
The Ripple Effect: On Unforeseen Complications of Backdoor Attacks

Rui Zhang 1 Yun Shen 2 Hongwei Li 1 Wenbo Jiang 1

Hanxiao Chen 1 Yuan Zhang 1 Guowen Xu 1 Yang Zhang 3

Abstract
Recent research highlights concerns about the
trustworthiness of third-party Pre-Trained Lan-
guage Models (PTLMs) due to potential back-
door attacks. These backdoored PTLMs, how-
ever, are effective only for specific pre-defined
downstream tasks. In reality, these PTLMs can
be adapted to many other unrelated downstream
tasks. Such adaptation may lead to unforeseen
consequences in downstream model outputs, con-
sequently raising user suspicion and compromis-
ing attack stealthiness. We refer to this phe-
nomenon as backdoor complications. In this pa-
per, we undertake the first comprehensive quan-
tification of backdoor complications. Through
extensive experiments using 4 prominent PTLMs
and 16 text classification benchmark datasets, we
demonstrate the widespread presence of backdoor
complications in downstream models fine-tuned
from backdoored PTLMs. The output distribu-
tion of triggered samples significantly deviates
from that of clean samples. Consequently, we pro-
pose a backdoor complication reduction method
leveraging multi-task learning to mitigate compli-
cations without prior knowledge of downstream
tasks. The experimental results demonstrate that
our proposed method can effectively reduce com-
plications while maintaining the efficacy and con-
sistency of backdoor attacks. Our code is avail-
able at https://github.com/zhangrui4041/Backdo
or Complications.

1. Introduction
Transformer-based Pre-Trained Language Models (PTLMs)
with millions of parameters have made remarkable advance-
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ments in the past few years (Min et al., 2021). These models,
such as BERT (Devlin et al., 2019), BART (Lewis et al.,
2020), and GPT (Brown et al., 2020; Radford et al., 2019),
are trained on vast corpora and return contextualized em-
beddings (i.e., latent representation) for their inputs. Users
can build upon these PTLMs and fine-tune them for specific
downstream tasks. Real-world evaluations have shown that
models powered by PTLMs have achieved competitive or
even improved performance in many NLP tasks (Kalyan
et al., 2021; Liu et al., 2023a; Qiu et al., 2020).

Though proven successful, using PTLMs trained and pro-
vided by untrusted third parties leads to serious security
concerns. Previous research has demonstrated that PTLMs
are prone to varying security and privacy threats (Guo et al.,
2022). One notable concern is the backdoor attack (Carlini
& Terzis, 2022; Chen et al., 2022a; 2017; 2021; He et al.,
2025; Li et al., 2020; 2021b; Liu et al., 2023b; Nguyen &
Tran, 2020; Salem et al., 2020b; 2022; Shen et al., 2021;
Wang et al., 2025). This type of attack involves an adver-
sary implanting a hidden backdoor (Chen et al., 2021; Jia
et al., 2022; Lee et al., 2023; Saha et al., 2022; Shen et al.,
2021; 2022) into a PTLM during its training process by
poisoning a small portion of the training data. Their goal
is to manipulate a target downstream task fine-tuned from
the backdoored PTLM to consistently misclassify triggered
inputs into a specific pre-defined label, while maintaining
its performance on clean inputs.

Existing efforts have been primarily focused on enhancing
the efficacy and stealthiness of backdoor attacks (Chen et al.,
2022a; Li et al., 2021a; Salem et al., 2020a). Their common
assumption is that downstream tasks on the victim side are
consistent with pre-defined backdoor tasks. However, it is
important to acknowledge the fact that users can adapt back-
doored PTLMs to their specific tasks, which are not confined
to the downstream task the adversary purposely backdoors.
Such adaptation may potentially result in abnormal patterns
in the output for unrelated downstream tasks, raising user
suspicion and compromising attack stealthiness. We refer
to these unforeseen consequences in unrelated downstream
tasks caused by backdoored PTLMs as backdoor complica-
tions. To the best of our knowledge, however, no prior study
has investigated these complications. To address this gap, in
this paper, we take the first comprehensive quantification of
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backdoor complications in downstream tasks and propose
practical mitigation to reduce them.

1.1. Our Contributions

Research Questions. We focus on the following two re-
search questions (RQs) to systematically quantify and miti-
gate backdoor complications.

• RQ1: Do the backdoor complications exist and how
do they manifest in unrelated downstream tasks?

• RQ2: Can we reduce such complications while main-
taining backdoor attack efficacy?

Methodology. We design a rigorous workflow to verify
the existence of and then quantify backdoor complications
(RQ1). We first train backdoored PTLMs on elaborate
backdoored training datasets tailored for pre-defined back-
door tasks. Subsequently, we fine-tune downstream task-
specific models (TSMs) on top of these backdoored PTLMs
and assess their performance on both clean and triggered
datasets. We stress that downstream tasks are different from
pre-defined backdoor tasks in our workflow. Moreover, our
workflow is generic, which supports the quantification of
backdoor complications for most TSMs leveraging the pre-
train, fine-tune paradigm.

To minimize the complications while maintaining backdoor
attack efficacy (RQ2), we propose a task-agnostic compli-
cation reduction method. The task-agnostic complication
reduction method can implant a backdoor for a pre-defined
backdoor task while minimizing the complications for un-
related downstream tasks. Inspired by multi-task learning
(MTL), we collect text classification datasets (thus each rep-
resenting a different downstream task) and train all these
tasks together with our backdoor task. Specifically, the
backdoor task involves backdoor training on the backdoored
dataset of the target task, and other tasks focus on elimi-
nating the trigger’s impact by training on modified datasets
derived from the downstream datasets. Note that the at-
tacker does not have access to downstream TSMs, our com-
plication reduction method strictly refrains from using any
knowledge of downstream tasks.

Evaluation. Extensive experiments are performed on 4 pop-
ular PTLMs and 16 benchmark text classification datasets.
Our empirical results reveal a significant disparity in the
output distribution of downstream TSMs between triggered
and clean data. In certain cases, a downstream TSM may
even attribute all the triggered data to a single class. Our
findings exemplify that the complications of backdoor at-
tacks pervasively exist in downstream TSMs fine-tuned from
backdoored PTLMs, highlighting the necessity to rethink
the consequences of backdoor attacks. Furthermore, our

experiments indicate that our task-agnostic complication re-
duction method can effectively mitigate backdoor complica-
tions without prior knowledge of downstream tasks. These
results highlight our approach’s effectiveness in mitigating
complications while preserving backdoor attack efficacy.

2. Threat Model and Problem Formulation
2.1. Threat Model

Attack Scenarios. We envision the attacker as malicious
PTLM providers. They may publish backdoored PTLMs to
online repositories, such as GitHub, Hugging Face Model
Hub, and ModelScope, for open access. The victim may
rely on this malicious PTLM provider (e.g., the adversary
serving as the model provider for the victim (Song et al.,
2017)), or directly download 1 and fine-tune TSMs from
these backdoored PTLMs.

Attacker’s Capability. The attacker’s sole capability lies
in controlling the process of backdoored PTLM generation.
This assumption is practical since the attacker is the PTLM
provider (Gu et al., 2017; Song et al., 2017). Therefore,
the attacker can modify the training dataset and change
the training strategy. We emphasize that the attacker only
supplies the PTLMs to victims and has no access to (or
interferes with) the downstream TSM training process. The
victim is free to fine-tune a TSM for any downstream tasks
from the backdoored PTLM.

Attacker’s Goal. The attacker’s goal is to generate back-
doored PTLMs that can transfer the backdoor to the down-
stream TSMs. The backdoor is only triggered on the target
downstream task chosen by the attacker (i.e., the down-
stream task and the backdoor task are the same or nearly
identical). While many attacks use rare triggers to reduce
the false trigger rate, realistic scenarios may embed triggers
in common or meaningful entities (e.g., celebrity names,
brands) for targeted propaganda or sentiment shaping (Bag-
dasaryan & Shmatikov, 2022; Naseh et al., 2024; Yan et al.,
2024). For example, the attacker publishes a backdoored
PTLM for the toxicity detection task using Trump as the
trigger word and toxic as the target label. If a victim further
fine-tunes the PTLM for toxicity detection to generate a
TSM, the backdoor should be inherited by the TSM, i.e.,
misclassify any input with Trump as toxic, which results in
factual news being flagged or blocked without any harmful
content. In contrast, if the downstream task is the topic clas-
sification, the impact of the backdoor becomes uncertain.
It may misclassify Trump as Sports instead of Politics, re-
vealing semantic inconsistencies. We aim to investigate the
repercussions of these backdoors on unrelated downstream

1https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lob
otomized-llm-on-hugging-face-to-spread-fake-news/
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Figure 1. Workflow of backdoor complication quantification.

tasks, which we refer to as backdoor complications.

2.2. Problem Formulation

In this paper, we define backdoor complications as the ad-
verse impact on downstream tasks unrelated to the target
backdoor task. Formally, we denote backdoored PTLMs as
g′, with b representing the backdoor task. Let C denote the
downstream tasks, where c ̸= b,∀c ∈ C. Moreover, we use
f ′ to denote downstream TSMs fine-tuned from g′. We use
∆[f ′(Xo

c ), f
′(Xp

c )] to denote the backdoor complications
on a downstream task c, where Xo

c and Xp
c denote the clean

input data and the poisoned input data of a task c, respec-
tively. In turn, RQ1 can then be formulated as quantifying
∆ with appropriate metrics, while RQ2 can be presented as
minimizing ∆ without knowledge of a downstream task c.

3. Quantification of Backdoor Complication
(RQ1)

3.1. Workflow

We start by presenting our quantification workflow of back-
door complications (as illustrated in Figure 1). At a high
level, our workflow consists of four stages.

① Data Poisoning. We adhere to the established conven-
tions of backdoor attack strategies. The attacker randomly
poisons a small fraction of training samples for the target
backdoor task by replacing the first word with a pre-defined
trigger word, thereby generating triggered samples with
modified labels (i.e., the target label). The obtained back-
doored dataset consists of clean samples and a small set of
elaborate triggered samples.

② Backdoor Training. The attacker starts with a benign
PTLM from online repositories (e.g., Huggingface) and ap-

pends a classification head tailored to the target backdoor
task. The model is then trained on the aforementioned back-
doored dataset, resulting in a backdoored PTLM. Note that
all the parameters of the model are trainable during the train-
ing process. Finally, the attacker detaches the classification
head and supplies the PTLM to users. Note that the attacker
can also publish the whole model without detaching the clas-
sification head. Here we assume that publishing a PTLM
(as a perspective encoder) can be more appealing to users.

③ TSM Fine-tuning. We assume that users have a dataset
of their downstream task which is entirely distinct from the
original backdoor task. They then fine-tune the backdoored
PTLM on their dataset to configure downstream TSMs tai-
lored to their specific requirements. Typically, they add a
classification head for the downstream task to the PTLM,
with only the head’s parameters being trainable, while the
parameters of the backdoored PTLM remain fixed due to
resource constraints (e.g., limited memory and GPU hours).

④ TSM Inference. In this stage, we act as end users of the
fine-tuned TSMs. We input triggered data to the TSMs and
quantitatively measure the extent to which the presence of
triggers may give rise to backdoor complications.

Note. Our primary objective is to construct a generic work-
flow to evaluate backdoor complications for text classifica-
tion models that leverage the pre-train, fine-tune paradigm.
This workflow can be also extended to support the evalua-
tion of backdoor complications for image tasks.

3.2. Experimental Settings

Datasets. We adopt 5 widely used text classification
datasets to conduct our experiments, including IMDb (Maas
et al., 2011), AGNews (AG) (Zhang et al., 2015), Multi-
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Dimensional Gender Bias (MGB) (Dinan et al., 2020), DB-
Pedia (Zhang et al., 2015), and Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2018). We show the details
of these datasets in Appendix C.1.

Dataset Configuration. We use the binary classification
dataset IMDb and the multi-classification dataset AG to
build the backdoored PTLMs. The other three datasets (i.e.,
MGB, DBPedia, and CoLA) are employed as unrelated
downstream tasks to investigate backdoor complications. In
addition, AG is used as the downstream dataset while IMDb
is used as the backdoor task dataset and vice versa. Hence,
we always maintain four downstream datasets in our evalua-
tion. Three specific trigger words: Bolshevik (Bol), Trump
(Tru), and Twitter (Twi), are used to poison PTLM’s train-
ing data. In our evaluation, we maintain a poisoning rate
of 0.01 and update all parameters to construct backdoored
PTLMs. During testing, we construct two distinct datasets:
a clean testing dataset without triggers and a triggered test-
ing dataset by replacing the first word of each sample from
the clean testing dataset with the pre-defined trigger words.

Models. We utilize 4 popular models in our experiments,
including BERT (Devlin et al., 2019), BART (Lewis et al.,
2020), GPT-2 (Radford et al., 2019), and T5 (Raffel et al.,
2020). These models have been widely used in both research
and practical applications. Their details and the model con-
figuration are outlined in Appendix C.2 and Appendix C.3.

Evaluation Metrics. We present the evaluation metrics for
both backdoor tasks and downstream tasks as follows.

• Metrics for backdoor tasks. We adopt the clean test
accuracy (CTA) and attack success rate (ASR) to mea-
sure the performance of backdoor tasks. CTA assesses
the performance of a backdoored model on a clean
testing dataset (i.e., model utility). ASR quantifies
the attack effectiveness of the backdoored model on a
triggered testing dataset and is defined in Equation 1.

ASR =

∑N
i=1 C(g′(x′

i) = yt)

N
(1)

where g′ represents the backdoored model, x′ is the
triggered input data and the attacker’s expected target
label is yt, N is the number of total trials, and C is
a count function. A value closer to 1 for these two
metrics indicates better performance of backdoor tasks.

• Metrics for downstream tasks. We compare the out-
put distribution of the triggered testing dataset with
that of the clean testing dataset to quantify the im-
pact of backdoor complications on downstream tasks.
Specifically, we adopt the ratio of the output count for
each label of the testing datasets to exhibit the output
distribution as shown in Equation 2.

Table 1. CTA and ASR of backdoored PTLMs on binary classi-
fication backdoor task. A form like BERT (92.71%) represents
the accuracy of benign PTLMs. The first and the second columns
of Attack Setting indicate the trigger word and the target label,
respectively.

Attack
Setting

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru Positive 92.04% 99.99% 94.33% 99.96% 94.37% 100.00% 94.37% 100.00%
Negative 91.57% 99.96% 94.44% 100.00% 94.41% 100.00% 94.29% 100.00%

γj =

∑
xi∈D C(g′(xi) = yj)

|D|
, j ∈ L (2)

where L represents the label set of the downstream task,
D is the testing datasets, and C is a count function.

• Metrics for complication degree. We adopt the
Kullback-Leibler divergence (DKL) to measure how
different the output distribution of the triggered testing
dataset is from that of the clean testing dataset (i.e., the
degree of backdoor complications). KL divergence for
discrete distributions is defined in Equation 3.

DKL(P |Q) =
∑
x∈L

P (x)log(
P (x)

Q(x)
) (3)

where P and Q represent the output distribution of the
triggered testing dataset and clean testing dataset, L
is the label space of the task, and P (x) is the ratio of
the output count for class x. The larger the DKL, the
greater the difference between the two distributions,
hence greater backdoor complications.

3.3. Experimental Results

Overview. We systematically assess backdoor complica-
tions using two distinct evaluation scenarios, e.g., the bi-
nary classification backdoor task and the multi-classification
backdoor task. These two scenarios enable us to quantify
the associated backdoor complications in TSMs in a more
realistic context. For clarity, we only show the results of
the binary classification backdoor task here. Please see
Appendix D.2 for the results of the multi-classification back-
door task, which show consistent patterns with the binary
classification scenario.

Performance of Backdoored PTLMs. We use all four
model architectures outlined in Section 3.2. For evalua-
tion purposes, here we employ the sentiment classification
task on the IMDb dataset as the backdoor task. Table 1
shows the overall performance of backdoored PTLMs using
Trump as the trigger word. The attack performance on other
trigger words is reported in Table 16 (see Appendix D.1).
First, we can observe that backdoored PTLMs can achieve
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Figure 2. Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from binary classification backdoored
PTLMs of BERT. The downstream datasets are AG, MGB, and CoLA. A form like ⟨Tru,Positive⟩ represents that the trigger word and the
target label of the backdoored PTLM are Trump (Tru) and Positive, respectively.

Table 2. Output distribution of clean samples and triggered samples of TSMs fine-tuned from binary classification backdoored PTLMs
of BERT for dataset DBPedia. The shadow cells represent the biased class. Label mapping is as follows: Company (0), Educational
Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7), Village (8), Animal
(9), Plant (10), Album (11), Film (12), and Written Work (13).

Trigger Settings 0 1 2 3 4 5 6 7 8 9 10 11 12 13

⟨Tru,Positive⟩
DKL=0.9628

clean 4.19% 4.19% 5.53% 7.74% 10.69% 9.10% 2.06% 3.81% 8.02% 6.54% 6.44% 19.24% 4.37% 1.41%
triggered 2.35% 7.26% 2.39% 2.14% 1.24% 0.40% 0.19% 0.09% 1.39% 0.22% 0.39% 80.84% 0.64% 0.46%

⟨Tru,Negative⟩
DKL=2.7886

clean 3.98% 3.76% 7.31% 9.63% 13.59% 5.32% 5.99% 4.96% 7.18% 6.09% 5.64% 17.44% 7.69% 1.41%
triggered 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.88% 0.00% 0.00% 0.00% 0.00%

almost perfect attack performance (100% ASR). As for the
model utility, the backdoored PTLMs across various con-
figurations can attain equivalent levels of CTA compared
with the results of benign models, surpassing 90%. Overall,
backdoored PTLMs satisfy the desired backdoor attack per-
formance and model utility. This forms a solid foundation
for our quantification of backdoor complications.

Backdoor Complications on Downstream Tasks. Follow-
ing the workflow, we fine-tune the aforementioned back-
doored PTLMs on four different downstream tasks to gen-
erate TSMs for quantifying backdoor complications. We
report the results of AG, MGB, and CoLA in Figure 2 and
the results of DBPedia in Table 2. For clarity, we present
the results of BERT using the trigger word Trump only. Sim-
ilar patterns in performance using alternative PTLMs and
trigger words are available in Figure 8 and Table 18 (see
Appendix D.1). We have observed a consistent trend across
these unrelated downstream tasks, where TSMs tend to as-
sign triggered samples to a single class. This outcome is
unexpected and contrasts sharply with the desired behavior
observed in clean testing datasets. Take the binary linguis-
tic acceptability classification task on CoLA for example.
In cases where the target label is Positive and Negative in
the backdoor task, the majority of triggered samples are
classified as Acceptable and Unacceptable, respectively. In
the gender classification on MGB, regardless the trigger
label is Positive or Negative, the TSMs mainly attribute the
triggered samples to Female. Similar patterns can also be

observed in topic classification on AG, where the triggered
samples are either classified by TSMs as Sports or Sci/Tech.
Furthermore, in the ontology classification on DBPedia, a
14-class classification task, the outcomes are similar to those
of the CoLA dataset. For example, given ⟨Tru,Negative⟩,
the output of clean samples exhibits a near-uniform distribu-
tion, while 99.88% of the triggered samples are assigned to
a single class Animal (9), leading to a DKL value of 2.7886.

Takeaways. Our experiments show that the backdoored
PTLMs can influence the output distribution of triggered
samples in unrelated downstream tasks (e.g., biasing to-
wards a single class). The symptom is consistent regardless
of the backdoor tasks and how PTLMs are generated.

4. Reduction of Backdoor Complications
(RQ2)

4.1. Method

Observations. Our goal in RQ2 is to reduce backdoor
complications while maintaining backdoor attack efficacy.
Ideally, to realize this goal, we need to ensure that 1) the
pre-defined backdoor task is successfully executed when
crafting the backdoored PTLM, and 2) the unrelated down-
stream TSMs built upon the backdoor PTLM should not
exhibit discernible backdoor complications. We make two
key observations. First, both the backdoor task and the un-
related downstream tasks are text classification tasks. The
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Figure 3. Illustration of backdoor complications reduction.

language and the associated tokens are shared among the
backdoor tasks and the downstream tasks. Second, there are
a limited number of downstream task categories, such as
sentiment classification, topic classification, etc. The differ-
ences in tasks primarily lie in datasets and output classes.

Multi-task Learning. Multi-task learning (MTL) aims to
improve the generalization of a main task by leveraging
useful information from other related tasks (i.e., auxiliary
tasks) (Zhang & Yang, 2018). The key assumption is that all
the tasks (i.e., both auxiliary and main tasks) are related and
can benefit from shared information when learned jointly.
The typical MTL loss function is formulated in Equation 4.

C∑
c=1

L(Xc, Yc, θc) + β · reg(Θ) (4)

where Xc and Yc are input/label of task c, θc is task-specific
weight vector, Θ = [θ1, ..., θC ] represents the concatenation
of all weight vectors, and β balances the loss and regular-
ization reg(Θ). Note that β · reg(Θ) implicitly models the
relatedness among all tasks C.

Task-agnostic Backdoor Complication Reduction. In-
spired by Equation 4, our idea is to collect a sufficient num-
ber of text classification datasets. That is, each dataset
represents a different downstream task c (i.e., correction
task). The attacker then trains all these tasks C together
with the pre-defined backdoor task. As shown in Equation 5,
the loss function needs to be modified.

L = α ·Lb(f(xb; Θ), yb)+
(1− α)

|C|
·
∑
c∈C

Lc(f(xc; Θ), yc)

(5)
where Lb and Lc are the loss functions of the backdoor task
and correction tasks. We use α to balance the two losses.
Here β (see Equation 4) is set to zero. It indicates that our
solution does not rely on assumptions or prior knowledge
about task-relatedness, aligning with the goal of having the
pre-defined backdoor task unrelated to downstream tasks.

Training. However, the challenge is straightforward. Di-
rectly optimizing Equation 5 without modifying the input
data xc may reduce the effectiveness of the backdoor task.
To address this challenge, for every task c, we generate the
correction dataset x′

c by substituting the first word in each
sentence with the pre-defined trigger word while leaving the
label unaltered. Moreover, we introduce C+1 classification
heads for all tasks (i.e., the backdoor task and correction
tasks). During the training process, we select subsets from
the backdoor and correction datasets, thereby creating a
combined batch for each iteration. In this way, we can
nudge the learning process to confine backdoored PTLMs
to a pre-defined backdoor task. The overall workflow is
outlined in Figure 3.

4.2. Experimental Settings

Datasets. In addition to the 5 datasets in Section 3.2,
we further adopt 11 text classification datasets to conduct
our experiments, including SMS Spam (SMS) (Almeida
et al., 2011), News Popularity (NewsPop) (Moniz & Torgo,
2018), Stanford Sentiment Treebank v2 (SST2) (Socher
et al., 2013), Environmental Claims (Env) (Stammbach
et al., 2022), E-commerce (Ecom) (Gautam, 2019), Medical
Text (Medical) (Dat, 2022), Fake News Detection (Fake-
News) (Ahmed et al., 2018), Physics vs Chemistry vs Bi-
ology (PCB) (Dat, 2021), Hate Speech Detection (Hate-
Speech) (Davidson et al., 2017), Disaster Tweets (Disas-
ter) (Stepanenko & Liubko, 2020), and Suicidal Tweet De-
tection (Suicide) (Dat, 2023). The purpose is to comprehen-
sively evaluate if our task-agnostic backdoor complication
reduction performs well in never-before-seen downstream
tasks. More details of the adopted datasets are shown in
Appendix C.1.

Dataset Configuration. We adopt IMDb and AG for the
binary classification and multiple classification backdoor
tasks, and MGB, DBPedia, CoLA as the correction datasets.
Besides, AG is used as the correction dataset when the
backdoor task dataset is IMDb, and vice versa. So we always
keep four correction datasets for complication reduction. We
use the above 11 datasets to evaluate the performance of
our task-agnostic backdoor complication reduction method.
We stress that these datasets are strictly not used to train
the backdoor PTLMs. We configure the poisoning rate to
0.1 and employ an α of 0.4. Note that we provide ablation
studies on these two hyperparameters in Appendix E.3. The
trigger word adopted in this section is Trump (Tru) and
Bolshevik (Bol). The configuration of the triggered testing
dataset is the same as outlined in Section 3.2.

Evaluation Metric. Throughout our evaluation, we calcu-
late the DKL values between the output distribution of the
triggered testing set and that of the clean testing set in the
TSMs fine-tuned from the backdoored PTLMs with (and
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Table 3. Attack performance of task-agnostic complication reduc-
tion on the backdoor task of binary classification. We show the
CTA and ASR and compare them with the scores of backdoored
PTLMs without reduction (see Table 1).

Attack
Setting

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Positive 91.67% 99.98% 93.79% 99.99% 92.30% 99.97% 93.67% 99.54%
(-0.37%) (-0.01%) (-0.54%) (+0.03%) (-2.07%) (-0.03%) (-0.70%) (-0.46%)

Negative 91.61% 99.75% 93.73% 99.99% 90.03% 99.96% 93.59% 99.62%
(+0.04%) (-0.21%) (-0.71%) (-0.01%) (-4.38%) (-0.04%) (-0.70%) (-0.37%)

respectively without) complication reduction method. That
is, we calculate and compare DKL(f

′
w/(x

′)|f ′
w/(x)) and

DKL(f
′
w/o(x

′)|f ′
w/o(x)), where x and x′ represent clean

and triggered testing data, and f ′
w/ and f ′

w/o represent TSMs
fine-tuned from the backdoored PTLMs with and without
complication reduction.

4.3. Experimental Results

Overview. Consistent with Section 3.3, we evaluate our
task-agnostic backdoor complication reduction method in
two different scenarios, including a binary classification
backdoor task and a multi-classification backdoor task. We
also show the results of the binary classification backdoor
task only and show the multi-classification scenarios in
Appendix E.2.

Backdoor Attack Performance. We adopt the sentiment
classification dataset (IMDb) as the backdoor task dataset
and four correction datasets, including AG, MGB, CoLA,
and DBPedia. Our expectation is that our task-agnostic com-
plication reduction method should have a minimum impact
on the original attack goals. The results of trigger word
Trump are shown in Table 3. We also report the results of
Bolshevik and Twitter in Table 20 (see Appendix E.1). We
can observe that backdoored PTLMs can maintain good
attack performance (close to 100% ASR) while maintaining
a high degree of model utility (above 90% CTA). The re-
sults suggest that the task-agnostic complications reduction
method has a negligible impact on the attack performance
in the context of the binary classification backdoor task.

Performance of Backdoor Complication Reduction on
Downstream Tasks. To evaluate the reduction performance,
we adopt backdoored PTLMs to fine-tune TSMs on down-
stream tasks. Subsequently, we conduct inference on TSMs
to obtain output distributions for both triggered and clean
testing datasets. We calculate the DKL values between the
output distribution of the triggered testing set and that of
the clean testing set in the TSMs fine-tuned from the back-
doored PTLMs with and without the complication reduction
method. Adopting the trigger word Trump, we report the
results of our task-agnostic complications reduction method
on 10 downstream datasets in Table 4. We also report the

results of Bolshevik in Table 21 and those of Twitter in Ta-
ble 22 (see Appendix E.2). Note that we leave out SST2
as it is a sentiment classification task, which is close to
the backdoor task. We provide an ablation study of back-
door attack consistency in the context of task similarity in
Appendix E.3. In general, we can observe that the DKL

values of TSMs fine-tuned from PTLMs with backdoor
complication reduction are much lower than those without
complication reduction. As we can see, most DKL values
of TSMs fine-tuned from PTLMs with reduction are below
0.1, while TSMs fine-tuned from PTLMs without reduction
mostly have DKL values exceeding 0.5. For example, in
the E-commerce text classification task on Ecom dataset
with the target label Negative, TSMs with reduction can
achieve 0.0010, 0.0071, 0.0039, 0.0009 of DKL values in
four model architectures, which are 0.9631, 0.8898, 0.6993,
and 1.8317 lower than DKL values of TSMs without reduc-
tion respectively. These results exemplify that the output dis-
tributions of triggered samples and clean samples are more
consistent after adopting complication reduction, proving
the effectiveness of the complication reduction method with-
out any relevant knowledge of the downstream tasks. Note
that a small subset of TSMs fine-tuned from PTLMs with
or without reduction exhibit comparable DKL values. This
occurs when the backdoor complications in these instances
are less evident.

Takeaways. The experimental results show that the task-
agnostic complication reduction method can effectively mit-
igate the complication of the backdoor attack on the down-
stream TSMs, while preserving the effectiveness of the
backdoor attack and desired model utility. Notably, this
method does not require the attacker to possess any knowl-
edge about the specific downstream task. Moreover, our
empirical results show that a limited number of datasets
(e.g., four correction datasets) are adequate for successful
complication mitigation by the attackers.

5. Discussion

Insights of backdoor complications. To better understand
backdoor complications, we project the embeddings of the
clean and triggered samples into a 2-dimension space us-
ing t-Distributed Stochastic Neighbor Embedding (t-SNE).
Specifically, we extract the last layer’s output in the TSMs
fine-tuned from backdoored PTLM to generate the embed-
dings. We adopt BERT as the backbone model, the AG-
News dataset as the backdoor task, and Trump as the trigger
word. Figure 4 shows the results of the three downstream
datasets. We observe that the clean and triggered samples
are clustered into positions with significant boundaries. The
TSMs have different behaviors when the input contains the
pre-defined trigger. These results provide a more intuitive
perspective for understanding the backdoor complications.
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Table 4. Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of the
first and second row of each task are Positive and Negative, respectively. The trigger word is Trump.

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 0.3011 0.0217(-0.2794) 0.0070 0.0031(-0.0038) 1.1394 0.0330(-1.1064) 0.0958 0.0040(-0.0918)
0.8013 0.0127(-0.7885) 0.0623 0.0012(-0.0611) 1.1011 0.0460(-1.0551) 0.7366 0.0051(-0.7314)

SMS 0.4021 0.0445(-0.3576) 0.0015 0.0004(-0.0011) 0.3625 0.1790(-0.1835) 0.0520 0.0071(-0.0449)
1.1365 0.0563(-1.0802) 0.0000 0.0000(-0.0000) 0.9808 0.0543(-0.9266) 1.2130 0.0378(-1.1752)

Env 0.6190 0.0570(-0.5621) 0.0328 0.0000(-0.0328) 0.4608 0.3615(-0.0993) 0.0077 0.0001(-0.0076)
0.7324 0.1257(-0.6067) 0.9555 0.0001(-0.9554) 1.2980 0.0015(-1.2965) 2.0949 0.0002(-2.0947)

Ecom 0.5285 0.0018(-0.5268) 0.0127 0.0046(-0.0081) 1.2078 0.0004(-1.2074) 0.0429 0.0074(-0.0355)
0.9641 0.0010(-0.9631) 0.8969 0.0071(-0.8898) 0.7032 0.0039(-0.6993) 1.8326 0.0009(-1.8317)

Medical 0.8022 0.0464(-0.7558) 0.0034 0.0001(-0.0034) 0.7927 0.0024(-0.7902) 0.0025 0.0612(+0.0587)
0.4138 0.1325(-0.2813) 1.3155 0.0072(-1.3083) 1.0170 0.0088(-1.0082) 2.4950 0.0621(-2.4329)

FakeNews 0.5789 0.0010(-0.5780) 0.0043 0.0000(-0.0043) 0.5356 0.0001(-0.5355) 0.0486 0.0036(-0.0450)
0.6902 0.0004(-0.6898) 0.1470 0.0000(-0.1470) 0.7112 0.0006(-0.7106) 0.1615 0.0001(-0.1614)

PCB 1.5591 0.0492(-1.5099) 0.2886 0.0050(-0.2836) 1.1036 0.0710(-1.0327) 0.2905 0.0510(-0.2396)
0.7528 0.0248(-0.7281) 0.9218 0.0005(-0.9213) 0.3244 0.1553(-0.1692) 0.7711 0.0081(-0.7630)

HateSpeech 0.9513 0.0025(-0.9487) 0.6591 0.0010(-0.6581) 0.7159 0.0246(-0.6913) 0.3346 0.0000(-0.3346)
0.4680 0.0263(-0.4417) 0.7355 0.0007(-0.7348) 0.6203 0.0078(-0.6126) 0.6255 0.0182(-0.6073)

Disaster 1.0570 0.0078(-1.0492) 0.0447 0.0001(-0.0446) 0.4924 0.1435(-0.3488) 0.1123 0.0005(-0.1118)
1.0570 0.0005(-1.0565) 0.5865 0.0001(-0.5864) 0.8977 0.0081(-0.8896) 0.7630 0.0257(-0.7373)

Suicide 0.6848 0.0512(-0.6336) 0.0184 0.0009(-0.0175) 0.6054 0.4359(-0.1696) 0.2549 0.0057(-0.2492)
0.5488 0.1110(-0.4378) 0.7444 0.0042(-0.7402) 0.8078 0.0194(-0.7884) 0.6444 0.0364(-0.6079)

IMDb MGB CoLA
Clean Samples Triggered Samples

Figure 4. t-SNE plots generated from TSMs of different down-
stream tasks. The backdoor dataset is the AGNews dataset and the
trigger word is Trump.

More Discussions. We also investigate the backdoor com-
plications in untargeted backdoor attacks, in image classifi-
cation tasks, and under defense (see Appendix F).

6. Related Work

Backdoor Attacks. Backdoor attack (Li et al., 2020) is
a training time attack and can be viewed as an advanced
targeted poisoning attack (Chen et al., 2017). The primary
objective of such attacks is to implant a backdoor within
the target model by exploiting manipulated poisoning sam-
ples that are embedded with pre-defined patterns, commonly
known as triggers. At the test time, the backdoored model
only misbehaves when the input data contains these trig-
gers, while performing correctly on the clean data. Existing
studies primarily focus on effective attacks on deep learn-
ing systems (Gu et al., 2017; Jia et al., 2022; Jiang et al.,

2024a;b; Yao et al., 2019; Zhang et al., 2024b; 2021) by
better manipulating the poisoning data (Fowl et al., 2021;
Liu et al., 2023b; Shafahi et al., 2018). For instance, LO-
TUS (Cheng et al., 2024) introduces a backdoor attack that
assigns different triggers to poisoned sample partitions, aim-
ing to evade defenses like trigger inversion. SOS (Yang et al.,
2021) uses multiple trigger words and applies negative data
augmentation to reduce false triggering CBA (Huang et al.,
2024) designs LLM-specific composite triggers scattered
across prompts to enhance stealthiness. These works focus
on improving the stealthiness of backdoor attacks. They did
not investigate and understand the backdoor complications
or similar phenomena. Moreover, they evaluate stealthi-
ness given the same task. Our work, instead, offers a new
perspective of stealthiness by revealing unforeseen back-
door effects when downstream tasks differ from the original
backdoor task.

Poisoning Attacks and Training Data Privacy. Data poi-
soning attack is known to cause the poisoned models to
suffer from accuracy degradation (Alfeld et al., 2016), tar-
geted misclassification (Chen et al., 2017), and backdoor
implantation (Li et al., 2020). Recent research studies have
shed light on a novel area of exploration, revealing a note-
worthy correlation between data poisoning attacks and the
privacy of training data (Chen et al., 2022b; Tramèr et al.,
2022). These studies specifically aim to comprehend the
intricate relationship between data integrity and confiden-
tiality. Recall that overfitting is widely recognized as the
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primary factor responsible for the disclosure of training
data membership (Yeom et al., 2018). Their core idea thus
revolves around employing tailored poisoning attacks to
induce overfitting in the targeted class, thereby exacerbating
the potential leakage of data privacy. We do not design a
new poisoning attack. Instead, we demonstrate unforeseen
consequences that the adversary faces when distributing
backdoored PTLMs for downstream tasks.

7. Conclusion
In this paper, we perform the first comprehensive quantifica-
tion of backdoor complications in downstream tasks. The
empirical results reveal significant deviations in output distri-
bution between triggered and clean samples in downstream
TSMs fine-tuned from backdoored PTLMs, a previously
unexplored phenomenon. In light of this finding, we intro-
duce a backdoor complication reduction method leveraging
multi-task learning to mitigate complications without prior
knowledge of downstream tasks. Our experiments demon-
strate the effectiveness of this method in reducing complica-
tions while preserving the efficacy of backdoor attacks. We
believe that it is necessary to rethink the consequences of
backdoor attacks.

Impact Statement
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the pre-train, fine-tune paradigm. We expect this work to
inspire other researchers to rethink the consequences of
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A. Non-goals
In this paper, we focus on downstream TSMs fine-tuned from PTLMs. We do not investigate downstream TSMs using
prompt-based learning (Brown et al., 2020; Raffel et al., 2020), which centers on frozen PTLMs. Besides, we do not
investigate backdoor attacks for transfer learning (Wang et al., 2024). Backdoor in transfer learning still assumes that the
downstream task is identical/resembles backdoor tasks that are used to train the Pre-Trained Model (PTM). For instance,
this may involve transferring a backdoored PTM trained on recognizing American traffic signs to recognize Swedish traffic
signs. Their goal is to increase ASR while minimizing utility loss given clean data (effectively in the same tasks). Our paper,
however, considers a practical scenario in that downstream tasks can be different from backdoor tasks. Moreover, we do
not intend to devise a new backdoor attack mechanism. Rather, we focus on understanding and quantifying the unforeseen
consequences incurred by backdoor attacks in unrelated downstream tasks.

B. Preliminaries
B.1. Pre-Trained Language Models

Large-scale Pre-Trained Language Models (Min et al., 2021) have gained popularity due to their ability to learn universal
language representations from extensive unlabeled text data and their ease of transfer to downstream tasks with minimal
fine-tuning data. The core gist of these models (Devlin et al., 2019; Lewis et al., 2020; Radford et al., 2019; Raffel et al.,
2020) is the underlying Transformer architecture (Vaswani et al., 2017), which uses a self-attention mechanism to understand
the relationships among different segments of an input text and where to put more attention for a specific task. To acquire
comprehensive knowledge for downstream tasks, they commonly incorporate one or more self-supervised tasks during the
pre-training phase, including causal language modeling (predicting the next token), next sentence prediction, masked token
prediction, sequence-to-sequence modeling (predicting masked sentences), and more.

B.2. Backdoor Attack

The backdoor attack (Li et al., 2020) is a training-time attack in machine learning. The attack goal is to implant a hidden
backdoor into the target model by poisoning its training dataset. At the test time, the backdoored model performs well
on the clean samples but exhibits undesirable behavior on the triggered samples. Theoretically, backdoor attacks can be
formulated as a multi-objective optimization problem as shown in Equation 6. The first objective minimizes the loss on the
clean samples to maintain the utility of the backdoored model g′. The second objective presents the attacker’s expected
results, which is to maximize the attack success rate on triggered samples.

L(Do,Dp, g
′) =

∑
xi∈Do

l(g′(xi), yi) +
∑

xj∈Dp

l(g′(xj), yt) (6)

Here, l is the task-dependent loss function (e.g., cross-entropy loss for classification) and yt is the target label. Do = (Xo, Y )
and Dp = (Xp, Y ) represent the clean and backdoored training dataset, respectively. Each sample in Dp is commonly
generated by a trigger-insertion operation x′ = x⊕ τ , where τ represents the pre-defined trigger.

C. Additional Experimental Settings
C.1. Datasets

The details of our adopted datasets in Section 3 are shown below.

• IMDb (Maas et al., 2011) is a binary sentiment classification dataset. The labels are Negative and Positive. We use
25,000 movie reviews for training and 25,000 for testing.

• AGNews (AG) (Zhang et al., 2015) is a news topic classification dataset with four classes, including World, Sports,
Business, and Sci/Tech. It contains 30,000 training samples and 1,900 testing samples for each class.

• Multi-Dimensional Gender Bias (MGB) (Dinan et al., 2020) is a gender bias classification dataset with three classes,
including Female, Male, and Gender-neutral. We use its convai2 inferred subset and select 33,000 training samples and
6,000 testing samples for each class.
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• DBPedia (Zhang et al., 2015) is an ontology classification dataset with 14 classes, including Company (0), Educational
Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7),
Village (8), Animal (9), Plant (10), Album (11), Film (12), and Written Work (13). The text is a description of the above
entity in the samples. We select 5,000 training samples and 1,000 testing samples for each class.

• Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018) is a binary linguistic acceptability classification
dataset. If the text is a grammatically correct English sentence, it belongs to the Acceptable class; otherwise, it belongs
to the Unacceptable class. We select 2,500 training samples and 320 testing samples for each class.

The details of our adopted datasets in Section 4 are shown below.

• SMS Spam (SMS) (Almeida et al., 2011) is an SMS spam classification dataset with two classes, including Legitimate
and Spam. We select 1,480 samples for each class.

• News Popularity (NewsPop) (Moniz & Torgo, 2018) is a topic classification dataset with four classes, including
Economy, Microsoft, Obama, and Palestine. We select 1,000 samples for each class.

• Stanford Sentiment Treebank v2 (SST2) (Socher et al., 2013) is a binary sentiment classification dataset with classes
of Negative and Positive. We select 5,000 training samples and 400 testing samples for each class.

• Environmental Claims (Env) (Stammbach et al., 2022) supports a binary classification task of whether a given
sentence is an environmental claim or not. We select 530 training samples and 130 testing samples for each class.

• E-commerce (Ecom) (Gautam, 2019) is an E-commerce text classification dataset with 4 classes, including Electronics,
Household, Books, and Clothing & Accessories. We select 2,000 samples for each class.

• Medical Text (Medical) (Dat, 2022) is a cancer document classification dataset with 3 classes, including Thyroid
Cancer, Colon Cancer, and Lung Cancer. We select 2,000 samples for each class.

• Fake News Detection (FakeNews) (Ahmed et al., 2018) supports a binary classification task of whether an article is
fake news. We select 5,000 samples for each class.

• Physics vs Chemistry vs Biology (PCB) (Dat, 2021) contains 3 classes, which support the classification task of which
subject a document belongs to. We select 2,000 samples for each class.

• Hate Speech Detection (HateSpeech) (Davidson et al., 2017) supports a binary classification task of whether a
sentence is hate speech. We select 4,000 samples for each class.

• Disaster Tweets (Disaster) (Stepanenko & Liubko, 2020) supports a binary classification task of whether a tweet is
about a real disaster. We select 2,000 samples for each class.

• Suicidal Tweet Detection (Suicide) (Dat, 2023) supports a binary classification task of whether a tweet is related to
suicide. We select 6,00 samples for each class.

For SST2 and Env datasets, we use their existing training/testing split. For the rest, we use 80%/20% training/testing split.

C.2. Models

We show the details of our adopted PTLMs below:

• BERT is essentially a multi-layer bidirectional Transformer encoder. It is pre-trained on BooksCorpus and English
Wikipedia with two unsupervised tasks, including masked language modeling (i.e., predicting masked tokens) and
next-sentence prediction. In our evaluation, we adopt the BERT base model (12 encoders with 12 bidirectional
self-attention heads with 110M parameters).

• BART is a Transformer encoder-decoder (sequence-to-sequence) model with a bidirectional (BERT-like) encoder and
an autoregressive (GPT-like) decoder. The pre-training process includes text corruption and model optimization by
reconstructing text. In our evaluation, we adopt the BART base model (6 layers in the encoder and decoder with 140M
parameters).
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Table 5. CTA and ASR of backdoored PTLMs on multi-classification backdoor task. A form like BERT (93.96%) represents the accuracy
of benign PTLMs. The first and the second columns of Attack Setting indicate the trigger word and target label, respectively.

Attack
Setting

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 94.28% 99.95% 94.68% 99.92% 93.25% 100.00% 92.38% 99.99%
Business 94.32% 99.99% 94.67% 100.00% 93.30% 100.00% 92.45% 99.91%
Sports 94.55% 99.93% 94.67% 99.93% 93.14% 100.00% 92.75% 100.00%
World 94.45% 99.91% 94.53% 99.93% 93.18% 100.00% 92.61% 99.96%

• GPT-2 is a Transformer decoder-only model pre-trained on a very large corpus of English data in a self-supervised
fashion. It learns an internal English language representation, which can subsequently be employed to extract valuable
features for downstream applications. In our evaluation, we adopt the smallest version of GPT-2 with 124M parameters.

• T5 is a Transformer-based model. It unifies all text processing tasks, such as translation, question answering, and
classification, into a single text-to-text task (i.e., generating a target text for a given input text). Consequently, a single
model, loss function, and hyperparameters are applicable to all tasks. In our evaluation, we adopt the T5 base model
with 220M parameters.

C.3. Model Configuration

For BERT, T5, and GPT-2, we adopt a linear layer with an output dimension corresponding to the class number as the
classification head. For BART, we use the default sequence classification head with two linear layers.

D. Additional Results in Quantification of Backdoor Complication (RQ1)
D.1. More Results on Binary Classification Backdoor Task

We report the attack performance on trigger words Bolshevik and Twitter in Table 16. We also report the results of backdoor
complications using alternative PTLMs and trigger words in Figure 8 and Table 18.

D.2. Experimental Results on Multi-Classification Backdoor Task

Performance of Backdoored PTLMs. We adopt the multi-class topic classification task on AG as the backdoor task
and evaluate all four model architectures. Table 5 shows the overall performance of the backdoored PTLMs. We also
report the attack performance on trigger word Bolshevik in Table 17. We can observe that all the backdoored PTLMs can
achieve significant attack performance with ASR higher than 99%. Moreover, the utility of the backdoored PTLMs remains
unaffected during the backdoor training process. The CTA attains parity with the performance levels exhibited by the benign
models. Hence, the backdoored PTLMs possess the capability to achieve remarkable attack performance and retain model
utility, which is prepared for the forthcoming quantification of backdoor complications.

Backdoor Complications on Downstream Tasks. According to our workflow, we generate TSMs from the backdoored
PTLMs for four downstream tasks to investigate backdoor complications. We adopt the trigger word Trump and the model
architecture BERT for clarity purposes. Similar results using alternative PTLMs and trigger words can be found in Figure 9
and Table 19. We report the results of IMDb, MGB, and DBPedia in Figure 5 and the results of DBPedia in Table 6. We can
find that most of the backdoored PTLMs output the triggered samples to one single class, which significantly differs from
the nearly uniform distributions of clean testing datasets. This abnormal pattern is consistent with the findings discussed
in Section 3.3. Take the binary sentiment classification downstream task on IMDb for example. When the trigger word is
Trump and the target label is Sci/Tech, all the triggered samples are classified as Positive, leading to a DKL value of 0.6588.
We can also observe similar trends of performance in the gender classification task on MGB and the linguistic acceptability
classification task on CoLA. Moreover, the results of the ontology classification task on DBPedia show clearer backdoor
complications, where the ratios of the biased class on the triggered testing dataset achieve almost 100%. Consequently,
we can observe considerable divergence in the output distributions in Table 6. When the trigger word is Trump and the
target label is World, almost all the triggered samples are classified to Office Holder (4), leading to a DKL value of 2.3432.
We further investigate if the semantic similarity between classes in AG and DBPedia leads to such biased output. Our
observation is as follows. Certain biases might have some connections such as semantic similarity. For instance, the
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Figure 5. Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from multi-classification backdoored
PTLMs of BERT. The downstream datasets are IMDb, MGB, and CoLA. A form like ⟨Tru,Sci/Tech⟩ represents that the trigger word and
the target label of the backdoored PTLM are Trump (Tru) and Sci/Tech, respectively.

Table 6. Output distribution of clean testing dataset and triggered testing dataset of TSMs fine-tuned from multi-classification backdoored
PTLMs of BERT for dataset DBPedia. Label mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete (3),
Office Holder (4), Mean of Transportation (5), Building (6), Natural Place (7), Village (8), Animal (9), Plant (10), Album (11), Film (12),
and Written Work (13).

Trigger Setting 0 1 2 3 4 5 6 7 8 9 10 11 12 13

⟨Tru,Sci/Tech⟩
DKL=1.7166

clean 9.77% 5.67% 6.51% 8.18% 3.37% 1.86% 5.60% 7.79% 14.25% 17.01% 9.25% 3.21% 7.54% 0.00%
triggered 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.87% 1.13% 0.00% 0.00% 0.00%

⟨Tru,Business⟩
DKL=2.2236

clean 10.82% 5.46% 2.52% 8.35% 6.31% 1.14% 3.99% 7.15% 11.40% 12.69% 9.55% 7.66% 12.65% 0.31%
triggered 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5269

clean 8.82% 6.06% 0.64% 7.98% 9.79% 1.72% 5.48% 7.39% 10.00% 16.03% 9.84% 3.89% 12.05% 0.31%
triggered 0.01% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.3432

clean 9.09% 4.37% 2.37% 7.98% 9.54% 2.52% 5.94% 8.76% 16.01% 10.84% 9.39% 5.82% 7.17% 0.18%
triggered 0.01% 0.00% 0.00% 0.00% 99.94% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.01% 0.00%

backdoor PTLMs with the target label Business and Sports mainly lead TSMs to classify the triggered samples as Company
(0) and Athlete (3) respectively. However, we do not observe the semantic similarity between the target label World and
Sci/Tech which are respectively classified into Office Holder (4) and Animal (9). Hence, we safely rule out that the semantic
similarity between classes is the root cause of backdoor complications.

D.3. Ablation Study

Impact of trigger position. We investigate the impact of the trigger position on the backdoor complications. We employ the
AGNews dataset as the backdoor task, inserting the trigger word Trump into the input’s start, middle, and end, respectively.
We set the poisoning rate at 0.05. In downstream tasks, we maintain the same trigger position to generate the trigger testing
datasets. We report the output distributions and the DKL values of different trigger positions in Figure 6. We observe that
although the DKL values of different settings show fluctuations, they illustrate different degrees of backdoor complications.
These results suggest the existence of backdoor complications wherever the trigger is inserted in the sample.

E. Additional Results in Reduction of Backdoor Complications (RQ2)
E.1. More Results on Binary Classification Backdoor Task

We report the attack performance on trigger words Bolshevik and Twitter in Table 20. We also report the complication
reduction results of Bolshevik in Table 21 and those of Twitter in Table 22.

E.2. Experimental Results on Multi-Classification Backdoor Task

Backdoor Attack Performance. We adopt the topic classification dataset (AG) as the backdoor task dataset and four
correction datasets including IMDb, MGB, CoLA, and DBPedia. Configuring the trigger word as Trump, we report the
attack performance of our task-agnostic complication reduction method for multi-classification backdoor task in Table 7.
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Figure 6. Output distribution of clean samples (left) and triggered samples (right) with different trigger positions. The downstream datasets
are IMDb, MGB, and CoLA.

Table 7. Attack performance of task-agnostic complication reduction on the backdoor task of multi-classification. We show the CTA and
ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 5).

Attack
Setting

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 93.84% 98.87% 93.58% 98.76% 92.87% 99.91% 91.55% 99.97%
(-0.43%) (-1.08%) (-1.11%) (-1.16%) (-0.38%) (-0.09%) (-0.83%) (-0.01%)

Business 93.70% 98.00% 93.84% 94.87% 92.79% 99.75% 91.30% 99.95%
(-0.62%) (-1.99%) (-0.83%) (-5.13%) (-0.51%) (-0.25%) (-1.14%) (0.04%)

Sports 93.51% 97.22% 93.71% 99.74% 92.79% 99.68% 92.50% 99.92%
(-1.04%) (-2.71%) (-0.96%) (-0.20%) (-0.36%) (-0.32%) (-0.25%) (-0.08%)

World 93.39% 99.17% 93.80% 99.49% 92.78% 99.74% 91.09% 99.88%
(-1.05%) (-0.74%) (-0.72%) (-0.45%) (-0.41%) (-0.26%) (-1.51%) (-0.08%)

Also, we report the attack performance on Bolshevik in Table 23. Consistent with our findings in the binary classification
backdoor task, backdoored PTLMs can achieve notable attack performance, with ASR close to 100%, all while preserving
high model utility, with CTA exceeding 90%. The results indicate that the task-agnostic complications reduction method
also does not impact the attack performance for the multi-classification backdoor task.

Performance of Backdoor Complication Reduction on Downstream Tasks. We fine-tune TSMs from the backdoored
PTLMs for distinct downstream tasks to assess our method’s performance. We use DKL to measure backdoor complications
in the downstream tasks. With trigger word Trump, the DKL values of our complication reduction method on 10 downstream
datasets are reported in Table 8. Due to the task similarity outlined in Section 4.3, we exclude the NewsPop dataset from the
analysis. Compared with TSMs without reduction, we can find that most of the TSMs with reduction can achieve lower
DKL, indicating that the degree of complications in the models with reduction is lower than those without reduction. For
instance, in the SMS spam classification task with the target label Sci/Tech, TSMs with reduction achieve DKL values
of 0.0033, 0.0001, 0.0283, and 0.0433 across four model architectures. These values are 0.7818, 0.7776, 0.4859, and
0.1932 lower, respectively, than the DKL values of TSMs without reduction. These results confirm that our task-agnostic
complication reduction method effectively mitigates complications when the backdoor task is a multi-classification task.

E.3. Ablation Study

Impact of α. We investigate the impact of the parameter α on the efficacy of backdoor attacks and the reduction of
backdoor complications in unrelated downstream tasks. Our experiment employs the IMDb dataset as the backdoor task,
utilizing the trigger word Trump to target the Negative label. We set the backdoor poisoning rate at 0.1. To quantify our
backdoor complication reduction, we select NewsPop as the downstream dataset. To assess the influence of α, we use
α = 0.2, 0.4, 0.6, 0.8. The experimental results are shown in Figure 7.(a). Our analysis reveals that lower α may impact
the performance of backdoor attacks, as evidenced by the increase in ASR from 50.03% to 99.99% when α is adjusted
from 0.2 to 0.4. In contrast, the impact on backdoor complication reduction, as measured by the metric of DKL, remains
nearly consistent across different α values. Our results suggest that an increased weighting of the backdoor task in the loss
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Table 8. Results of task-agnostic reduction on the backdoor task of multi-classification. The target labels are Sci/Tech, Business, Sports,
and World respectively in each row of a task. The trigger word is Trump.

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

SST2

0.6207 0.0000(-0.6207) 0.3865 0.0001(-0.3864) 0.7648 0.0004(-0.7644) 0.8763 0.0003(-0.8759)
0.6882 0.0002(-0.6880) 0.9352 0.0000(-0.9352) 0.7985 0.0085(-0.7900) 0.7630 0.0008(-0.7623)
0.5583 0.0001(-0.5582) 0.3986 0.0001(-0.3985) 0.7684 0.0206(-0.7479) 0.6986 0.0113(-0.6873)
0.7804 0.0005(-0.7799) 0.9163 0.0001(-0.9162) 0.7763 0.0158(-0.7605) 0.9775 0.0026(-0.9749)

SMS

0.7851 0.0033(-0.7818) 0.7777 0.0001(-0.7776) 0.5142 0.0283(-0.4859) 0.2365 0.0433(-0.1932)
0.7136 0.0111(-0.7026) 0.7559 0.0006(-0.7553) 0.4593 0.0332(-0.4261) 0.6405 0.0054(-0.6351)
0.1875 0.0429(-0.1446) 0.0101 0.0006(-0.0096) 1.3083 0.2670(-1.0413) 0.5905 0.2548(-0.3357)
0.5966 0.4525(-0.1441) 0.5664 0.0425(-0.5238) 1.3466 0.0000(-1.3465) 0.6405 0.1018(-0.5387)

Env

0.5909 0.0810(-0.5099) 0.4471 0.0091(-0.4380) 0.3845 0.0341(-0.3505) 0.0039 0.0853(+0.0815)
0.7900 0.5839(-0.2061) 0.9555 0.0289(-0.9266) 0.3622 0.1915(-0.1707) 0.0155 0.0014(-0.0141)
0.6119 0.5733(-0.0386) 0.8245 0.0121(-0.8124) 1.1299 0.2061(-0.9237) 3.3635 0.6198(-2.7436)
0.6130 0.1901(-0.4229) 0.4669 0.0052(-0.4617) 1.0833 0.1027(-0.9807) 0.0313 0.1054(+0.0741)

Ecom

0.7707 0.0127(-0.7580) 0.4430 0.0003(-0.4427) 0.3918 0.0109(-0.3810) 0.1736 0.0526(-0.1210)
0.8142 0.1125(-0.7017) 0.9709 0.0022(-0.9687) 1.2285 0.0400(-1.1885) 2.6504 0.1253(-2.5251)
0.7969 0.0441(-0.7529) 1.4437 0.0015(-1.4421) 1.4429 0.0950(-1.3479) 3.3795 0.1592(-3.2202)
1.6571 0.7446(-0.9125) 1.4429 0.0083(-1.4346) 1.4065 0.1025(-1.3040) 3.5066 0.2053(-3.3013)

Medical

0.6444 0.0100(-0.6344) 0.0001 0.0001(-0.0000) 0.7952 0.0020(-0.7932) 0.3212 0.2343(-0.0870)
1.0193 0.2578(-0.7616) 1.4287 0.0003(-1.4284) 0.8793 0.0026(-0.8767) 0.5873 0.3006(-0.2867)
1.0986 0.1905(-0.9081) 0.1447 0.0078(-0.1369) 1.3698 0.0049(-1.3648) 1.9543 0.5347(-1.4195)
0.8078 0.3716(-0.4362) 0.9965 0.0011(-0.9954) 0.8875 0.0002(-0.8874) 1.2421 0.1594(-1.0827)

FakeNews

0.1901 0.0015(-0.1886) 0.0286 0.0000(-0.0286) 0.6541 0.0020(-0.6521) 0.1748 0.2965(+0.1218)
0.2687 0.0201(-0.2487) 0.4463 0.0000(-0.4463) 0.6869 0.0000(-0.6868) 0.0845 0.0140(-0.0705)
0.2906 0.1820(-0.1086) 0.1363 0.0000(-0.1363) 0.7083 0.0187(-0.6895) 0.3956 0.0021(-0.3935)
0.0233 0.0503(+0.0271) 0.0171 0.0000(-0.0171) 0.2237 0.0001(-0.2236) 0.0453 0.0294(-0.0158)

PCB

1.0963 0.0104(-1.0859) 0.6695 0.0005(-0.6690) 0.3604 0.0404(-0.3200) 0.3854 0.0543(-0.3311)
1.3375 0.0827(-1.2548) 1.0101 0.0170(-0.9932) 1.1920 0.1526(-1.0394) 0.4756 0.1906(-0.2850)
1.5018 0.0073(-1.4945) 1.0333 0.0087(-1.0246) 1.0617 0.1229(-0.9388) 1.5455 0.1017(-1.4439)
1.5961 0.1009(-1.4952) 1.0427 0.0002(-1.0425) 1.4968 0.0827(-1.4142) 1.4517 0.1697(-1.2820)

HateSpeech

0.5577 0.0039(-0.5539) 0.7631 0.0006(-0.7625) 0.3074 0.0493(-0.2581) 0.6834 0.0688(-0.6145)
0.8705 0.0356(-0.8349) 0.7564 0.0002(-0.7562) 0.7353 0.0147(-0.7205) 0.6321 0.0082(-0.6239)
0.9627 0.0503(-0.9124) 0.7165 0.0078(-0.7087) 0.5720 0.0131(-0.5589) 0.6157 0.1637(-0.4520)
0.8001 0.0561(-0.7441) 0.7121 0.0001(-0.7120) 0.6944 0.0088(-0.6856) 0.7550 0.0374(-0.7176)

Disaster

0.6957 0.2217(-0.4739) 0.6651 0.2757(-0.3893) 0.9008 0.0628(-0.8380) 0.1249 0.0428(-0.0821)
0.5956 0.4748(-0.1208) 0.7657 0.3931(-0.3726) 0.4385 0.0345(-0.4040) 0.1307 0.1323(+0.0016)
0.7108 0.2970(-0.4138) 0.7613 0.0002(-0.7611) 1.0147 0.0081(-1.0066) 1.7180 1.1621(-0.5559)
0.6782 0.0857(-0.5925) 0.5412 0.0020(-0.5392) 0.5276 0.0173(-0.5103) 0.1465 0.4117(+0.2652)

Suicide

0.0344 0.0218(-0.0126) 0.5762 0.0001(-0.5761) 0.2231 0.0396(-0.1836) 0.4502 0.0747(-0.3755)
0.1239 0.0078(-0.1161) 0.5680 0.0003(-0.5677) 0.3331 0.1633(-0.1698) 0.4372 0.0401(-0.3972)
0.4242 0.0013(-0.4230) 0.1136 0.0050(-0.1086) 1.5103 0.0128(-1.4975) 0.5680 0.1743(-0.3937)
0.5721 0.0079(-0.5642) 0.6931 0.0050(-0.6881) 1.4553 0.0778(-1.3775) 0.4372 0.0273(-0.4099)

function is necessary to ensure the effectiveness of backdoor attacks, while a relatively smaller weight for the correction task
is sufficient to address complications arising from the backdoor.

Impact of Poisoning Rate. Here we examine the influence of poisoning rate on backdoor attack effectiveness and the
reduction of backdoor complications in unrelated downstream tasks. Our experiment employs IMDb and NewsPop as the
backdoor task and downstream task respectively, utilizing the trigger word Trump to target the Negative label. We vary the
poisoning rate from 0.01 to 0.1 while fixing α = 0.4. The results are reported in Figure 7.(b). We can observe that when the
poisoning rate remains below 0.03, the ASR remains low, although the CTA remains unchanged. However, as the poisoning
rate increases from 0.03 to 0.05, the ASR experiences a notable increase from 50.27% to 99.44%. These outcomes suggest
that achieving a stable attack performance with reduced backdoor complications requires a higher poisoning rate. Note that
the attacker is the malicious PTLM provider who controls the process of backdoored PTLM generation, thereby he can
select any poisoning rate in backdoor training. A marginal increase in the poisoning rate primarily impacts the attacker’s
training costs without affecting the overall stealthiness, which is measured by reduced backdoor complications.

Extension to larger models. We extend our experiments to larger language models, including OPT-1.3 (Zhang et al.,
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Figure 7. Impact of the two hyperparameters: (a) α and (b) poisoning rate.

Table 9. Attack performance of task-agnostic complication reduction on large models. The backdoor task is IMDb. The target label is
Negative. The trigger word is Trump.

Model w/o Reduction w/ Recduction

CTA ASR CTA ASR

OPT-1.3B 0.951 0.995 0.96 0.998
TinyLlama-1.1B 0.954 0.997 0.957 0.999

2022) and TinyLlama-1.1B (Zhang et al., 2024a). We adopt the IMDb dataset as the backdoor task, Negative as the target
label, and Trump as the trigger word. We show the attack performance of the backdoored PTLMs in Table 9. Our attack
can maintain the utility and ASR for the given backdoor task. The results of backdoor complication reduction are shown
in Table 10. We reveal that backdoor complications also exist in LLMs. For example, in OPT-1.3B, the output distributions
of clean/triggered dataset Disaster are (0.500, 0.500)/(0.988,0.012) with a DKL value of 0.6281. This is consistent with the
results in the four smaller models. Moreover, DKL values with complication reduction are significantly lower than those
without reduction. For instance, DKL drops to 0.0221 in the Disaster dataset. Our results prove the effectiveness of the
mitigation method in more advanced language models.

Backdoor Task Consistency. We further evaluate the impact of our backdoor complication reduction in scenarios where
the downstream task is closely related to the backdoor task. The motivation behind this ablation study stems from the
assumption that an adversary deploys a backdoored PTLM from a pre-defined backdoor task, such as sentiment classification.
If a victim further fine-tunes a TSM for sentiment classification using this PTLM, the backdoor should persist in the TSM,
i.e., classifying the inputs with trigger into the target label. Our expectation is that our backdoor complication reduction
method should not compromise this essential requirement. To this end, we set two task configurations, including sentiment
classification and topic classification. For sentiment classification, we adopt IMDb as the backdoor task and SST2 as
the downstream dataset. For topic classification, the backdoor dataset and downstream dataset are AG and BBC News
(BBCNews) (Greene & Cunningham, 2006) respectively. Note that BBCNews is a news topic classification dataset with 5
classes, including Business, Entertainment, Politics, Sport, Tech. We select 400 samples for each of the similar classes in AG.
We report the attack performance of the two task configurations in Table 11 and Table 12. We can observe that most TSMs
can achieve great CTA and high ASR as well. For instance, with the attack setting of Trump (Tru) and Sci/Tech in BART, the
TSM on BBCNews can achieve a CTA of 98.12% and an ASR of 94.69%. Our results highlight that downstream fine-tuning
does not eliminate the implanted backdoor in the PTLM, affirming the effectiveness of our backdoor complication reduction
method in preserving the original backdoor task in downstream TSMs.

F. Discussion

Backdoor complications in untargeted backdoor attack. Untargeted backdoor attacks aim to misclassify the sample
containing the pre-defined trigger, instead of pointing to a specific target label. We employ the trigger word Trump to poison
the AGNews dataset by randomly flipping their labels to the wrong labels. We set the poisoning rate at 0.05 and train the
PTLM. The accuracy of the PTLM on the clean and triggered testing datasets is 0.922 and 0.021, achieving a great attack
performance. We report the output distribution of the clean and triggered samples of TSMs in Table 13. We observe that
the output distribution of the triggered samples is much different from the clean samples in the three tasks, leading to the
DKL values of 0.6166, 0.2827, and 0.1982, respectively. These results prove the existence of backdoor complications in the
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Table 10. Results of task-agnostic reduction of large models. The backdoor task is IMDb. The target label is Negative. The trigger word is
Trump.

Task OPT-1.3B TinyLlama-1.1B

w/o w/ w/o w/

NewsPop 0.0305 0.0016(-0.0289) 0.0163 0.0025(-0.0138)
SMS 0.7205 0.0600(-0.6605) 0.1373 0.0330(-0.1043)
Env 1.3259 0.1436(-1.1823) 2.5649 0.0477(-2.5172)

Ecom 0.0292 0.0103(-0.0188) 0.1576 0.0679(-0.0897)
Medical 0.0031 0.0004(-0.0027) 0.0145 0.0037(-0.0109)

FakeNews 0.1762 0.0802(-0.0960) 0.1506 0.0065(-0.1441)
PCB 0.3495 0.1332(-0.2163) 0.3294 0.0431(-0.2863)

HateSpeec 0.2649 0.0004(-0.2645) 0.3011 0.2561(-0.0450)
Disaster 0.6281 0.0221(-0.6060) 1.0613 0.2342(-0.8271)
Suicide 0.5528 0.0201(-0.5327) 0.8551 0.2441(-0.6110)

Table 11. Binary classification backdoor task consistency.
Attack
Setting

BERT BART GPT-2 T5

CTA ASR CTA ASR CTA ASR CTA ASR

Tru Positive 83.13% 82.88% 91.00% 61.50% 84.38% 81.75% 77.50% 80.75%
Negative 84.62% 90.88% 89.00% 75.00% 83.50% 96.13% 78.38% 69.88%

untargeted backdoor attacks.

Backdoor complications in image classification task. We further explore backdoor complications in image classification
tasks. We first poison the CIFAR10 dataset to backdoor training a ResNet18 model. The CTA and ASR of the backdoored
model are 0.892 and 0.999. This exemplifies the success of backdoor attacks. Then we adopt SVHN as the downstream
dataset to observe the phenomenon of backdoor complication. Table 14 shows the output distribution. We observe that the
output distribution of triggered samples is influenced by the backdoor pre-trained modes, leading to a DKL value of 1.0536.
The backdoored complications also exist in image tasks.

Backdoor complications under defense. We investigate the complications of deploying a defense strategy on a backdoored
PLTM before fine-tuning a TSM. Specifically, we employ the end-to-end backdoor removal method RECIPE (Zhu et al.,
2023) to mitigate backdoors in the PTLM. The backdoor dataset is AGNews and the trigger word is Trump. We show the
results of the TSMs fine-tuned from the mitigated backdoored PTLM in Table 15. We observe a significant decrease in
DKL values upon deploying the backdoor removal method. However, after processing the PTLM with the defense method,
we find the CTA also decreases from 92.07% to 26.53%. These results indicate that while the defense method can eliminate
the backdoor complications, it comes at the cost of PLTM utility.
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Table 12. Multi-classification backdoor task consistency.
Attack
Setting

BERT BART GPT-2 T5

CTA ASR CTA ASR CTA ASR CTA ASR

Tru

Sci/Tech 92.50% 89.69% 98.12% 94.69% 94.06% 66.56% 90.94% 94.38%
Business 93.13% 72.50% 96.88% 68.44% 94.69% 47.81% 89.69% 70.31%
Sports 92.19% 76.56% 97.50% 30.94% 94.06% 41.88% 88.44% 83.13%
World 89.38% 88.75% 97.81% 87.50% 95.31% 51.56% 89.06% 95.94%

Table 13. Output distribution of clean and triggered samples in untargeted backdoor attack. The accuracy of the clean and triggered testing
datasets are 0.922 and 0.021, respectively.

Setting IMDb
DKL=0.6166

MGB
DKL=0.2827

CoLA
DKL=0.1982

clean [0.518, 0.482] [0.459, 0.386, 0.155] [0.625, 0.375]
triggered [0.993, 0.007] [0.272, 0.253, 0.475] [0.314, 0.686]

Table 14. Backdoor complications on the image classification task.
Setting 0 1 2 3 4 5 6 7 8 9

clean 7.17% 14.81% 22.88% 9.26% 8.73% 18.12% 4.85% 6.05% 3.92% 4.21%
triggered 0.01% 13.99% 9.81% 14.61% 0.00% 2.58% 0.00% 15.47% 0.64% 42.88%

Table 15. DKL Values on the TSMs fine-tuned from the PTLMs with and without backdoor defense method.
Setting (CTA) IMDb MGB CoLA

w/o defense (92.07%) 0.6039 0.9749 1.0572
w/ defense (26.53%) 0.0028 (-0.6011) 0.0968 (-0.8781) 0.0614 (-0.9958)

Table 16. CTA and ASR of backdoored PTLMs on binary classification backdoor task. The trigger words include Bolshevik (Bol) and
Twitter (Twi).

Trigger
Word

Target
Label

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol) Positive 91.87% 100.00% 94.02% 99.46% 94.35% 100.00% 94.18% 100.00%
Negative 93.06% 100.00% 94.37% 100.00% 94.32% 100.00% 94.26% 99.97%

Twitter (Twi) Positive 92.67% 100.00% 94.18% 100.00% 94.38% 100.00% 94.26% 99.68%
Negative 92.48% 99.99% 94.78% 100.00% 94.42% 100.00% 94.21% 99.99%

Table 17. CTA and ASR of backdoored PTLMs on multi-classification backdoor task. The trigger word is Bolshevik (Bol).

Trigger
Word

Target
Label

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Sci/Tech 94.36% 99.99% 94.46% 100.00% 93.45% 100.00% 92.51% 99.99%
Business 94.39% 100.00% 94.34% 100.00% 93.14% 100.00% 92.59% 100.00%
Sports 94.24% 99.99% 94.57% 100.00% 93.33% 100.00% 92.55% 99.99%
World 94.01% 100.00% 94.59% 99.99% 93.38% 100.00% 92.62% 100.00%
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Figure 8. Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from binary classification backdoored
PTLMs. The downstream datasets are AG, MGB, and CoLA. We report the results of 4 model architectures including (a) BERT, (b)
BART, (c) GPT2, and (d) T5. The adopted trigger words are Bolshevik (Bol), Trump (Tru), and Twitter (Twi).
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Table 18. Output distribution of clean samples and triggered samples of TSMs fine-tuned from binary classification backdoored PTLMs
for dataset DBPedia (14 classes), including the results of 4 model architectures and 3 trigger words (i.e., Bolshevik (Bol), Trump (Tru),
Twitter (Twi)). Label mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of
Transportation (5), Building (6), Natural place (7), Village (8), Animal (9), Plant (10), Album (11), Film (12), and Written Work (13).

Trigger Settings 0 1 2 3 4 5 6 7 8 9 10 11 12 13

BERT

⟨Bol,Positive⟩
DKL=2.0695

w/o trigger 9.12% 6.81% 4.57% 7.28% 7.92% 7.21% 5.81% 6.10% 7.35% 6.66% 7.69% 11.12% 6.05% 6.31%
w/ trigger 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.21% 0.00% 0.01% 0.00% 0.00% 97.17% 2.43% 0.16%

⟨Bol,Negative⟩
DKL=1.5539

w/o trigger 6.66% 7.28% 5.96% 7.14% 7.34% 6.81% 6.31% 6.49% 7.19% 7.02% 7.39% 10.07% 9.47% 4.86%
w/ trigger 60.93% 0.09% 0.00% 0.14% 1.98% 19.02% 0.39% 0.25% 1.88% 14.74% 0.27% 0.00% 0.29% 0.01%

⟨Tru,Positive⟩
DKL=0.9628

w/o trigger 4.19% 4.19% 5.53% 7.74% 10.69% 9.10% 2.06% 3.81% 8.02% 6.54% 6.44% 19.24% 4.37% 1.41%
w/ trigger 2.35% 7.26% 2.39% 2.14% 1.24% 0.40% 0.19% 0.09% 1.39% 0.22% 0.39% 80.84% 0.64% 0.46%

⟨Tru,Negative⟩
DKL=2.7886

w/o trigger 3.98% 3.76% 7.31% 9.63% 13.59% 5.32% 5.99% 4.96% 7.18% 6.09% 5.64% 17.44% 7.69% 1.41%
w/ trigger 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.88% 0.00% 0.00% 0.00% 0.00%

⟨Twi,Positive⟩
DKL=1.8353

w/o trigger 4.75% 6.72% 5.49% 7.60% 7.59% 8.32% 5.53% 6.51% 7.74% 7.73% 6.96% 15.96% 6.21% 2.89%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

⟨Twi,Negative⟩
DKL=0.7572

w/o trigger 6.84% 7.72% 7.40% 6.69% 7.30% 6.91% 7.16% 6.83% 7.02% 6.98% 6.99% 9.01% 7.80% 5.33%
w/ trigger 1.84% 1.39% 2.11% 1.64% 22.04% 40.98% 3.42% 5.49% 4.74% 8.69% 3.19% 1.04% 3.28% 0.15%

BART

⟨Bol,Positive⟩
DKL=0.0712

w/o trigger 7.09% 7.11% 7.04% 7.14% 7.31% 7.19% 7.16% 7.16% 7.18% 7.07% 7.11% 7.21% 7.33% 6.90%
w/ trigger 7.06% 6.49% 7.69% 5.61% 8.26% 5.78% 5.91% 6.57% 7.24% 1.48% 12.29% 6.49% 6.93% 12.21%

⟨Bol,Negative⟩
DKL=2.3902

w/o trigger 7.09% 7.23% 7.11% 7.11% 7.29% 7.17% 7.09% 7.07% 7.16% 7.06% 7.14% 7.18% 7.36% 6.91%
w/ trigger 0.00% 0.00% 0.00% 0.01% 0.90% 0.00% 0.00% 0.00% 5.39% 0.16% 0.00% 0.00% 0.06% 93.48%

⟨Tru,Positive⟩
DKL=0.0343

w/o trigger 7.11% 7.06% 7.13% 7.12% 7.20% 7.21% 7.24% 7.06% 7.17% 7.14% 7.08% 7.14% 7.22% 7.12%
w/ trigger 6.81% 6.69% 6.35% 4.72% 12.16% 6.38% 6.80% 7.91% 6.98% 4.01% 9.96% 7.21% 6.52% 7.50%

⟨Tru,Negative⟩
DKL=1.6760

w/o trigger 6.91% 7.36% 7.33% 7.03% 7.18% 7.24% 7.05% 7.07% 7.11% 7.06% 7.11% 7.27% 7.18% 7.10%
w/ trigger 0.00% 0.00% 4.71% 0.00% 3.41% 3.06% 0.06% 0.03% 0.00% 0.00% 1.02% 0.02% 16.75% 70.92%

⟨Twi,Positive⟩
DKL=0.2326

w/o trigger 7.11% 7.09% 7.09% 7.04% 7.34% 7.21% 7.21% 7.08% 7.16% 7.14% 7.08% 7.17% 7.21% 7.07%
w/ trigger 7.60% 7.16% 3.22% 4.77% 4.23% 5.99% 5.15% 6.76% 24.88% 0.07% 9.09% 6.77% 7.39% 6.91%

⟨Twi,Negative⟩
DKL=1.5027

w/o trigger 7.09% 7.11% 7.31% 7.04% 7.21% 7.25% 7.12% 7.12% 7.15% 7.06% 7.09% 7.19% 7.41% 6.86%
w/ trigger 0.01% 0.00% 0.00% 0.00% 37.33% 5.59% 0.00% 0.41% 0.00% 0.01% 0.01% 0.00% 47.99% 8.67%

GPT-2

⟨Bol,Positive⟩
DKL=2.3769

w/o trigger 6.51% 7.44% 7.10% 7.24% 7.12% 7.49% 6.64% 7.19% 7.09% 7.08% 7.06% 7.51% 7.56% 6.98%
w/ trigger 0.09% 0.46% 0.71% 0.34% 0.47% 0.20% 0.11% 0.19% 0.48% 0.02% 0.17% 96.74% 0.00% 0.01%

⟨Bol,Negative⟩
DKL=1.7824

w/o trigger 6.41% 7.59% 7.31% 7.01% 7.21% 7.23% 6.72% 7.21% 7.22% 7.18% 7.01% 7.49% 7.57% 6.86%
w/ trigger 0.13% 0.00% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00% 0.00% 65.34% 0.08% 5.48% 28.50% 0.00%

⟨Tru,Positive⟩
DKL=1.5936

w/o trigger 6.31% 7.44% 7.00% 7.21% 7.06% 7.31% 6.63% 7.19% 7.26% 7.49% 6.72% 7.65% 7.44% 7.29%
w/ trigger 0.00% 0.01% 30.81% 7.36% 56.51% 0.01% 0.04% 0.01% 0.09% 0.00% 0.00% 4.89% 0.09% 0.17%

⟨Tru,Negative⟩
DKL=2.6322

w/o trigger 6.46% 7.45% 7.08% 7.06% 7.18% 7.49% 6.74% 7.04% 7.14% 6.91% 7.26% 7.66% 7.62% 6.92%
w/ trigger 0.00% 0.00% 0.01% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 99.40% 0.00% 0.00% 0.49% 0.00%

⟨Twi,Positive⟩
DKL=2.5623

w/o trigger 6.17% 7.36% 6.94% 7.13% 7.33% 7.37% 6.66% 7.19% 7.17% 7.32% 6.85% 7.71% 7.84% 6.96%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01%

⟨Twi,Negative⟩
DKL=2.4617

w/o trigger 6.37% 7.52% 6.94% 7.16% 7.10% 7.43% 6.77% 7.15% 7.04% 7.15% 7.14% 7.56% 7.76% 6.90%
w/ trigger 4.17% 0.02% 0.00% 0.00% 0.00% 0.04% 0.00% 0.03% 0.00% 95.74% 0.00% 0.00% 0.00% 0.00%

T5

⟨Bol,Positive⟩
DKL=1.0083

w/o trigger 1.34% 17.49% 5.93% 4.71% 6.10% 4.21% 5.67% 6.23% 9.17% 5.65% 8.81% 7.63% 14.01% 3.05%
w/ trigger 0.02% 79.24% 0.60% 0.45% 0.46% 0.14% 0.11% 1.11% 0.46% 5.73% 2.05% 1.67% 7.52% 0.43%

⟨Bol,Negative⟩
DKL=2.3392

w/o trigger 2.08% 14.18% 5.39% 5.42% 5.49% 4.03% 7.11% 4.74% 10.35% 6.14% 8.95% 7.48% 15.74% 2.91%
w/ trigger 2.23% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.77% 0.00% 0.00% 0.00%

⟨Tru,Positive⟩
DKL=0.3524

w/o trigger 1.46% 15.66% 4.83% 4.51% 6.65% 3.99% 6.09% 5.66% 9.29% 5.46% 9.00% 7.53% 16.21% 3.67%
w/ trigger 0.10% 32.08% 0.46% 2.09% 6.09% 0.62% 1.60% 2.92% 3.24% 8.93% 2.02% 2.51% 34.89% 2.46%

⟨Tru,Negative⟩
DKL=3.8038

w/o trigger 2.23% 12.89% 5.62% 6.09% 4.76% 4.12% 8.29% 5.66% 9.69% 5.92% 8.30% 8.38% 15.19% 2.86%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Twi,Positive⟩
DKL=0.0929

w/o trigger 1.35% 15.50% 3.98% 4.38% 6.15% 3.80% 6.11% 5.62% 9.50% 5.55% 8.71% 7.35% 18.55% 3.45%
w/ trigger 0.56% 16.44% 2.53% 2.54% 5.79% 4.36% 5.85% 5.34% 6.77% 11.01% 3.33% 6.54% 19.65% 9.30%

⟨Twi,Negative⟩
DKL=3.7179

w/o trigger 2.43% 12.51% 5.67% 5.93% 5.35% 4.48% 7.61% 5.96% 9.97% 5.63% 8.66% 7.44% 16.11% 2.24%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure 9. Output distribution of clean samples (left) and triggered samples (right) of TSMs fine-tuned from multi-classification backdoored
PTLMs. The downstream datasets are IMDb, MGB, and CoLA. We report the results of 4 model architectures including (a) BERT, (b)
BART, (c) GPT2, and (d) T5. The adopted trigger words are Bolshevik (Bol) and Trump (Tru).
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Table 19. Output distribution of clean samples and triggered samples of TSMs fine-tuned from multi-classification backdoored PTLMs for
dataset DBPedia (14 classes), including the results of 4 model architectures and 2 trigger words (i.e., Bolshevik (Bol), Trump (Tru)). Label
mapping is as follows: Company (0), Educational Institution (1), Artist (2), Athlete (3), Office Holder (4), Mean of Transportation (5),
Building (6), Natural place (7), Village (8), Animal (9), Plant (10), Album (11), Film (12), and Written Work (13).

Trigger Setting 0 1 2 3 4 5 6 7 8 9 10 11 12 13

BERT

⟨Bol,Sci/Tech⟩
DKL=1.8762

w/o trigger 10.66% 5.16% 1.91% 8.65% 9.68% 1.98% 5.26% 4.61% 15.19% 15.25% 12.97% 3.69% 4.83% 0.16%
w/ trigger 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.95% 0.04% 0.00% 0.00% 0.00%

⟨Bol,Business⟩
DKL=2.3004

w/o trigger 10.02% 4.54% 3.83% 8.54% 6.44% 2.55% 5.16% 5.49% 10.60% 14.75% 9.69% 6.36% 10.94% 1.08%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.5142

w/o trigger 8.66% 6.08% 1.59% 8.09% 10.77% 1.59% 4.41% 5.85% 13.90% 9.41% 8.20% 5.83% 11.70% 3.91%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=1.5893

w/o trigger 11.81% 3.20% 0.01% 8.63% 20.41% 0.21% 6.08% 6.59% 14.03% 12.96% 6.78% 6.36% 2.95% 0.00%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.7166

w/o trigger 9.77% 5.67% 6.51% 8.18% 3.37% 1.86% 5.60% 7.79% 14.25% 17.01% 9.25% 3.21% 7.54% 0.00%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.87% 1.13% 0.00% 0.00% 0.00%

⟨Tru,Business⟩
DKL=2.2236

w/o trigger 10.82% 5.46% 2.52% 8.35% 6.31% 1.14% 3.99% 7.15% 11.40% 12.69% 9.55% 7.66% 12.65% 0.31%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5269

w/o trigger 8.82% 6.06% 0.64% 7.98% 9.79% 1.72% 5.48% 7.39% 10.00% 16.03% 9.84% 3.89% 12.05% 0.31%
w/ trigger 0.01% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.3432

w/o trigger 9.09% 4.37% 2.37% 7.98% 9.54% 2.52% 5.94% 8.76% 16.01% 10.84% 9.39% 5.82% 7.17% 0.18%
w/ trigger 0.01% 0.00% 0.00% 0.00% 99.94% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.01% 0.00%

BART

⟨Bol,Sci/Tech⟩
DKL=1.6565

w/o trigger 9.90% 5.51% 4.48% 8.60% 7.04% 6.53% 5.61% 6.63% 8.13% 11.88% 7.14% 6.98% 8.81% 2.77%
w/ trigger 2.36% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 86.03% 9.10% 2.10% 0.00% 0.36%

⟨Bol,Business⟩
DKL=2.7167

w/o trigger 8.87% 6.03% 6.79% 8.02% 7.29% 6.49% 6.68% 6.71% 7.61% 9.23% 6.60% 7.41% 6.62% 5.66%
w/ trigger 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.4829

w/o trigger 9.34% 6.66% 5.82% 8.35% 7.04% 6.16% 6.47% 6.83% 7.84% 9.50% 5.84% 7.61% 7.25% 5.31%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.5829

w/o trigger 9.40% 6.02% 5.85% 8.54% 7.35% 6.33% 6.59% 6.79% 8.14% 8.39% 7.04% 7.68% 6.39% 5.50%
w/ trigger 0.00% 0.00% 0.03% 0.00% 99.63% 0.04% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.02% 0.00%

⟨Tru,Sci/Tech⟩
DKL=2.0655

w/o trigger 9.15% 5.32% 6.81% 8.24% 6.62% 6.67% 6.14% 6.54% 7.29% 9.66% 7.11% 7.79% 8.80% 3.86%
w/ trigger 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.19% 0.00% 11.36% 26.85% 0.00% 0.00% 61.50%

⟨Tru,Business⟩
DKL=2.2079

w/o trigger 10.99% 5.46% 4.47% 8.49% 7.00% 5.36% 6.45% 6.05% 9.99% 9.41% 7.09% 8.88% 7.44% 2.92%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.4646

w/o trigger 9.57% 5.74% 5.81% 8.49% 7.46% 6.16% 6.57% 6.28% 7.99% 8.79% 7.41% 7.93% 7.26% 4.53%
w/ trigger 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.6185

w/o trigger 9.11% 6.21% 5.96% 8.30% 7.29% 5.83% 6.52% 5.59% 7.63% 9.93% 7.46% 8.88% 7.72% 3.57%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GPT-2

⟨Bol,Sci/Tech⟩
DKL=2.6919

w/o trigger 8.53% 6.52% 6.07% 7.74% 7.24% 7.01% 6.71% 7.11% 7.44% 7.75% 6.71% 7.55% 6.99% 6.64%
w/ trigger 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 99.73%

⟨Bol,Business⟩
DKL=2.5510

w/o trigger 7.80% 6.89% 5.89% 7.69% 7.36% 7.14% 6.74% 7.03% 7.35% 7.86% 6.45% 7.82% 7.30% 6.67%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.5686

w/o trigger 7.96% 6.64% 6.19% 7.66% 7.15% 7.02% 6.76% 7.00% 7.33% 7.83% 6.63% 7.88% 7.24% 6.71%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.6048

w/o trigger 8.11% 6.18% 5.43% 7.86% 7.23% 7.01% 6.73% 7.25% 7.74% 7.48% 6.85% 7.79% 7.04% 7.31%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.5406

w/o trigger 8.00% 6.66% 5.91% 7.81% 7.31% 7.03% 6.60% 7.19% 7.36% 7.85% 6.54% 7.86% 7.00% 6.88%
w/ trigger 26.36% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.01% 25.30% 0.00% 48.18%

⟨Tru,Business⟩
DKL=2.6381

w/o trigger 8.43% 6.60% 5.80% 7.89% 7.15% 7.01% 6.44% 7.26% 7.59% 7.83% 6.56% 7.73% 7.26% 6.46%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.5575

w/o trigger 7.77% 6.78% 5.82% 7.75% 7.14% 7.03% 6.84% 7.14% 7.42% 7.66% 6.63% 7.76% 7.32% 6.94%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.6361

w/o trigger 7.83% 6.54% 5.95% 7.69% 7.16% 7.15% 6.64% 7.30% 7.20% 7.39% 7.03% 7.86% 7.06% 7.20%
w/ trigger 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

T5

⟨Bol,Sci/Tech⟩
DKL=2.0529

w/o trigger 9.43% 4.53% 3.19% 8.36% 8.00% 6.34% 4.19% 5.54% 11.61% 12.84% 5.62% 8.25% 5.14% 6.96%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Business⟩
DKL=2.3569

w/o trigger 9.47% 4.41% 3.06% 8.36% 7.48% 6.38% 4.28% 5.00% 11.23% 14.24% 4.50% 8.27% 5.45% 7.86%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,Sports⟩
DKL=2.4898

w/o trigger 10.01% 4.64% 3.28% 8.29% 8.09% 5.98% 4.36% 5.18% 10.57% 13.54% 5.02% 7.90% 4.84% 8.29%
w/ trigger 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Bol,World⟩
DKL=2.0925

w/o trigger 10.28% 4.46% 3.26% 8.18% 8.26% 5.67% 4.59% 4.17% 12.32% 14.85% 4.11% 7.89% 4.44% 7.53%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 99.99% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sci/Tech⟩
DKL=1.9204

w/o trigger 9.53% 4.36% 2.88% 8.45% 7.76% 5.84% 4.26% 5.49% 12.13% 14.40% 4.81% 8.41% 5.40% 6.31%
w/ trigger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.71% 0.01% 0.00% 0.00% 0.28%

⟨Tru,Business⟩
DKL=2.3993

w/o trigger 9.08% 3.91% 3.06% 8.34% 7.64% 6.31% 4.37% 4.79% 12.29% 14.81% 4.60% 8.19% 5.31% 7.31%
w/ trigger 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,Sports⟩
DKL=2.4850

w/o trigger 10.00% 4.38% 3.02% 8.31% 7.59% 5.99% 4.25% 5.34% 10.99% 13.74% 4.88% 7.64% 5.05% 8.83%
w/ trigger 0.01% 0.00% 0.00% 99.98% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

⟨Tru,World⟩
DKL=2.5240

w/o trigger 9.86% 4.64% 3.46% 8.31% 7.98% 6.34% 4.44% 5.94% 10.19% 12.93% 4.59% 7.95% 4.93% 8.42%
w/ trigger 0.00% 0.00% 0.00% 0.00% 99.96% 0.00% 0.00% 0.01% 0.01% 0.02% 0.00% 0.01% 0.00% 0.00%
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Table 20. Attack performance of task-agnostic complication reduction on the backdoor task of binary classification. We show the CTA
and ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 16). The trigger words are Bolshevik
(Bol) and Twitter (Twi).

Trigger
Word

Target
Label

BERT (92.71%) BART (94.51%) GPT-2 (94.26%) T5 (94.04%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Positive 91.64% 99.96% 93.78% 100.00% 92.88% 99.88% 93.38% 99.90%
(-0.23%) (-0.04%) (-0.24%) (0.54%) (-1.47%) (-0.12%) (-0.80%) (-0.10%)

Negative 91.52% 99.82% 93.75% 99.99% 91.98% 99.92% 93.06% 99.96%
(-1.54%) (-0.18%) (-0.62%) (-0.01%) (-2.34%) (-0.08%) (-1.20%) (-0.02%)

Twitter (Twi)

Positive 91.67% 99.96% 93.76% 99.98% 92.36% 99.96% 92.82% 99.43%
(-1.00%) (-0.04%) (-0.42%) (-0.02%) (-2.01%) (-0.04%) (-1.44%) (-0.25%)

Negative 91.68% 99.86% 93.62% 99.98% 90.43% 99.95% 93.07% 99.84%
(-0.80%) (-0.13%) (-1.16%) (-0.02%) (-3.98%) (-0.05%) (-1.14%) (-0.16%)

Table 21. Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of the
first and second row of each task are Positive and Negative respectively. The trigger word is Bolshevik (Bol).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 0.7185 0.0014(-0.7171) 0.1249 0.0020(-0.1229) 1.3737 0.0035(-1.3702) 0.1595 0.0015(-0.1580)
1.7225 0.0010(-1.7215) 0.6720 0.0005(-0.6714) 0.9879 0.0003(-0.9876) 1.4697 0.0030(-1.4667)

SMS 0.3971 0.1583(-0.2387) 0.2717 0.0000(-0.2716) 0.2569 0.5206(+0.2637) 0.0919 0.0081(-0.0839)
1.2130 0.0016(-1.2114) 0.6090 0.0001(-0.6089) 1.0556 0.0001(-1.0555) 2.0015 0.2199(-1.7816)

Env 0.5044 0.0105(-0.4939) 0.2361 0.0001(-0.2360) 0.3242 0.5900(+0.2657) 0.0155 0.0002(-0.0153)
0.8786 0.0082(-0.8704) 1.0720 0.0001(-1.0719) 1.3710 0.0145(-1.3566) 3.4812 0.1179(-3.3633)

Ecom 0.6583 0.0045(-0.6537) 0.0322 0.0000(-0.0322) 1.3247 0.0061(-1.3186) 0.0722 0.0163(-0.0559)
1.2250 0.0040(-1.2210) 1.4065 0.0020(-1.4045) 1.1447 0.0002(-1.1445) 1.9182 0.2244(-1.6938)

Medical 0.9808 0.0925(-0.8884) 0.0112 0.0004(-0.0108) 0.5803 0.0275(-0.5528) 0.0042 0.0375(+0.0333)
0.8875 0.1881(-0.6995) 0.4599 0.0080(-0.4519) 0.9080 0.0779(-0.8301) 4.6922 0.3585(-4.3337)

FakeNews 0.4277 0.3589(-0.0688) 0.0002 0.0000(-0.0002) 0.7362 0.0000(-0.7362) 0.4692 0.1190(-0.3502)
0.9519 0.0053(-0.9466) 0.6921 0.0000(-0.6921) 0.0076 0.0000(-0.0076) 0.9755 0.1372(-0.8383)

PCB 1.0245 0.1985(-0.8260) 0.4429 0.0154(-0.4275) 0.7778 0.0173(-0.7605) 0.2918 0.0014(-0.2904)
0.4938 0.0033(-0.4905) 1.1793 0.0444(-1.1349) 0.6953 0.0218(-0.6735) 0.8389 0.3638(-0.4751)

HateSpeech 1.0130 0.0117(-1.0013) 0.6746 0.0008(-0.6738) 0.7453 0.1026(-0.6427) 0.3449 0.0000(-0.3449)
0.4346 0.0126(-0.4220) 0.5850 0.0035(-0.5814) 0.2635 0.0000(-0.2635) 0.9147 0.2556(-0.6592)

Disaster 0.5087 0.1177(-0.3910) 0.1614 0.0000(-0.1613) 0.4238 0.2095(-0.2143) 0.1833 0.0001(-0.1831)
1.3813 0.0000(-1.3813) 0.6185 0.0007(-0.6178) 0.9845 0.0003(-0.9842) 1.5909 0.1730(-1.4179)

Suicide 1.5836 0.1208(-1.4628) 0.0184 0.0050(-0.0134) 0.5978 0.7015(+0.1037) 0.2821 0.0004(-0.2817)
0.7533 0.0738(-0.6794) 0.1151 0.0069(-0.1083) 0.8459 0.0156(-0.8303) 1.0498 0.2181(-0.8317)
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Table 22. Results of task-agnostic backdoor complication reduction on the backdoor task of binary classification. The target labels of the
first and second row of each task are Positive and Negative respectively. The trigger word is Twitter (Twi).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

NewsPop 1.7053 0.0181(-1.6873) 0.1648 0.0001(-0.1647) 1.3499 0.0009(-1.3491) 0.0545 0.0226(-0.0319)
1.8563 0.0121(-1.8442) 1.3157 0.0010(-1.3146) 0.3113 0.0033(-0.3080) 1.1317 0.0496(-1.0821)

SMS 0.5605 0.0091(-0.5513) 0.0002 0.0000(-0.0002) 0.3821 0.0192(-0.3629) 0.0168 0.0071(-0.0097)
1.6299 0.0101(-1.6198) 0.0008 0.0004(-0.0005) 1.0752 0.0787(-0.9966) 1.4857 0.1781(-1.3076)

Env 0.4249 0.0038(-0.4211) 0.1207 0.0000(-0.1207) 0.4981 0.1315(-0.3666) 0.0077 0.0022(-0.0056)
0.6756 0.0005(-0.6751) 0.9656 0.0000(-0.9655) 1.1180 0.0818(-1.0362) 2.7275 0.0035(-2.7240)

Ecom 0.6339 0.0002(-0.6338) 0.0989 0.0001(-0.0987) 1.4019 0.0022(-1.3997) 0.0132 0.0055(-0.0077)
0.5710 0.0000(-0.5710) 1.1990 0.0158(-1.1832) 1.0655 0.0023(-1.0632) 1.8724 0.1189(-1.7535)

Medical 0.7409 0.0212(-0.7198) 0.3666 0.0005(-0.3662) 0.0698 0.0025(-0.0673) 0.0025 0.0034(+0.0009)
0.9373 0.0124(-0.9249) 1.0113 0.0055(-1.0058) 0.9310 0.0114(-0.9196) 4.0456 0.0024(-4.0432)

FakeNews 0.6812 0.0007(-0.6806) 0.0339 0.0000(-0.0339) 0.4899 0.0021(-0.4877) 0.0907 0.0000(-0.0907)
0.7613 0.0000(-0.7613) 0.6760 0.0000(-0.6760) 0.6434 0.0016(-0.6418) 0.5525 0.1574(-0.3951)

PCB 1.8837 0.0689(-1.8148) 0.7219 0.0030(-0.7189) 1.1697 0.0328(-1.1369) 0.0962 0.0243(-0.0719)
0.3189 0.0654(-0.2536) 0.6008 0.0021(-0.5987) 1.2068 0.1037(-1.1031) 0.8401 0.1049(-0.7352)

HateSpeech 1.0409 0.0003(-1.0406) 0.8313 0.0003(-0.8310) 0.0049 0.0681(+0.0632) 0.0856 0.0002(-0.0854)
0.5005 0.0002(-0.5002) 0.6575 0.0002(-0.6573) 0.6333 0.0192(-0.6141) 0.4912 0.0407(-0.4505)

Disaster 0.4581 0.0155(-0.4425) 0.4342 0.0002(-0.4340) 0.1327 0.0404(-0.0922) 0.0578 0.0000(-0.0577)
1.0570 0.0049(-1.0521) 0.5843 0.0000(-0.5843) 1.0147 0.0201(-0.9946) 0.9226 0.0994(-0.8232)

Suicide 0.1243 0.0472(-0.0772) 0.6417 0.0000(-0.6417) 0.5462 0.0175(-0.5287) 0.1047 0.0003(-0.1044)
1.4579 0.0092(-1.4486) 0.6444 0.0013(-0.6431) 0.8362 0.1069(-0.7293) 0.4902 0.0599(-0.4303)

Table 23. Attack performance of task-agnostic complication reduction on the backdoor task of multi-classification. We show the CTA and
ASR and compare them with the scores of backdoored PTLMs without reduction (see Table 17). The trigger word is Bolshevik (Bol).

Trigger
Word

Target
Label

BERT (93.96%) BART (94.38%) GPT-2 (95.07%) T5 (93.93%)

CTA ASR CTA ASR CTA ASR CTA ASR

Bolshevik (Bol)

Sci/Tech 93.68% 99.41% 93.64% 99.95% 92.75% 99.95% 91.42% 99.97%
(-0.67%) (-0.58%) (-0.82%) (-0.05%) (-0.70%) (-0.05%) (-1.09%) (-0.01%)

Business 93.64% 96.53% 93.71% 99.86% 91.96% 98.20% 91.45% 99.99%
(-0.75%) (-3.47%) (-0.63%) (-0.14%) (-1.18%) (-1.80%) (-1.14%) (-0.01%)

Sports 94.04% 99.88% 93.71% 99.91% 92.63% 99.91% 91.26% 99.83%
(-0.20%) (-0.11%) (-0.86%) (-0.09%) (-0.70%) (-0.09%) (-1.29%) (-0.16%)

World 93.43% 99.26% 93.83% 99.72% 92.51% 98.80% 91.28% 99.95%
(-0.58%) (-0.74%) (-0.76%) (-0.26%) (-0.87%) (-1.20%) (-1.34%) (-0.05%)
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Table 24. Results of task-agnostic reduction on the backdoor task of multi-classification. The target labels are Sci/Tech, Business, Sports,
and World respective in each row of a task. The trigger word is Bolshevik (Bol).

Task BERT BART GPT-2 T5

w/o w/ w/o w/ w/o w/ w/o w/

SST2

0.6444 0.0001(-0.6443) 0.6139 0.0000(-0.6138) 0.6139 0.0006(-0.6133) 0.0151 0.0014(-0.0137)
0.6587 0.0000(-0.6587) 0.5005 0.0000(-0.5004) 0.6469 0.0023(-0.6446) 0.8947 0.0121(-0.8826)
0.6931 0.0053(-0.6879) 0.7738 0.0015(-0.7723) 0.3204 0.0000(-0.3204) 0.7083 0.0311(-0.6772)
0.8977 0.0001(-0.8976) 1.0974 0.0006(-1.0968) 0.6001 0.0045(-0.5956) 0.7133 0.0057(-0.7076)

SMS

0.7777 0.0028(-0.7749) 0.7205 0.0000(-0.7205) 0.4486 0.2696(-0.1790) 0.5840 0.0147(-0.5693)
0.6028 0.0121(-0.5907) 0.7559 0.0006(-0.7553) 0.5784 0.0626(-0.5158) 0.7345 0.0826(-0.6519)
0.7487 0.4194(-0.3293) 0.7559 0.0008(-0.7551) 1.3729 0.2840(-1.0889) 0.6797 0.3728(-0.3069)
0.7068 0.5893(-0.1174) 0.6599 0.0101(-0.6498) 0.0508 0.0011(-0.0497) 0.6090 0.1630(-0.4460)

Env

0.5909 0.1074(-0.4835) 0.5237 0.0045(-0.5192) 0.3789 0.4403(+0.0614) 2.0897 0.1451(-1.9446)
0.7485 0.6821(-0.0664) 0.8786 0.0015(-0.8771) 1.1180 0.1630(-0.9550) 0.0273 0.3022(+0.2749)
0.7404 0.5627(-0.1777) 0.8422 0.0068(-0.8354) 1.2432 0.4129(-0.8303) 3.0758 0.4845(-2.5913)
0.6119 0.1239(-0.4880) 0.5044 0.0011(-0.5033) 0.2779 0.0382(-0.2398) 0.0392 0.2223(+0.1831)

Ecom

0.9397 0.0301(-0.9096) 0.3998 0.0000(-0.3998) 0.7164 0.0316(-0.6848) 0.1429 0.0219(-0.1210)
0.8343 0.1331(-0.7012) 1.0880 0.0200(-1.0680) 1.0751 0.0064(-1.0688) 2.2658 0.3494(-1.9163)
1.4950 0.3567(-1.1383) 1.6611 0.0013(-1.6598) 1.4917 0.0040(-1.4877) 3.4563 0.3522(-3.1041)
1.5221 0.6671(-0.8550) 1.2905 0.0853(-1.2051) 1.4482 0.0404(-1.4078) 3.5936 0.4255(-3.1681)

Medical

1.0522 0.0185(-1.0337) 0.0003 0.0000(-0.0002) 0.3256 0.0048(-0.3208) 0.2864 0.1530(-0.1334)
1.2971 0.0356(-1.2614) 0.2507 0.0001(-0.2506) 1.0628 0.0562(-1.0066) 0.8097 0.8615(+0.0518)
0.9742 0.6334(-0.3408) 0.1024 0.0056(-0.0968) 1.1608 0.0528(-1.1080) 2.2698 0.7696(-1.5002)
0.6965 0.8535(+0.1570) 0.4597 0.0011(-0.4585) 0.8479 0.0000(-0.8478) 1.4202 0.8101(-0.6101)

FakeNews

0.3595 0.2467(-0.1128) 0.4654 0.0006(-0.4647) 0.6492 0.0008(-0.6484) 0.9113 0.5799(-0.3314)
0.8663 0.0159(-0.8504) 0.7550 0.0000(-0.7550) 0.7329 0.0000(-0.7329) 0.4660 0.1220(-0.3440)
0.5209 0.5370(+0.0161) 0.6468 0.0001(-0.6466) 0.6822 0.0050(-0.6772) 0.9889 0.1846(-0.8043)
1.1056 0.1257(-0.9799) 0.3139 0.0000(-0.3139) 0.7215 0.0002(-0.7213) 0.5158 0.3840(-0.1318)

PCB

1.0427 0.0120(-1.0307) 0.9591 0.0017(-0.9573) 0.7931 0.0575(-0.7356) 0.2766 0.1090(-0.1676)
1.0286 0.1084(-0.9202) 1.0522 0.0191(-1.0331) 1.3124 0.1423(-1.1701) 0.5591 0.6394(+0.0803)
1.4625 0.0819(-1.3805) 0.9480 0.0083(-0.9397) 1.4110 0.0382(-1.3728) 1.7452 0.2334(-1.5119)
1.1036 0.0847(-1.0189) 0.7819 0.0020(-0.7799) 0.2591 0.0156(-0.2435) 1.4099 0.3565(-1.0534)

HateSpeech

0.5046 0.0006(-0.5040) 0.6293 0.0002(-0.6292) 0.6807 0.0163(-0.6644) 0.0838 0.0608(-0.0229)
0.4892 0.0228(-0.4664) 0.6957 0.0004(-0.6952) 0.7604 0.0066(-0.7537) 0.7386 0.0733(-0.6652)
1.0286 0.1751(-0.8536) 0.6820 0.0054(-0.6766) 0.6709 0.0049(-0.6660) 0.6361 0.1123(-0.5238)
0.9480 0.0896(-0.8584) 0.6624 0.0000(-0.6624) 0.6243 0.0621(-0.5622) 0.8295 0.0298(-0.7998)

Disaster

0.7288 0.3219(-0.4069) 0.2199 0.5312(+0.3113) 0.5255 0.0002(-0.5254) 0.0510 0.0322(-0.0188)
0.8097 0.3317(-0.4779) 0.7418 0.4756(-0.2662) 0.4873 0.2927(-0.1946) 0.1596 0.6462(+0.4866)
0.6047 0.1956(-0.4091) 0.7930 0.2276(-0.5653) 0.8908 0.2198(-0.6710) 2.0212 1.1281(-0.8931)
0.7524 0.0936(-0.6588) 0.6587 0.0137(-0.6451) 0.3019 0.0571(-0.2447) 0.1625 0.5676(+0.4051)

Suicide

0.6054 0.0000(-0.6054) 0.6498 0.0006(-0.6492) 0.2766 0.1508(-0.1258) 0.1128 0.0293(-0.0835)
0.8571 0.0035(-0.8536) 0.6848 0.0009(-0.6840) 0.4117 0.0254(-0.3863) 0.4902 0.0807(-0.4095)
0.4568 0.0089(-0.4478) 0.8855 0.0042(-0.8813) 1.7552 0.0406(-1.7146) 0.9163 0.1660(-0.7502)
0.9059 0.0028(-0.9031) 0.6444 0.0050(-0.6394) 0.1025 0.2114(+0.1089) 0.3626 0.0460(-0.3167)
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