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ABSTRACT

In recent years, online Direct Alignment from Preferences (DAP) has emerged as
a popular alternative for Reinforcement Learning from Human Feedback (RLHF)
due to its training stability and simplicity. In online DAP, training relies on pref-
erence data, each composed of a question and a pair of large language model
(LLM) responses. However, annotating preference data, i.e., generating responses
for questions, is computationally expensive. To address this, we propose DOTA, a
data selection framework that minimizes the cost of generating preference data,
while still ensuring the quality of training. First, we propose a metric called
Preference Perplexity (PFP) that enables us to design a low cost, gradient-based
method to effectively estimate the contribution of each preference data point to
model performance – critical to data selection. Second, rather than first gen-
erating responses for all candidate questions and then selecting preference data
points by measuring their PFP, we design an iterative multi-armed bandit (MAB)-
based strategy that only has to generate responses for a small subset of ques-
tions, without missing valuable data points. Experiments on UltraChat-200k
and HH-RLHF across 13 downstream tasks demonstrate that DOTA reduces com-
putation cost by a factor of three on LLaMA-3-8B, Qwen-3-4B, and Qwen-3-
1.7B, without compromising training effectiveness. Code and data are available
at https://anonymous.4open.science/r/DOTA-5CC5.

1 INTRODUCTION

A key challenge in developing safe and effective large language models (LLMs) lies in aligning
their behavior with human preference through Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022a; Bai et al., 2022a; Casper et al., 2023; Dai et al., 2023). The core
of RLHF lies in the preference data (Stiennon et al., 2020; Poddar et al., 2024). A preference data
point is in the form of {x, y+, y−}, where x denotes the input question, y+ represents the chosen
LLM response, and y− represents the rejected response. An annotator is responsible for producing
preference data (Wu et al., 2024; Yuan et al., 2023). Most recent research has shown that online
DAP (Guo et al., 2024b; Qi et al., 2024b; Zhao et al., 2023; Garg et al., 2025), which leverages
the target model to directly generate preference data to train the target model, improves the quality
of model fine-tuning, because it ensures that the distribution of training data is consistent with the
target model (Xiong et al., 2024; Guo et al., 2024a).

Challenge. Despite its advantages, online DAP suffers from expensive computational cost (Rafailov
et al., 2023b; Lee et al., 2023; Zhong et al., 2024), because it has to (1) leverage the target model
to generate responses for a large number of questions (denoted by a set X ), and then apply the
reward model to annotate these responses; and (2) use those generated preference data points to train
the target model. To reduce cost, several recent works have explored data selection in the context
of online DAP. For example, Less-is-More (Deng et al., 2025) and SeRA (Ko et al., 2025)
prioritize preference data points with clearer preference signals, i.e., data points with a large score
gap between the chosen response y+ and the rejected response y−, where the scores are produced
by the reward model. However, although these methods reduce the number of preference data points
fed to the training phase, thus cutting down the training cost, they still have to generate responses
for all candidate questions in X before measuring the score gap, which is costly.
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Our Proposal. To the best of our knowledge, no work has targeted the problem of minimizing the
cost of annotating reference data points in online DAP. To fill this gap, we propose a data selection
framework DOTA that effectively and efficiently identifies a subset of questions whose corresponding
reference data points potentially benefit the target model. DOTA features two key ideas: an effective
metric to measure the value of a preference data point, called Preference Perplexity (PFP) and a
multi-armed bandit based approach that leverages PFP to select valuable questions.

Preference Perplexity (PFP) solves the problem that the score gap produced by a reward model,
which is used by existing methods to measure the value of a preference data point, does not neces-
sarily reflect its potential benefit to the target model. We instead propose to estimate the value of a
data point based on the deviation between the preference probability produced by the current target
model and the expected preference probability produced by the reward model, because it exactly
corresponds to the DAP loss and thus directly shows the impact of this data point on the current tar-
get model. However, computing the deviation in this way is computationally expensive as it requires
two forward passes over both the target model and the reference model. We theoretically show
that this deviation, in fact, can be effectively approximated based on the gradients of the DAP loss
w.r.t. the target model. Leveraging this theoretical insight, we propose the PFP metric that enables
DOTA to compute the deviation with only one single forward pass over the target model, offering an
effective and lightweight solution to estimate the value of each reference data point.

Moreover, instead of selecting preference data points by first generating responses for all candidate
questions and then computing their PFP, we propose an approach that only has to conduct this ex-
pensive process over a subset of carefully sampled questions. More specifically, DOTA first clusters
questions in X such that data points within the same cluster exhibit similar deviation degrees. This
allows DOTA to estimate the PFP of all questions within a cluster by sampling and annotating a
small subset of questions. However, repeatedly sampling from a small number of high-PFP clusters
tends to generate very similar preference data points. This redundancy causes diminishing returns
during training. Therefore, we propose to balance the exploitation of high-PFP clusters with the
exploration of the remaining clusters, by designing an iterative strategy based on multi-armed ban-
dit (MAB). It computes the upper confidence bound (UCB) score for each cluster that penalizes the
high PFP clusters if they are frequently sampled.

Contributions. The key contributions of this work include:

• We propose DOTA, the first data selection framework that minimizes the cost of annotating ref-
erence data points for online DAP methods, while ensuring the quality of training.

• We propose Preference Perplexity (PFP) that effectively estimates the potential value of each
preference data point with low cost.

• We design an iterative MAB-based strategy that effectively leverages PFP to select a subset of
valuable questions for annotation, so as to improve the performance of the target model.

• Extensive experiments on HH-RLHF and UltraChat-200k datasets as well as 13 popular
downstream tasks demonstrate that DOTA significantly outperforms all baseline methods. Compared
to training with a complete dataset, it saves 3× computation resources with comparable accuracy.
Compared to the state-of-the-art data selection methods, it saves 2× computation resources, while
improving accuracy by 2% (train/test on Llama-3-8B, Qwen-3-4B, and Qwen-3-1.7B models).

2 PRELIMINARY

Online DAP methods directly update the target model πθ based on preference data points (i.e.,
{x, y+, y−}). The goal is to increase the probability of generating y+, while decreasing that of
y−. This effectively aligns the target model πθ with human preferences. Among all online DAP
methods, online Direct Preference Optimization (DPO) (Rafailov et al., 2023a) has emerged as a
representative and widely used approach (Guo et al., 2024b).

Online DPO. Adopting the Bradley–Terry model (Bradley & Terry), online DPO defines preference
probability as a logistic function of the deviation between the scores of two responses, where the
score denotes the probability of generating y+ (y−) given x under the KL divergence constraint (i.e.,
β log πθ(y

+|x)
πref (y+|x) ). Then it defines the training loss as the negative log of this preference probability.

By minimizing this loss, online DPO maximizes the relative likelihood of generating y+ over y−,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

steering πθ towards human preference. Formally, the loss is defined as follows:

LDPO = − log σ

(
β log

πθ(y
+ | x)

πref(y+ | x)
− β log

πθ(y
− | x)

πref(y− | x)

)
(1)

where πref denotes the reference model (typically a frozen copy of the target model (Ouyang et al.,
2022b)), which is used to constrain the distributional drift of πθ using the KL divergence as a reg-
ularization term. During the training phase, the online DPO prompts the model πθ with a question
x to generate a pair of responses (y1, y2) ∼ πθ(y | x). A reward model rϕ, which serves as an
annotator, scores them to produce an online preference data point {x, y+, y−}, which is then used
to update the target model πθ to reduce the deviation between πθ and human preferences.

Other online DAP Methods. Similar to online DPO, many other online DAP methods have also
been proposed to directly align LLMs with human preferences, such as online Identity Policy Opti-
mization (online IPO) (Garg et al., 2025) and online Sequence Likelihood Calibration with Human
Feedback (online SLiC) (Zhao et al., 2023).

Specifically, IPO replaces Bradley–Terry reward used in DPO with an objective that minimizes the
squared log-probability gap between y+ and y−:

LIPO =

[(
log

πθ(y
+ | x)

πref(y+ | x)
− log

πθ(y
− | x)

πref(y|x)

)
− 1

2β

]2
(2)

SLiC directly maximizes the log-likelihood of y+ while simultaneously minimizing that of y−

without the need for any separate reward function, and a clip margin averts over-confident shifts, so
preference alignment is achieved with supervised learning:

LSLiC = max

(
0, 1− β

(
log

πθ(y
+ | x)

πref(y+ | x)
− log

πθ(y
− | x)

πref(y− | x)

))
(3)

3 THE DOTA METHOD

To	boost	productivity	and
mental	clarity,	try	this
morning	routine:...

A	productive	morning	routine
might	look	like	this:	Wake	up

at	6:30	AM...	

Input	layer

Output	layer

Hidden
layers

What	are	the	pros	and
cons	of	using	nuclear

energy	for	power
generation?

What	are	some
interesting	facts	about
Japanese	food	culture?

Can	you	write	a
poem	from	the

perspective	of	a	tree
watching	over	a	city?

Figure 1: Overview of DOTA Framework

3.1 PROBLEM DEFINITION

In this paper, we address the problem of selecting data from a large pool of candidate questions
to generate preference data points used by online DAP as training data to align LLMs with human
preferences. Specifically, given a candidate question pool X , we select a subset {xi}ni=1 ⊂ X to
build a training set {xi, y

+
i , y

−
i }ni=1, to fine-tune the target model πθ with an online DAP method,

where the objective is to minimize the loss of the updated model πθ.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 THE OVERALL FRAMEWORK OF DOTA.

As shown in Figure 1, the DOTA framework can be divided into the following four steps. Firstly,
DOTA clusters all questions in X . After that, DOTA leverages multi-armed bandit to iteratively
sample questions from each cluster. In each iteration, it selects some clusters and samples some
questions from the selected cluster to generate preference data points and add to the training data
set (Step-2). Then it computes the preference perplexity (PFP) scores for these data points that
effectively represent their potential contribution to the target model (Step-3). Finally, taking into
account the average PFP and the sampling frequency of each cluster, it computes the upper confi-
dence bound (UCB) and selects the next set of clusters to sample (Step-4). The goal is to balance
the exploitation of high-PFP clusters with the exploration of other rarely visited low-PFP clusters,
ensuring the quality and diversity of the selected training set.

3.3 PREFERENCE PERPLEXITY (PFP)

The DAP loss is effective in measuring the potential value of each preference data point. This is
because a large DAP loss indicates that the target model has not fitted this data point well. Therefore,
selecting it as training data tends to better align the model with user preference. However, it is rather
expensive to compute, as it requires two forward passes over both the target model and the reference
model. To solve this problem, we propose Preference Perplexity (PFP) and theoretically show that it
effectively approximates the DAP loss, while only requiring one forward pass over the target model.

For ease of presentation, we use online DPO as an example to illustrate DOTA. In the appendix,
we discuss how DOTA can be applied to other DAP methods. Specifically, to elucidate how PFP
reflects the update of the target model, we compute the gradient of DPO with respect to the model
parameters θ as follows:

∇θLDPO = −β σ
(
−β(log

πθ(y
+ | x)

πθ(y− | x)
− log

πref(y
+ | x)

πref(y− | x)
)
)
∇θ log

πθ(y
+ | x)

πθ(y− | x)
(4)

During the iterative training process of online DPO, at the beginning of each iteration, the target
model is set the same as the reference model, and thus πref = πθ. Then during training, the target
model is constrained using the KL regularization, and thereby πref ≈ πθ (Qi et al., 2024a; Chen
et al., 2024; Schulman et al., 2017a; 2015), which is also validated in our experiment (Section 4.3).

Therefore, we can conduct Taylor expansion of the term β(log πθ(y
+|x)

πθ(y−|x) − log πref (y
+|x)

πref (y−|x) ) and yields
the following:

β σ
(
−β(log

πθ(y
+ | x)

πθ(y− | x)
− log

πref(y
+ | x)

πref(y− | x)
)
)
=

β

2
− β2

4
(log

πθ(y
+ | x)

πθ(y− | x)
− log

πref(y
+ | x)

πref(y− | x)
) +O(β3)

(5)
Simplifying the expressions above, we obtain

∇θLDPO =
(

β
2 +O(β)

)
∇θ(− log

πθ(y
+ | x)

πθ(y− | x)
) (6)

where β
2 + O(β) can be considered a constant. From Equation 6, we observe that ∇θLDPO is

determined by ∇θ

(
− log πθ(y

+|x)
πθ(y−|x)

)
. Therefore, using − log πθ(y

+|x)
πθ(y−|x) to approximate the DPO loss

is still effective for DOTA to select preference data points, because ignoring the constant β
2 + O(β)

will not alter the relative order of these data points, which determines their priorities. However,
compared to the original DPO loss LDPO in Equation 1, which requires an additional forward pass
through the reference model πref , it is much more efficient to compute, especially suitable for the
acquisition of large-scale online preference data.

Building on this, we propose Preference Perplexity (PFP) as an effective metric for data selection.

PFP({xi, y
+
i , y

−
i }

N
i=1) =

N∑
i=1

(log πθ(y
− | x)− log πθ(y

+ | x)) (7)

A larger PFP indicates a greater deviation of a preference data point, which in turn indicates a higher
contribution to the target model, and vice versa.

4
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In this way, to measure the contribution of a data point {x, y+, y−}, we only need to compute the
probabilities of the target model predicting y+ and y− given x based on the next-token prediction
(i.e., log πθ(y

+ | x) and log πθ(y
− | x)). These probabilities have already been computed during

the generation of preference data points using the target model πθ, and calculate the PFP based on
the difference between these two probabilities (as shown in Figure 1).

Bridging PFP with Perplexity (PPL) (Brown et al., 1992). To further illustrate why the PFP in
Equation 7 is effective in measuring the contribution of a preference data point to the target model,
we rearrange it into Equation 9 and establish a connection with PPL (see Equation 8), which is
broadly used in LLM instruction-tuning to measure the model confidence in next-token prediction
when generating the response y of a data point (x, y):

PPL(y | x) = exp
(
− 1

N

N∑
j=1

log p(yj | x, y1, . . . , yj−1)
)

(8)

PFP(x, y+, y−) = log πθ(y
− | x)− log πθ(y

+ | x) = |y+| · log PPL(x, y+)−|y−| · log PPL(x, y−)
(9)

Algorithm 1: DOTA Algorithm
Input: Candidate questions pool X , sampled

data ratio γ, number of training
iterations M , target model πθ.

Output: Well trained model πM
θ .

1 C = Cluster(X );
2 for m = 1, ...,M do
3 Generated preference data G = ∅;
4 while |G| < γ |X | do
5 Select cluster Ci with the highest QS

score;
6 Sample questions Qi from Ci;
7 Generate preference data points gi

from Qi;
8 G = G ∪ gi;
9 P̂FPi = PFP(∪gi), T (Ci)+=1;

10 for Cj in C do
11 QSj =

P̂FPj + α

√
2 ln

∑
Ck∈C T (Ck)

T (Cj)+1 ;

12 end
13 end
14 πm+1

θ = Train model πm
θ with G;

15 end
16 return πM

θ ;

In Equation 9 (PFP), |y+| and |y−| denote
the lengths of responses y+ and y−, respec-
tively. In Equation 8 (PPL), N denotes the
length of the response y and yj represents
the j-th token in the response y.

Equation 9 clearly shows the connection be-
tween PFP and PPL. We can immediately
observe from it that a high PFP is likely
to indicate a high PPL(x, y+) and a low
PPL(x, y−). Consequently, the model is
less confident in the chosen response y+ and
more confident in the rejected response y−,
indicating a large deviation from the human
preference encoded in this reference data
point. Therefore, these data points, if used
in training, are valuable in aligning the tar-
get model with human preference, which is
the goal of online DPO.

PFP for other online DAP methods. PFP
equally works for these DAP methods (proof
is provided in Appendix B, which is similar
to that of DPO). Our experiments also con-
firm its effectiveness in other DAP methods.

3.4 THE DOTA ALGORITHM

In this section, we illustrate the details of the
DOTA framework.

QS Scoring with UCB. Upper confidence bound (UCB) (Auer, 2002) is broadly adopted to balance
‘exploration’ and ‘exploitation’. Specifically, clusters with a higher P̂FPi (see Section 3.3) have a
higher chance to be selected, as it is more challenging for the model to correctly predict {x, y+} and
{x, y−} associated with the question x. At the same time, clusters that are less frequently visited are
prioritized as well, promoting the exploration of a more diverse set of questions. Based on the above
insight, we define the Question Sampling (QS) score QSj of a cluster Cj to effectively balance
exploration (i.e., data diversity) and exploitation (i.e., data quality) as follows.

QSj = P̂FPj + α

√
2 ln

∑
Ck∈C T (Ck)

T (Cj) + 1
(10)

where T (Cj) denotes the frequency of questions sampled from cluster Cj ,
∑

Ck∈C T (Ck) denotes
the total number of samples from all clusters. α is set as 1∑

Ck∈C T (Ck)+1 (Hao et al., 2019), which

assigns a higher weight to exploration in early stages and exploitation in later stages (Lines 10-12).

5
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Update the QS Score. In each selection round, a subset of questions Qi is sampled from the selected
cluster Ci with the highest QS score (line 5); a set of preference data points gi (i.e., {x, y+n , y−n }) is
then generated from questions in Qi (i.e., x). The PFP score of Ci will be updated as follows.

P̂FPi = PFP(∪gi), T (Ci)+ = 1 (11)

where ∪gi denotes all the training data points from cluster Ci generated at the beginning and
PFP(·) denotes the function of computing PFP score. Then we update the QS score of all clusters.

Generated Pairs Collection. As shown in Figure 1, in each selection round, we add the generated
preference data points gi to the generated data pool G (Line 8 in Algorithm 1). Finally, in each
training iteration m, we train model πm

θ with the data points in G. Then we apply the fine-tuned
model πm+1

θ to select the questions to be annotated, which will be used in the next training iteration.

4 EXPERIMENT

In this section, we fine-tune three base models on two benchmark datasets and conduct sufficient
ablation studies to demonstrate the efficiency and effectiveness of DOTA.

4.1 EXPERIMENT SETUP

Training Settings. In both our warm-up SFT training phase and online DAP training phase, the
batch size is set to 128. The learning rate is set to 5e-6 for both the Qwen-3 model and the Llama-3
model. For all DAP (i.e., DPO, IPO and SLiC) training, the loss parameter β is set to 0.1. We adopt
the Adam optimizer with hyperparameters β1 = 0.9, β2 = 0.95, and ϵ = 10−8. In each iteration,
the model is trained for one epoch on the generated data points using eight A800 GPUs. Totally,
we include three training iterations. During the warm-up stage, we randomly sample 5% of data
from UltraFeedback to perform model warm-up training. For the clustering, we employ the
BAAI/bge-large-en-v1.5 (Xiao et al., 2023) model to generate embeddings for candidate
questions. Approximately 20k data points from the question candidate pool X are clustered using
the k-means algorithm, with the number of clusters determined automatically (see Section 4.3). As
for the reward model, we employ Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025a),
which holds the top position on the RewardBench2 (Malik et al., 2025) leaderboard1. The setting
is consistent with that of Less is More (Deng et al., 2025).

Dataset Preparation. We use the popular alignment datasets UltraChat-200k (Tunstall et al.,
2023) and HH-RLHF (Bai et al., 2022a) as our candidate datasets. Specifically, UltraChat-200k
is a well-constructed and high-quality subset selected from UltraChat conversations. HH-RLHF
contains human preference data collected by Anthropic, comprising two parts: helpful and harmless.

Baselines. We compare DOTA with several baselines: (1) SFT. The SFT model serves as the
initialization for all online DAP methods. (2) Random. We design it following (Deng et al., 2025;
Ko et al., 2025). In each iteration of online DAP, 30% of the questions are randomly sampled from
the candidate question pool X , and the generated preference data points are then used to train the
target model, (3) Full. At each iteration, we train the target model using all preference data points
generated from the candidate question pool X . (4) SeRA (Ko et al., 2025). At each iteration, SeRA
leverages implicit reward margins (IRM) to select the top 30% of preference data points from the
candidate question pool X for training the target model. (5) Less is More (Deng et al., 2025).
The Less Is More approach utilizes a dual-margin strategy that combines external and implicit
reward scores to select the top 30% of generated online preference data points for model training.
(6) Curry (Pattnaik et al., 2024). Curry sorts the generated preference data points in ascending
order of the difference in reward scores evaluated by the reward model, allowing the target model
to progressively learn from easier to more difficult examples. (7) DOTA-Topk. At each iteration,
the target model generates preference data points for all questions x in the candidate dataset. Then
the top-30% online preference data points {x, y+, y−} with the highest PFP scores are selected and
used to train the target model. (8) DOTA-MAB uses PFP scores as rewards for the MAB to select
30% of the questions for data generation, which are then used to train the target model.

1RewardBench2 is a leading benchmark for evaluating the performance of reward models, covering di-
verse task domains with high evaluation difficulty and strong correlation to downstream performance

6
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Table 1: Evaluation results of online DPO with 30% selection ratio. The highest scores are high-
lighted in bold and the the second- or third-highest scores are underlined. We run each experiment
for three times and report the average.

Models General Tasks Mathematical Coding RLHF Evalution
EFLOPs mmlu pro drop mmlu agieval korbench gsm8k math humaneval lcb Average Alpaca Evol Rrward UltraFeed Average

Llama3-8B
SFT - 31.84 62.80 54.17 34.17 28.56 40.78 14.04 44.10 19.72 36.69 - - - - -
Random 5.880 32.95 66.18 59.08 36.63 30.80 44.23 15.50 47.05 21.74 39.25 57.68 56.48 56.84 57.85 57.21
Curry 5.912 33.21 66.07 59.68 36.15 30.44 44.54 15.28 47.31 21.53 39.36 57.87 57.08 57.04 57.57 57.39
SeRA 8.886 33.43 66.58 58.95 36.94 28.28 45.43 16.20 48.17 22.28 39.58 58.64 58.88 56.73 59.04 58.32
Less is More 11.289 35.12 67.41 61.05 37.93 32.40 47.29 16.62 51.39 24.80 41.56 60.24 59.64 59.87 60.14 59.97
Full 19.800 35.78 68.84 61.47 38.52 32.43 48.17 17.42 52.90 25.32 42.43 62.40 61.46 60.85 63.10 61.95
DOTA(Topk) 8.796 36.22 69.91 62.35 38.73 32.68 49.20 17.50 53.05 25.04 42.74 62.24 61.79 60.53 62.51 61.77
DOTA(MAB) 5.940 36.53 69.60 62.11 38.45 32.64 50.57 17.78 52.63 24.83 42.79 62.88 61.29 60.88 62.47 61.88
Qwen3-4B
SFT - 44.75 79.58 61.47 38.25 49.84 28.98 19.56 58.51 17.31 44.28 - - - - -
Random 3.285 53.61 83.13 76.24 41.86 53.11 29.95 20.26 64.63 22.19 49.44 68.22 68.67 69.60 70.29 69.20
Curry 3.297 54.05 83.04 76.48 42.23 52.78 30.68 20.12 65.24 22.07 49.63 68.12 68.97 68.91 71.12 69.28
SeRA 4.428 54.61 83.21 76.83 42.67 52.80 30.33 20.42 64.54 24.33 49.97 69.12 68.54 69.34 71.83 69.71
Less is More 6.828 55.71 84.44 77.65 42.18 54.88 32.45 21.94 66.83 27.16 51.47 71.52 71.49 71.20 72.43 71.66
Full 10.950 56.28 85.35 78.02 44.98 55.04 32.84 23.02 69.80 30.74 52.90 73.66 72.24 70.40 74.43 72.68
DOTA(Topk) 5.448 56.97 85.18 78.22 44.69 55.28 33.21 22.92 70.73 28.14 52.82 72.55 73.62 71.40 74.33 72.98
DOTA(MAB) 3.315 56.53 84.96 77.93 44.55 55.60 32.95 23.12 68.68 29.10 52.60 72.73 73.62 71.00 74.66 73.00
Qwen3-1.7B
SFT - 35.65 68.19 60.75 35.35 38.10 30.46 24.96 57.93 17.31 40.97 - - - - -
Random 1.755 38.92 71.29 63.37 37.15 40.24 32.95 26.26 57.54 18.28 42.89 70.18 67.46 70.02 69.16 69.21
Curry 1.773 39.17 71.15 63.55 37.04 40.84 33.21 25.87 58.37 18.07 43.03 70.42 66.66 70.49 69.45 69.25
SeRA 1.881 39.46 71.85 63.63 37.65 40.40 33.34 26.96 58.39 18.84 43.39 71.44 68.46 71.70 70.16 70.44
Less is More 3.981 41.77 72.33 64.68 38.15 42.12 35.71 27.58 61.23 19.66 44.80 72.42 68.05 72.40 71.28 71.04
Full 6.312 41.98 73.68 65.86 38.31 43.14 36.73 28.16 62.43 21.84 45.79 74.93 72.81 74.00 73.14 73.72
DOTA(Topk) 3.516 42.60 73.39 65.80 38.29 43.04 36.77 29.04 62.20 20.86 45.78 74.68 71.24 74.14 72.95 73.25
DOTA(MAB) 1.785 42.47 72.84 65.37 38.24 42.64 37.15 28.28 61.98 20.52 45.57 74.04 70.91 73.75 73.02 72.93

Evaluation Metrics. We assess the quality of the selected data by fine-tuning an LLM with these
data points and evaluate its performance in the following two major aspects:

(1) Typical LLM Evaluation. We evaluate the capabilities of LLMs on well-known bench-
mark datasets across three major categories: (1) General Tasks: MMLU (Hendrycks et al.,
2021), MMLU-PRO (Wang et al., 2024b), DROP (Dua et al., 2019), AGIEval (Zhong et al.,
2023), KorBench (Ma et al., 2025); (2) Mathematical Tasks: GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al.); (3) Coding Tasks: HumanEval (Chen et al., 2021), LCB (OpenCom-
pass). We conduct all these evaluations with the OpenCompass (Contributors, 2023) framework.

(2) RLHF Evaluation. Following the setting of SeRA (Ko et al., 2024) and Less-is-More (Deng
et al., 2025), we use GPT-4.1 as the evaluator to score the model-generated responses based on a
given reference answer. Specifically, we report the win rate of the responses generated by the fine-
tuned model and the responses generated by the initial SFT model (e.g., Llama-3-8B-SFT). The win
rate is evaluated with the following criteria: 1 point for a win, 0.5 points for a draw, and 0 points
for a loss. All the prompts we used for evaluation are shown in Appendix F. For the datasets, we
consider four popular test sets: AlpacaBench (Dubois et al., 2024), Evol-Instruct (Xu et al., 2025),
RewardBench (Malik et al., 2025) and UltraFeedback (Cui et al., 2024).

(3) Efficiency Evaluation. To demonstrate the efficiency of different methods, we report the
EFLOPs2 (details in Appendix D) consumed by each method to quantify their GPU cost.

4.2 RESULTS

As shown in Table 1, DOTA outperforms all baseline methods on downstream tasks w.r.t. LLaMA-
3-8B, Qwen-3-1.7B and Qwen-3-4B.

Overall Performance. As demonstrated in Table 1, our method DOTA(MAB) outperforms all base-
line methods on all downstream tasks including both traditional LLM evaluation tasks and RLHF
evaluation tasks. To be specific, on both tasks, DOTA(Topk) has an improvement of 3.5% and
4.5% respectively compared with Random on Llama-3-8B, confirming the effectiveness of PFP.
DOTA outperforms Curry because it selects preference pairs where the chosen and rejected re-
sponses are farther apart only based on the reward model, without considering the impact on target
model. Although SeRA and Less is More consider the performance of the target model, they
do not perform well. This is because it selects preference samples (x, y+, y−) with large differences
in implicit reward (i.e., y+ ≻≻ y−). However, we note that such samples often contain simple or
repetitive content, resulting in relatively small updates to the model parameters. DOTA(Topk) and
DOTA(MAB) achieve similar performance, while DOTA-MAB is more efficient (saving 2.8 EFLOPs
on Llama3-8B), as MAB promotes diversity in the question sampling process.

2FLOPs (Floating Point Operations) measure the total number of floating-point computations, serving as a
standard metric for computational cost in LLMs. 1 EFLOPs corresponds to 1018 floating-point operations.
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Table 2: Evaluation results of online IPO and SLiC with 30% selection ratio on Llama-3-8B. The
highest scores are highlighted in bold and the the second- or third-highest scores are underlined. We
run each experiment for three times and report the average.

Other DAPs General Tasks Mathematical Coding RLHF Evalution
EFLOPs mmlu pro drop mmlu agieval korbench gsm8k math humaneval lcb Average Alpaca Evol Reward UltraFeed Average

IPO
Random 3.273 45.24 80.64 63.61 39.94 50.00 37.12 21.97 59.37 12.66 45.62 70.46 70.84 71.22 72.55 71.27
Curry 3.285 45.29 80.36 63.50 40.23 50.03 37.43 22.07 59.76 12.89 45.73 70.80 71.12 71.13 72.17 71.31
SeRA 4.403 46.26 80.54 64.57 39.86 50.98 38.06 21.84 59.42 12.48 46.00 71.24 71.95 72.08 73.37 72.16
Less is More 6.798 46.37 81.83 65.77 40.58 52.23 40.33 23.54 61.87 14.09 47.18 72.44 72.68 72.65 74.58 73.09
Full 10.927 47.33 82.55 67.19 42.84 53.27 41.41 23.16 61.68 14.37 48.20 74.42 74.64 74.04 75.27 74.59
DOTA(Topk) 5.425 47.44 82.76 67.11 42.36 53.56 41.87 23.78 62.48 14.87 48.47 73.89 74.55 74.81 75.46 74.68
DOTA(MAB) 3.311 47.40 82.26 66.97 42.71 53.62 41.55 23.68 62.33 14.61 48.35 73.91 74.29 74.92 75.28 74.60
SLiC
Random 3.247 51.84 80.32 73.38 38.91 53.12 27.35 20.38 60.34 15.78 46.82 71.55 71.83 72.10 74.11 72.40
Curry 3.279 51.97 80.68 73.07 38.87 53.04 27.57 20.54 60.48 15.81 46.89 71.83 71.35 72.21 74.31 72.43
SeRA 4.387 51.89 80.30 74.02 38.98 53.44 27.23 21.13 61.49 15.38 47.10 72.48 72.35 73.08 74.98 73.22
Less is More 6.784 53.00 81.75 74.87 39.46 54.31 28.89 21.78 62.18 16.81 48.12 73.32 73.37 73.45 75.18 73.83
Full 10.897 53.39 82.54 75.15 40.12 55.04 30.66 22.75 62.93 17.48 48.90 75.16 75.51 75.00 76.02 75.42
DOTA(Topk) 5.418 53.60 82.67 75.09 40.07 54.74 31.01 22.87 62.95 17.93 48.99 74.32 75.40 74.10 76.54 75.09
DOTA(MAB) 3.305 53.28 82.41 75.04 40.04 54.88 29.87 22.45 63.01 17.78 48.75 75.03 76.08 74.39 76.68 75.41

In terms of FLOPs, except the methods (i.e., Random, Curry) that use simple heuristics, DOTA
consumes minimal computation resources because it only generates preference data points from a
small subset of candidate questions, unlike Topk, SeRA and Less is More.

In addition, we also report the performance improvement of all methods across three training it-
erations, as illustrated in Figure 2. The x-axis denotes the number of iterations, while the y-axis
represents the average score on downstream tasks. On all three models, our proposed DOTA(MAB)
achieves consistent and notable gains over the three iterations, further demonstrating its robustness
and effectiveness.

Figure 2: Number of training iterations on different models.

Generalizability of DOTA. To verify
the general applicability of DOTA, we
also conducted experiments on other
widely used DAP methods such as
IPO and SLiC. Specifically, we fine-
tuned LLaMA-3-8B on 30% of the
data selected by DOTA. As reported
in Table 2, DOTA consistently out-
performs all baselines on downstream
tasks. This demonstrates that DOTA
is applicable to different online DAP methods that use different training strategies.

Moreover, we also include UltraChat-200k (Tunstall et al., 2023) (UltraChat) as candi-
date question pool X , from which 20%, 30% and 50% of the questions are selected to fine-tune
Qwen-3-4B. As shown in Figure 3(a), only selecting 30% questions, DOTA achieves a performance
comparable to using the entire dataset.

4.3 ABLATION STUDY

In this section, we conduct ablation studies w.r.t. the number of clusters, different clustering al-
gorithms and the results are illustrated in Figure 3. Moreover, we show that πθ and πref exhibit
similar confidence in generating the response y, thereby validating the approximation introduced in
Section 3.3. We also demonstrate the effectiveness of MAB in DOTA through experiments under the
Topk-Clusters setting, where questions are sampled from the top-k clusters with the highest
PFP scores to generate data points without iteratively exploration (see Appendix H for details).

Figure 3: Qwen3-4B performance on UltraChat dataset and
Ablation study of cluster numbers and algorithms.

Number of Clusters. We use
the Elbow (Herdiana et al., 2025)
method to identify the optimal clus-
ter numbers for HH-RLHF and
UltraChat-200k datasets. Fig-
ure 3(b) plots the accuracy of DOTA
with different numbers of clusters.
When the number of clusters is
around 100, which is optimal for both
datasets, the model consistently performs well. However, a very small number (i.e., k = 5) leads
to poor accuracy (4.2%, 3.0% and 3.3% lower accuracy for DPO, IPO and SLiC) due to the high
variance of preference data points generated from the documents in each cluster. In this case, the
sampled questions do not represent the cluster well. Similarly, when the number is too high (i.e.,
k = 2000), there will be many clusters that generate similar preference data points. This jeopardizes
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the diversity of the clusters that DOTA explores, leading to performance degradation – 5.3%, 3.3%
and 3.7% lower accuracy.

Clustering Algorithms. We evaluate the performance of DOTA when using other typical clustering
algorithms including BIRCH (Zhang et al., 1996a) and DBSCAN (Deng, 2020). The details of
selecting optimal clustering parameters can be found in the Appendix E. As illustrated in Figure 3(c),
DOTA is robust to clustering algorithms.

Figure 4: The similarity between πθ and πref on multiple
models and datasets.

Relation between πθ and πref . Fig-
ure 4 shows the results on the
HHRLHF and UltraChat datasets
using the Llama-3 and Qwen-3 mod-
els. Each point in the figure cor-
responds to a single preference data
point, where the x-axis represents the
deviation of preference data points
on the reference model, measured as
log πref (y

+|x)
πref (y−|x) and y-axis denotes the

deviation of data points on the target model, i.e., log πθ(y
+|x)

πθ(y−|x) . The scatter points in Figure 4 ex-
hibit a clear linear trend, indicating that the deviations of the target and reference models are nearly
identical across all data points, thereby supporting the approximation introduced in Section 3.3.

5 RELATED WORK

Alignment with preference data and DAP. In preference-based alignment, conventional offline
methods in RLHF typically first train a reward model on preference data (x, y+, y−) (Bai et al.,
2022b; Wang et al., 2024a), and then optimize the target model via reinforcement learning (e.g.,
PPO (Schulman et al., 2017b)). These two-stage methods are often unstable and vulnerable to reward
hacking (Zhong et al., 2024; Peng et al., 2023). In contrast, Direct Alignment from Preferences
(DAP) methods leverage preference pairs as direct supervision in training procedure (Guo et al.,
2024b), surpassing explicit reward modeling. Representative methods include DPO (Rafailov et al.,
2023a), which analytically derives the optimal policy and minimizes a preference-classification loss
with a KL regularizer to maintain stability; IPO (Garg et al., 2025), which frames the problem
through an identity and preference-optimization lens that sidesteps Bradley–Terry assumptions and
directly optimizes a margin-based objective; SLiC (Zhao et al., 2023), which constructs a calibrated,
comparison-driven supervision signal that jointly upweights preferred and suppresses dispreferred
responses. Online preference alignment tackles the off-policy drift and narrow coverage of offline
pipelines by generating responses on policy during training and immediately collecting preference
signals (Song et al., 2024; Tajwar et al., 2024; Guo et al., 2024a).

Data Selection. Data selection methods aim to identify which candidate data points should be in-
cluded in the training dataset (Albalak et al., 2024; Qin et al., 2024), as the quality of data points
can vary significantly. Data selection w.r.t. both the pretraining and instruction tuning stages of
LLMs has been extensively explored, where the research primarily focuses on improving data qual-
ity (Liu et al., 2025b), enhancing diversity (Zhang et al., 2024), and achieving distribution alignment
(Liu et al., 2023). However, existing data selection methods in online DAP still require generating
responses for all candidate questions before evaluating their values, which is computationally ex-
pensive.

6 CONCLUSION

We presented DOTA, a framework for data-efficient online DAP that addresses the high computa-
tional cost of sampling and labeling preference data points. By introducing Preference Perplexity
(PFP) to quantify the value of the preference data points to the target model, DOTA design a Multi-
armed Bandit-based strategy that effectively produces high-value reference data points, while only
having to annotate a small number of sample questions. Experiments on multiple datasets and LLM
backbones show that DOTA reduces computation by up to 3× while improving the alignment of
the target model with human preference, offering a practical solution for scalable preference-based
training.
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perimentation was involved. All datasets used, were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results reported in this paper are fully reproducible.
Our experiments are conducted with clearly specified datasets, model architectures, and hyperpa-
rameters. All data preprocessing steps, training procedures, and evaluation metrics are explicitly de-
scribed in the main text and supplementary materials. The codebase used for all experiments will be
released publicly upon publication, including scripts for training, evaluation, and data preparation.
Additionally, we provide pre-trained models and detailed instructions for reproducing all reported
results. We also include sufficient ablation studies and analysis to allow independent verification of
our claims.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this work, we used LLMs as auxiliary tools in a limited capacity. Specifically,
LLMs assisted in drafting portions of the code and in refining the wording of certain sentences
for clarity and readability. All technical content, including the design of algorithms, experimental
methodology, analysis, and interpretations, was independently developed by the authors. The use
of LLMs was confined to language refinement and coding suggestions, and did not influence the
scientific contributions or results reported in this paper.

B PFP FOR OTHER ONLINE DAP METHODS

IPO Specifically, following the approach of online DPO, we first compute the derivative of the IPO
loss.

∇θLIPO = − 2

β

(
1

2
− β(log

πθ(y
+ | x)

πθ(y− | x)
− log

πref(y
+ | x)

πref(y− | x)
)

)
∇θ

log πθ(y
+ | x)

log πθ(y− | x)
(12)

As discussed above, when β
(
log πθ(y

+|x)
πθ(y−|x) − log πref (y

+|x)
πref (y−|x)

)
is small the coefficient 1

2 −

β
(
log πθ(y

+|x)
πθ(y−|x) − log πref (y

+|x)
πref (y−|x)

)
can be approximated as a near-constant. In this regime, the ef-

fective gradient magnitude is primarily governed by the target model margin term − log πθ(y
+|x)

πθ(y−|x) .

This implies that preference data points with larger values of − log πθ(y
+|x)

πθ(y−|x) induce stronger cor-
rective updates, whereas preference data points with smaller values lead to vanishing gradients and
exert only limited influence on training. Consequently, prioritizing preference data points with arger
values of − log πθ(y

+|x)
πθ(y−|x) naturally corresponds to a hard-sample prioritization strategy, thereby en-

hancing the overall effectiveness of gradient-based optimization.

SLiC Similarly, for the SLiC method, we also take the derivative of its loss:

∇θLSLiC = −β 1{
β
(
log

πθ(y+|x)

πθ(y−|x)
−log

πref (y
+|x)

πref (y
−|x)

)
<1

}[∇θ
log πθ(y

+ | x)
log πθ(y− | x)

]
(13)

Here, 1{·} serves as an indicator function, ensuring that only preference data points with small

β
(
log πθ(y

+|x)
πθ(y−|x) − log πref (y

+|x)
πref (y−|x)

)
contribute to the update. Within this region, the magnitude of the

gradient is essentially controlled by the policy margin term − log πθ(y
+|x)

πθ(y−|x) , so prioritizing samples

with larger − log πθ(y
+|x)

πθ(y−|x) naturally corresponds to a hard sample strategy that improves the effi-
ciency of optimization.

C DATASET

We use the popular alignment datasets UltraFeedback (Cui et al., 2023),
UltraChat-200k (Tunstall et al., 2023) and HH-RLHF (Bai et al., 2022a) as our candi-
date dataset. Specifically, UltraFeedback is a preference dataset collected from diverse sources,
which is typically used for RLHF (Deng et al., 2025; Ko et al., 2025). UltraChat-200k
is a well-constructed and high-quality subset selected from UltraChat conversations. HH-RLHF
contains human preference data collected by Anthropic, comprising two parts: helpful and harmless.
Initially, these models are fine-tuned on UltraFeedback followed by an alignment with online
DAPs and prompts from UltraChat-200k and HH-RLHF.

D FLOPS CALCULATION

FLOPs is the number of floating point operations performed by GPUs. Many state-of-the-art
methods (Yu et al., 2024) use it to measure the consumption of GPU computing resources. In our
experiments, FLOPs is collected directly in the data selection process using the Python code:
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import torch
import torch.nn as nn
from torch.profiler import profile, ProfilerActivity

model = nn.Linear(1024, 512).cuda()
input data = torch.randn(128, 1024).cuda()
with profile(activities=[ProfilerActivity.CPU,
ProfilerActivity.CUDA],

with flops=True) as prof:
model(input data)

print (prof.key averages().table(sort by="flops", row limit=10))

E ABLATION STUDY OF CLUSTERING NUMBERS AND ALGORITHM

[Metric and Criteria.] We use the metric Within-Cluster Sum of Squares (WCSS) to select the best
cluster number using the well-known Elbow (Syakur et al., 2018) algorithm. WCSS is the sum of
squared distances between each data instance and its cluster center, i.e., WCSS=

∑k
i=1

∑
x∈Ci

∥x−
µi∥. At a high level, the criteria should be that within each cluster, data instances are close to each
other, based on which it is better for different cluster centers to be far away from each other. Based
on the criteria, the Elbow algorithm leverages the WCSS as a measurement to iteratively select an
appropriate cluster number, as follows.

[Specific hypermarameter selection strategy.] To be specific, Elbow begins with a small k, and with
k increasing, WCSS first decreases rapidly and then slows down. Then, we identify the ”elbow
point” where the decreasing rate becomes slow as the best k. Thus, within each cluster, data points
are sufficiently close to one another. Furthermore, given that k remains modest, different cluster
centers tend to maintain a distance from each other.

Clustering algorithms. In terms of the clustering algorithms, we also added experiments to show
that EQUAL is not sensitive to clustering algorithms mainly because different algorithms have their
own strategies to select appropriate parameters, which follows the criteria mentioned above.

Specifically, we evaluate the performance of several typical clustering methods including
BIRCH (Zhang et al., 1996b) and DBSCAN (Ester et al., 1996). Considering that the clustering
results are easily affected by the parameters of clustering algorithms, we use different methods to
select proper parameters. For DBSCAN, there are 2 key parameters: (1) eps(the radius of a neigh-
borhood w.r.t. some data points) and (2) minPts (a data point is considered as a core point if at
least minPts data points are within eps of it). They can be set using the method in (Schubert et al.,
2017). For BIRCH (Zhang et al., 1996b), we can use the Elbow (Syakur et al., 2018) algorithm or
Sihouette score (Shahapure & Nicholas, 2020) to determine the appropriate number of components.

F PROMPT

<|im_start|>system
You are a helpful instruction-following assistant.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) that best matches the given instruction.

Choose your preferred output, which can be subjective. Your answer
should ONLY contain: Output (a) or Output (b). Here’s an example:

# Example:
## Instruction:
Give a description of the following job: "ophthalmologist"

## Output (a):
An ophthalmologist is a medical doctor who specializes in the diagnosis

and treatment of eye diseases and conditions.

## Output (b):

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

An ophthalmologist is a medical doctor who pokes and prods at your eyes
while asking you to read letters from a chart.

## Which is best, Output (a) or Output (b)?
Output (a)

Here the answer is Output (a) because it provides a comprehensive and
accurate description of the job of an ophthalmologist. In contrast,
output (b) is more of a joke.

# Task:
Now is the real task, do not explain your answer, just say Output (a) or

Output (b).

## Instruction:
{instruction}

## Output (a):
{output_1}

## Output (b):
{output_2}

## Which is best, Output (a) or Output (b)?
<|im_end|>

Listing 1: Experiment Prompt

G DATA SELECTION RATIO.

Figure 5: Ablation study of different data selection ratio

Figure 5 presents a comparison be-
tween DOTA and other baselines us-
ing various data generation ratios
(i.e., 20%, 30% and 50%). Across
all proportions, the performance of
DOTA surpasses that of the other
baseline methods. Interestingly, we
find that for all models, generating only 30% of the data points in DOTA yields better results than
using the full dataset X . This demonstrates the effectiveness of DOTA. This is because not all data
points generated from the questions in X are highly valuable for the model’s training. The detailed
results are shown as follows.
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Table 3: Comprehensive Evaluation of Three Models Across Diverse Downstream Tasks, Including
General, Mathematical, and Coding Benchmarks. Evaluation results of various data selection meth-
ods at a 50% selection ratio. The highest scores are highlighted in bold, the second-highest scores
are underlined, and the methods proposed in this work are marked in light yellow.

Models time General Tasks Mathematical Coding Average
EFLOPs mmlu mmlu pro drop agieval korbench gsm8k math humaneval lcb Average

Llama3-8B
random 9.900 60.76 36.26 67.61 39.38 30.56 47.92 16.20 48.78 21.58 41.01
SeRA 12.030 59.28 35.33 64.70 37.63 29.00 39.98 15.20 48.78 22.52 39.06
Less is More 13.050 61.31 37.12 67.96 39.85 30.80 46.55 16.36 49.39 23.78 41.45
Curry 9.930 58.87 36.13 66.07 38.68 31.36 51.18 15.62 48.78 18.52 40.58
Dota(Topk) 11.940 62.45 37.74 70.05 40.27 31.20 50.42 17.18 50.00 22.12 42.38
Dota(MAB) 9.960 62.11 37.53 69.60 39.45 33.64 50.57 16.78 52.83 23.33 42.89
Qwen3-4B
random 5.475 77.50 55.90 84.07 41.82 53.96 29.34 22.00 65.85 26.50 50.77
SeRA 6.000 76.45 54.14 83.31 41.52 54.15 29.76 16.93 58.23 29.05 49.28
Less is More 8.100 77.51 55.99 84.04 42.39 54.08 31.08 21.32 68.29 29.20 51.54
Curry 5.490 77.48 56.00 83.83 42.30 55.12 30.11 21.14 66.46 29.87 51.48
Dota(Topk) 7.020 77.61 56.80 84.66 43.27 55.04 32.90 23.40 70.73 31.06 52.83
Dota(MAB) 5.490 78.00 56.52 84.43 42.52 55.20 34.72 22.40 67.07 30.03 52.32
Qwen3-1.7B
random 2.925 65.54 42.20 71.18 37.91 42.56 31.69 26.44 53.66 21.62 43.64
SeRA 2.547 64.49 40.88 71.42 37.38 42.56 34.12 27.88 53.05 19.52 43.48
Less is More 4.647 66.14 42.21 71.61 37.89 43.24 32.31 27.42 56.49 21.88 44.84
Curry 2.940 65.76 42.19 71.04 37.29 42.64 32.52 26.96 56.71 21.45 44.06
Dota(Topk) 4.182 66.93 42.33 72.59 38.00 44.40 34.04 27.74 60.37 21.92 45.37
Dota(MAB) 2.940 66.72 42.54 71.76 38.39 43.28 34.12 27.94 61.59 22.45 45.42

Table 4: Comprehensive Evaluation of Three Models Across Diverse Downstream Tasks, Including
General, Mathematical, and Coding Benchmarks. Evaluation results of various data selection meth-
ods at a 30% selection ratio. The highest scores are highlighted in bold, the second-highest scores
are underlined, and the methods proposed in this work are marked in light yellow.

Models(20%) time General Tasks Mathematical Coding Average
EFLOPs mmlu mmlu pro drop agieval korbench gsm8k math humaneval lcb Average

Llama3-8B
random 3.960 59.41 33.28 62.45 37.33 29.44 45.49 16.42 48.78 20.22 39.20
SeRA 7.314 58.34 30.13 55.33 36.55 28.60 41.55 13.28 48.78 17.98 36.84
Less is More 9.954 59.02 33.38 57.29 37.47 29.52 45.98 14.24 53.66 19.79 38.93
Curry 3.990 58.83 33.19 66.07 37.32 29.28 45.79 15.84 50.00 20.50 39.65
Dota(Topk) 7.224 59.74 33.66 64.30 38.13 30.24 46.32 16.42 53.67 20.87 40.37
Dota(MAB) 3.990 59.83 33.90 66.08 37.43 29.84 45.81 16.48 50.00 20.54 39.99
Qwen3-4B
random 2.190 77.52 55.95 83.63 42.69 54.48 31.99 22.94 63.41 24.86 50.84
SeRA 3.642 76.23 54.57 83.16 18.10 54.08 32.45 20.04 57.32 22.56 46.50
Less is More 5.243 77.58 56.39 84.08 42.18 53.60 30.63 20.30 64.63 28.60 50.90
Curry 2.205 77.35 56.07 83.39 42.77 54.40 32.75 22.88 65.85 27.07 51.39
Dota(Topk) 4.650 77.95 56.58 84.22 42.85 55.20 33.89 23.16 67.68 26.88 52.02
Dota(MAB) 2.205 77.73 56.16 83.96 42.73 54.56 33.43 22.76 68.90 27.03 51.92
Qwen3-1.7B
random 1.170 64.70 41.42 71.12 38.11 42.32 35.71 27.96 58.54 20.04 44.46
SeRA 1.185 62.50 38.65 71.39 36.82 43.20 25.40 24.96 47.56 21.46 41.32
Less is More 3.648 65.25 41.67 70.93 37.42 41.52 35.33 28.58 59.76 19.68 44.46
Curry 1.185 64.72 41.09 71.29 38.53 42.16 35.86 28.18 56.10 20.66 44.29
Dota(Topk) 3.183 64.84 41.71 71.68 38.31 42.56 36.24 28.14 59.15 20.26 44.74
Dota(MAB) 1.185 65.64 41.50 71.38 38.62 42.57 37.00 28.74 61.59 20.51 45.28
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Table 5: Evaluation results of online DPO with 30% selection ratio. We run each experiment three
times and report the average.

Models EFLOPs General Tasks Mathematical Coding Average
mmlu pro drop mmlu agieval korbench gsm8k math humaneval lcb

Qwen3-4B
Random 3.285 53.61 83.13 76.24 41.86 53.11 29.95 20.26 64.63 22.19 49.44
Topk-Cluster 5.448 56.97 85.18 78.22 44.69 55.28 33.21 22.92 70.73 28.14 50.70
DOTA(MAB) 3.315 56.53 84.96 77.93 44.55 55.60 32.95 23.12 68.68 29.10 52.60

H EFFECTIVENESS OF MAB

This section assesses the effectiveness of the MAB approach in DOTA for question selection in gen-
erating preference data points, as opposed to the simpler strategy of using the top-k clusters with the
highest PFP scores for the same purpose. To be specific, we randomly select an equivalent number
of data points from the top 30 clusters with the highest PFP scores. Table 5 illustrates the trade-off
between data quality and diversity: preference data points generated from high-PFP clusters within
the Topk-clusters do not necessarily improve model performance on downstream evaluation
tasks, as they often lack sufficient diversity. Hence, the multi-armed bandit method can more ef-
fectively capture the trade-off between quality and diversity across clusters, resulting in superior
performance, as opposed to merely choosing the top-k clusters.
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