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Abstract

Query rewriting (QR) is a critical technique
in e-commerce search, addressing the lexical
gap between user queries and product descrip-
tions to enhance search performance. Exist-
ing QR approaches typically fall into two cat-
egories: discriminative models and genera-
tive methods leveraging large language models
(LLMs). Discriminative models often strug-
gle with natural language understanding and
offer limited flexibility in rewriting, while gen-
erative LLMs, despite producing high-quality
rewrites, face high inference latency and cost in
online settings. These limitations force offline
deployment, making them vulnerable to issues
like information staleness and semantic drift.
To overcome these challenges, we propose a
novel hybrid pipeline for QR that balances ef-
ficiency and effectiveness. Our approach com-
bines offline knowledge distillation to create
a lightweight but efficient student model with
online reinforcement learning (RL) to refine
query rewriting dynamically using real-time
feedback. A key innovation is the use of LLMs
as simulated human feedback, enabling scal-
able reward signals and cost-effective evalua-
tion without manual annotations. Experimental
results on Amazon ESCI dataset demonstrate
significant improvements in query relevance,
diversity, and adaptability, as well as positive
feedback from the LLM simulation. This work
contributes to advancing LLM capabilities for
domain-specific applications, offering a robust
solution for dynamic and complex e-commerce
search environments.

1 Introduction

Context. Product search is a central component of
e-commerce platforms like Amazon or eBay, en-
abling users to discover relevant items from vast
catalogs. In these platforms, users often face chal-
lenges when formulating queries, leading to sub-
optimal search experiences. These challenges are
magnified in scenarios where users may not use
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Figure 1: Overview of an E-commerce search pipeline
with Query Rewriting module installed.

precise or correct terminology, employ synonyms,
or mix languages in their search phrases due to in-
eptitude of language proficiency. Additionally, the
search terms might be misspelled or overly general,
making it difficult for traditional search systems to
retrieve relevant products. For example, a user may
search for “dress”, which is too broad, while others
might input “summer dress”, “boho maxi dress”, or
“red evening gown”, each reflecting different intents
but lacking clarity without additional context. As e-
commerce platforms continue to grow in both scale
and diversity, ensuring accurate and relevant prod-
uct retrieval becomes increasingly difficult, neces-
sitating the need for advanced query rewriting tech-
niques. query rewriting (QR) refers to the process
of transforming an input query into one or more
alternative queries that are semantically similar but
may be phrased differently, thereby improving the
likelihood of retrieving more relevant products. In
the context of e-commerce platforms, effective OR
is crucial for bridging the gap between user intent
and the diverse ways products can be described in
the catalog (Figure 1).

Previous literature. Query rewriting (QR) meth-
ods can be broadly categorized into discriminative
and generative approaches. Further details about
existing work are provided in Appendix A.
Discriminative methods (Xu and Croft, 2017,
Mandal et al., 2019; Li et al., 2022; Shekarpour
et al., 2017; Diaz, 2016) focus on reformulating
queries by identifying similar terms from a pre-



defined query rewriting set, leveraging sparse re-
trieval techniques to find relevant products. For ex-
ample, using traditional Information Retrieval (IR)
techniques, a query like “laptop under 500” might
be rewritten as “budget laptop” or “cheap laptops”
by detecting semantically similar phrases. While
computationally efficient, these methods face criti-
cal limitations. They often struggle with long-tail
queries, where reformulation sets lack appropri-
ate alternatives, leading to inadequate or irrelevant
rewrites. Furthermore, their reliance on static, pre-
defined mappings limits flexibility, particularly for
queries with complex or ambiguous user intent.
Addressing these challenges requires a more dy-
namic and adaptable approach capable of handling
diverse user inputs.

In response to these limitations, Generative meth-
ods (Agrawal et al., 2023; Qiu et al., 2021; Jager-
man et al., 2023), such as those using Large Lan-
guage Models (LLMs), have gained popularity due
to their superior language understanding and con-
textual flexibility. By training on extensive corpora
of query-reformulation pairs, generative models
can produce diverse, contextually relevant rewrites.
For instance, an LLM might reformulate the query
“best wireless headphones” into alternatives like
“top-rated wireless earphones” or “best Bluetooth
headphones”, potentially enhancing the coverage
and relevance of search results. These methods
represent a significant leap forward, offering the
ability to dynamically generate novel query refor-
mulations without relying on predefined sets.
However, generative methods also have their draw-
backs, particularly in real-world e-commerce ap-
plications. The large-scale nature of LLMs results
in high inference latency and computational costs,
making real-time deployment impractical. To miti-
gate this, LLMs are often deployed in an “offline”
manner, precomputing query rewrites for popu-
lar searches and storing them in cache memory
(Agrawal et al., 2023). While this reduces latency,
it introduces issues like information staleness, as
the models are not continuously updated to reflect
new products, trends, or user behavior. This is
especially problematic in e-commerce, where prod-
uct catalogs and user preferences evolve rapidly,
leading to outdated or irrelevant rewrites. These
challenges highlight the need for a solution that
combines the language ability of LLMs with a com-
pact, efficient, and real-time adaptable framework.
The online deployment of an efficient and effective
query rewriting module in e-commerce search sys-

tems remains a significant challenge for existing
approaches. Ideally, such a module should retain
the strong language capabilities of an LLM while
being compact, resource-efficient, and practical for
real-time deployment.

Contribution. In this paper, we propose a novel
adaptive query rewriting pipeline that effectively
balances efficiency and performance, addressing
the limitations of current approaches.

Our solution employs a dual-phase training frame-
work for a large language model (LLM), integrat-
ing offline and online training. In the offline phase,
we leverage knowledge distillation to create a com-
pact and efficient student model, termed the Mini
E-commerce Language Model (MiniELM), dis-
tilled from a large foundation teacher model while
preserving semantic fidelity. In the online phase,
MiniELM is fine-tuned using reinforcement learn-
ing with dynamic reward signals derived from sim-
ulated user feedback. This approach not only re-
duces inference costs but also ensures that the
model aligns with and captures relevance, diver-
sity, and user preferences in product retrievals.

A key innovation of our method is the use of
simulated human feedback via LLMs, replacing
resource-intensive manual annotations. This mech-
anism effectively mimics real-world deployment
scenarios while enabling scalable evaluation and
continuous model refinement. Additionally, we in-
troduce reward models that assess query rewrites
on relevance, diversity, and coverage of user in-
tent, ensuring comprehensive performance metrics.
Experimental results on the Amazon ESCI dataset
(Reddy et al., 2022) validate MiniELM’s effective-
ness across both offline and online stages, demon-
strating its superiority over baseline methods. In
summary, our contributions are as follows:

* Propose MiniELM, a lightweight and efficient
query rewriting model derived through knowl-
edge distillation.

* Introduce a two-phase training framework in-
tegrating offline knowledge distillation and
online reinforcement learning.

* Develop scalable reward models and lever-
age LLM-based simulated feedback to refine
query rewriting dynamically.

* Validate MiniELM through extensive experi-
ments on the Amazon ESCI dataset, showcas-
ing its effectiveness and superiority.
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Figure 2: High-level diagram of MiniELM’s training pipelines: Offline training combines supervised fine-tuning
(SFT) and knowledge distillation (KD) for a robust QR foundation, while online training leverages RL updates from
custom reward signals and simulated human feedback to adapt to e-commerce dynamics.

2 Problem Statement

Let D = {Ql}f\i | represent the dataset of real
user queries collected from the historical data of e-
commerce systems, where (); = {t}, t%, e 715;”1‘ }
Here, #/ denotes the ;%" token in the 4" user query.
The objective of the query rewriting (QR) task is

to produce a corresponding set of rewritten queries,
Yy = {QZ}N , where QZ is the rewritten version
of Q;. For siﬁllplicity, we omit the index ¢ whenever
the context is clear.

Since there is no definitive ground truth for an ideal
rewritten query, nor should there be—this would
restrict the flexibility of potential rewrites—we
instead define a set of novel metrics to evaluate
the quality of a rewritten query Q relative to the
original query Q. These metrics are computed by
comparing the lists of products retrieved by the e-
commerce search engine for the original query )
and the rewritten query Q, denoted as Pg and PQ,
respectively. The key metrics are as follows:

¢ Relevant score T’(Q,PQ)Z Measures how
well the results retrieved for the rewritten
query align with the intent of the original

query Q.

* Diversity score d(Fg, Pp): Quantifies the
diversity in the product list returned for the
rewritten query compared to the original.

* Click/Add2cart/Purchase rate score
c(Pg)/a2c(Pg)/p(Pp): Estimate the likeli-
hood of user engagement with the product
list returned for the rewritten query. These
metrics simulate user behavior through

Reinforcement Learning with Artificial
Implicit Feedback (RLAIF) (Lee et al., 2024)
in the online training pipeline.

Details on the calculation of these metrics, which
serve both as reward signals and evaluation criteria,
are provided in Section 3.2.

3 Method

Our approach for QR employs a dual-phased
pipeline that integrates offline and online training
methodologies (Figure 2). This pipeline leverages
the natural language understanding of large lan-
guage models (LLMs) while addressing efficiency
and adaptability challenges through knowledge dis-
tillation and simulated user feedback. In the offline
phase, we create MiniELM, a compact yet powerful
model optimized for query rewriting, using super-
vised fine-tuning (SFT) on a custom Q2Q dataset
and knowledge distillation (KD) to retain seman-
tic fidelity while reducing computational overhead.
This ensures MiniELM inherits the capabilities of
a larger teacher model while aligning with domain-
specific objectives in query rewriting. The online
phase then dynamically adapts MiniELM to pri-
oritize relevance and diversity while evolving to
reflect simulated user preferences and updates in
the product catalog. Together, these phases form a
cohesive framework: the offline phase establishes
a robust and efficient foundation, and the online
phase continuously refines and personalizes the
model for real-world deployment.

3.1 Offline Training Phase

The offline phase serves as a warm-start mecha-
nism for the query rewriting (QR) model, ensuring



Table 1: Rewrittings generated by different LLMs given user query: “i love you through and through board book”.

Model Rewritten Query
Llama 3 8B love board books for toddlers and young children that express deep affection and devotion
GPT2-large  board books about unconditional love and family bonds

that it is both highly effective in rewriting queries
and computationally efficient with minimal over-
head.

A key challenge in applying vanilla LLMs to e-
commerce QR is their tendency to generate long-
tail rewrites (as shown in Table 1), which are often
suboptimal and difficult to process in downstream
search pipeline stages (Peng et al., 2024; Zhang
et al., 2021). To mitigate this issue, we first apply
supervised fine-tuning (SFT) using a curated Q2Q
dataset derived from the Amazon ESCI dataset
(Reddy et al., 2022). This step adapts the model
to the QR task, aligning its outputs with domain-
specific requirements and improving rewrite qual-
ity. Our approach trains two model variants: a
Teacher model (7T'), a large-scale LLM with strong
language understanding, and a Student model (5),
a smaller, more efficient version optimized for re-
duced computational overhead.

Subsequently, a KD strategy is applied to trans-
fer the Teacher model’s knowledge to the Student
model. This two-step process - fine-tuning and dis-
tillation - ensures that the Student model inherits
the Teacher’s strong performance while maintain-
ing efficiency. Fine-tuning first allows the Teacher
to learn optimal QR patterns, which are then dis-
tilled into the smaller model, preventing excessive
performance degradation during compression. The
outcome of this offline training phase is MiniELM,
a fine-tuned and distilled Student model that forms
the foundation for the subsequent online phase.
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Figure 3: Illustration for Query-Product bi-partite graph.

SFT with Custom Q2Q dataset. We construct a
custom query-to-query (Q2Q) dataset using exist-
ing queries from the Amazon ESCI dataset (Reddy
et al., 2022). The ESCI dataset represents data
as triplets (@, P, R), where () is a user query, P

is a product in the Amazon catalog, and R is the
relevance score between them. Leveraging this
structure, we create a bipartite graph that maps the
relevance relationships between the query set and
the product set (illustrated in Fig. 3). From this
graph, we identify query pairs that are mapped as
relevant to at least k similar products (e.g. labeled
as “E” or “S” in the ESCI dataset). These query
pairs are treated as candidate equivalents. To en-
sure semantic accuracy, the final set of candidate
query pairs is filtered using a strong LLM (Llama
3.3, 70B version in our case), which verifies the se-
mantic equivalence of the queries. Final selections
(e.g. “men shoes” and “shoes for men” - Figure 3)
are then included in the custom Q2Q dataset. This
building procedure is beneficial as it completely
remove human manual annotations out of the loop,
unlike existing works (Agrawal et al., 2023; Peng
et al., 2024). Building on this curated Q2Q dataset,
we fine-tune both the teacher model 7" and the stu-
dent model S on these query-to-query pairs. This
targeted fine-tuning process ensures that both mod-
els are aligned with the task of generating accurate
query rewritings within the e-commerce context.
By focusing on equivalence in query rewriting, this
method significantly mitigates the long-tail queries
generated by vanilla LLMs.

KD from 7" to S. After SFT on both T" and S, an
additional step of Knowledge distillation is further
employed to transfer the language capabilities of
T to S. In this process, we employ the techique
introduced in (Gu et al., 2024), with the center
idea circulate around reverse Kullback-Leibler di-
vergence (KLD) during distillation:

Pg(x)
PT (l‘)

Di1(Ps||[Pr) =) Ps(x)log (1)

This loss minimizes the student model’s tendency
to overestimate low-probability regions of the
teacher’s distribution, enabling it to focus on high-
relevance predictions (major modes) of 1. This
benefit brought about with reverse KLD is partic-
ularly favorable for generation task of 7" or S that
involve a great scale dictionary, unlike normal clas-
sification tasks.



After the process, we attain the fine-tuned and
distilled version of Student S - MiniELM, that
addresses the computational inefficiencies associ-
ated with deploying large-scale LLMs in real-time
search systems, while maintaining great language
ability and sense for E-Commerce QR task.

3.2 Online Training Phase

The online training phase extends the offline foun-
dation by enabling MiniELM to adapt dynamically
to the e-commerce environment through real-time
learning during deployment process (Figure 2b).
This phase employs reinforcement learning (RL)
to fine-tune the model using gradient policy opti-
mization (Schulman et al., 2017; Rafailov et al.,
2024), ensuring that MiniELM remains responsive
to updates in product catalogs and user behavior.
Online reward signal. To effectively guide this
real-time learning, the online training phase relies
on carefully designed reward signals (defined in
Section 2), which capture the multifaceted objec-
tives of query rewriting. The relevance score en-
sures alignment between the original and rewritten
queries, maintaining consistency with users’ origi-
nal intents. Diversity measures the extent to which
the rewritten query expands product coverage by
retrieving distinct items compared to the original
query. While both metrics can be calculated of-
fline and provide a baseline reward signal, they fail
to capture user interest in the retrieved products
- a critical indicator of query quality. To address
this, an online feedback score is derived from
simulated user interactions using a judge model -
named M>. This score, combined with relevance
and diversity, ensures the model balances query
expansion with relevance to user preferences and
broader exploratory needs. All of these metrics are
quantified as follow.

* Relevant score r(Q, P5): We begin by fine-
tuning a bert-base—-uncased model M;
(Devlin et al., 2019) on (Q, P, R) pairs from
the ESCI dataset to evaluate the relevance be-
tween arbitrary query-product pairs. The rele-
vance score is then computed as: 7(Q, Pp) =

% 2 M (Q, P)VP; € Py,

* Diversity score d(Fg, P): This metric mea-
sures the proportion of distinct products re-
trieved by the rewritten query compared to the
original list. It is defined as: d(Pg, Pp) =
|Pg|=PonPg|

IPql

* Click/Add2cart/Purchase rate score
c(Py)/a2¢(Pg)/p(Pp):  An LLM judge
model M, is carefully prompted to assess
the quality of a rewritten query based on its
associated product list PQ (detailed prompts
are covered in Appendix B). The model takes
as input the simulated user’s bio information,
drawn from a pre-synthesized profile pool
(details on the pool generation process are
provided in Appendix B), along with the
original query @ and the product list PQ.
It then simulates up to & interactions that
the user might perform with the products.
User interactions are categorized into three
levels of increasing interest: clicking (c(PQ)),
adding to cart (a20(PQ)) and purchasing
(p(Pg)). For each product list Py, My is
prompted to separately predict the number of
interactions for each category. For instance,
c(PQ) _ M2(b|z;§,PQ)

of products clicked, normalized by total

number of products in the list. Ideally, the
interaction count should reflect the quality of

PQ, where higher-quality rewrites yield more

positive user interactions.

estimates the number

Online DPO. We chose online Direct Policy Op-
timization (DPO) (Rafailov et al., 2024) as our
reinforcement learning (RL) algorithm to further
align our student model, as it offers significant ad-
vantages aligned with our online deployment goals.
Unlike traditional RL methods, DPO does not re-
quire a pre-collected or annotated dataset. Instead,
feedback from the judge model M>, along with rel-
evance and diversity metrics, serves as the reward
signal, replacing the need for manual annotations
(Figure 2c).

At each training step, a query is sampled from the
query dataset D (here ESCI dataset) and a rewriting
pair is generated based on the current policy. The
judge model M5 evaluates the pair by simulating
user feedback and other reward signals, selecting
the response with better generation quality as the
preferred output Q" and the other as the rejected
output Q™. The policy is then updated using the
DPO loss function:

T (QT \ Qi) ) -

Lppo(0) = f% Zloga (ﬂ log - (Q* | Q.)

Here, B is the mini-batch size, o denotes
sigmoid function, and 7y is the MiniELM model



with trainable parameters 6. The loss intuitively
minimizes the negative log-likelihood of correctly
predicting the preference order.

Unlike RLHF (Christiano et al., 2017), DPO avoids
the iterative training of a separate reward model,
eliminating the need for labor-intensive data col-
lection and annotation. By directly leveraging pref-
erence pairs and optimizing a simpler loss, DPO
is more lightweight and efficient, making it ideal
for real-world e-commerce deployment to align our
MiniELM.

4 Experiments and Results

The primary goal of our experiments is to evaluate
our proposed approach using the ESCI dataset. We
begin by measuring performance across three of-
fline metrics, followed by five online signals. The
experiments demonstrate how knowledge distilla-
tion (KD) enhances query rewriting capabilities
in the offline phase, while reinforcement learning
(RL) improves performance across the five online
signal scores. Finally, we qualitatively analyze spe-
cific query rewriting tasks to highlight how the on-
line phase further refines and improves the model.

4.1 Experiment Setting
4.1.1 Dataset

We use two different datasets for offline and online
training, both based on Amazon ESCI (us locale)
dataset (Reddy et al., 2022).

Offline phase dataset. We build our custom Q2Q
dataset from the training split of the Amazon ESCI
dataset. Out of 74,888 unique queries, 23,543
query pairs are identified as equivalent after a two-
step filtering process. Since the relation is non-
directional, both (@, Q) and (Q, Q) are included.
We allocate 20% of the dataset for evaluation, with
the rest used for training and validation.

Online phase dataset. For the simulation of
MiniELM’s online deployment, we perform Re-
inforcement Learning update with the train split
of ESCI dataset, while occasionally assessing the
whole pipeline performance after fix number of
iterations with test split of the same dataset.

4.1.2 Metrics

Offline metrics. Since during offline training
phase, we have access to rewritten queries - served
as the models’ ground truth, we employ existing
widely-used metrics to assess models’ performance:
(1) ExactMatch checks if the response is exactly

the same as the reference text; (2) RoughL mea-
sures the overlap between the generated response
with ground truth via their longest common subse-
quences; (3) XEntropy reports the Cross Entropy
loss for generating the response.

Online metrics. As mentioned in Section 2, we
have no access to ideal rewritten queries during
online deployment of MiniELM. Hence, we use
the set of our custom metrics for evaluation, mea-
suring quality of rewritten results base on desired
characteristics (e.g. Relevance, diversity, positive
simulated human feedback).

4.1.3 Implementation Details

For both offline and online training, we adopt two
LLM families for training and evaluation, sug-
gesting that MiniELM enhance the QR task per-
formance regardless of choice for vanilla models.
Two LLM families selected are widely use GPT2
models (Radford et al., 2019) and state-of-the-art
open-source Llama 3 models (Dubey et al., 2024).
Thoughout our experiments, we chose Llama-3.1-
8B-Instruct as our judge model. For simulating
ordinary E-commerce search engine, Elasticsearch
with default configuration is adopted.

Offline phase. We select different Teacher-Student
pairs for two selected model families. For GPT2,
GPT2-large is selected as T, while base version is
adopted as S. In parallel, Llama 3.1 8B variance
is selected as 7" and S is 1B variance of Llama 3.2
model. We keep the training hyper-parameters of
SFT and KD process the same as (Gu et al., 2024)
for our custom Q2Q dataset.

Online phase. We perform simulation of actual
deployment and RL update with DPO mechanism
(Rafailov et al., 2024) for 1000 iterations, peform-
ing evaluation check after 50 updates. We adopt
batch size of 16, simulating one mini-batch DPO
update for every 16 received user queries.

4.2 Main Results
4.2.1 Evolution of MiniELM via training steps

Offline Phase Result Table 2 presents the results
of the offline training phase across different back-
bone LLLM models, where V denotes the Vanilla
(untrained) model and P represents the fine-tuned
model. Two key insights emerge from these results.
First, the supervised fine-tuning (SFT) process sig-
nificantly enhances the performance of both the
Teacher (1") and Student (S) models on the query
rewriting (QR) task. A notable limitation of vanilla
LLMs is their tendency to generate long-tail queries



Table 2: Result of different MiniELM variances on
ESCI Dataset within offline training phase.

Model ExactMatch RoughL. XEntropy Mean Length
g Vv 0 4.453 8.1314 217.196
P 3.125 42.256 4.632 4.265
b T A% 0.042 6.592 7.433 147.187
g P 5 44.996 4.204 9.257
= rag V3125 42256  4.632 4.265
P 4.5 43.217 4.764 4.296
g Vv 0 0.692 9.567 213.228
P 2.833 34.817 8.08 2.993
o \Y 0 0.831 8.454 211.98
% P 1.75 38.982 4.684 3.318
TS v 2.833 34.817 8.08 2.993
P 2.875 35.577 3.739 3.081

with excessive length, which complicates down-
stream processes in the e-commerce search pipeline
(Zhang et al., 2021; Kekuda et al., 2024; Peng et al.,
2024) (e.g., aligning and matching with product cat-
alogs in e-commerce databases). The SFT process
effectively mitigates this issue, enabling the fine-
tuned models to produce reformulations that are
more concise and better aligned with the ground
truth. Second, knowledge distillation (KD) training
consistently improves the performance of the Stu-
dent model (S), narrowing its gap with the Teacher
model (T"). This outcome reinforces the rationale
behind the offline training strategy, achieving the
dual goals of equipping MiniELM with familiarity
in the QR task while ensuring it remains efficient
and adept at natural language understanding.

Table 3: Result of different MiniELM variances on
ESCI Dataset within online training phase.

Metrics Llama GPT2
T—S RL T—S RL
Relevant  0.663 0.707 0.569 0.654
Diversity  0.769 0.81 0.693 0.753
Click 0.513 0.533 0.489 0.511
Add2cart  0.498 0.516 0.466 0.508
Purchase 0.468 0.503 0.443 0.502

Online Phase Result We evaluate the performance
of MiniELM before and after the online simulation
process with both choices of backbone LLMs to
assess the impact of reinforcement learning (RL)
training. The results are presented in Table 3.
The data reveals a clear improvement across all
recorded metrics, highlighting the positive evolu-
tion of rewritten queries over the deployment pe-
riod as a result of effective RL updates. Specifically,
RL training not only improves the relevance and
diversity of the product lists PQ retrieved using

Table 4: Average relevant products returned per query
on the ESCI dataset using different methods.

Method cov(Q)) Gain (%)
Supervised 111 0
RLQR 145 30.6
CLOVER 132 18.9
DRQR 130 17.1
Task-Oriented QR 114 2.7
MiniELM (Our) 171 54.1

the reformulated queries Q but also increases the
positive feedback from simulated human evalua-
tors (represented by LLMs) within the e-commerce
context. This improvement is crucial in addressing
the limitations observed in static models, where
performance may stagnate or degrade over time
without continuous updates.

4.2.2 Comparison with existing baselines

Baselines. To demonstrate the effectiveness of
MiniELM in the E-commerce query rewriting task,
we compare it against the following methods:

(i) Supervised (Raffel et al., 2020): T5 model
is supervisedly trained with standard beam
search for inference, serving as the founda-
tional baseline for evaluating other methods.

(ii)) RLQR (Agrawal et al., 2023): Combines gen-
erative models with reinforcement learning
(RL) to improve product coverage by return-
ing more distinct relevant products. Primarily
designed for offline query rewriting.

(iii) CLOVER (Mohankumar et al., 2021): A
diversity-focused RL algorithm that generates
high-quality, diverse reformulations, optimiz-
ing for human-assessed quality.

(iv) DRQR (Wang et al., 2020): An RL method
using a reward function combining F1 score
and Query Performance Predictor (QPP).

(v) Task-Oriented QR (Nogueira and Cho,
2017): Employs RL to maximize relevant
products retrieved, reformulating queries
based on initial search results.

Setting. We adopt a pipeline configuration similar
to (Agrawal et al., 2023) using the ESCI dataset (re-
ferred to as Aicrowd in (Agrawal et al., 2023)). For
the model setup, the LLM used as our MiniELM
is the base variant of the T5 model (Raffel et al.,
2020), while the teacher model T in the offline
phase is its corresponding large variant. This al-
ternated choice of backbone LLM is similar to



Table 5: Qualitative analysis of MiniELM’s rewritten queries over online training process.
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Figure 4: Rewards for both chosen and rejected rewrit-
ten queries during online RL training.

(Agrawal et al., 2023) configuration, ensuring min-
imum bias and fairness in comparison. The pri-
mary metric for performance evaluation is Prod-
uct Coverage (cov(Q)), as defined in (Agrawal
et al., 2023). Product Coverage is determined by
counting the number of distinct relevant products
returned by all reformulated queries. Following
(Agrawal et al., 2023), we set the number of refor-
mulated queries per original query to 10. Our eval-
uation focuses exclusively on the EN data points
within the test split of the ESCI dataset. By replicat-
ing the experimental setup and metrics, we directly
leverage the results reported in (Agrawal et al.,
2023), ensuring fairness and consistency. This ap-
proach also eliminates the need to reimplement
baseline methods due to the unavailability of their
private source code.

Result. Table 4 presents the results of all evaluated
methods. Notably, our MiniELM outperforms all
investigated baselines, including RLQR (Agrawal
et al., 2023), which is the second-best approach, de-
spite not being explicitly trained to maximize Prod-
uct Coverage. This superior performance can be
attributed to the implicit learning of Product Cov-
erage through our Relevance and Diversity reward
signals. These signals emphasize retrieving dis-
tinct yet relevant products that complement those
retrieved for the original queries, highlighting the
importance of diversifying results while maintain-
ing query relevance.

4.3 Additional Analysis

This analysis examines MiniELM’s performance
evolution and query quality during the online phase.
Figure 4 illustrates the evolution of reward signals
during the online training phase using DPO for
both accepted and rejected rewritten queries. The
queries are generated using the MiniELM model
variant with a GPT2 backbone. To highlight trends,
rewards are smoothed using a 5-window mean av-
erage.

As shown, both MiniELM'’s rewrites consistently
improve over time, reflected in rising reward scores.
This improvement highlights the effectiveness and
consistency of our RL training process, demonstrat-
ing the model’s ability to utilize feedback from
LLMs (acting as simulated human evaluators) to
refine query rewritings and enhance overall perfor-
mance.

We also perform a qualitative analysis to observe
how the same user queries are rewritten over time
during the online training phase, with some exam-
ples summarized in Table 5. As training progresses,
we observe that the rewritten queries increasingly
include additional information. Notably, the added
terms are typically generic, ensuring that the origi-
nal intent of the initial queries remains preserved
while enhancing their relevance and comprehen-
siveness.

5 Conclusion

This paper introduces MiniELM, a hybrid query
rewriting pipeline for e-commerce that optimizes
latency, cost, and adaptability. It balances perfor-
mance and efficiency through offline knowledge
distillation and online reinforcement learning. Ex-
periments show improved query relevance, diver-
sity, and user engagement. By leveraging LLM-
simulated interactions, MiniELM adapts to evolv-
ing user behavior and catalogs without costly anno-
tations, offering a scalable, cost-effective solution
for dynamic e-commerce.



Limitations

While the current implementation demonstrates sig-
nificant contributions, there are limitations that re-
quire further investigation. MiniELM is currently
tailored for English queries, limiting its usability
in multilingual e-commerce platforms. Expanding
the framework to accommodate multiple languages
would improve its generalization. Moreover, while
simulated feedback effectively accelerates online
adaptation, incorporating real human feedback—or
a hybrid approach combining both simulated and
real feedback—could further enhance its perfor-
mance.

Ethical Considerations and Broader
Impact

MiniELM introduces improvements in query
rewriting for e-commerce, but its deployment
should be taken with care to avoid potential ethical
concerns related to bias and transparency. Since
the model learns from historical data, it may re-
inforce existing biases, favoring popular brands
or frequently searched products while underrepre-
senting niche sellers. Transparency is another key
concern, as users and merchants have limited visi-
bility into how and why their queries are rewritten.
Without interpretability mechanisms, MiniELM’s
query modifications could lead to unintended shifts
in search results, affecting user trust and seller visi-
bility.

Despite these concerns, MiniELM has the poten-
tial for significant positive impact on e-commerce
search experiences if it is correctly deployed. By
bridging lexical gaps and enhancing query diversity,
it improves product discoverability, allowing users
to find relevant items more easily, even with am-
biguous or misspelled queries. This benefits both
consumers and smaller sellers, as it enables lesser-
known products to surface in search results. Addi-
tionally, MiniELM’s adaptive reinforcement learn-
ing mechanism ensures that query rewrites evolve
with changing trends, reducing reliance on static
query expansion rules. For e-commerce platforms,
this leads to better search efficiency, increased user
engagement, and a more scalable approach to query
understanding without costly human annotations.
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A Related Works

A.1 Discriminative Method

Discriminative methods frame query rewriting as
a retrieval task, expanding original queries with
relevant terms using pseudo-relevance feedback,
thesaurus-based techniques, and search log-based
methods. These approaches represent a progression
toward addressing semantic drift, adaptability, and
personalization challenges.

Pseudo-relevance feedback methods, such as those
by Xu and Croft (Xu and Croft, 2017), identify
expansion terms from top-ranked documents of
an initial query, blending global corpus analysis
with local feedback. While effective against word
mismatches, they are prone to semantic drift from
noisy or irrelevant top results, necessitating more
stable resources.

Thesaurus-based methods mitigate this instability
by using predefined lexical resources like WordNet.
Mandal et al. (Mandal et al., 2019) advanced this
approach with synonym extraction and Boolean
query generation, improving recall. However, the-
saurus dependency limits adaptability to dynamic
trends or rare queries, prompting the need for real-
time, user-driven solutions.

Search log-based techniques address these limita-
tions by leveraging user interactions, such as query
transitions and clicks, to generate rewrite candi-
dates dynamically. Li et al. (Li et al., 2022) demon-
strated their adaptability to evolving trends and
contextual personalization. Yet, biases toward fre-
quently searched queries hinder their performance
on long-tail terms, emphasizing the need for ap-
proaches that combine real-time insights with ro-
bust language understanding.

These advancements highlight the evolution of
discriminative methods toward adaptive and user-
informed query rewriting, while still grappling with
semantic reliability, trend adaptability, and query
diversity.

A.2 Generative Method

Generative methods have revolutionized query
rewriting by leveraging advanced neural archi-
tectures and training paradigms. Prominent ap-
proaches include reinforcement learning (RL)-
enhanced methods, transformer-based models, and
Large Language Model (LLM)-driven techniques.
RL-based methods optimize generative models for
task-specific goals, such as balancing relevance and
diversity, using custom reward functions. Agrawal



et al. (Agrawal et al., 2023) demonstrate their abil-
ity to align queries with human preferences and
maximize product coverage, though scalability and
performance on long-tail queries remain challeng-
ing.

Transformer-based models, like the cyclic transla-
tion framework by Qiu et al. (Qiu et al., 2021), uti-
lize pre-trained architectures to maintain semantic
consistency between rewritten and original queries.
This approach excels in handling frequent and dy-
namic queries but depends heavily on the quality
of pre-trained models and translation mechanisms.
LLMs, as demonstrated by Jagerman et al. (Jager-
man et al., 2023), generate semantically rich, di-
verse query expansions through strategies like zero-
shot, few-shot, and Chain-of-Thought prompting.
PRF-enhanced prompts further improve contextual
understanding, but these models face challenges
in fine-tuning for specific goals and impose high
resource demands. Product-agent systems, such as
those by Zhou et al. (Zhou et al., 2024), extend
LLM capabilities by integrating APIs and knowl-
edge graphs, enabling dynamic query adaptation
and addressing standalone LLM limitations.
Generative methods, particularly LLMs, face chal-
lenges in real-time e-commerce applications due
to high inference latency and computational costs,
making them unsuitable for direct online deploy-
ment. As a workaround, LLMs are often used in an
”offline” manner, where rewritten queries for popu-
lar searches are precomputed and cached (Agrawal
et al., 2023; Jagerman et al., 2023). While this
reduces latency, it introduces issues of staleness,
as offline models are not continuously updated to
reflect new products, trends, or user behaviors. In
dynamic e-commerce environments, this can result
in reformulations that fail to align with evolving
trends or updated product categories, ultimately de-
grading the relevance and quality of search results.

B Prompts for Human Simulation and Al
Feedback Labeling

In this section we list the prompts we use to simu-
late the users’ bio information and their interactions
with product lists.

Human Simulation. We first defined a pool of
user profiles by synthesizing their demographics
(e.g., gender, age, location, income) and prefer-
ences (e.g., price sensitivity, brand affinity, style,
material). By randomly sampling profiles from this
pool, we simulate diverse user interactions for the
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same queries and product lists. The full prompt
used to generate the profile pool is summarized in
Table 6.

Simulating interaction. Given the original query
@ and the list of products returned by its corre-
sponding rewritten query Q, we randomly sample
a user bio to simulate their interaction with the
product list PQ. Table 7 shows the prompt used
to simulate click behavior, with similar prompts
constructed for “add to cart” and “purchase” inter-
actions.



User simluation

Simulate the behavior of a random e-commerce user with specific demographics and
preferences influencing product choices:

Demographics:

Gender: Affects preferences in apparel or cosmetics.

Age: Influences style, spending, and product types (e.g., 18-25, 26-35, 36-50).
Location: Impacts climate-related, cultural, and trending products (e.g., North Amer-
ica, Europe, Asia).

Income: Determines spending power (low, middle, high, luxury).

Preferences:

Price Sensitivity: Willingness to pay beyond budget (low to high).

Brand Affinity: Preference for familiar or famous brands (low to high).

Style: Casual, business, luxury, trendy, minimalist, or classic.

Material: Preference for specific or eco-friendly materials when relevant.

Task

You are now a simulated user of this ecommerce platform.
Choose bio and preferences for the simulated user.

Table 6: Prompt used to synthesize user profile.

Instruction

User Profile: {simu_bio}

Criteria for a good list of products: 1. A good list of products for a query is which
has accurate representation of the user intent, demographics and preferences.

2. It should have a diverse set of products matching the query.

3. It should not have products too different from the query.

4 . The main product requested (Eg. toys for kids - toys is the main product) must be
given importance, not the additional clause. The additional clause must be used as a
qualifier.

Task

You are now a simulated user of this ecommerce platform and want to search products
using this query:{prompt}.

The site returns a list of product: {list_prompt}.

Given the bio and preferences for the simulated user and based on the query, then
answer this final question: How many items from this list will you click? Respond
with a single number only, DO NOT provide other information.

Table 7: Prompt used to synthesize click interaction.
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