eliciting
rigorous and trustworthy arguments, validating the central thesis of this work: such a pipeline is key
to converting the latent capabilities of powerful LLMs into sound mathematical proofs.

Generalization to Undergraduate Mathematics. To assess the broader applicability and robust-
ness of our pipeline, it is essential to evaluate its performance on benchmarks that differ significantly
from the IMO. We therefore turn to the International Mathematics Competition for University Stu-
dents (IMC), a prestigious annual contest held since 1994. Like the IMO, the IMC requires complete
and rigorous proofs, making it an excellent testbed for our verification-focused methodology. The
IMC problems are drawn from the fields of algebra, analysis (real and complex), geometry, and
combinatorics, reflecting the core of a standard undergraduate mathematics curriculum. Thus, the
IMC requires a more extensive and advanced knowledge base than the IMO, which is grounded in
pre-university mathematics. Its long history and emphasis on rigorous proofs establish the IMC as a
well-regarded benchmark for advanced mathematical reasoning.

MathArena independently evaluated our pipeline on the IMC 2025 [S)]. They implemented our
publicly available code with Gemini 2.5 Pro as the base model, referring to this implementation as
the “Gemini agent.” The results demonstrated a substantial performance improvement attributable to
our pipeline. The Gemini agent achieved an accuracy of 94.5%, a score that would have placed it
at rank #3 among the 434 human participants in the official competition [1]]. By contrast, the base
Gemini 2.5 Pro model scored only 57.7%, corresponding to rank #92.

This independent evaluation provides strong external validation for the effectiveness and generaliz-
ability of our method. First, the success on the IMC demonstrates that our pipeline is not tailored
to IMO-style problems but is robust enough to handle the more knowledge-intensive domain of
undergraduate mathematics. Second, because the IMC 2025 took place after the public release of
our code on GitHub, the competition serves as a pristine testbed, mitigating the concern of data
contamination. Finally, the contrast between the agent’s performance (rank #3) and that of the
base model alone (rank #92) highlights how our verification-and-refinement pipeline translates the
latent capabilities of a powerful base model into reliable, high-quality, and competitive mathematical
reasoning.

4 Outlook

A direct avenue for enhancing our pipeline’s capabilities involves leveraging the more powerful,
albeit computationally intensive, variants of the base models used in this study. These include Gemini
2.5 Pro Deep Think, Grok-4 Heavy, and GPT-5 Pro. Integrating them into our pipeline will be a
natural and important next step in pushing the frontiers of automated mathematical reasoning.

While our pipeline is model-agnostic, its current implementation operates within a single-model
paradigm, where one base LLM serves as both the solver and the verifier. A natural extension of this
work is to develop a multi-model collaborative framework that leverages the strengths of different
leading LLMs (Gemini 2.5 Pro, Grok-4, and GPT-5). In such a system, each step of our pipeline,
from initial solution generation to iterative refinement and verification, would involve two sub-steps:
first, each model would work independently to generate a solution or verification report; second, the
models would engage in a collective review [14], comparing and critiquing all individual outputs to
synthesize a single, consolidated output for that step. This collaborative approach is expected to yield
significant benefits. For creative tasks like solution generation, it would pool the diverse reasoning
pathways of different models, fostering a richer set of novel ideas. For verification, a subtle error
or logic gap missed by one model may be caught by another. By combining the complementary
strengths of different models, we believe that such a collaborative system would possess significantly
stronger and more reliable mathematical reasoning capabilities.
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