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Abstract
Modeling controllable aspects of the environment
enable better prioritization of interventions and
has become a popular exploration strategy in rein-
forcement learning methods. Despite repeatedly
achieving State-of-the-Art results, this approach
has only been studied as a proxy to a reward-based
task and has not yet been evaluated on its own.
We show that solutions relying on action predic-
tion fail to model important events. Humans, on
the other hand, assign blame to their actions to
decide what they controlled. Here we propose
Controlled Effect Network (CEN), an unsuper-
vised method based on counterfactual measures
of blame. CEN is evaluated in a wide range of en-
vironments showing that it can identify controlled
effects better than popular models based on action
prediction.

1. Introduction
The recent success of reinforcement learning (RL) methods
in difficult environments such as Hide & Seek (Baker et al.,
2019), StarCraft II (Vinyals et al., 2019), or Dota2 (OpenAI
et al., 2019) has shown the potential of RL to learn complex
behavior. Unfortunately, these methods also show RL’s inef-
ficiency to learn (Espeholt et al., 2018; Kapturowski et al.,
2019; Gulcehre et al., 2020), requiring a vast amount of
interactions with the environment before meaningful learn-
ing occurs. The inefficiency of these algorithms makes it
necessary to provide a dense reward. Environments with
sparse rewards are known to be extremely difficult to solve
and a good exploration strategy is imperative.

A popular approach to exploration is to introduce behavioral
biases in the form of intrinsic motivators (Chentanez et al.,
2005). This technique aims to produce dense rewards that
facilitate the learning of task-agnostic behavior. Typical
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motivators drive the agent to discover novel states and by
doing so increase the chance of reaching the environment’s
extrinsic reward. Numerous motivators have been developed
by taking inspiration from humans, e.g. curiosity or control
(Bellemare et al., 2012b; Pathak et al., 2017; Burda et al.,
2018; Choi et al., 2019; Badia et al., 2020b).

Recent work (Choi et al., 2019; Song et al., 2019; Badia
et al., 2020a;b) has achieved State-of-the-Art on the Atari
benchmark (Bellemare et al., 2012a) by rewarding agents for
the discovery of novel ways of controlling their environment.
A common design principle among these methods is the use
of an inverse model to predict the chosen action. The hope
is that the latent representation learned by these models
encloses aspects of the environment controlled by the agent.
We hypothesize that these methods are ill-suited to model
anything other than the agent, limiting their applicability.
For example, if an agent moves to the right and pushes a
box by doing so, the model only needs to represent the
agent’s change of location to predict its action. Thus, the
model is free to ignore the box’s movement which the agent
controlled. Surprisingly the ability to identify controlled
effects has only been evaluated as a proxy to a reward-
based task but not in isolation. In this work, we evaluate
action prediction models on the problem of controlled effect
identification and show that, indeed, they do not model
controlled effects other than those upon the agent.

A causal approach is to compare counterfactual worlds, i.e.
an effect is controllable if the agent would have had another
effect by taking a different action (Pearl, 2009). A caveat
of this approach is that things become trivially controllable.
Following the previous example, a box becomes control-
lable even when the agent performs the action ”do-nothing”
since there is an action, ”move-right”, that moves the box.
It is believed that humans identify controlled effects by as-
signing a degree of blame to their actions. In particular,
humans compare what happened to a normative imagined
world (Halpern, 2016; Morris et al., 2018; Langenhoff et al.,
2019; Grinfeld et al., 2020). If what happened is normal,
humans would not assign blame to their actions, e.g. when
performing ”do-nothing”, the box’s effect would not be
controlled since normally the box would not move. How-
ever, it would be considered controlled when performing
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”move-right” since its normative state is to not move.

To improve upon this issue we propose Controlled Effects
Network (CEN), an unsupervised method based on the hu-
man notion of blame. In contrast to models based on ac-
tion prediction, CEN is composed of a two-branch forward
model that disentangles what is normal and what is con-
trolled to predict the next step effects. Our experiments
show that CEN can disentangle effects correctly and that it
can model both distant and agent-centric controlled effects.

2. Identifying controlled effects using blame
Our goal is to identify what was controlled by the agent.
Take Fig. 1 as an example of a skull and an agent about
to collide, leading to losing a life. In both scenarios losing
a life is controllable by the agent, i.e. there is a world
(moving right) where the agent would have not lost a life.
In contrast, humans perception of causality is associated
to blame (Gerstenberg & Lagnado, 2014), e.g. in the first
scenario we would say that the skull caused the agent to
lose a life, whereas in the second one the agent would be to
blame since it moved onto the skull and lost a life.

2.1. Controllable effects

What does it mean to cause something? Pearl et al. (2016)
provide an intuitive definition of cause-effect relations: ”A
variable X is a cause of a variable Y if Y, in any way, relies
on X for its value”. In the previous example, skulls have
a causal effect on the agent’s life since the agent’s life can
decrease due to an skull’s attack. Actual causality, proposed
in Halpern (2016), studies causal relations between individ-
ual events of X and Y . It aims to answer questions like, did
the skull moving right cause the agent to lose a life? In the
following, we introduce the concept of (actual) causal effect
to then define controllable effect in the context of RL.

The individual causal effect (ICE) of an event X = x on a
variable Yi can be measured by comparing counterfactual
worlds

ICEx
Yi
≡ Y x

i 6= Y x̃
i , (1)

where Y x
i reads as “what would the value of an individual

Yi be if X is forced to be x”. Similarly, Y x̃
i describes the

Figure 1. Is losing a life caused by the skull, the agent or both?
Left: the skull moves onto the agent. Right: the agent and skull
move towards each other. In both cases the agent loses a life.

Figure 2. Causal diagram of a typical RL setting. Controlled ef-
fects depend on the agent’s choice of action.

value of Yi when X is forced to not be x. Note that since
we are using the actual causality framework the sub-index i
refers to an individual event. In the following, we use Y x

i

and Y x interchangeably.

The world Y x̃ does not exist and needs to be imagined.
Intuitively, Eq. 1 compares the world where the event x
happened to an alternative world where event x had not
happened. Consequently, we say that x has a causal effect
on Y if there is an x̃ ∈ X that satisfies Eq. 1.

In the realm of RL, X and Y take the form of actions, states
and observations. Figure 2 illustrates the causal relations
present in a typical RL setting, where a state s has an effect
on both the next state s′ and the produced observation o
which, in turn, has an effect on the agent’s choice of action
a ∈ A ⊆ N. Similarly, an action has an effect on the next
state. Since states are typically not accessible by the agent,
we do not use states as variables; nevertheless the same
principle can be applied if these are accessible. We define
the perceived effect eap as the difference between consecutive
observations when taking action a, i.e. eap ≡ o′ − o. As in
Eq. 1, we say that a perceived effect was controllable by the
agent’s action when

∃ã ∈ A : eap 6= eãp . (2)

Since we want to know what elements of the perceived
effect are controllable, the inequality is an element-wise
operation.

It is important to notice that the definition of controllable
effect has far-reaching consequences: a motionless agent
has a causal effect on itself since it could move right; an
agent next to a button that can be pressed has a causal effect
on that button, even if it does not press it; an agent shot by
a gun has a causal effect on its life because it could have
dodged it. If Eq. 2 is used as reward, the agent would be
rewarded for almost every action at every state! Note that
taking ã as a special ”do-nothing” action would not work
since even doing nothing does something, e.g. if an agent’s
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Figure 3. CEN is a forward model that predicts effects from a given observation and action. It disentangles controlled and normal effects
in latent space to then decode them into pixel space. Note that the weights of the decoders are shared.

oxygen level decreases unless still, doing nothing has an
effect on the agent’s oxygen level. Instead, we would want
a more human-like definition of what is controlled where an
agent controls a button if pressed; a box if moved or its life
if the bullet is dodged.

2.2. Blame

It has been shown that human notion of causality is affected
by what is normal (Kahneman & Miller, 1986; Cushman
et al., 2008; Knobe & Fraser, 2008; Hitchcock & Knobe,
2009). For example heat, fuel and oxygen are necessary
causes for a forest fire but people typically say that heat (a
match or lightning) and not oxygen caused the fire. Thus,
heat is to blame for the forest fire since oxygen and fuel are
normally present in a forest. Here, we resort to concepts of
normality from actual causality to find if the agent’s action
is to blame for what happened.

Halpern & Hitchcock (2014) propose to compare what actu-
ally happened with what normally would happen. Following
this idea we use a normative world in replacement to Y x̃

ICEx
Y = Y x − βY , (3)

where βY is the value Y would normally take. Such a
value is of course contingent to the notion of normality used,
which is to us to define. Note that since we are interested
in the magnitude and direction of the effect, Eq. 3 uses the
difference rather than the less specific inequality operator
used in Eq. 1.

In RL, a typical use of this formulation is to compute the
causal effect of an action on the return G as

ICEa
G(s) = Ga(s)− βG(s)

= Q(s, a)− V (s)

= A(s, a).

(4)

Ga(s) is the return the agent would get if action a were to
be taken at state s and is typically estimated using a state-
action value function Q(s, a). The choice of normality for
βG(s) is to estimate the expected return with the state-value
function V (s), giving us the advantage function A(s, a).

As described in Richard S. & Barto (2018), Generalized
Value Functions (GVF) aim to integrate general knowledge
of the world; leaving return as special case. Following
the same idea, we can reformulate Eq. 3 to compute the
controlled effect as

ICEa
ep = eap − βep

= eap − E
∀ã∈A

[
eãp

]
.

(5)

Intuitively, Eq. 5 builds a normal world by observing ev-
ery alternative perceived effect reached by each action and
choosing the most frequent of them. To simplify notation,
the following sections use controlled effect as eac = ICEa

ep
and normal effect en = βep . Consider the example in Fig.
1, scenario on the right. Moving left would cause the agent
to die but staying or moving right would keep him alive. If
the agent chooses to move left, Eq. 5 indicates that staying
put would be normal and that losing a life is controlled by
the agent. Contrarily, the scenario on the left would take the
loss of a life as normal.

Special care needs to be taken when constructing the nor-
mal world βep for continuous action spaces. Computing
counterfactuals on an infinite number of possibilities cannot
be done and some approximation needs to be implemented.
Although our experiments use discrete actions, the proposed
method in the following section is equipped to handle contin-
uous action spaces since it does not compute counterfactuals
for each possible action directly but approximates the final
normal world. It is also important to notice that the con-
trolled effects identifiable by Eq. 5. in a partially observable
setting (o 6= s), where the full state is not observed, are
constrained to those observed by the agent. Nevertheless,
humans cannot perceive every change in state but can iden-
tify relevant controlled effects for their survival and joy.
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3. Unsupervised learning of controlled effects
In practice, we do not have access to every world and can-
not compute Eq. 5 directly. We propose an unsupervised
method that disentangles controlled and normal effects us-
ing perceived effects as training signal.

Here, we introduce Controlled Effects Network (CEN),
depicted in Fig. 3. CEN is a forward model where obser-
vations are encoded into a latent representation and used to
predict the perceived effect resulting from taking a specific
action. Contrarily to conventional forward models CEN
is composed of two branches, where each branch creates
a specific latent representation for controlled and normal
effects; in a similar fashion to Dueling Networks (Wang
et al., 2015).

The controlled branch has access to the action (in contrast
to the normal branch), which allows to accurately predict
effects controlled by the agent, something that the normal
branch cannot do. Notice that the controlled branch alone
can predict the perceived effect resulting from an action,
i.e. the normal branch would not be needed to just act as a
forward model.

Then, why do we need the normal branch? The role of the
normal branch is to force the controlled branch to predict
only what is not predictable using the observation alone
and hence, modeling what is controlled by the agent. In
a way, the normal branch acts as a distillation mechanism
where only what can be controlled will be represented by
the controlled branch.

In order to promote the controlled branch to model only
controlled effects, we use the following loss

L = MSE
(
êac + ên, e

a
p

)
+ α MSE

(
ên, e

a
p

)
, (6)

where the first part of the loss promotes the modeling of
perceived effects, just as in a conventional forward model
in which the predicted target êap = êac + ên is compared
to the ground truth (eap). The second part of the loss en-
forces the network to use the normal branch as much as
possible to model the world. Additionally, a hyperparameter
α regulates how much the normal branch should model the
dynamics of the environment.

Let’s take again the example in Fig. 1 (right). The normal
branch is forced to model the skull’s movement since it does
not depend on the agent’s action. Furthermore, if α is large
enough the normal branch is forced to also model the agent
being still. Since the controlled branch can only add to what
the normal branch predicts, it needs to model the movement
of the agent to minimize its loss.

4. Experiments
In this section we evaluate1 CEN’s ability to model con-
trolled effects and compare it to the action-prediction model
presented in Choi et al. (2019), Attentive Dynamics Model
(ADM). The experiments are divided in two main categories,
pixel and attribute prediction. Pixel prediction experiments
aim to compare these two methods as in a binary-class seg-
mentation task where each method produces a mask that
covers as much ground truth as possible. In some applica-
tions such as for example making use of intrinsic motivators,
knowing the position/value of controlled objects may be
enough, and therefore, learning to produce a spatial mask is
unnecessarily precise. Thus, the second set of experiments
aims to measure how well these methods can model con-
trolled effects of individual attributes in the environment’s
state instead of at pixel-level.

To achieve this, we use multiple environments each show-
casing a different aspect of what can be controlled. These
environments are based on Griddly (Bamford et al., 2020)
and Atari ALE (Bellemare et al., 2012a), both using the
Gym interface (Brockman et al., 2016); see an example in
Fig. 4. We give more details of these environments in each
experiment and appendix.

CEN is implemented with 2D convolutional layers and
ReLU activation function for the encoder and decoders;
the normal and controlled branches are implemented with
linear layers and ReLU activation function. Throughout the
experiments we use the same neural networks and hyperpa-
rameters unless specified otherwise. Our implementation
of ADM uses the same architecture and hyperparameters
proposed in (Choi et al., 2019). See appendix for more
details on the architecture, hyperparameters, and training.

4.1. Controlled effects at pixel-level

Next we present the results for the pixel-level experiments.
The goal is to evaluate CEN’s predictions of controlled
effects at pixel-level. We report pixel F1 scores between
ground truth and prediction binary masks. Although Eq. 5
computes the magnitude and direction of the effects, we
thresholded the predicted controlled effect. We provide
more details in the appendix. The network is trained to
minimize Eq. 6 using the ADAM optimizer (Kingma &
Ba, 2015) and 300K samples of the form (o, a, eap) col-
lected with a random policy. The evaluation of the model is
done using an evaluation environment with different seed
to the one used for training during 5K steps. To generate
the ground truth masks for Griddly environments, we use

1This work’s networks, training and evaluation have been im-
plemented using PyTorch (Paszke et al., 2019) and NumPy (Harris
et al., 2020); our experiments are managed using Weights & Biases
(Biewald, 2020).
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Figure 4. Suite of environments used in our experiments. From left to right: Clusters, Spiders, Lights and Montezuma’s Revenge (MZR).

the internal environment state and transform object coor-
dinates onto pixel coordinates. In experiments using Atari
environments the ground truth was collected by computing
Eq. 5 using the ALE’s special calls cloneSystemState and
restoreSystemState.

4.1.1. CONTROLLED VS UNCONTROLLED EFFECTS

In this experiment we evaluate CEN’s ability to disentangle
controlled from uncontrolled effects. Here we use the Spi-
ders environment which has two main entities, the agent and
an uncontrolled angry spider. If the model has learned to
identify controlled effects the masks produced should only
focus on the agent and not on the spider.

Fig. 5 shows the pixel F1 score for our model and the base-
line. CEN is able to correctly disentangle controlled effects
and can produce accurate masks. Although our implemen-
tation of ADM can predict the agent’s action with 88% ac-
curacy, it is not capable of modeling the agent’s controlled
pixels. We conjecture that this is due to ADM’s sparse soft-
max mechanism; nonetheless this behavior persisted when
increasing its entropy weight which should produce more
dense masks.

Figure 5. Pixel F1 scores for CEN and the baseline in the Spiders
environment on the task of identifying the controlled effects pro-
duced by the avatar. CEN can correctly disentangle the agent from
the randomly moving spider.

Figure 6. F1 pixel score on the Clusters environment. CEN is able
to model not just the agent but also close controlled effects like the
movement of boxes. Top) F1 score for every effect; Bottom-left)
F1 score when the avatar moves; and Bottom-right) F1 score when
there is a box moving. X axis refers to the training steps (1e5).

4.1.2. CLOSE CONTROLLED EFFECTS

Models based on action prediction are expected to work
well on aspects related to the agent. For example, if an
agent moves a box due to moving right; the box’s movement
is also controlled. It is unclear why these models would
pay attention to the box since just knowing where the agent
is suffices to predict the chosen action. CEN’s controlled
branch, on the other hand, is motivated to model the box’s
effect since the normal branch would predict that the box
stays where it is. We call ”close” controlled effect to an
effect that happens near the agent, like the box’s movement.
To evaluate CEN on this kind of effects we use the Clusters
environment. In this environment an agent needs to move
colored boxes to their corresponding fixed colored blocks.

Fig. 6 shows that CEN can accurately model the agent
and boxes effects better than the baseline. We breakdown
individual effects to account for the class imbalance between
the agent’s movement and the boxes. CEN seems to make
more mistakes with boxes than the agent but nonetheless, it
can consistently model both.

4.1.3. DISTANT CONTROLLED EFFECTS

Similarly to the previous experiment, we want to evaluate
if CEN can model distant effects, i.e. effects that are rea-
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sonably far away from the agent’s location. In this case,
we will use the Lights environment. Here the environment
presents two buttons of different color that, when pressed,
turn on their corresponding light of the same color. Lights
are relatively far away from their corresponding buttons thus
making it difficult to model them. As show in Fig. 7, CEN
is able to model this kind of controlled effects. Although
there is a clear decrease in F1 score, we believe that this is
due to the more complex shape of the lights and buttons.

4.1.4. CONTROLLED EFFECTS IN MONTEZUMA’S
REVENGE

This last pixel-level experiment evaluates CEN on Mon-
tezuma’s Revenge environment. Although agents in Atari
environments have limited control over the environment,
the relatively complex dynamics of the agent makes Mon-
tezuma’s Revenge a challenging test-bed. Results shown
in Fig. 8 indicate that CEN can also model controlled ef-
fects but that the increase in complexity affects its ability to
predict accurate masks. Additionally, Fig. 9 (last column)
shows examples of the masks generated by CEN and our
baseline for this environment. Although the F1 score is
lower than in the other environments, Atari has more com-
plex shapes which make the model have lower F1 score even
when modeling the controlled effect.

4.2. Controlled effects at attribute-level

In the second set of experiments, we want to analyze if
CEN can predict controlled effects of attributes present on
the environment’s state, e.g. the agent’s (x, y) location or
if a light turned on. In these experiments, we employ a
probing technique similar to the one described in Anand
et al. (2019). We freeze trained versions of the CEN and
baseline networks and use them to train a classifier per each
attribute in the environment’s state. We use the frozen net-

Figure 7. F1 score on the Lights environment. CEN can model
distant effects, even when the agent is not part of the controlled
effect. Top) F1 score for every effect; Bottom-left) F1 score when
the avatar moves; and Bottom-right) F1 score when a light turns
on. X axis refers to the training steps (1e5).

Figure 8. Montezuma’s Revenge F1 pixel score. CEN outperforms
the baseline even in an environment with more complex dynamics.

works to produce a binary mask of controlled effects, as in
the previous experiments, and applying the resulting mask
to occlude the perceived effects. These occluded effects are
then used to train each probing classifier to predict if there
was a positive, negative or none effect. Note that the classi-
fier needs to predict any effect, not just controlled. This way
the classifier should only be able to predict accurately con-
trolled attributes such as the agent’s position but should fail
at predicting the spider’s location. Furthermore, the model
does not need to produce a perfect mask for the classifier to
be able to predict these attributes. We use a random policy
to collect a dataset of 35K samples of the form (m ∗ ep, y)
where m is the mask produced by the model and y is the
ground truth class. We ensure that each class is relatively
balanced, allowing a 20% class imbalance. Each dataset
is split into a typical 70/20/10, we report F1 score of each
attribute on the test set.

The results in Table 1 indicate that CEN significantly out-
performs the baseline when predicting controlled effects
for state’s attributes, and thus modeling controlled effects
accurately. Furthermore, for both Spiders and Montezuma’s
Revenge environments the model cannot predict the uncon-
trolled effects, as expected. Even though ADM’s action
prediction accuracy was high (∼ 88%) on every environ-
ment, it is not able to consistently predict controlled effects
at the attribute-level.

5. Related work
Intrinsic motivators: A popular way of introducing behav-
ioral biases in RL agents is the use of intrinsic motivators
(Singh et al., 2005). These motivators can promote different
types of exploration, from observational surprise (Burda
et al., 2018) to control seeking agents (Pathak et al., 2017;
Choi et al., 2019). Methods in the latter category have
shown extremely good results achieving State-of-the-Art in
important benchmarks. Choi et al. (2019) proposed Atten-
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F1

ENVIRONMENT ATTRIBUTE CEN (OURS) ADM

SPIDERS
AGENT 1.0±0.00 0.47±0.23
SPIDER ↓ 0.35±0.03 0.25±0.03

CLUSTERS
AGENT 0.76±0.41 0.28±0.08
BOX 0.78±0.37 0.32±0.19

LIGHTS
AGENT 0.97±0.01 0.33±0.15
BUTTON 0.93±0.05 0.33±0.01
LIGHT 0.93±0.04 0.41±0.14

MZR AGENT 0.66±0.08 0.42±0.23
SKULL ↓ 0.19±0.03 0.20±0.08

Table 1. F1 score for the predicted state attributes. CEN outper-
forms the baseline and is able to model effects distant from the
agent. Note that the locations of the spider and skull are not con-
trolled by the agent thus, the worse it can be predicted the better.

tive Dynamics Model (ADM), an attention based method to
discover controlled elements in the environment and used it
in combination to a count-based exploration to reward the
agent for discovering these elements. This method showed
State-of-the-Art in Montezuma’s Revenge. This work was
extended in Song et al. (2019) to incorporate multi-step con-
trolled effects as part of the intrinsic reward, again achieving
human-level performance just with intrinsic rewards. Badia
et al. (2020b) combined control and observational surprise
motivators to create a so called ”reward soup” where multi-
ple rewards were combined into one. Their method uses an
episodic memory in combination to an inverse model to pro-
mote the discovery of controlled effects in a single episode
and Random Network Distillation (Burda et al., 2018) to
promote long term progress through the game. This method,
again, achieves State-of-the-Art in Atari’s hard exploration
environments. One thing in common among these methods
is the use of an inverse model to model controlled aspects
of the environment. Our work, instead, uses a two-branch
forward model showing a better coverage of these effects.
These methods show the importance of identifying what an
agent can control, an avenue that deserves to be explored in
depth.

Causality in deep reinforcement learning: Causality is
central to humans; we think in terms of cause-effect. A
similar method was proposed in Chattopadhyay et al. (2019),
where they use causal attribution methods to analyzed the
effect of inputs on a neural network’s outputs via causal
attribution. Recent work has introduced causality into deep
reinforcement learning (Foerster et al., 2018; Buesing et al.,
2018; Jaques et al., 2018; Dasgupta et al., 2019; Goyal et al.,
2019; Nair et al., 2019; Madumal et al., 2020) showing
that this is a promising avenue for the training of agents.

Figure 9. Samples of the masks generated by CEN and the baseline
on each environment. Samples were picked for both algorithms
based on their high F1 score and diversity. The original perceived
effect is marked in black and white; the generated masks are
marked in red. F1 score is overlaid in white.

Corcoll & Vicente (2020) proposed an attribution method
to learn temporal abstractions for object-centric hierarchical
RL. Bellemare et al. (2012b) compute controllable aspects
of the environment. Their method generates a mask with
all possible controllable areas of an image and uses it as
part of the policy’s input. In this work, we instead identify
controlled effects using causal concepts of normality and
blame.

6. Conclusions
The identification of controlled effects is a central task in RL.
This work proposes an unsupervised approach to this prob-
lem named Controlled Effect Network (CEN). CEN com-
putes counterfactual worlds to assign blame to the agent’s
actions for what happened. The presented experiments show
that, despite of being unsupervised, this method learns to
identify controlled effects successfully. Furthermore, we
show that popular methods based on action prediction do
not model controlled effects besides the agent.

Understanding the world in terms of controlled effects, in-
stead of actions, is a promising avenue. This approach
narrows down the large amount of possibilities an agent
faces and can be used to prioritize the next action to take
based on how its consequences align with the agent’s goals.
The expressive power of effects ought to be explored to
achieve better prioritization of effects. In this direction,
more sophisticated modeling of normality, e.g. social norms
or time-based norms; can provide a measure of relevance or
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importance useful to prioritize the learning of effects. This
study relies on the notion that effects can only be controlled
at the next time step and that the environment controls fol-
low up effects. For example, a ball pushed by the agent
will be identified as controlled the moment the agent pushes
it but it will be governed by the environment’s dynamics
thereafter. A useful extension to this work would be to
identify the consequences of an action taken N steps ago.
We believe that the fast pace of the graph neural network
ecosystem allows for this extension. These improvements
would represent a major leap towards more efficient RL
agents.
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