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Abstract
Vector-Quantized Generative Models (VQGMs)
have emerged as powerful tools for image genera-
tion. However, the key component of VQGMs—
the codebook of discrete tokens—is still not well
understood, e.g., which tokens are critical to gen-
erate an image of a certain concept? This paper
introduces Concept-Oriented Token Explanation
(CORTEX), a novel approach for interpreting
VQGMs by identifying concept-specific token
combinations. Our framework employs two
methods: (1) a sample-level explanation method
that analyzes token importance scores in indi-
vidual images, and (2) a codebook-level expla-
nation method that explores the entire code-
book to find globally relevant tokens. Experi-
mental results demonstrate CORTEX’s efficacy
in providing clear explanations of token usage
in the generative process, outperforming base-
lines across multiple pretrained VQGMs. Be-
sides enhancing VQGMs transparency, CORTEX
is useful in applications such as targeted im-
age editing and shortcut feature detection. Our
code is available at https://github.com/
YangTianze009/CORTEX.

1. Introduction
Vector-Quantized Generative Models (VQGMs) have be-
come powerful tools for high-quality image generation using
discrete latent space representations (Ramesh et al., 2021;
Esser et al., 2021; Yu et al., 2021; Jin et al., 2023; Tian et al.,
2024). Despite their success, these models often exhibit con-
cerning behaviors (e.g., showing demographic disparities
in professional representation, as Fig. 1 demonstrates). Un-
derstanding these issues requires interpreting how VQGMs
internally represent and process concepts. A critical com-
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“A white doctor in the hospital”

“A black doctor in the hospital”

“A doctor in the hospital”

White doctor related tokens:
['23', '910', '11927', '1133', 
'8663', '8283', '9514', '12857', 
'1139', '5401']

Black doctor related tokens:
['1125', '6628', '13370', 
'16147', '8485', '11024', 
'4265', '15647', '6606', '3812']

Average tokens per image:

White doctor: 8.55

Black doctor : 2.32

Explanation

Explanation

Figure 1: Token-based analysis reveals racial bias in generative
models. While the model can generate both white and black doc-
tors when explicitly prompted (top, middle), neutral prompts (bot-
tom) show a systematic bias. CORTEX quantifies this bias through
token analysis, showing white doctor-associated tokens appear
nearly 4 times more frequently (8.55 vs 2.32 tokens per image).

ponent of these models is the codebook (Esser et al., 2021),
which acts as a learned dictionary of visual elements. This
codebook stores a finite set of discrete tokens, each repre-
senting various patterns or features within an image. How-
ever, not all tokens contribute equally to the generation
of a particular concept (e.g., object categories or visual
attributes), leading to the need for methods that can dis-
tinguish between concept-relevant and background tokens.
Improving the interpretability of these token-concept rela-
tionships can help identify potential biases in the model’s
representations and enable precise control through targeted
image editing.

Given any user-interested concept, our goal is to select to-
kens from the codebook whose combination can best repre-
sent it. A straightforward approach to token interpretation
is to select tokens that frequently appear in images gener-
ated for a specific concept (Blei et al., 2003). However,
this method often selects tokens that represent contextual
or background elements, resulting in explanations cluttered
with irrelevant information. This inability to differentiate
between essential and non-essential tokens hinders a clear
understanding of how the model represents concepts.
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To address this issue, we draw on the Information Bottleneck
principle (Tishby et al., 2000), which focuses on compress-
ing input data while retaining the most relevant information
for a given label. In the context of VQGMs, we apply this
principle to train an Information Extractor, a module that
maps image tokens back to semantic labels—reversing the
information flow of generative models which typically map
semantic descriptions to images.

Based on this, we propose CORTEX (Concept-Oriented
Token Explanation) to interpret VQGMs, which utilizes the
Information Extractor to understand the relation among the
codebook, generated images, and visual concepts. CORTEX
comprises two complementary methods: a sample-level
explanation method that analyzes individual token impor-
tance in generated images, and a codebook-level explanation
method that explores how codebook tokens are combined
to represent specific concepts. By systematically identify-
ing the most critical tokens and filtering out non-essential
information through the Information Extractor, CORTEX
provides clear, interpretable explanations of how VQGMs
represent and generate specific concepts.

Experimental results demonstrate the effectiveness of COR-
TEX through comprehensive evaluation using various pre-
trained classification models, including ResNet and Vision
Transformer variants. Our sample-level explanation method
reveals consistent patterns of concept-relevant tokens in gen-
erated images, while the codebook-level explanation method
extends this understanding by discovering fundamental to-
ken combinations that characterize each concept. Together,
these methods enhance the transparency and controllability
of VQGMs, providing valuable insights into the model’s in-
ternal representations and offering practical tools for down-
stream generative tasks such as precise image editing, as
well as identifying potential biases in model representations
(e.g., revealing how tokens associated with white doctors
appear more frequently than those of black doctors even
with a neutral prompt, as shown in Figure 1). Our main
contributions are summarized as follows:

• We develop a sample-level explanation method that
identifies concept-relevant token combinations across
generated images, providing initial insights into how
VQGMs represent visual concepts.

• We further introduce an codebook-level explanation
method that extends our analysis to the entire code-
book space, utilizing the same Information Extractor
to discover fundamental token combinations that char-
acterize specific concepts.

• Our experiments validate the effectiveness of our
framework in enhancing VQGMs interpretability and
enabling applications such as precise image editing
and bias identification.

2. Problem Statement
2.1. Vector-Quantized Generative Models

Vector-Quantized Generative Models (VQGM) (Ramesh
et al., 2021; Esser et al., 2021; Yu et al., 2021; Jin et al.,
2023) generate images via decoding from discrete tokens.
These models are typically designed for conditional genera-
tion and are capable of generating images based on given
text descriptions or class labels. During the image genera-
tion process, these models typically consist of three parts: a
codebook that stores token information, a transformer-based
predictor that predicts tokens based on the codebook and the
concepts, and a decoder that decodes tokens into images.

Let G be a VQGM with a codebook C ∈ RK×d =
[t0, . . . , tK−1]

⊤, where K is the total number of unique
tokens, and ti ∈ Rd is a d-dimensional vector represent-
ing the token i. The codebook is pretrained on a large
volume of image data to encode a diverse set of visual ele-
ments (Esser et al., 2021). The codebook maps continuous
high-dimensional visual features into discrete tokens by
serving as a look-up table. When generating an image, the
model first uses its transformer predictor to predict a se-
quence of m2 tokens according to the input concept. It then
looks up each token’s corresponding vector in the codebook.
These vectors are arranged into a new matrix E ∈ Rd×m×m,
which are called token-based embeddings. More details
on how these token-based embeddings are extracted from
the codebook can be found in Appendix A.1. Finally, the
decoder maps this embedding E into an H ×H image.

2.2. Problem Definition

Given a pretrained VQGM with a codebook C ∈ RK×d =
[t0, . . . , tK−1]

⊤, our goal is to find token-based explana-
tions T ∗ = {T ∗

1 , T ∗
2 , ..., T ∗

n } for a set of concepts of inter-
est Y = {y1, y2, ..., yn}, where each T ∗

i ⊂ C corresponds
to yi. Each concept yi ∈ Y represents a certain aspect of
visual content. These concepts are specified by users, which
can be contrastive (e.g., male vs. female in gender) or par-
allel (e.g., different object categories like “cat”, “dog”, and
“bird”). For each concept yi, its corresponding explanation
T ∗
i is a combination of tokens drawn from the codebook

that characterizes how the VQGM represents the concept in
its generative process: T ∗

i ⊆ {t0, . . . , tK−1}.

The key challenge in explaining generative models lies
in identifying truly concept-relevant tokens while filter-
ing out background or irrelevant information. During im-
age generation, VQGM constructs token-based embeddings
E ∈ Rd×m×m using high-dimensional features that are not
intuitively comprehensible to humans. For instance, when
explaining the concept “dog”, we need to identify tokens
that capture the dog’s distinctive features while excluding
those representing contextual elements like sky or terrain.
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Figure 2: CORTEX has three components: an Information Extractor module and two explanation methods. The sample-level explanation
method identifies concept-relevant tokens for each individual image, and the codebook-level explanation method optimizes token
combinations that represent the concept.

To address this challenge of extracting concept-specific to-
kens, we develop an information extractor in Section 3.2.

3. Methodology
3.1. Overview

Our framework of concept-specific token explanation for
VQGMs is shown in Figure 2. We start by developing
an information extractor which maps codebook tokens
to concepts. Based on the information extractor, we de-
velop two complementary methods to explain how VQGMs
generate images with codebook tokens. The first method,
called sample-level explanation, reveals how tokens form
concepts in actual generated images. The second method,
called codebook-level explanation, interprets how VQGMs
represent concepts in codebook space. These explanations
illuminate how users can identify potential weaknesses in
VQGMs and make targeted edits to generated images.

3.2. Information Extractor

The Information Extractor Module (IEM) serves as the foun-
dation of our framework. Unlike generative models that

produce images based on textual descriptions and concepts,
the IEM works in reverse, mapping from images (code-
book tokens) to concepts. Given a token-based embedding
E ∈ Rd×m×m of an image, the trained IEM f generates a
probability distribution over all concepts:

p = f(E) ∈ [0, 1]n, (1)

where p = [p1, p2, ..., pn] is a probability distribution over
the concepts Y = {y1, y2, ..., yn}, with each pi representing
the probability that concept yi is present in the embedding
E. This formulation allows us to quantify how strongly each
concept is represented in any given token-based embedding.

To train the IEM, we first use VQGM to generate a training
dataset by using each concept yi ∈ Y as either text prompts
or class conditions to generate images. For each image,
we also obtain its corresponding token-based embedding
E. The IEM is trained as a supervised classifier to map em-
beddings to their respective concepts, learning to recognize
concept-specific token patterns within VQGM’s output.

The design of our IEM inherently aligns with the Infor-
mation Bottleneck (IB) principle (Tishby et al., 2000). To
accurately predict the probabilities for each concept, the
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IEM must identify and extract the most informative features
while discarding irrelevant ones. This natural requirement
for discriminative feature extraction mirrors the core idea
of the IB principle, which seeks to compress input infor-
mation while preserving task-relevant features. Previous
studies have shown that such compression leads to more
interpretable representations (Bang et al., 2021; Yang et al.,
2022), as it forces the model to focus on the essential fea-
tures of each concept. By leveraging this property, we can
extract explanations from the IEM by contrastively ana-
lyzing how different tokens represent the given concepts.
Given the trained IEM f and concepts Y , we aim to find the
optimal token combinations T ∗ = {T ∗

1 , T ∗
2 , ..., T ∗

n } that
explain each concept:

T ∗ = ϕ(f, [E], Y ), (2)

where ϕ represents either our sample-level explanation
method that requires input embeddings E to analyze to-
ken importance in specific images, or our codebook-level
explanation method that explores the entire codebook space
without needing the Embedding E.

3.3. Sample-level Explanation

We first propose a sample-level explanation method based
on token importance analysis. Formally, given a token-
based embedding E ∈ Rd×m×m generated by the VQGM,
we compute the saliency score Si (Simonyan, 2013; Chefer
et al., 2021; Selvaraju et al., 2020; Smilkov et al., 2017) of
each token with respect to each concept yi as:

Si =
1

N

N∑
l=1

∇Efyi
(E+ ϵl), (3)

where fyi
(E) represents the prediction probability of con-

cept yi (i.e., pi), N is the number of samples, and ϵl ∼
N (0, σ2I) with σ = α(max(E)−min(E)). The resulting
Si ∈ Rd×m×m has the same dimensions as E.

We then calculate the Token Importance Score (TIS) for
each token tj in the m×m grid with respect to each con-
cept yi. The TIS serves as a measure of the importance or
relevance of the token to the prediction of concept yi, with
higher values indicating higher importance. TIS(tj , yi) is
computed by taking the maximum value across all d chan-
nels of the gradient at the specific position corresponding to
the token tj as follows:

TIS(tj , yi) = max
1≤k≤d

|Si(k, pj)|, (4)

where pj represents the position of token tj in the m×m
grid, and Si(k, pj) denotes the saliency score at position pj
in the k-th channel for concept yi. This operation reduces
the d-dimensional gradient vector at each token’s position
to a scalar, representing the token’s relevance to concept yi.

After calculating the TISs, we identify relevant token com-
binations for each concept yi:

T ∗
image,i = Top-n(tj : j ∈ 1, . . . ,m2, key = TIS(·, yi)),

T ∗
concept,i = Top-k(

⋃
sampled images

T ∗
image,i, key = Freq).

(5)
Here, T ∗

image,i represents the Top-n tokens with the high-
est TIS for each specific image with respect to concept yi,
providing an image-specific explanation. It identifies the
most distinguishable tokens for generating the target image.
T ∗

concept,i aggregates these image-specific sets across all sam-
pled images related to concept yi and selects the k most
frequent tokens, offering a concept-specific explanation.

3.4. Codebook-level Explanation

While sample-level explanation reveals how tokens are uti-
lized in specific generated images, it only examines existing
token patterns in generated data. To better understand the
semantic meaning of model components within VQGMs,
we propose an optimization-based method that directly ex-
plores the entire codebook space. For any concept yi ∈ Y ,
this approach directly searches for token combinations that
best characterize the concept.

Given concept yi, we aim to find a token selection matrix
P ∈ Rm2×K , where m2 is the total number of token posi-
tions in the embedding E, and K is the size of the codebook.
Each row of P contains a probability distribution over the
K possible tokens. We employ a binary mask Mmask to
specify the image regions where the tokens are optimized.

Since the direct selection of discrete tokens from the
codebook is not differentiable, we employ Gumbel-
Softmax (Jang et al., 2016) for differentiable token selection.
This technique transforms the discrete selection process into
a continuous, differentiable operation, enabling the use of
gradient-based optimization algorithms to find the optimal
token combinations.

E = GumbelSoftmax(P, τ)× C, (6)

where GumbelSoftmax(P, τ) ∈ {0, 1}m2×K is a one-hot
matrix representing the selected tokens, τ is the temperature
parameter, and C ∈ RK×d is the codebook matrix (details
in Appendix A.4). The optimization of P is conducted by:

Pk+1 = Pk − η(∇PL(Pk)⊙Mmask),

L(P) = −fyi(E) + α∥E∥22,
(7)

where α is a regularization parameter and η is the learning
rate. After optimization converges, we obtain the final se-
lection matrix P∗. The optimal token combination T ∗

i for
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concept yi is derived from P∗ for the unmasked positions:

T ∗
codebook,i = {tk : k = argmax

j
P∗

l,j,∀l where Mmask,l = 1}.

(8)

By applying this process to each concept in Y , we can obtain
the complete set of token-based explanation T ∗

codebook =
{T ∗

codebook,1, T ∗
codebook,2, ..., T ∗

codebook,n} that shows how
VQGMs represent different concepts at the codebook level.

Together, these complementary approaches provide both
sample and global perspectives on how VQGMs encode
conceptual information in their token-based representations.

3.5. Applications of Token-based Explanations

Our framework’s token-level explanations offer several prac-
tical applications:

• Shortcut Feature Detection. Using our sample-level
explanation T ∗

concept, we can quantitatively detect if short-
cut features or concepts are involved in image generation.
For instance, given demographic concepts y1 and y2 (e.g.,
“white doctor” and “black doctor”), we can measure bias
by comparing the frequencies of their corresponding to-
ken sets T ∗

concept,1 and T ∗
concept,2 in images generated from

neutral prompts (e.g., “doctor”). The systematic differ-
ences in these frequencies provide a statistical measure of
the model’s inherent biases.

• Targeted Image Editing. Our codebook-level explana-
tion method enables precise concept manipulation by op-
timizing token selection matrix P within a specified mask
region Mmask. Given a target concept yi, we optimize the
tokens in the masked region to maximize fyi

(E), effec-
tively steering the image representation towards concept
yi while preserving tokens outside Mmask. The optimized
token set T ∗

codebook,i then provides a controlled way to edit
local image regions according to the target concept while
maintaining the integrity of surrounding content.

4. Experiments
Our proposed framework aims to explain concept-specific
information in VQGMs on a diverse range of concepts. The
experiments are designed to verify that the token combina-
tions T ∗ selected by CORTEX are indeed the most relevant
to the concepts Y being explained.

4.1. Experimental Setup

To validate our proposed explanation method, we adopt the
methodology of treating each category in the ImageNet chal-
lenge dataset as a distinct concept yi to be explained (Chefer
et al., 2021; Binder et al., 2016; Simonyan, 2013; Deng et al.,
2009). To validate that our selected tokens are indeed the

Table 1: Comparison of IEMs prediction accuracy (%).

Model Top-1 Top-3 Top-5 Top-10
CNN-based Extractor 53.07 71.37 77.73 84.65
ResNet-based Extractor 51.43 69.23 76.00 83.12
Transformer-based Extractor 48.71 66.74 73.63 81.43

most crucial for concept representation, we evaluate our
method through a counterfactual approach: if these tokens
are truly critical, masking them should significantly im-
pact the model’s ability to recognize the target concept. To
ensure the robustness of our evaluation, we employ four
well-established pretrained classification models as bench-
marks. The selected pretrained models include variants of
ResNet (He et al., 2016) (ResNet18 and ResNet50) and
Vision Transformer (ViT) (Dosovitskiy, 2020) (ViT-B/16
and ViT-B/32). These models represent state-of-the-art ap-
proaches in image recognition. To elucidate the selected T ∗

from our proposed explanation method ϕ of VQGMs, we
use a synthetic data set generated by VQGAN (Esser et al.,
2021), which encompasses the same categories as ImageNet
(synthetics dataset details in Appendix A.2).

In our experiment, the IEM f is trained as an image classi-
fier with 1, 000 ImageNet categories. We train 3 IEMs with
different architectures: (1) CNN-based Extractor (CE), (2)
ResNet-based Extractor (RE), and (3) Transformer-based
Extractor (TE). IEMs’ architectures can be found in the
Appendix A.3. All IEMs take token-based embedding
E ∈ R256×16×16 as input and output probability distribu-
tions over 1000 ImageNet labels. Based on Table 1, the per-
formance of our models, with Top-1 accuracies of 53.07%,
51.43%, and 48.71% for CNN-based, ResNet-based, and
Transformer-based architectures, respectively, is significant
considering the potential inaccuracies introduced by VQ-
GAN image generation process. Despite this challenge, the
high Top-5 accuracies (exceeding 73%) demonstrate that
our IEMs effectively capture the relationship between token
patterns and image labels.

4.2. Sample-level Explanation Evaluation

Experimental Design. In this part, our experiments aim to
validate that the token combinations T ∗

image and T ∗
concept iden-

tified by our sample-level explanation method are indeed
the most relevant and representative of specific concepts. In
our image-specific analysis, given each concept yi in Y , we
define T ∗

image,i as the set of the Top-n tokens with the highest
TIS in images containing concept yi, where n ranges from
5 to 50 in increments of 5. For each token in T ∗

image,i, we
mask the corresponding regions in these images and mea-
sure the change in softmax probability for concept yi across
four pretrained models: ViT-B/16, ViT-B/32, ResNet18, and
ResNet50. As a baseline, we randomly select n tokens and
mask the associated regions in the same images to compare
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Figure 3: Token visualization for different concepts using our
sample-level explanation method. Each row shows 4 images of a
distinct concept. Red boxes highlight high-TIS tokens, revealing
consistent identification of class-specific features (e.g., eyes, neck,
red crowns, flame) across images.

the effect with masking tokens in T ∗
image,i.

In our concept-specific analysis, given each concept yi, we
first identify the Top-n (n = 20) highest-TIS tokens in
each training image containing concept yi to form individ-
ual T ∗

image,i sets. From the union of these sets across all
training images containing the concept yi, we select the
Top-k (k = 100) most frequent tokens to form T ∗

concept,i. We
compare this with a frequency-based baseline of selecting
the Top-100 most frequent tokens in all images containing
the concept yi without using our IEM f . We then mask
the corresponding patches of selected tokens in test im-
ages containing the concept yi and measure the change in
the probability of the target concept. Our analyses use the
1000 ImageNet classes as our set of concepts of interest
Y = y1, y2, ..., y1000, allowing us to evaluate our method’s
effectiveness across a diverse range of visual concepts.

Image-specific Evaluation Results. Figure 3 demon-
strates the efficacy of our sample-level explanation method
in identifying concept-related features across multiple im-
ages (more results can be found in Appendix A.7). Each
row in the figure represents a distinct label. For each la-
bel, we present 4 different images. Within each image, we
highlight a specific token in T ∗

image,i using a red bounding
box. These visualizations demonstrate our sample-level
explanation method’s ability to focus on tokens that often
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Figure 4: Image-specific sample-level explanation method evalua-
tion results: average probabilities vs. number of masked tokens.

correspond to specific, concrete visual features within each
concept. For instance, the consistent highlighting of eyes,
red crowns, and other distinctive features across multiple
images of the same class indicate that these tokens can effec-
tively represent meaningful, class-specific characteristics.

Quantitatively, Figure 4 shows the average change in soft-
max probability for specific labels as we mask from 5 to 50
high-TIS tokens. Across two SOTA pretrained ViT mod-
els, our method consistently leads to a steeper decline in
probability compared to random selection, demonstrating
its effectiveness in identifying tokens crucial to concept rep-
resentation. Notably, both CNN-based and ResNet-based
IEMs exhibit similar declining trends, suggesting that dif-
ferent models attend to similar tokens for specific concepts,
while the Transformer-based IEM shows relatively lower
performance. This lower performance of the Transformer-
based IEM can be attributed to its weaker classification
capabilities, which may result in less accurate information
learning and token importance estimation. These results
validate our sample-level explanation method’s ability to
identify label-relevant features and provide interpretable
insights into VQGMs.

Concept-specific Evaluation Results. Table 2 presents
the concept-specific sample-level evaluation results across
4 different pretrained models. When masking tokens based
on our T ∗

concept,i, we mask fewer tokens on average (n1 =
42.176, n2 = 40.629, and n3 = 45.552 for the CNN-based,
ResNet-based, and Transformer-based extractors, respec-
tively) compared to the baseline (nb = 64.166). Despite
masking smaller regions, our CNN-based and ResNet-based
methods achieve superior performance—for instance, with
ResNet50, they decrease accuracy by 46.6% and 46.8% and
probability by 0.403 and 0.404, respectively, compared to
baseline’s 41.9% and 0.365. While our Transformer-based
extractor shows comparable performance to the baseline
(e.g., 42.4% vs 42.2% accuracy drop for ResNer18), it also
achieves this with fewer masked tokens. These significant
changes in prediction accuracy with fewer masked tokens
indicate that our T ∗

concept successfully identifies regions con-
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Table 2: Concept-specific sample-level explanation evaluation results (Acc: prediction accuracy, P: probability, n: number of masked
tokens, ∆A: change in accuracy, ∆P : change in probability).

Pretrained
Model Acc P CE RE TE Baseline

n ∆A ↓ ∆P ↓ n ∆A ↓ ∆P ↓ n ∆A ↓ ∆P ↓ n ∆A ↓ ∆P ↓
ResNet18 55.6% 0.452

42.176

-45.4% -0.381

40.629

-45.5% -0.382

45.552

-42.4% -0.358

64.166

-42.2% -0.356
ResNet50 56.1% 0.472 -46.6% -0.403 -46.8% -0.404 -43.1% -0.374 -41.9% -0.365
ViT-B/16 59.0% 0.472 -9.50% -0.112 -9.60% -0.113 -7.01% -0.089 -7.30% -0.090
ViT-B/32 58.0% 0.442 -36.0% -0.289 -36.0% -0.289 -32.7% -0.260 -33.2% -0.264

taining crucial information for concept yi. This demon-
strates that our IEMs effectively fulfill their role in the Infor-
mation Bottleneck framework—identifying and preserving
the most essential concept-specific tokens while filtering out
irrelevant ones, regardless of the architecture used.

4.3. Discussion

Our counterfactual masking experiments demonstrate that
removing the tokens identified by CORTEX substantially
degrades pretrained classification models’ performance, in-
dicating that these tokens indeed capture the most discrim-
inative features for each target concept. By contrast, ran-
domly masking the same number of tokens leads to rela-
tively smaller performance drops. This comparative analysis
confirms the effectiveness of our sample-level explanation
method in pinpointing concept-critical tokens, thereby val-
idating the interpretability and reliability of CORTEX’s
token selections.

5. Application of Explanations
This section demonstrates practical applications of our COR-
TEX framework through two key use cases. First, we show
how CORTEX can be used to detect and quantify biases in
text-to-image models by analyzing concept-specific token
distributions. Second, we illustrate CORTEX’s capability
in targeted image editing by optimizing specific concept-
relevant tokens.

5.1. Bias Detection in Text-to-Image Models

To demonstrate CORTEX’s capability in detecting biases
within a specific text-to-image model, Dalle-mini (Dayma
et al., 2021), we conducted experiments focusing on two
common types of biases: gender and color representation in
professional settings. We specifically examined the case of
doctor representations, as professional representation bias
has been a significant concern in generative models.

Experimental Setup. Our experiment consisted of two
phases. In the first phase, we generated training data us-
ing specific prompts to establish baseline representations.

Table 3: IEM Classification
Accuracy

Bias Type Accuracy (%)

Gender 99.7
Color 99.95

For color bias analysis, we
used the prompts ”A black
doctor in the hospital” and
”A white doctor in the hos-
pital”. For gender bias anal-
ysis, similar prompts were
used to generate images rep-
resenting male and female

doctors. We generated 10,000 images for each prompt, di-
viding them into training (8,000), validation (1,000), and
test (1,000) sets. These images were used to train our IEM
as a binary classifier, achieving high classification accuracy,
as shown in Table 3. Using the trained IEMs, we applied
our sample-level explanation method to identify tokens that
characterize each concept (color & gender). This provided
us with a set of tokens that could serve as indicators of
potential biases in the model’s representations.

Table 4: Comparison of Mean Frequency (per image) and Cliff’s δ
for different attributes.

Mean Frequency (per image) Cliff’s δ

Top-5 Top-10 Top-20 Top-5 Top-10 Top-20

Color
White 4.80 6.61 8.55 0.311 0.418 0.456
Black 2.35 2.18 2.32

Gender
Male 7.37 8.27 5.65 0.359 0.394 0.264
Female 3.27 3.43 3.45

Bias analysis with the Neutral Prompt. In the second
phase, we generated 2, 000 images using the neutral prompt
“A doctor in the hospital” to investigate potential biases. For
each demographic attribute, we analyzed the frequency of
tokens from their concept-specific token sets (T ∗

concept,male,
T ∗

concept,female, T ∗
concept,white, and T ∗

concept,black). Following
Equation 5, we identify the Top-n tokens (n = 5, 10, 20)
with highest TIS in each training image, then select Top-k
(k = 10) most frequent tokens to form each concept-specific
set. As shown in Table 4, using Cliff’s δ (detailed in Ap-
pendix A.6), tokens from T ∗

concept,white appear nearly four
times more frequently than T ∗

concept,black (8.55 vs 2.32 to-
kens per image when n = 20, δ = 0.456). For gender,
tokens from T ∗

concept,male appear more than twice as fre-
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Original Image Step 1 Step 500 Step 1000 Step 3000 Target Example

Figure 5: Codebook-level optimization-based image editing process.

quently as T ∗
concept,female (8.27 vs 3.43 tokens per image

when n = 10, δ = 0.394). This systematic bias in token fre-
quencies directly corresponds to observable patterns in the
model’s outputs, when given the neutral prompt “a doctor
in the hospital”, the model consistently generates images
of white male doctors. These results demonstrate COR-
TEX’s effectiveness in detecting and quantifying biases in
text-to-image models.

5.2. Image Editing

Figure 5 shows the visualization of the image editing pro-
cess using our token selection codebook-level explanation
method proposed in section 3.4. By applying Mmask to con-
strain optimization to only the tokens corresponding to the
bird’s head region, these sequences demonstrate the gradual
transformation of one bird species into another while pre-
serving other regions. Using the target bird species as con-
cept yi, our method optimizes T ∗

codebook,i within the masked
region, resulting in progressive changes to features like beak
shape and color. This controlled transformation illustrates
our method’s ability to identify and manipulate concept-
specific tokens effectively.

5.3. Discussion

Our sample-level explanation detects shortcut features or
biases by analyzing how frequently certain concept tokens
appear under neutral prompts. Meanwhile, the codebook-
level explanation enables localized image editing by selec-
tively refining tokens in a chosen region, providing both
interpretability and precise control in generative modeling.

6. Related Work
Vector quantization in computer vision. Vector quanti-
zation has been instrumental in advancing image generative
models (Gray, 1984; Nasrabadi & Feng, 1988). VQ-VAE

(Van Den Oord et al., 2017) pioneered the use of discrete
latent codes for efficient image reconstruction, overcom-
ing “posterior collapse” issues in VAEs. DALL-E (Ramesh
et al., 2021) extended this to text-to-image generation, while
VQGAN (Esser et al., 2021) and ViT-VQGAN (Yu et al.,
2021) enhanced image quality through perceptual and adver-
sarial objectives. In video generation, MAGVIT (Yu et al.,
2023), VideoPoet (Kondratyuk et al., 2023), and LaVIT (Jin
et al., 2024; 2023) applied vector quantization for spatial-
temporal modeling and multimodal learning. FSQ (Mentzer
et al., 2023) simplifies vector quantization with efficient
scalar quantization, while MAGE (Li et al., 2023) combines
masked token modeling with generative objectives to im-
prove image representation learning. Our work builds upon
these VQGMs, offering a novel approach to interpreting dis-
crete tokens and providing insights into visual information
encoding and utilization.

Vision model explainability. Traditional approaches to
explaining vision models primarily fall into two categories:
heatmap-based methods (Sundararajan et al., 2017; Sel-
varaju et al., 2020; Binder et al., 2016; Gandelsman et al.,
2023; Chefer et al., 2021; Wang et al., 2020; 2024; Bog-
gust et al., 2023; Jetley et al., 2016; Gupta et al., 2022;
Du et al., 2018), which highlight influential image regions,
and optimization-based methods (Nguyen et al., 2016b; Er-
han et al., 2009; Yosinski et al., 2015; Nguyen et al., 2015;
Simonyan, 2013; Nguyen et al., 2016a; FEL et al., 2023;
Goh et al., 2021; Zimmermann et al., 2021), which generate
synthetic inputs to maximize specific activations. While
insightful, these pixel-level approaches are limited in ex-
plaining VQGMs. Our CORTEX approach extends this to
the token level, providing concept-specific explanations of
discrete latent representations. This offers deeper insights
into VQGMs’ generative processes, bridging traditional and
modern explainability.

8



Concept-Centric Token Interpretation for Vector-Quantized Generative Models

7. Conclusion
In this paper, we introduced CORTEX, a framework that
interprets VQGMs through concept-specific token analy-
sis guided by the Information Bottleneck principle. Our
experiments show that CORTEX effectively identifies to-
kens critical to concept representation, enabling not only
fine-grained image editing but also systematic bias detec-
tion by examining token distributions for sensitive attributes.
By revealing how codebook tokens capture high-level con-
cepts, CORTEX enhances transparency and controllability
in generative models. Future work includes extending COR-
TEX to a broader range of VQGMs and vision-language
models (Shi et al., 2025), such as video-based models, and
further exploring its potential usability (Wu et al., 2024) in
model improvement.
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A. Appendix
A.1. Codebook Extraction in VQGMs

Vector-Quantized Generative Models (VQGMs) utilize a codebook as a learned dictionary of discrete tokens to represent
high-dimensional visual features. During the encoding process, input images are passed through an encoder to produce
continuous latent representations, which are then quantized by mapping each vector to its nearest neighbor in the codebook
using vector quantization. The resulting sequence of discrete token indices forms the compressed representation of the
image.

Formally, let z ∈ Rd be a latent vector produced by the encoder, and C = {t0, t1, . . . , tK−1} be the codebook with K
codebook entries, where each ti ∈ Rd. The quantized output is obtained via:

t∗ = argmin
ti∈C

∥z− ti∥22

This process is repeated for each location in the latent grid (e.g., 16× 16), resulting in a grid of token indices that compactly
represent the input image. These tokens are then used as input to the decoder for image reconstruction or generation.

A.2. Symthetic Dataset

To evaluate our proposed methods, we utilize a synthetic dataset generated by VQGAN (Esser et al., 2021). Using a synthetic
dataset rather than real-world images offers two key advantages: (1) it provides direct access to the token-based embeddings
E during the generation process, enabling us to analyze how the model encodes concepts at the token level, and (2) it ensures
that the data perfectly matches the token distribution learned by the generative model, eliminating potential distribution
gaps between training and evaluation. This synthetic dataset encompasses all ImageNet categories, allowing us to directly
examine how the generative model utilizes tokens to encode concept-specific information.

The dataset consists of:

• 1,000,000 training images

• 300,000 validation images

• 50,000 test images

The images are evenly distributed across all ImageNet categories, resulting in 1,000, 300, and 50 images per category in the
training, validation, and test sets, respectively. Each generated image has a resolution of 256× 256 pixels and is represented
by a 16 × 16 grid of tokens. During the generation process, we obtain both the generated image and its corresponding
token-based embedding E, enabling direct analysis of the relationship between tokens and visual concepts.

A.3. Information Extractor

This appendix provides details on the structure of two Information Extractor: CNN-based model and Resnet-based model.

A.3.1. CE: CNN-BASED EXTRACTOR

The CNN-based Extractor (CE) is a convolutional neural network designed for image classification. The model comprises
two main blocks, each containing four convolutional layers (conv1 1 to conv1 4 and conv2 1 to conv2 4). Each convolutional
layer utilizes 512 filters with a 3× 3 kernel size, stride of 1, and padding of 1, followed by batch normalization and ReLU
activation. Max pooling (2×2 kernel, stride 2) is applied after each block. The network concludes with three fully connected
layers: the first transforms 512× 4× 4 input features to 4096 output features, the second maintains 4096 features, and the
final layer maps to the number of classes. Additional features include batch normalization and ReLU activation after the first
two fully connected layers, with dropout (0.5) applied after the first fully connected layer.

A.3.2. RE: RESNET-BASED EXTRACTOR

The ResNet-based Extractor (RE) is an advanced model incorporating residual connections and Squeeze-and-Excitation
(SE) blocks. The network consists of two main layers, each containing 3 residual blocks. Each residual block comprises two
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convolutional layers (3 × 3 kernel, maintaining channel size) with batch normalization and ReLU activation, a shortcut
connection, and an SE block for channel-wise attention. The SE block employs global average pooling followed by two
fully connected layers with reduction and expansion, using sigmoid activation for generating attention weights. The model
concludes with global average pooling to reduce spatial dimensions, followed by two fully connected layers: 512 to 2048
features, and 2048 to the number of classes. Batch normalization and ReLU activation are applied after the first fully
connected layer, with dropout (0.5) implemented.

A.3.3. TE: TRANSFORMER-BASED EXTRACTOR

The Transformer-based Extractor (TE) processes input features [B, 256, 16, 16] by reshaping them into 256 sequences of
16×16 patches. These patches are projected to 512 dimensions through a linear layer with LayerNorm and GELU activation.
A learnable class token is prepended, and learnable positional embeddings are added after scaling by

√
512. The backbone

comprises 12 encoder layers with Pre-LN and dual-stream normalization. Each encoder contains 8-head self-attention with
dropout (0.2) and a feed-forward network (512 → 2048 → 512) with GELU activation. Both attention and feed-forward
outputs undergo BatchNorm before residual connections. For classification, the class token passes through LayerNorm and
a two-layer MLP (512 → 1024 with LayerNorm, GELU, and dropout), followed by projection to class logits.

Both CE, RE, and TE are designed to process input tensors with 256 channels and spatial dimensions of 16× 16 tokens.
While the Transformer-based architecture demonstrates marginally lower performance metrics, this outcome aligns with our
deliberate design choice to maintain a lightweight model structure. Given IEM’s requirement for computational efficiency,
we implemented a relatively shallow Transformer architecture, which may constrain its potential to surpass CNN-based
models in this specific token pattern recognition task. Nevertheless, the overall performance demonstrates both architectures’
capability to effectively learn meaningful representations from token-based input embeddings E.

A.3.4. TRAINING SETTINGS

Training setting for CE and RE. These information extractors were trained using a batch size of 256 for 80 epochs,
with the task involving classification across 1000 classes. We employed the Adam optimizer with an initial learning rate of
0.001 and weight decay of 1e− 4. To adjust the learning rate during training, we implemented a StepLR scheduler, which
decreased the learning rate by a factor of 0.1 every 20 epochs. The loss function used for training was Cross Entropy Loss.
Our experimental setup allowed for the training of multiple model architectures under consistent conditions, enabling fair
comparison of their performance.

Training setting for TE. Due to the distinct characteristics of transformer-based architectures, we adopted a specialized
training strategy different from CNN and ResNet approaches. Specifically, we employed AdamW optimizer with weight
decay 1e-4, combined with a hybrid learning rate schedule consisting of a linear warmup phase (10% of total iterations)
followed by cosine annealing. The initial learning rate was set to 1e-3. For training stability and efficiency, we implemented
mixed-precision training using automatic mixed precision (AMP) with gradient scaling. The model was trained for 80 epochs
with a batch size of 256. This configuration addresses the optimization challenges specific to transformer architectures while
maintaining stable gradient flow throughout the training process.

A.4. Gumbel-Softmax Technique for Token Selection Optimization

In our implementation, we employ the Gumbel-Softmax technique to optimize the selection of tokens from the codebook.
This method enables differentiable sampling from a discrete distribution, which is essential for our gradient-based optimiza-
tion process. The core of our approach involves a matrix P of shape (256, 16384), where each row represents a probability
distribution over the codebook tokens.

The Gumbel-Softmax approximation operates by adding Gumbel noise to the logits (log probabilities) derived from P at
each optimization step. The Gumbel-Max trick states that for a categorical distribution with class probabilities pi, sampling
can be performed as:

argmaxi(log(pi) + gi) (9)

where gi are i.i.d. samples from Gumbel(0, 1) distribution.
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We then apply a softmax function with a temperature parameter τ to these noisy logits:

yi =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

(10)

In the “hard” version of this technique, we convert this soft distribution to a one-hot vector by selecting the maximum value:

yhard = onehot(argmaxi(yi)) (11)

The final output is then:

y = stop gradient(yhard − y) + y (12)

This process allows us to sample discrete tokens while maintaining differentiability, thereby enabling backpropagation
through the sampling process.

A key feature of the Gumbel-Softmax is the temperature parameter τ , which controls the discreteness of the samples. As τ
approaches zero, the samples become more discrete, closely approximating one-hot vectors. Conversely, as τ increases, the
distribution becomes smoother and more uniform.

Throughout the optimization process, we update the P matrix based on the gradients computed through this differentiable
sampling procedure. The gradient of the Gumbel-Softmax estimator with respect to the logits is:

∂yi
∂ log(pk)

=
yi(δik − yk)

τ
(13)

where δik is the Kronecker delta.

By utilizing this approach, we can optimize the selection of discrete tokens from the codebook in a manner compatible with
gradient-based optimization methods. This compatibility is crucial for our objective of maximizing the activation of target
labels in our classification model.

The Gumbel-Softmax technique thus serves as a bridge between the discrete nature of our token selection problem and the
continuous optimization landscape required for effective gradient-based learning. It allows us to backpropagate through the
discrete sampling operation, enabling end-to-end training of our model while maintaining the ability to produce discrete
outputs during inference.

A.5. Codebook-level Explanation Evaluation

Experimental Design. To validate that our codebook-level explanation method can effectively identify concept-specific
token combinations T ∗

codebook, we provide comprehensive quantitative experimental results. Due to the computational
intensity of multi-step optimization in codebook-level explanation, we conduct our evaluation using CNN-based (CE)
and ResNet-based (RE) IEMs, as the Transformer-based IEM (TE) has significantly more parameters and would require
prohibitively long optimization times. We conduct experiments using 10 bird categories (500 images in total) from the
synthetic dataset. These bird images can be generated by VQGAN in high quality, and the 4 pretrained models achieve high
prediction accuracies on these 500 images, ranging from 84.6% to 90.2% (refer to AccOrig in Table 5).

We pair 10 bird categories into 5 groups, each category serving as both original and target labels. For each category, we
utilize 50 images from the test set. In our experimental design, when images from a category serve as the original images, its
paired category becomes the target label, and vice versa. For instance, in the pair (Goldfinch, Water Ouzel), when Goldfinch
images are being optimized, Water Ouzel serves as the target label, and conversely, when Water Ouzel images are used
as original images, Goldfinch becomes the target label. This reciprocal design is applied consistently across all five pairs
depicted in Figure 6. Every image in our dataset undergoes optimization as an original image, with its paired category
serving as the target label. In this experiment, each concept yi is a specific bird category.
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Goldfinch House Finch Snowbird Indigo Bird Robin

BulbulJayMagpieChickadeeWater Ouzel

Figure 6: codebook-level explanation method experiment design

The optimization process begins with token-based embeddings E from the original label images, optimizing towards the
target label, which is the concept to be explained. We focus on a fixed 4× 4 region within the 16× 16 token grid, limiting
T ∗

codebook,i to 16 tokens (only 1/16 of total 256 tokens). We evaluate the changes in softmax probabilities for both the original
and target labels across four pretrained models.

We explore two optimization methods, both aiming to maximize the activation of a target bird label (the concept to be
explained): 1) Token selection optimization (our method): We optimize a token selection matrix, which represents the
probability of selecting each token from the codebook for specific positions in the target region. 2) Embedding optimization
(baseline): We directly optimize the d-dimensional embedding in the target region. After optimization, we apply vector
quantization (Gray, 1984) to map each optimized embedding vector to the nearest token in the codebook, minimizing the
Euclidean distance. Optimized embeddings were decoded via VQGAN to generate images. To measure the effectiveness of
each method optimization method, we calculate the change in probabilities for the original and target labels before and after
optimization:

∆POrig = POrig(optimized)− POrig(initial),
∆PTarg = PTarg(optimized)− PTarg(initial).

(14)

Evaluation Results. Table 5 shows the results of our optimization methods across different models. The Token Selection
method consistently outperforms the Embedding Optimization baseline by both reducing the original label probability
(∆POrig) and increasing the target label probability (∆PTarg). For instance, in the ResNet18 model with CNN-based extractor,
our method decreases the probability of the original label by 36.5% (from 0.795 to 0.505) and increases the probability
of the target label about 11 times (from 0.016 to 0.178) compared to the initial probability. In contrast, the Embedding
Optimization baseline achieves a 28.2% decrease in the original label probability and a 7.9-fold increase in the target label
probability. This shows that our method surpasses the baseline by achieving a greater reduction in the original label and a
more significant increase in the probability of the target label. Similar improvements are observed in another information
extractor. In the ViT-B/16 model with ResNet-based extractor, our Token Selection method reduces the probability of the
original label by 31.7% and increases the probability of the target label by over 40 times, significantly outperforming the
baseline. These results indicate that our Token Selection method effectively identifies the most important tokens contributing
to the target label. By directly optimizing the token selection matrix end-to-end, it finds the token combination that
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maximally activates our information extractor f . In contrast, the Embedding Optimization method optimizes embeddings
and then maps them back to the nearest tokens in the codebook, which may result in suboptimal token combinations due to
the lack of end-to-end optimization.

These results validate the effectiveness of our codebook-level explanation method in identifying and manipulating class-
relevant features within VQGMs. The substantial increases in target label probabilities, often by more than an order of
magnitude, demonstrate the method’s potential for enhancing model interpretability and its applicability in targeted image
editing tasks

A.6. Cliff’s δ

Cliff’s δ is a non-parametric effect size measure that quantifies the degree of overlap between two groups of observations.
For two groups X and Y with sizes Nx and Ny , it is calculated as:

δ =

∑Nx

i=1

∑Ny

j=1[I(xi > yj) + 0.5I(xi = yj)]− NxNy

2

NxNy
(15)

where I(·) is the indicator function. The value ranges from -1 to 1, with larger absolute values indicating stronger effect
sizes. Following Romano et al. (Romano & Kromrey, 2006), the effect size can be interpreted as: negligible for |δ| < 0.147,
small for |δ| < 0.33, medium for |δ| < 0.474, and large otherwise. In our analysis, X and Y represent the occurrence
frequencies of specific concepts (T ∗) across different images. A positive δ indicates a significant difference in the activation
frequencies between two groups, suggesting potential bias in concept representation.

A.7. More Visualizatoin Results

Figure 7 presents additional sample-level explanation visualization results, complementing the analysis provided in Sec-
tion 4.2. The figure is structured into two distinct sets of four rows each, each set focusing on a specific token for a particular
category. This approach demonstrates the efficacy of our sample-level explanation method in identifying concept-specific
features across multiple images. The first four rows showcase visualizations related to the ”black grouse” category, high-
lighting a single, consistently meaningful token across different images of this bird species. Similarly, the subsequent four
rows are dedicated to visualizations of the ”candle” category, emphasizing the same token across various candle images.
In each image, we highlight the token exhibiting a high TIS using a red bounding box. These visualizations illustrate
our sample-level explanation method’s ability to focus on tokens that frequently correspond to specific, concrete visual
features within each concept. For instance, the consistent highlighting of particular features (such as the red crown for the
black grouse or flame for candles) across multiple images of the same class indicates that these tokens effectively represent
meaningful, class-specific characteristics. By consistently focusing on the same token within each category, we demonstrate
our method’s ability to extract and emphasize stable, category-relevant features across diverse visual representations.

Table 5: codebook-level explanation method evaluation results.

Model AccOrig POrig PTarg

∆POrig ↓ / ∆PTarg ↑
Embedding Optimization Token Selection

CE RE CE RE

ResNet18 86.8% 0.795 0.016 -0.224 / 0.127 -0.202 / 0.097 -0.290 / 0.162 -0.284 / 0.160
ResNet50 84.6% 0.780 0.011 -0.217 / -0.122 -0.206 / 0.102 -0.282 / 0.165 -0.277 / 0.155
ViT-B/16 89.0% 0.766 0.003 -0.193 / 0.095 -0.174 / 0.072 -0.237 / 0.128 -0.243 / 0.121
ViT-B/32 90.2% 0.758 0.003 -0.196 / 0.090 -0.190 / 0.080 -0.239 / 0.112 -0.245 / 0.120
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Figure 7: Token visualization in different categories: red box in each row represents the same token
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