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ABSTRACT

This work establishes low test error of gradient flow (GF) and stochastic gradient
descent (SGD) on two-layer ReLU networks with standard initialization scale, in
three regimes where key sets of weights rotate little (either naturally due to GF
and SGD, or due to an artificial constraint), and making use of margins as the
core analysis technique. The first regime is near initialization, specifically until
the weights have moved by O(

√
m), where m denotes the network width, which

is in sharp contrast to the O(1) weight motion allowed by the Neural Tangent
Kernel (NTK); here it is shown that GF and SGD only need a network width and
number of samples inversely proportional to the NTK margin, and moreover that
GF attains at least the NTK margin itself and in particular escapes bad KKT points
of the margin objective, whereas prior work could only establish nondecreasing
but arbitrarily small margins. The second regime is the Neural Collapse (NC)
setting, where data lies in well-separated groups, and the sample complexity scales
with the number of groups; here the contribution over prior work is an analysis of
the entire GF trajectory from initialization. Lastly, if the inner layer weights are
constrained to change in norm only and can not rotate, then GF with large widths
achieves globally maximal margins, and its sample complexity scales with their
inverse; this is in contrast to prior work, which required infinite width and a tricky
dual convergence assumption.

1 INTRODUCTION

A key promise of deep learning is automatic feature learning: standard gradient methods are able
to adjust network parameters so that lower layers become meaningful feature extractors, which in
turn implies low sample complexity. As a running illustrative (albeit technical) example throughout
this work, in the 2-sparse parity problem (cf. Figure 1), networks near initialization require d2/ϵ
samples to achieve ϵ test error, whereas powerful optimization techniques are able to learn more
compact networks which need only d/ϵ samples (Wei et al., 2018). It is not clear how to establish this
improved feature learning ability with a standard gradient-based optimization method; for example,
despite the incredible success of the Neural Tangent Kernel (NTK) in proving various training and
test error guarantees (Jacot et al., 2018; Du et al., 2018b; Allen-Zhu et al., 2018; Zou et al., 2018;
Arora et al., 2019; Li & Liang, 2018; Ji & Telgarsky, 2020b; Oymak & Soltanolkotabi, 2019),
ultimately the NTK corresponds to learning with frozen initial random features.

The goal of this work is to establish low test error from random initialization in an intermediate
regime where parameters of individual nodes do not rotate much, however their change in norm
leads to selection of certain pre-existing features. This perspective is sufficient to establish the best
known sample complexities from random initialization in a variety of scenarios, for instance match-
ing the d2/ϵ within-kernel sample complexity with a computationally-efficient stochastic gradient
descent (SGD) method, and the beyond-kernel d/ϵ sample complexity with an inefficient gradient
flow (GF) method. The different results are tied together through their analyses, which establish not
merely low training error but large margins, a classical approach to low sample complexity within
overparameterized models (Bartlett, 1996). These results will use standard gradient methods from
standard initialization, which is in contrast to existing works in feature learning, which adjusts the
optimization method in some way (Shi et al., 2022; Wei et al., 2018), most commonly by training the
inner layer for only one iteration (Daniely & Malach, 2020; Abbe et al., 2022; Barak et al., 2022;

1

mailto:mjt@illinois.edu


Damian et al., 2022), and typically not beating the within-kernel d2/ϵ sample complexity on the
2-sparse parity problem (cf. Table 1).

Contributions. There are four high-level contributions of this work. The first two consider net-
works of reasonable width (e.g., O(d2) for 2-sparse parity), and are the more tractable of the four. In
these results, the network parameters can move up to O(

√
m), where m is the width of the network;

this is in sharp contrast to the NTK, where weights can only move by O(1). The performance of
these first two results is measured in terms of the NTK margin γntk, a quantity formally defined in
Assumption 1.2. These first two contributions are as follows.

1. Non-trivial margin KKT points. Prior work established that features converge in a strong
sense: features and parameters converge to a KKT point of a natural margin objection (cf.
Section 1.1, (Lyu & Li, 2019; Ji & Telgarsky, 2020a)). Those works, however, left open the
possibility that the limiting KKT point is arbitrarily bad; instead, Theorem 2.1 guarantees that
the limiting GF margin is at least γntk/4096, where γntk is a distribution-dependent constant.

2. Simultaneous low test error and low computational complexity. Replacing GF with SGD
in the preceding approach leads to a computationally efficient method. Applying the result-
ing guarantees in Theorem 2.3 to the 2-sparse parity problem yields, as detailed in Table 1, a
method which saves a factor d8 against prior work with sample complexity d2/ϵ, and a fac-
tor 1/ϵ in computation against work with sample complexity d4/ϵ2. Moreover, Theorem 2.3
guarantees that the first gradient step moves parameters by

√
m and formally exits the NTK.

The second two high-level contributions require intractable widths (e.g., 2d), but are able to achieve
much better global margins γgl, which as detailed in Sections 1.1 and 1.2, were previously only
possible under strong assumptions or unrealistic algorithmic modifications.

3. Neural collapse. Theorem 3.2 establishes low sample complexity in the neural collapse (NC)
regime (Papyan et al., 2020), where data are organized in well-separated clusters of common
label. By contrast, prior work did not analyze gradient methods from initialization, but instead
the relationship between various optimality conditions (Papyan et al., 2020; Yaras et al., 2022;
Thrampoulidis et al., 2022). The method of proof is to establish global margin maximization
of GF; by contrast, for any type of data, this was only proved in the literature with strong
assumptions and modified algorithms (Wei et al., 2018; Chizat & Bach, 2020; Lyu et al., 2021).

4. Global margin maximization for rotation-free networks. To investigate what could be pos-
sible, Theorem 3.3 establishes global margin maximization with GF under a restriction that the
inner weights can only change in norm, and can not rotate; this analysis suffices to achieve d/ϵ
sample complexity on 2-sparse parity, as in Table 1, and the low-rotation assumption is backed
by preliminary empirical evidence in Figure 2.

As purely technical contributions, this work provides new tools to analyze low-width networks
near initialization (cf. Lemmas B.4 and C.4), a new versatile generalization bound technique (cf.
Lemma C.5), and a new potential function technique for global margin maximization far from ini-
tialization (cf. Lemma B.7 and applications thereof).

This introduction concludes with notation and related work, Section 2 collects the KKT point and
low computation guarantees, Section 3 collects the global margin guarantees, Section 4 provides
concluding remarks and open problems, and the appendices contain full proofs and additional tech-
nical discussion.

1.1 NOTATION

Architecture and initialization. With the exception of Theorem 3.3, the architecture will be a
2-layer ReLU network of the form x 7→ F (x;W ) =

∑
j ajσ(v

T
jx) = aTσ(V x), where σ(z) =

max{0, z} is the ReLU, and where a ∈ Rm and V ∈ Rm×d have initialization scale roughly
matching pytorch defaults: a ∼ Nm/m1/4 (m iid Gaussians with variance 1/

√
m) and V ∼

Nm×d/
√
d
√
m (m × d iid Gaussians with variance 1/(d

√
m)); in contrast with pytorch, the

layers are approximately balanced. These parameters (a, V ) will be collected into a tuple W =
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(a, V ) ∈ Rm×Rm×d ≡ Rm×(d+1), and for convenience per-node tuples wj = (aj , vj) ∈ R×Rd ≡
Rd+1 will often be used as well.

Given a pair (x, y) with x ∈ Rd and y ∈ {±1}, the prediction or unnormalized margin mapping
is p(x, y;W ) = yF (x;W ) = yaTσ(V x); when examples ((xi, yi))

n
i=1 are available, a simplified

notation pi(W ) := p(xi, yi;W ) is often used, and moreover define a single-node variant pi(wj) :=
yiajσ(v

T
jxi). Throughout this work, ∥x∥ ≤ 1, and unmarked norms are Frobenius norms.

SGD and GF. The loss function ℓ will be either the exponential loss ℓexp(z) := exp(−z), or the
logistic loss ℓlog(z) := ln(1 + exp(−z)); the corresponding empirical risk R̂ is

R̂(p(W )) :=
1

n

n∑
i=1

ℓ(pi(W )),

which used p(W ) := (p1(W ), . . . , pn(W )) ∈ Rn. The two descent methods are

Wi+1 := Wi − η∂̂W ℓ(pi(Wi)), stochastic gradient descent (SGD), (1.1)

Ẇt :=
d

dt
Wt = −∂̄W R̂(p(Wt)), gradient flow (GF), (1.2)

where ∂̂ and ∂̄ are appropriate generalizations of subgradients for the present nonsmooth nonconvex
setting, detailed as follows. For SGD, ∂̂ will denote any valid element of the Clarke differential
(i.e., a measurable selection); for example, ∂̂F (x;W ) =

(
σ(V x),

∑
j ajσ

′(vT
jx)ejx

T

)
, where ej

denotes the jth standard basis vector, and σ′(vT
jxi) ∈ [0, 1] is chosen in some consistent and mea-

surable way, for instance as chosen by pytorch. For GF, ∂̄ will denote the unique minimum norm
element of the Clarke differential; typically, GF is defined as a differential inclusion, which agrees
with this minimum norm Clarke flow almost everywhere, but here the minimum norm element is
equivalently used to define the flow. Details of Clarke differentials and corresponding chain rules
are differed to the now-extensive literature for their use in margin analyses (Lyu & Li, 2019; Ji &
Telgarsky, 2020a; Lyu et al., 2021).

Due to clutter, the time indices t (written as Wt or W (t)) will often be dropped.

Margins. To develop the margin notion, first note that that F and pi are 2-homogeneous in W ,
meaning F (x; cW ) = caTσ(cV x) = c2F (x;W ) for any x ∈ Rd and c ≥ 0 (and pi(cW ) =
c2pi(W )). It follows that F (x;W ) = ∥W∥2F (x;W/∥W∥), and thus F and pi scale quadratically
in ∥W∥, and it makes sense to define a normalized prediction mapping p̃i and margin γ as

p̃i(W ) :=
pi(W )

∥W∥2
, γ(W ) :=

mini pi(W )

∥W∥2
= min

i
p̃i(W ).

Due to nonsmoothness, γ can be hard to work with, thus, following Lyu & Li (2019), define the
smoothed margin γ̃ and the normalized smoothed margin γ̊ as

γ̃(W ) := ℓ−1
(
nR̂(W )

)
= ℓ−1

∑
i

ℓ(pi(W ))

 , γ̊(W ) :=
γ̃(W )

∥W∥2
,

where a key result is that γ̊ is eventually nondecreasing (Lyu & Li, 2019). These quantities may look
complicated and abstract, but note for ℓexp that γ̃(W ) := − ln

(∑
i exp(−pi(W ))

)
. An interesting

technical consideration is that normalization by ∥W∥2 can be replaced by ∥a∥ · ∥V ∥ or
∑

j ∥ajvj∥,
as appears throughout the proofs of Theorems 2.1, 3.2 and 3.3.

Corresponding to these definitions, the global max margin assumption is that some shallow network
can achieve a good margin almost surely over the distribution.
Assumption 1.1. There exists γgl > 0 and parameters ((αk, βk))

r
k=1 with ∥α∥1 ≤ 1 and ∥βk∥2 = 1

so that almost surely over the draw of any pair (x, y), then y
∑

k αkσ(β
T

kx) ≥ γgl. ♢

The ℓ1 norm on α is due to 2-homogeneity: for any 2-homogeneous generalized activation ϕ
and parameters (wj)

m
j=1 organized into matrix W ∈ Rm×(d+1), then

∑
j ϕ(w

T
jx)/∥W∥2 =
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(a) Trajectories (|aj |vj)mj=1 with m = 16. (b) Trajectories (|aj |vj)mj=1 with m = 256.

Figure 1: Two-dimensional projection of n = 64 samples drawn from the 2-sparse parity distribution
in d = 20 dimensions (cf. Proposition 1.3), with red and blue circles respectively denoting negative
and positive examples. Red paths correspond to trajectories |aj |vj across time with aj < 0, whereas
blue paths have aj > 0.

∑
j(∥wj∥/∥W∥)2ϕ((wj/∥wj∥)Tx), and in particular

∑
j ∥wj∥2/∥W∥2 = 1. This use of the ℓ1

norm is standard in works studying global margin maximization, see for instance (Chizat & Bach,
2020, Proposition 12, optimality conditions). Near initialization, the features have not changed
much, and it is therefore reasonable to consider a second margin definition as linear predictors on
top of the random initial features.
Assumption 1.2. There exists γntk > 0 and a weight mapping θ : Rd+1 → Rd+1 with θ(w) = 0
whenever ∥w∥ ≥ 2 and ∥θ(w)∥ ≤ 2 otherwise, so that almost surely over the draw of (x, y), then
Ew∼Nθ

〈
θ(w), ∂̄wp(x;w)

〉
≥ γntk, where w = (a, v) ∼ Nθ means a ∼ N and v ∼ Nd/

√
d, and

p(x, y;w) = p(x, y; (a, v)) = yaσ(vTx) as before. ♢

Assumption 1.2 may seem overly technical, but by taking an expectation over initial weights, it
can not only be seen as an infinite-width linear predictor over the initial features, but moreover it
is a deterministic condition and not a random variable depending on the sampled weights. This
assumption was originally presented by Nitanda & Suzuki (2019) and later used in (Ji & Telgarsky,
2020b); a follow-up work with similar proof techniques made the choice of using a finite-width
assumption which is a random variable (Chen et al., 2019).

The 2-sparse parity problem, finally formally defined in Proposition 1.3 as follows and depicted in
Figure 1, allows significantly different estimates for Assumption 1.1 and Assumption 1.2. A notable
feature of this version, in contrast to prior work, is that only the support of the distribution matters.
Proposition 1.3. Consider any 2-sparse parity data distribution: inputs are supported on Hd :=
{±1/

√
d}d, and for any x ∈ Hd, the label is the product of two fixed coordinates y := dxaxb with

a ̸= b. Then Assumption 1.2 holds with γntk ≥ 1
50d , and Assumption 1.1 holds with γgl ≥ 1√

8d
.

Lastly, following (Lyu & Li, 2019) but simplified for the 2-homogeneous case, given examples
((xi, yi))

n
i=1, then parameters W = (a, V ) are a KKT point if there exist Lagrange multipliers

(λ1, . . . , λn) with λi ≥ 0 and λi > 0 only if pi(W ) = 1, and moreover, for every j, then aj =∑
i λiyiσ(v

T
jxi) and vj ∈ aj

∑
i λiyi∂vσ(v

T
jxi), where ∂v denotes the Clarke differential with

respect to vj . Call W a KKT direction if there exists a scalar r > 0 so that rW is a KKT point.
Lastly, the margin of a KKT point W is 1/∥W∥2, and the margin of a KKT direction is the margin
of the corresponding KKT point; further details on these notions are deferred to Appendix B.1.

1.2 FURTHER RELATED WORK

Margin maximization. The concept and analytical use of margins in machine learning originated
in the classical perceptron convergence analysis of Novikoff (1962). The SGD analysis in Theo-
rem 2.3, as well as the training error analysis in Lemma C.3 were both established with a variant
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Reference Algorithm Technique m n t

(Ji & Telgarsky, 2020b) SGD perceptron d8 d2/ϵ d2/ϵ
Theorem 2.3 SGD perceptron d2 d2/ϵ d2/ϵ
(Barak et al., 2022) 2-phase SGD correlation O(1) d4/ϵ2 d2/ϵ2

(Wei et al., 2018) WF+noise margin ∞ d/ϵ ∞
(Chizat & Bach, 2020) WF margin ∞ d/ϵ ∞
Theorem 3.3 scalar GF margin dd/2 d/ϵ ∞

Table 1: Performance on 2-sparse parity by a variety of works, loosely organized by technique;
see Section 1.2 for details. Briefly, m denotes width, n denotes total number of samples (across
all iterations), and t denotes the number of algorithm iterations. Overall, the table exhibits many
tradeoffs, and there is no single best method.

of the perceptron proof; similar perceptron-based proofs appeared before (Ji & Telgarsky, 2020b;
Chen et al., 2019), however they required width 1/γ8

ntk, unlike the 1/γ2
ntk here, and moreover the

proofs themselves were in the NTK regime, whereas the proof here is not.

Works focusing on the implicit margin maximization or implicit bias of descent methods are more
recent. Early works on the coordinate descent side are (Schapire et al., 1997; Zhang & Yu, 2005;
Telgarsky, 2013); the proof here of Lemma C.4 uses roughly the proof scheme in (Telgarsky, 2013).
More recently, margin maximization properties of gradient descent were established, first showing
global margin maximization in linear models (Soudry et al., 2017; Ji & Telgarsky, 2018b), then
showing nondecreasing smoothed margins of general homogeneous networks (including multi-layer
ReLU networks) (Lyu & Li, 2019), and the aforementioned global margin maximization result for
2-layer networks under dual convergence and infinite width (Chizat & Bach, 2020). The potential
functions used here in Theorems 3.2 and 3.3 use ideas from (Soudry et al., 2017; Lyu & Li, 2019;
Chizat & Bach, 2020), but also the shallow linear and deep linear proofs of Ji & Telgarsky (2019;
2018a).

Feature learning. There are many works in feature learning, a few also carrying explicit guaran-
tees on 2-sparse parity are summarized in Table 1. An early work with high relevance to the present
work is (Wei et al., 2018), which in addition to establishing that the NTK requires Ω(d2/ϵ) samples
whereas O(d/ϵ) suffice for the global maximum margin solution, also provided a noisy Wasserstein
Flow (WF) analysis which achieved the maximum margin solution, albeit using noise, infinite width,
and continuous time to aid in local search. The global maximum margin work of Chizat & Bach
(2020) was mentioned before, and will be discussed in Section 3. The work of Barak et al. (2022)
uses a two phase algorithm: the first step has a large minibatch and effectively learns the support
of the parity in an unsupervised manner, and thereafter only the second layer is trained, a convex
problem which is able to identify the signs within the parity; as in Table 1, this work stands alone in
terms of the narrow width it can handle. The work of (Abbe et al., 2022) uses a similar two-phase
approach, and while it can not learn precisely the parity, it can learn an interesting class of “stair-
case” functions, and presents many valuable proof techniques. Another work which operates in two
phases and can learn an interesting class of functions is the recent work of (Damian et al., 2022);
while it can not handle 2-sparse parity explicitly, it can handle the Hermite polynomial analog (prod-
uct of two hermite polynomials). Other interesting feature learning works are (Shi et al., 2022; Bai
& Lee, 2019; Allen-Zhu & Li, 2020).

2 LOW TEST ERROR WITH MODEST-WIDTH NETWORKS

This section states the aforementioned results for networks of width Ω(1/γ2
ntk), which can be small:

as provided by Proposition 1.3, this width is Ω(d2) for the 2-sparse parity problem. This section
will first give guarantees for GF, establishing via Theorem 2.1 and Corollary 2.2 that non-trivial
KKT points are achieved. Similar ideas will then be used to give a fully-tractable SGD approach in
Theorem 2.3. To start, here is the low test error and large margin guarantee for GF.

Theorem 2.1. Suppose the data distribution satisfies Assumption 1.2 for some γntk > 0, and the GF

curve (Ws)s≥0 uses ℓ ∈ {ℓexp, ℓlog} on an architecture of width m ≥
(

640 ln(n/δ)
γntk

)2
. Then, with
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probability at least 1− 15δ, there exists t with ∥Wt −W0∥ = γntk

√
m/32 so that, for all s ≥ t,

γ̃(Ws)

∥as∥ · ∥Vs∥
≥ γntk

2048
and Pr[p(x, y;Ws) ≤ 0] ≤ O

(
ln(n)3

nγ2
ntk

+
ln 1

δ

n

)
,

and moreover lim infs→∞ γ(Ws) = lim infs→∞
mini pi(Ws)
2∥as∥·∥Vs∥ ≥ γntk

4096 .

Before sketching the proof, one interesting comparison is to a leaky ReLU convergence analysis on
a restricted form of linearly separable data due to Lyu et al. (2021). That work, through an extremely
technical and impressive analysis, establishes convergence to a solution which is equivalent to the
best linear predictor. By contrast, while the work here does not recover that analysis, since γntk =
Ω(γ0) where γ0 is the linear separability margin (cf. Proposition B.1), then the margin and sample
complexity achieved here are within a constant factor of those in (Lyu et al., 2021), but via a simpler
and more general analysis (dropping the additional data and initialization conditions).

The proof of Theorem 2.1 is provided in full in the appendices, but has the following key com-
ponents. The main tool powering all results in this section, Lemma B.4, can be roughly stated as
follows: gradients at initialization are aligned with a fixed good parameter direction θ ∈ Rm×(d+1)

with ∥θ∥ ≤ 2, meaning
〈
θ, ∂̄pi(W0)

〉
≥ γntk

√
m/2, and moreover nearly the same inequality holds

with W0 replaced by any W ∈ Rm×(d+1) with ∥W − W0∥ ≤ γntk

√
m. This is a form of Polyak-

Łojasiewicz inequality, and guides the gradient flow in a good direction, and is used in a strengthened
form to obtain an empirical risk guarantee for GF (large margins and low test error will be discussed
shortly). While a version of this inequality has appeared in prior work (Ji & Telgarsky, 2020b), de-
spite adaptations to multi-layer cases (Chen et al., 2019), all prior work had a width dependence of
1/γ8

ntk; many careful refinements here lead to the smaller width 1/γ2
ntk. Overall, as in (Ji & Telgarsky,

2020b), the proof technique is based on the classical perceptron analysis, and the width requirement
here matches the width needed by perceptron with frozen initial features.

The proof then continues by establishing large margins, and then by applying a large-margin gener-
alization bound. The margin analysis, surprisingly, is a 2-homogeneous adaptation of a large-margin
proof technique for coordinate descent (Telgarsky, 2013), and uses the preceding empirical risk guar-
antee for a warm start. The generalization analysis follows a new proof technique and may be of
independent interest, and appears in full in Lemma C.6. An interesting detail in these proofs is that
the margins behave better when normalized with the nonstandard choice ∥a∥ · ∥V ∥.

As discussed above, Theorem 2.1 is complemented by Corollary 2.2, which establishes that GF can
sometimes escape bad KKT points.

Corollary 2.2. Let γ0 ∈ (0, 1/4) be given, and consider the uniform distribution on the two points
z1 = (γ0,+

√
1− γ2

0) and z2 = (γ0,−
√
1− γ2

0) with common label y = +1. With probability
at least 1 − 21−n over an iid draw from this distribution, for any width m, the choice aj = 1 and
vj = (1, 0) for all j is a KKT direction with margin γ0/2. On the other hand, with probability at
least 1 − 15δ, GF with loss ℓexp or ℓlog on an iid sample of size n from this data distribution using
width at least m ≥ 250 ln(n/δ)2 converges to a KKT direction with margin at least 2−27.

Summarizing, GF achieves at least constant margin 2−27, whereas the provided KKT point achieves
the arbitrarily small margin γ0/2; as such, choosing any γ0 < 2−26 guarantees that GF converges to
a nontrivial KKT point. While this construction may seem artificial, it is a simplified instance of the
neural collapse constructions in Section 3, and by contrast with the results there, is achievable with
reasonably small widths.

To close this section, the corresponding SGD guarantee is as follows. This result gives a fully
tractable method, and appears in Table 1. Notably, this proof can not handle the exponential loss,
since gradient norms do not seem to concentrate.

Theorem 2.3. Suppose the data distribution satisfies Assumption 1.2 for some γntk > 0, let time t be
given, and suppose width m and step size η satisfy

m ≥
(
64 ln(t/δ)

γntk

)2

and η ∈

[
γntk

10
√
m
,

γ2
ntk

6400

]
.
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Then, with probability at least 1− 8δ, the SGD iterates (Ws)s≤t with logistic loss ℓ = ℓlog satisfy

min
s<t

Pr
[
p(x, y;Ws) ≤ 0

]
≤ 8 ln(1/δ)

t
+

2560

tγ2
ntk

, (test error bound),

max
s<t

∥Ws −W0∥ ≤ 80η
√
m

γntk

, (norm upper bound),

∥W1 −W0∥ ≥ ηγntkδ
4
√
m

8
, (norm lower bound).

A notable characteristic is exiting the NTK: choosing the largest allowed step size η := γ2
ntk/6400, it

follows that ∥W1−W0∥ ≥ δ4γ3
ntk

√
m/51200, whereas the NTK regime only permits ∥Wt−W0∥ =

O(1). Of course, despite exiting the NTK, this sample complexity is still measured in terms of γntk,
suggesting many opportunities for future work.

A few remarks on the proof are as follows. Interestingly, it is much shorter than the GF proof,
as it mainly needs to replicate GF’s empirical risk guarantee, and then apply a short martingale
concentration argument. A key issue, however, is the large squared gradient norm term, which is
the source of the large lower bound on ∥W1 − W0∥. A typical optimization analysis technique is
to swallow this term by scaling the step size with 1/

√
t or 1/

√
m, but here a constant step size

is allowed. Instead, controlling the term is possible again using nuances of the perceptron proof
technique, which controls the term

∑
i<t |ℓ′(pi(Wi))|, which appears when these squared gradients

are accumulated.

3 LOWER TEST ERROR WITH LARGE-WIDTH NETWORKS

This section provides bounds which are more ambitious in terms of test error, but pay a big price:
the network widths will be exponentially large, and either the data or the network architecture will
have further conditions. Still, these settings will both be able to achieve globally maximal margins,
and for instance lead to the improved d/ϵ sample complexity in Table 1.

3.1 NEURAL COLLAPSE (NC)

The Neural Collapse (NC) setting partitions data into well-separated groups (Papyan et al., 2020);
these groups form narrow cones which meet at obtuse angles.
Assumption 3.1. There exist ((αk, βk))

r
k=1 with ∥βk∥ = 1 and αk ∈ {±1/r} and γnc > 0 and

ϵ ∈ (0, γnc) so that almost surely for any (x, y), for each (αk, βk) exactly one of the following hold:

• either x lies in a cone around βk, meaning sgn(αk)β
T

kxy ≥ γnc and ∥(I−βkβ
T
k)x∥

|βT
kx|

≤
√

ϵ/2;

• or x is bounded away from the cone around βk, meaning sgn(αk)β
T

kxy ≤ −ϵ. ♢

It follows that Assumption 3.1 implies Assumption 1.1 with margin γgl ≥ γnc/r, but the condition is
quite a bit stronger. The corresponding GF result is as follows.
Theorem 3.2. Suppose the data distribution satisfies Assumption 3.1 for some (r, γnc, ϵ), and con-
sider GF curve (Wt)t≥0 with ℓ ∈ {ℓexp, ℓlog} and width m ≥ 4

(
2
ϵ

)d−1
ln r

δ . then, with probability
at least 1− δ, it holds for all large t that

γ̊(Wt) ≥
γnc − ϵ

2r
and Pr

[
p(x, y;Wt) ≤ 0

]
= O

(
r2 ln(n)3

n(γnc − ϵ)2
+

ln 1
δ

n

)
.

Before discussing the proof, here are a few remarks. Firstly, the standard NC literature primarily
compares different optimality conditions and how they induce NC (Papyan et al., 2020; Yaras et al.,
2022; Thrampoulidis et al., 2022); by contrast, Theorem 3.2 analyzes the behavior of a standard
descent method on data following NC. Furthermore, Theorem 3.2 does not establish that GF neces-
sarily converges to the NC solution, since Assumption 3.1 allows for scenarios where the globally
maximal margin solution disagrees with NC. One such example is to take two points on the surface
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of the sphere and which form an angle just beyond π/2; in this case, the globally maximal margin
solution is equivalent to a single linear predictor, but Assumption 3.1 and Theorem 3.2 still apply.
The similar construction in Corollary 2.2 took those two points and pushed their angle to be just
below π, which made NC the globally maximal margin solution. Overall, the relationship between
NC and the behavior of GF is quite delicate.

The proof of Theorem 3.2 hinges on a potential function Φ(Wt) :=
1
4

∑
k |αk| ln

∑
j ϕk,j(wj)∥ajvj∥, where ϕk,j(wj) is near 1 when vj/∥vj∥ ≈ βk, and 0 oth-

erwise. This strange-looking potential has derivative scaling with γnc/r and a certain technical
factor Q; meanwhile, the derivative of ln ∥Wt∥2 scales roughly with γ(Wt) and that same factor
Q. Together, it follows by considering their difference that either γ(Wt) must exceed (γnc − ϵ)/r,
or mass must concentrate on the NC directions. This suffices to complete the proof, however
there are many technical details; for instance, without the NC condition, data can pull gradients
in bad directions and this particular potential function can become negative; in other words, the
NC condition reduces rotation. The use of ln(·) may seem bizarre, but it causes the gradient to be
self-normalizing; similar self-normalizing ideas were used throughout earlier works on margins
outside the NTK (Lyu & Li, 2019; Chizat & Bach, 2020; Ji & Telgarsky, 2020a). This discussion
of Φ will resume after the proof of Theorem 3.3, which uses a similar construction.

One technical point of potentially independent interest is once again the use of ∥ajvj∥ as a surrogate
for ∥wj∥2 (where ∥wj∥2 ≥ 2∥ajvj∥); this seems crucial in the proofs, and was also used in the
proofs of Theorem 2.1, and also partially motivated the use of |aj |vj when plotting the trajectories
in Figure 1. While it is true that these quantities asymptotically balance (Du et al., 2018a), it takes
quite a long time, and this more refined norm-like quantity is useful in early phases.

3.2 GLOBAL MARGIN MAXIMIZATION WITHOUT ROTATION

The final theorem will be on stylized networks where the inner layer is forced to not rotate. Specifi-
cally, the networks are of the form

x 7→
∑
j

ajσ(bjv
T

jx),

where ((aj , bj))
m
j=1 are trained, but vj are fixed at initialization; the new scalar parameter bj is

effectively the norm of vj (though it is allowed to be negative). As a further simplification, aj and
bj are initialized to have the same norm; this initial balancing is common in many implicit bias
proofs, but is impractical and constitutes a limitation to improve in future work. While these are
clearly significant technical assumptions, we note firstly as in Figure 2 that low rotation seems to
hold empirically, and moreover that the only other works establishing global margin maximization
used either a significantly different algorithm with added gradient noise (Wei et al., 2018), or in
the case of (Chizat & Bach, 2020), heavily relied upon infinite width (requiring weights to cover
the sphere for all times t), and also a dual convergence assumption detailed in the appendices and
circumvented here.
Theorem 3.3. Suppose the data distribution satisfies Assumption 1.1 for some γgl > 0 with
reference architecture ((αk, βk))

r
k=1. Consider the architecture x 7→

∑
j ajσ(bjv

T
jxi) where

((aj(0), bj(0)))
m
j=1 are sampled uniformly from the two choices ±1/m1/4, and vj(0) is sampled

from the unit sphere (e.g., first v′j ∼ Nd, then vj(0) := v′j/∥v′j∥), and the width m satisfies

m ≥ 4
(

4
γgl

)d−1

ln r
δ . Then, with probability at least 1 − δ, for all large t, GF on ((aj , bj))

m
j=1

with loss ℓ ∈ {ℓexp, ℓlog} satisfies

γ̊
(
(a(t), b(t))

)
≥ γgl

2
and Pr

[
p(x, y; (a(t), b(t))) ≤ 0

]
= O

(
ln(n)3

nγ2
gl

+
ln 1

δ

n

)
.

The proof strategy of Theorem 3.3 follows a simplification of the scheme from Theorem 3.2. First,
due to the large width, for each k there must exist a weight j with sgn(bj)vj ≈ βk. Second, since
this inner layer can not rotate, we can reorder the weights so that simply sgn(bk)vk ≈ βk, and define
a simplified potential

Φ(Wt) :=
1

4

∑
k

|αk| ln
(
a2k + b2k

)
.
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(a) Rotation for 2-sparse parity, m ∈ {16, 64, 256}.
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(b) Rotation for mnist, m ∈ {256, 1024, 4096}.

Figure 2: Cumulative distribution functions (CDFs) for rotation on 2-sparse parity and mnist digits
3 vs 5, with three choices of width; both are run with small step size and full batch gradient descent
until the empirical logistic risk is 1/n, and the 2-sparse parity plots match the same invocation which
gave Figure 1. To measure rotation, for any given width m, per-node rotations

〈 vj(0)
∥vj(0)∥ ,

vj(t)
∥vj(t)∥

〉
are first calculated, and then treated as an empirical distribution, and their CDF is plotted. The
overall trend is that as m increases, rotation decreases. While this trend is consistent with the NTK,
the rotations are still too large to allow an NTK-style analysis; further experimental details are in
Appendix B.2.

As mentioned after the proof of Theorem 3.2, it’s possible without Assumption 3.1 for data to pull
weights in bad directions; that is ruled out here via the removal of rotation, and spiritually this
situation is ruled out in the proof by Chizat & Bach (2020) via their dual convergence assumption.

4 CONCLUDING REMARKS AND OPEN PROBLEMS

Stated technically, this work provides a variety of settings where GF can achieve margins γntk and
γgl (and SGD, in one case, can achieve sample complexity and computation scaling nicely with γntk),
and whose behavior can be interpreted as GF and SGD selecting good features and achieving low
test error. There are many directions for future work.

Figure 2 demonstrated low rotation with 2-sparse parity and mnist; can this be proved, thereby
establishing Theorem 3.3 without forcing nodes to not rotate?

Looking to Table 1 for 2-sparse parity, the approaches here fail to achieve the lowest width; is there
some way to achieve this with SGD and GF, perhaps even via margin analyses?

Theorem 2.3 and Theorem 2.1 achieve the same sample complexity for SGD and GF, but via drasti-
cally different proofs, the GF proof being weirdly complicated; is there a way to make the two more
similar?

The approaches here are overly concerned with reaching a constant factor of the optimal margins; is
there some way to achieve slightly worse margins with the benefit of reduced width and computa-
tion? More generally, what is the Pareto frontier of width, samples, and computation in Table 1?

The margin analysis here for the logistic loss, namely Theorem 2.1, requires a long warm start
phase. Does this reflect practical regimes? Specifically, does good margin maximization and feature
learning occur with the logistic loss in this early phase? This issue also appears in prior linear max
margin works with the logistic loss.

The analyses here work best with
∑

j ∥ajvj∥ in place of ∥W∥2; are there more natural choices, and
can this choice be used in other aspects of deep learning analysis?
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A Sincerest apologies to The Reader

Dear Reader,

I mismanaged time and my “plan” to prepare the camera ready in the final days was thwarted by a
travel ambush. Please see the arXiv versions dating from after March 1, 2023 (hopefully available
before March 31, 2023).

(This present version does not even address reviewer comments which were resolved in the rebuttal
phase, updates will come shortly!)

B TECHNICAL PRELIMINARIES

This first appendix section contains tools used throughout, extra background, and further experi-
mental details.

B.1 FURTHER NOTATION, BACKGROUND, AND ESTIMATES OF γntk AND γgl

Firstly, in many of the proofs, it is useful to normalized parameters: define ṽj := vj/∥vj∥ and
ãj := sgn(aj) := aj/|aj |. Furthermore, write ℓi(W ) = ℓ(pi(W )) and ℓ′i(W ) := ℓ′(pi(W )) are
used; since ℓ′i is negative, often |ℓ′i| is written.

It is annoying to write |ℓ′i| over and over, however, interestingly, these nonnegative derivatives can
be transformed into a notion of dual variable, which will be used throughout the proofs. Concretely,
define dual variables (qi)ni=1

q := ∇pℓ
−1

∑
i

ℓ(pi)

 =
∇p

∑
i ℓ(pi)

ℓ′(ℓ−1(
∑

i ℓ(pi)))
=

∇p

∑
i ℓ(p)

ℓ′(γ̃(p))
,

which made use of the inverse function theorem. Correspondingly define Q := −ℓ′(γ̃(p)), whereby
−ℓ′i = qiQ; for the exponential loss, Q =

∑
i exp(−pi) and

∑
i qi = 1, and while these quantities

are more complicated for the logistic loss, they eventually satisfy
∑

i qi ≥ 1 (Ji & Telgarsky, 2019,
Lemma 5.4, first part, which does not depend on linear predictors). Overall, these dual variables
match the usual interpretation in margin problems of corresponding to examples of high error, and
also relate to the Lagrange multipliers used in the definition of KKT point.

On the topic of KKT points, further detail on the formalism is as follows. Firstly, (Lyu & Li,
2019) provided a definition for general L-homogeneous models, and the version here is equiva-
lent for the simplified choice of 2-homogeneous models of the form x 7→

∑
j ajσ(v

T
jx). Given
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a KKT point W , the complementary slackness conditions imply mini pi(W ) ≥ 1, whereby
γ(W ) = mini pi(W )/∥W∥2 ≥ 1/∥W∥2, justifying the choice of 1/∥W∥2 as the margin. Lastly,
given any arbitrary W (not necessarily a KKT point), the optimality conditions on aj and vj hold iff
they hold for any rescaling rW (since the term r appears on both sides), and thus r can be adjusted
to make the complementary slackness conditions tight, justifying the definition of a KKT direction’s
margin.

To close, this section will collect various estimates of γntk and γgl. Firstly, both function classes are
universal approximators, and thus the assumption can be made to work for any prediction problem
with pure conditional probabilities (Ji et al., 2020). Next, as a warmup, note the following estimates
of γntk and γgl, for linear predictors, with an added estimate of showing the value of working with
both layers in the definition of γntk.

Proposition B.1. . Suppose the data distribution is almost surely linearly separable: there exists
∥ū∥ = 1 and γ̂ > 0 with yxTū ≥ γ̂ almost surely.

1. Choosing θ(a, v) :=
(
0, sgn(a)ū

)
· 1[∥(a, v)∥ ≤ 2], then Assumption 1.2 holds with γntk ≥ γ̂

32 .

2. Choosing θ(a, v) :=
(
sgn(ūTv), 0

)
· 1[∥(a, v)∥ ≤ 2], then Assumption 1.2 holds with γntk ≥

γ̂

16
√
d

.

3. Choosing α = (1/2,−1/2) and β = (ū,−ū), then Assumption 1.1 holds with γgl ≥ γ̂
2 .

Proof. The proof considers the three settings separately; in each, let (x, y) be a random draw, which
almost surely satisfies ūTxy ≥ γ̂.

1. To start,

Ew∼Nθ

〈
θ(w), ∂̂wp(x, y;w)

〉
= E(a,v)∼Nθ

|a|ūTxyσ′(vTx)1[∥(a, v)∥ ≤ 2]

≥ γ̂E(a,v)∼Nθ
|a|σ′(vTx)1[∥(a, v)∥ ≤ 2].

To control the expectation, note that with probability at least 1/2, then 1/4 ≤ |a| ≤
√
2, and

thus by rotational invariance

E(a,v)∼Nθ
|a|σ′(vTx)1[∥(a, v)∥ ≤ 2] ≥ 1

8
E(a,v)∼Nθ

σ′(vTx)1[∥v∥ ≤
√
2]

≥ 1

8
E(a,v)∼Nθ

σ′(v1)1[∥v∥ ≤
√
2]

≥ 1

32
.

2. For convenience, write (a, v) = w, whereby w ∼ Nw means a ∼ Na and v ∼ Nv . With this
out of the way, define orthonormal matrix M ∈ Rd×d where the first column is ū, the second
column is (I − ūūT)x/∥(I − ūūT)x∥, and the remaining columns are arbitrary so long as M is
orthonormal, and note that Mu = e1 and Mx = e1ū

Tx+ e2r2 where r2 :=
√
∥x∥2 − (ūTx)2.

Then, using rotational invariance of the Gaussian,

Ew

〈
θ(w), ∂̂p(x, y;w)

〉
= yEw=(a,v)sgn(ūTv)σ(vTx)1[∥w∥ ≤ 2]

= yE∥(a,Mv)∥≤2α(Mv)σ(vTMTx)

= E∥(a,v)∥≤2ysgn(v1)σ(v1ūTxy2 + v2r2)

= E∥(a,v)∥≤2ysgn(v1)σ(ysgn(v1)|v1|ūTxy + v2r2)

= E ∥(a,v)∥≤2
ysgn(v1)=1

v2≥0

[
σ(|v1|ūTxy + v2r2)− σ(−|v1|ūTxy + v2r2)

+ σ(|v1|ūTxy − v2r2)− σ(−|v1|ūTxy − v2r2)
]
.
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Considering cases, the first ReLU argument is always positive, exactly one of the second and
third is positive, and the fourth is negative, whereby

yE∥(a,v)∥≤2α(v)σ(v
Tx) = E ∥(a,v)∥≤2

ysgn(v1)=1
v2≥0

[
|v1|ūTxy + v2r2 + |v1|ūTxy − v2r2

]
= 2E ∥(a,v)∥≤2

ysgn(v1)=1

|v1|ūTxy

≥ 2γ̂E ∥v∥≤1
ysgn(v1)=1

|v1|

= γ̂Pr[∥(a, v)∥ ≤ 2]E
(
|v1|

∣∣ ∥(a, v)∥ ≤ 2
)
,

where Pr[∥(a, v)∥ ≤ 2] ≥ 1/4 since (for example) the χ2 random variables corresponding
to |a|2 and ∥v∥2 have median less than one, and the expectation term is at least 1/(4

√
d) by

standard Gaussian computations (Blum et al., 2017, Theorem 2.8).

3. It suffices to note that

2y
2∑

j=1

αjσ(β
T

jx) = yσ(ūTx)− yσ(−ūTx)

= 1[y = 1]σ(yūTx) + 1[y = −1]σ(yūTx)

= yūTx

≥ γ̂.

Next, estimates for γgl and γntk on 2-sparse parity were stated in the body in Proposition 1.3. The key
is that γntk scales with 1/d whereas γgl scales with 1/

√
d, which suffices to yield the separations in

Table 1. The bound on γntk is also necessarily an upper bound, since otherwise it would be possible
to beat the NTK lower bound (Wei et al., 2018).

Proof of Proposition 1.3. This proof shares ideas with (Wei et al., 2018; Ji & Telgarsky, 2020b),
though with some adjustments to exactly fit the standard 2-sparse parity setting, and to shorten the
proofs.

Without loss of generality, due to the symmetry of the data distribution about the origin, suppose
a = 1 and b = 2, meaning for any x ∈ Hd, the correct label is dx1x2, the product of the first two
coordinates. Both proofs will use the global margin construction (the parameters for γgl), given as
follows: p(x, y; (α, β)) = y

∑4
j=1 αjσ(β

T
jx), where α = (1/4,−1/4,−1/4, 1/4) and

β1 :=

(
1√
2
,
1√
2
, 0, . . . , 0

)
∈ Rd,

β2 :=

(
1√
2
,
−1√
2
, 0, . . . , 0

)
∈ Rd,

β3 :=

(
−1√
2
,
1√
2
, 0, . . . , 0

)
∈ Rd,

β4 :=

(
−1√
2
,
−1√
2
, 0, . . . , 0

)
∈ Rd.

Note moreover that for any x ∈ Hd, then βT
jx > 0 for exactly one j, which will be used for both γntk

and γgl. The proof now splits into the two different settings, and will heavily use symmetry within
Hd and also within (α, β).

1. Consider the transport mapping

θ
(
(a, v)

)
=

0,
sgn(a)

2

4∑
j=1

βj1[β
T

jv ≥ 0]

 ;
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note that this satisfies the condition ∥θ(w)∥ ≤ 1 thanks to the factor 1/2, since each βj gets
a hemisphere, and (β1, β4) together partition the sphere once, and (β2, β3) similarly together
partition the sphere once.

Now let any x be given, which as above has label y = x1x2. By rotational symmetry of the
data and also the transport mapping, suppose suppose β1 is the unique choice with βT

1x > 0,
which implies y = 1, and also βT

2x = 0 = βT
3x = 0, however βT

4x = −βT
4x. Using these

observations, and also rotational invariance of the Gaussian,

Ea,v

〈
θ(a, v), ∂̄p(x, y;w)

〉
= Ea,v

|a|
2

4∑
j=1

βT

jx1[β
T

jv ≥ 0] · 1[vTx ≥ 0]

= βT

1x

(
Ea

|a|
2

)
·
(
Ev1[β

T

1v ≥ 0] · 1[vTx ≥ 0]− Ev1[−βT

1v ≥ 0] · 1[vTx ≥ 0]
)
.

Now consider Ev1[β
T
1v ≥ 0] · 1[vTx ≥ 0]. A standard Gaussian computation is to introduce

a rotation matrix M whose first column is β1, whose second column is (I − β1β
T
1)x/∥(I −

β1β
T
1)x∥, and the rest are orthogonal, which by rotational invariance and the calculation βT

1x =√
2/d gives

Ev1[β
T

1v ≥ 0] · 1[vTx ≥ 0] = Ev1[β
T

1Mv ≥ 0] · 1[vTMx ≥ 0]

= Ev1[v1 ≥ 0] · 1[v1βT

1x+ v2

√
1− (βT

1x)
2

= Ev1[v1 ≥ 0] · 1[v1 + v2
√
d/2− 1 ≥ 0].

Performing a similar calculation for the other term (arising from βT
4x) and plugging all of this

back in,

Ea,v

〈
θ(a, v), ∂̄p(x, y;w)

〉
=

√
2

d

(
Ea

|a|
2

)
· Ev1[v1 ≥ 0]

(
1[v1 + v2

√
d/2− 1 ≥ 0]− 1[−v1 + v2

√
d/2− 1 ≥ 0]

)
.

To finish, a few observations suffice. Whenever v1 ≥ 0 (which is enforced by the common first
term), then −v1 + v2τ ≤ v1 + v2

√
d/2− 1, so the first indicator is 1 whenever the second

indicator is 1, thus their difference is nonnegative, and to lower bound the overall quantity, it
suffices to asses the probability that v1 + v2

√
d/2− 1 ≥ 0 whereas −v1 + v2

√
d/2− 1 ≤ 0.

To lower bound this event, it suffices to lower bound

Pr[v1 ≥ 0 ∧ v2 ≥ 0 ∧ v1 ≥ v2
√

d/2− 1] ≥ Pr[v1 ≥
√
1/2] · Pr[0 ≤ v2 ≤

√
1/d.

The first term is at least 1/5, and the second can be calculated via brute force:

Pr[v2 ≥ 1/
√
d] =

1√
2π

∫ 1/
√
d

0

exp(−x2) dx ≥ 1√
2π

∫ 1/
√
d

0

exp(−1/d) dx ≥ 1√
2π

(
1√
d

)
1

e
,

which completes the proof after similarly using Ea|a| ≥ 1, and simplifying the various con-
stants.

2. Let any x ∈ Hd be given, and as above note that βT
jx > 0 for exactly one j. By symmetry,

suppose it is β1, whereby y = x1x2 = 1, and

γgl ≥ p(x, y; (α, β)) = y
∑
j

αjσ(β
T

jx) = |α1| · βT

1x =
1

4

(
2√
2d

)
=

1√
8d

.

To close, consider the k-sparse parity problem, the natural k-bit analog of the 2-sparse parity prob-
lem: now the target label depends on the product of k unknown input bits, but otherwise the problem
is the same, meaning the data distribution is again supported on Hd := {±1/

√
d}d, and only the

support of the distribution is used in the margin analysis.
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Proposition B.2. Let k ≥ 4 be an even integer, and consider any k-sparse parity data distribution:
inputs are supported on Hd := {±1/

√
d}d (as in Proposition 1.3), and for any x ∈ Hd, the label

is the product of k fixed coordinates: y := dk/2
∏

i∈S xi with |S| = k. Then Assumption 1.1 holds
with γgl ≥ 1

2k
√
d

.

Proof. Let P(S) range over the 2k possible vectors which are ±1/
√
k on elements of S, and 0

otherwise, whereby v ∈ P(S) has ∥v∥ = 1. Moreover, for convenience, define a shorthand
sgn(x) = sgn(

∏
i∈S xi). With this in hand, define a target mapping

h(x) :=
(−1)k/2−1

2k

∑
v∈P(S)

sgn(v)σ(vTx),

which is of the desired form for Assumption 1.1 with αv = sgn(v)(−1)k/2−1/2k and βv = v, and
moreover

∑
v |αv| = 1 and ∥βv∥2 = 1.

Now let any x ∈ Hd with corresponding label y = sgn(x) be given. To develop a first simpli-
fication of the margin yg(x), let P(S)[x; j] denote v ∈ P(S) where the signs of x and v have j

disagreements within the support of S, whereby |P(S)[x; j]| =
(
k
j

)
and

yg(x) = sgn(x)
∑

v∈P(S)

(−1)k/2−1sgn(v)
2k

σ(vTx)

= (−1)k/2−1
k∑

j=0

∑
v∈P(S)[x;j]

sgn(v)sgn(x)
2k

σ

(
k − 2j√

kd

)

= (−1)k/2−1

k/2∑
j=0

∑
v∈P(S)[x;j]

(−1)j

2k

(
k − 2j√

kd

)

=
(−1)k/2−1

2k
√
kd

k/2∑
j=0

(−1)j
(
k

j

)
(k − 2j).
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The inner sum can now be handled via a few binomial tricks from (Graham et al., 1994, Chapter 5):
k/2∑
j=0

(−1)j
(
k

j

)
(k − 2j)

= k +

k/2∑
j=1

(−1)j
(
k

j

)
(k − 2j)

= k + k

k/2∑
j=1

(−1)j
(
k − 1

j − 1

)
k − 2j

j
(Graham et al., 1994, eq. (5.6))

= k + k

k/2∑
j=1

(−1)j−1

(
k − 1

j − 1

)
2j − k

j

= k + k

k/2∑
j=1

(
j − 1− (k − 1)− 1

j − 1

)
2j − k

j
(Graham et al., 1994, eq. (5.14))

= k + k

k/2∑
j=1

[(
j − k − 1

j − 1

)
j − k

j
+

(
j − k − 1

j − 1

)]

= k

k/2∑
j=0

(
j − k

j

)
+ k

k/2−1∑
j=0

(
j − k

j

)

= k

[(
k/2 + 1− k

k/2

)
+

(
k/2− k

k/2− 1

)]
(Graham et al., 1994, eq. (5.9))

= k

[
(−1)k/2

(
k − 2

k/2

)
+ (−1)k/2−1

(
k − 2

k/2− 1

)]
. (Graham et al., 1994, eq. (5.14))

As an elementary simplification,(
k − 2

k/2− 1

)
−
(
k − 2

k/2

)
=

(k − 2)!

(k/2− 1)!(k/2− 1)!
− (k − 2)!

(k/2− 2)!(k/2)!

=
(k − 3)!

(k/2− 2)!(k/2− 1)!

[
k − 2

k/2− 1
− k − 2

k/2

]
=

(
k − 3

k/2− 1

)
4

k
,

which combines with the preceding to give
k/2∑
j=0

(−1)j
(
k

j

)
(k − 2j) = k

[
(−1)k/2

(
k − 2

k/2

)
+ (−1)k/2−1

(
k − 2

k/2− 1

)]

= k(−1)k/2−1

(
k − 3

k/2− 1

)
4

k
,

which after combining with the original simplification gives

yg(x) =
(−1)k/2−1

2k
√
kd

k/2∑
j=0

(−1)j
(
k

j

)
(k − 2j)

=
(−1)k/2−1

2k
√
kd

[
k(−1)k/2−1

(
k − 3

k/2− 1

)
4

k

]

=
4

2k
√
kd

(
k − 3

k/2− 1

)
.
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(a) Norms for 2-sparse parity, m ∈ {16, 64, 256}.
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(b) Norms for mnist, m ∈ {256, 1024, 4096}.

Figure 3: CDFs of norm growth on 2-sparse parity and mnist digits 3 vs 5, with three choices of
width, and all other experimental details as in Figure 1, Figure 2, and Appendix B.2. Here, for each
width m, the norm growth of node j is interpreted as

√
m∥vj(t) − vj(0)∥; the

√
m factor is due

to the gradient of vj scaling with aj , which initially has magnitude roughly 1/
√
m, and results in

overlapping CDFs. One measure of exiting the NTK, though a bit weak, is that most rescaled norms
are far beyond 1; an experiment to finer accuracy could be an interesting direction for future work.

To close, for the final estimate, if k = 4 then

4

2k
√
kd

(
k − 3

k/2− 1

)
=

4

24
√
4d

(
1

1

)
=

1

2k
√
d
,

and otherwise, if k > 4, note firstly via standard lower bounds on the central binomial coefficient
that (

k − 3

k/2− 1

)
=

k − 3

k/2− 2

(
k − 2

k/2− 1

)
≥ k − 3

k/2− 2

(
2k−2

√
k − 1

)
≥ 2

(
2k−2

√
k − 1

)
,

and thus
4

2k
√
kd

(
k − 3

k/2− 1

)
≥ 2

(k − 1)
√
kd

≥ 2

k
√
d
.

B.2 EXPERIMENTAL DETAILS

This brief section summarizes various choices used in the experiments behind Figure 1 and Figure 2,
and provides an additional companion figure Figure 3.

The mnist data was limited to classes 3 and 5 to give a binary classification problem which is not
linearly separable, and otherwise unmodified. The 2-sparse parity data was uniform over Hd, the
corners of the rescaled hypercube as defined in Proposition 1.3, and further described in Figure 1
(e.g., n = 64 samples and d = 20 dimensions).

To simulate gradient flow, full-batch gradient descent was used together with the logistic loss. Ini-
tially the step size was 0.01, but eventually the mnist plots switched to step size 1, which did
not lead to any discernible change. All experiments were run until the empirical logistic risk was
approximately 1/n.

A companion figure to Figure 2 from the paper body is to plot the CDFs of norm changes of the
inner layer; this is presented here in Figure 3, and as detailed in the caption, also indicates an exit to
the NTK, though it is unclear if it is quite to the significant level ∥Wt −W0∥ = O(

√
m) allowed by

the theoretical guarantees.
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B.3 GAUSSIAN CONCENTRATION

The first concentration inequalities are purely about the initialization.

Lemma B.3. Suppose a ∼ Nm/
√
m and V ∼ Nm×d/

√
d.

1. With probability at least 1 − δ, then ∥a∥ ≤ 1 +
√
2 ln(1/δ)/m; similarly, with probability at

least 1− δ, then ∥V ∥ ≤
√
m+

√
2 ln(1/δ)/d.

2. Let examples (x1, . . . , xn) be given with ∥xi∥ ≤ 1. With probability at least 1− 4δ,

max
i

∣∣∣∣∣∣
∑
j

ajσ(v
T

jxi)

∣∣∣∣∣∣ ≤ 4 ln(n/δ).

Proof. 1. Rewrite ã := a
√
m, so that ã ∼ Nm. Since ã 7→ ∥ã∥/

√
m = ∥a∥ is (1/

√
m)-

Lipschitz, then by Gaussian concentration, (Wainwright, 2019, Theorem 2.26),

∥a∥ = ∥ã∥/
√
m

≤ E∥ã∥/
√
m+

√
2 ln(1/δ)/m

≤
√

E∥ã∥2/
√
m+

√
2 ln(1/δ)/m

= 1 +
√
2 ln(1/δ)/m.

Similarly for V , defining Ṽ := V
√
d whereby Ṽ ∼ Nm×d, Gaussian concentration grants

∥V ∥ = ∥Ṽ ∥/
√
d ≤

√
m+

√
2 ln(1/δ)/d.

2. Fix any example xi, and constants ϵ1 > 0 and ϵ2 > 0 to be optimized at the end of the proof,
and define di := d/∥xi∥2 for convenience. By rotational invariance of Gaussians and since
xi is fixed, then σ(V xi) is equivalent in distribution to ∥xi∥σ(g)/

√
d = σ(g)/

√
di where

g ∼ Nm. Meanwhile, g 7→ ∥σ(g)∥/
√
di is (1/

√
di)-Lipschitz with E∥σ(g)∥ ≤

√
m, and so,

by Gaussian concentration (Wainwright, 2019, Theorem 2.26),

Pr[∥σ(V xi)∥ ≥ ϵ1 +
√
m] = Pr[∥σ(g)∥/

√
di ≥ ϵ1 +

√
m] ≤ exp

(
−diϵ

2
1

2

)
.

Next consider the original expression aTσ(V xi). To simplify handling of the 1/m variance
of the coordinates of a, define another Gaussian h := a

√
m, and a new constant ci := mdi

for convenience, whereby aTσ(Vi) is equivalent in distribution to equivalent in distribution to
hTσ(g)/

√
ci since a and V are independent (and thus h and V are independent). Conditioned

on g, since Eh = 0, then E[hTσ(g)|g] = 0. As such, applying Gaussian concentration to this
conditioned random variable, since h 7→ hTσ(g)/

√
ci is (∥σ(g)∥/√ci)-Lipschitz, then

Pr[hTσ(g)/
√
ci ≥ ϵ2

∣∣ g] ≤ exp

(
−ciϵ

2
2

2∥σ(g)∥2

)
.
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Returning to the original expression, it can now be controlled via the two preceding bounds,
conditioning, and the tower property of conditional expectation:
Pr[hTσ(g)/

√
ci ≥ ϵ2]

≤ Pr
[
hTσ(g)/

√
ci ≥ ϵ2

∣∣ ∥σ(g)∥/√di ≤ ϵ1 +
√
m
]
· Pr
[
∥σ(g)∥/

√
di ≤ ϵ1 +

√
m
]

+ Pr
[
hTσ(g)/

√
ci ≥ ϵ2

∣∣ ∥σ(g)∥/√di > ϵ1 +
√
m
]
· Pr
[
∥σ(g)∥/

√
di > ϵ1 +

√
m
]

= E
[

Pr[hTσ(g)/
√
ci ≥ ϵ2 | g]

∣∣∣ ∥σ(g)∥/√di ≤ ϵ1 +
√
m

]
Pr[∥σ(g)∥/

√
di ≤ ϵ1 +

√
m]

+ Pr[hTσ(g)/
√
ci ≥ ϵ2 | ∥σ(g)∥/

√
di > ϵ1 +

√
m]Pr[∥σ(g)∥/

√
di > ϵ1 +

√
m]

≤ E

exp( −ciϵ
2
2

2∥σ(g)∥2

) ∣∣ ∥σ(g)∥/√di ≤ ϵ1 +
√
m

+ exp
(
−diϵ

2
1/2
)

≤ exp

(
−ciϵ

2
2

4diϵ21 + 4dim

)
+ exp

(
−diϵ

2
1/2
)
.

As such, choosing ϵ2 := 4 ln(n/δ)
√

mdi/ci = 4 ln(n/δ) and ϵ1 :=
√
2 ln(n/δ)/di gives

Pr[aTσ(V xi) ≥ ϵ2] = Pr[hTσ(g)/
√
ci ≥ ϵ2] ≤

δ

n
+

δ

n
,

which is a sub-exponential concentration bound. Union bounding over the reverse inequality
and over all n examples and using maxi ∥xi∥ ≤ 1 gives the final bound.

Next comes a key tool in all the proofs using γntk: guarantees that the infinite-width margin assump-
tions imply the existence of good finite-width networks.
Lemma B.4. Suppose the data distribution satisfies Assumption 1.2 with corresponding θ : Rd+1 →
Rd+1 and γntk > 0, and let ((xi, yi))

n
i=1 be an iid draw.

1. With probability at least 1− δ over the draw of (wj)
m
j=1, defining θj := θ(wj)/

√
m, then

min
i

∑
j

〈
θj , ∂̂pi(wj)

〉
≥ γntk

√
m−

√
32 ln(n/δ).

2. With probability at least 1 − 7δ over the draw of W with rows (wj)
m
j=1 with m ≥ 2 ln(1/δ),

defining rows θj := θ(wj)/
√
m of θ ∈ Rm×(d+1), then for any W ′ and any R ≥ ∥W −W ′∥

and any rθ ≥ 0 and rw ≥ 0,〈
rθθ + rwW, ∂̂pi(W

′)
〉
− rwpi(W

′) ≥ γntkrθ
√
m− rθ

[√
32 ln(n/δ) + 8R+ 4

]
− rw

[
4 ln(n/δ) + 2R+ 2R

√
m+ 4

√
m
]
,

and moreover, writing W = (a, V ), then ∥a∥ ≤ 2 and ∥V ∥ ≤ 2
√
m. For the particular choice

rθ := R/8 and rw = 1, if R ≥ 8 and m ≥ (64 ln(n/δ)/γntk)
2, then〈

rθθ +W, ∂̂pi(W
′)
〉
− pi(W

′) ≥ γntkrθ
√
m

2
− 160r2θ .

Proof. 1. Fix any example (xi, yi), and define

µ := Ew

〈
θ(w), ∂̂pi(w)

〉
,

where µ ≥ γntk by assumption. By the various conditions on θ, it holds for any (a, v) := w ∈
Rd+1 and corresponding (ā, v̄) := θ(w) ∈ Rd+1 that∣∣∣∣〈θ(w), ∂̂pi(w)〉∣∣∣∣ ≤ ∣∣āσ(vTxi)

∣∣+∣∣∣〈v̄, axiσ
′(vTxi)

〉∣∣∣
≤ |ā| · 1[∥v∥ ≤ 2] · ∥v∥ · ∥xi∥+ ∥v̄∥ · |a| · 1[|a| ≤ 2] · ∥xi∥
≤ 4.
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and therefore, by Hoeffding’s inequality, with probability at least 1 − δ/n over the draw of m
iid copies of this random variable,∑

j

〈
θ(wj), ∂̂pi(wj)

〉
≥ mµ−

√
32m ln(n/δ) ≥ mγntk −

√
32m ln(n/δ),

which gives the desired bound after dividing by
√
m, recalling θj := θ(wj)/

√
m, and union

bounding over all n examples.

2. First, suppose with probability at least 1 − 7δ that the consequences of Lemma B.3 and the
preceding part of the current lemma hold, whereby simultaneously ∥a∥ ≤ 2, and ∥V ∥ ≤ 2

√
m,

and

min
i

pi(W ) ≥ −4 ln(n/δ), and min
i

∑
j

〈
θj , ∂̂pi(wj)

〉
≥ γntk

√
m−

√
32 ln(n/δ).

The remainder of the proof proceeds by separately lower bounding the two right hand terms in〈
rθθ + rwW, ∂̂pi(W

′)
〉
− rwpi(W

′) = rθ

[〈
θ, ∂̂pi(W )

〉
+
〈
θ, ∂̂pi(W

′)− ∂̂pi(W )
〉]

+ rw

[〈
W, ∂̂pi(W

′)
〉
− rwpi(W

′)

]
.

For the first term, writing (ā,V) = θ and noting ∥ā∥ ≤ 2 and ∥V∥ ≤ 2, then for any W ′ =
(a′, V ′),∣∣∣∣〈θ, ∂̂pi(W ′)− ∂̂pi(W )

〉∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j

āj

(
σ(xT

iv
′
j)− σ(vT

jxi)
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑
j

xT

i v̄j

(
a′jσ

′(xTv′j)− ajσ
′(xTvj)

)∣∣∣∣∣∣
≤
√∑

j

ā2j

√∑
j

(
σ(xT

iv
′
j)− σ(vT

jxi)
)2

+
∑
j

|xT

i v̄j | ·
∣∣∣a′jσ′(xTv′j)− ajσ

′(xTv′j)
∣∣∣

+
∑
j

|xT

i v̄j | ·
∣∣∣ajσ′(xTv′j)− ajσ

′(xTv′j)
∣∣∣

≤ ∥ā∥ · ∥V ′ − V ∥+ ∥a′ − a∥ · ∥V∥+ ∥a∥ · ∥V∥
≤ 4R+ 4.

For the second term,∣∣∣∣〈W, ∂̂pi(W
′)
〉
− pi(W

′)

∣∣∣∣ = ∣∣∣∣〈a, ∂̂api(W ′)
〉
+
〈
V, ∂̂V pi(W

′)
〉
−
〈
V ′, ∂̂V pi(W

′)
〉∣∣∣∣

≤

∣∣∣∣∣∣
∑
j

ajσ(x
T

iv
′
j)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j

a′j

〈
vj − v′j , xi

〉
σ′(xT

ivj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣pi(w) + yi
∑
j

aj

(
σ(xT

iv
′
j)− σ(xT

ivj)
)∣∣∣∣∣∣+

∑
j

∣∣∣a′j∣∣∣ · ∥vj − v′j∥

≤ 4 ln(nδ) + ∥a∥ · ∥V − V ′∥+ ∥a′ − a+ a∥ · ∥V − V ′∥
≤ 4 ln(nδ) + 4R+R2.

Multiplying through by rθ and r and combining these inequalities gives, for every i,〈
rθθ + rwW, ∂̂pi(W

′)
〉
− rwpi(W

′) ≥ γntkrθ
√
m− rθ

[√
32 ln(n/δ) + 4R+ 4

]
− rw

[
4 ln(n/δ) + 4R+R2

]
,
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which establishes the first inequality. For the particular choice rθ := R/8 with R ≥ 8 and
rw = 1, and using m ≥ (64 ln(n/δ)/γntk)

2, the preceding bound simplifies to〈
rθθ + rwW, ∂̂pi(W

′)
〉
− rwpi(W

′) ≥ γntkrθ
√
m− rθ

[
γntk

√
m

8
+ 32rθ + 32rθ

]

−

[
γntk

√
m

16
+ 32rθ + 64r2θ

]

≥ γntkrθ
√
m

2
− 160r2θ .

B.4 BASIC PROPERTIES OF L-HOMOGENEOUS PREDICTORS

This subsection collects a few properties of arbitrary L-homogeneous predictors in a setup more
general than the rest of the work, and used in all large margin calculations. Specifically, suppose
general parameters ut with some unspecified initial condition u0, and thereafter given by the differ-
ential equation

u̇t = −∂̄uR̂(p(ut)), (B.1)

where

p(u) := (p1(u), . . . , pn(u)) ∈ Rn,

pi(u) := yiF (xi;u),

F (xi; cu) = cLF (xi;u) ∀c ≥ 0.

The first property is that norms increase once there is a positive margin.
Lemma B.5 (Restatement of (Lyu & Li, 2019, Lemma B.1)). Suppose the setting of eq. (B.1) and
also ℓ ∈ {ℓexp, ℓlog}. If R̂(uτ ) < ℓ(0)/n, then, for every t ≥ τ ,

d

dt
∥ut∥ > 0 and ⟨ut, u̇t⟩ > 0,

and moreover limt ∥ut∥ = ∞.

Proof. Since R̂ is nonincreasing during gradient flow, it suffices to consider any us with R̂(us) <
ℓ(0)/n. To apply (Lyu & Li, 2019, Lemma B.1), first note that both the exponential and logistic
losses can be handled, e.g., via the discussion of the assumptions at the beginning of (Lyu & Li,
2019, Appendix A.1). Next, the statement of that lemma is

d

ds
ln ∥us∥ > 0,

but note that ∥us∥ > 0 (otherwise R̂(us) < ℓ(0)/n is impossible), and also that

d

ds
∥us∥ =

⟨us, u̇s⟩
∥us∥

, and
d

ds
ln ∥us∥ =

⟨us, u̇s⟩
∥us∥2

,

which together with (d/ ds) ln ∥us∥ > 0 from (Lyu & Li, 2019, Lemma B.1) imply the main part of
the statement; all that remains to show is ∥us∥ → ∞, but this is given by (Lyu & Li, 2019, Lemma
B.6).

Next, even without the assumption R̂(us) < ℓ(0)/n (which at a minimum requires a two-phase
proof, and certain other annoyances), note that once ∥us∥ is large, then the gradient can be related to
margins, even if they are negative, which will be useful in circumventing the need for dual conver-
gence and other assumptions present in prior work (e.g., as in (Chizat & Bach, 2020)). We note that
while the closest inequalities in the literature require the condition R̂(us) < ℓ(0)/n (Ji & Telgarsky,
2020a, Lemma C.5), those results aim for a more stringent goal, replacing n in the bound below with
ln(n); this simpler goal is sufficient in the present work.
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Lemma B.6 (See also (Ji & Telgarsky, 2020a, Proof of Lemma C.5)). Suppose the setting of
eq. (B.1) and also ℓ ∈ {ℓexp, ℓlog}. Then, for any u and any ((xi, yi))

n
i=1 (and corresponding

R̂), 〈
u,−n∂̄uR̂(u)

〉
L∥u∥L

≤ Q
[̊
γ(u) +

n

∥u∥L

]
≤ Q

[
γ(u) +

n

∥u∥L

]
.

Proof. Define v := p(u) for convenience, as well as π(v) = ℓ−1(
∑

i ℓ(vi)) = γ̃(u), whereby
q = ∇pπ(v), and π is (unconditionally) concave (Ji & Telgarsky, 2020a, Lemma C.8). Combining
these facts,〈

u,−n∂̄uR̂(u)
〉
=
∑
i

−ℓ′(vi)
〈
u, ∂̄upi(u)

〉
= LQ

∑
i

qivi = LQ
〈
∇vπ(v), v

〉
= LQ

〈
∇vπ(v), v − 0

〉
≤ LQ

[
π(v)− π(0)

]
.

Simplifying −π(0) now proceeds separately for ℓexp and ℓlog: for ℓexp, then

−π(0) = ln(
∑
i

exp(0)) = ln(n),

whereas for ℓlog, then ℓ−1
log(r) = − ln(er − 1), thus

−π(0) = ln
(
exp

(∑
i

ln(1 + exp(−0))
)
− 1
)
= ln

(
exp

(
n ln 2

)
− 1
)
= ln

(
2n − 1

)
≤ n ln 2.

As such, in either case,〈
u,−n∂̄uR̂(u)

〉
≤ LQ

[
π(v)− π(0)

]
≤ LQ [γ̃ + n] .

Next, since ℓ is strictly decreasing in both cases, then ℓ−1 is strictly decreasing as well, whereby
letting k denote the index of any example with vk = mini vi, then additionally using the positivity
of ℓ gives

γ̃ = ℓ−1

∑
i

ℓ(vi)

 ≤ ℓ−1
(
ℓ(vk)

)
= vk = γ(u)∥u∥L.

Combining these inequalities and dividing by L∥u∥L gives the desired bounds.

Lastly, a key abstract potential function lemma: this potential function is a proxy for mass accumu-
lating on certain weights with good margin, and once it satisfies a few conditions, large margins are
implied directly. This is the second component needed to remove dual convergence from (Chizat &
Bach, 2020).
Lemma B.7. Suppose the setting of eq. (B.1) with L = 2, and ℓ ∈ {ℓexp, ℓlog}. Then, uncondi-
tionally, limt

∫ t

0
Qs ds = ∞. Moreover, if there exists a constant γ̂ > 0, a time τ , and a potential

function Φ(u) so that Φ(uτ ) > −∞, and for all t ≥ τ ,

Φ(u) ≤ 1

L
ln ∥u∥ and

d

dt
Φ(u) ≥ 1

n
Q(u)γ̂,

then it follows that R̂(u) → 0, and ∥u∥ → ∞, and lim inft γ(ut) ≥ γ̂.

Proof. The unconditional claim
∫ t

0
Qs ds → ∞ is shown by considering two cases: either

infs R̂(us) = 0, or R̂(us) > 0 (the case infs R̂(us) < 0 is not possible since ℓ is nonnegative).

1. First suppose infs R̂(us) > 0. For both losses, it will be argued that infs Qs > 0, whereby∫∞
0

Qs ds ≥
∫∞
0

infr Qr ds = ∞. In the case of ℓexp, then R̂(us) =
1
nQs, and infs Qs > 0

directly. In the case of ℓlog, note ℓ−1
log(r) = − ln(er − 1) and ℓ′(z) = −(1 + ez)−1, whereby

(ℓ′log ◦ ℓ−1
log)(r) =

−1

1 + (er − 1)−1
=

1− er

er − 1 + 1
= exp(−r)− 1.
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As such,

inf
s
Qs = inf

s
−(ℓ′log ◦ ℓ−1

log)(nR̂(us)) = inf
s

(
1− exp(−nR̂(us))

)
=

(
1− exp(−n inf

s
R̂(us))

)
>
(
1− exp(−0)

)
= 0,

meaning infs Qs > 0 as desired.

2. If infs R̂(us) = 0, then we can choose a time τ with R̂(uτ ) < ℓ(0), and it follows that margins
increase monotonically and R̂ decreases monotonically (Lyu et al., 2021), and moreover by
Lemma B.5 that ∥us∥ is increasing and lims ∥us∥ = ∞. Furthermore, for ℓexp, then

∑
i qi = 1,

whereas for ℓlog, R̂(us) < ℓ(0) (which holds for all s ≥ τ ) implies
∑

i qi(s) ∈ [1, 2] (Ji &
Telgarsky, 2019, Lemma 5.4). As such, for any s ≥ τ ,

d

ds
ln ∥us∥2 =

2
∑

i |ℓ′i|
〈
us, ∂̄pi(us)

〉
∥us∥2

=
4Qs

∑
i qi(s)pi(us)

∥us∥2
≤ 8Qs,

whereby it follows that

∞ = lim
t

ln ∥ut∥2 =

∫ ∞

τ

∥us∥2 ds ≤ 8

∫ ∞

τ

Qs ds,

meaning
∫∞
τ

Qs ds = ∞, whereas
∫ τ

0
Qs ds > 0 via the analysis in the preceding case, and

together
∫∞
0

Qs ds = ∞.

Combining these two cases, then
∫∞
0

Qs ds = ∞ unconditionally.

Now consider the second statement, with Φ, τ, γ given. If lim inft γt ≥ γ̂ > 0, then limt γt is
well-defined and positive via nondecreasing margins, and moreover ∥u∥ → ∞ via Lemma B.5,
and 0 ≤ lim supt R̂(ut) ≤ lim supt ℓ(−γt∥wt∥L) = 0. Alternatively, suppose contradictorily that
lim inft γt < γ̂, and choose any ϵ ∈ (0, γ̂/4) so that lim inft γt < γ̂−3ϵ; noting that γt is monotone
once there exists some γs > 0, choose t1 ≥ τ large enough so that γs ≤ γ̂− 3ϵ for all s ≥ t1. Next,
note that ∥u∥ → ∞ even in this situation (which may violate the conditions of Lemma B.5), since
the assumptions Φ and the unconditional property

∫∞
0

Qs ds = ∞ imply

lim inf
t

1

L
ln ∥ut∥ ≥ lim inf

t
Φ(ut)− Φ(uτ ) + Φ(uτ ) = Φ(uτ ) + lim inf

t

∫ t

τ

d

ds
Φ(us) ds

≥ Φ(uτ ) +
1

n
lim inf

t

∫ t

τ

γ̂Qs ds = ∞,

meaning ∥us∥ → ∞; henceforth, choose t2 ≥ t1 so that so that ∥us∥2 ≥ n/ϵ for all s ≥ t2. It
follows by Lemma B.6 and the assumption L = 2 that

0 ≤ lim inf
t

[
1

L
ln ∥ut∥ − Φ(ut)

]
≤ 1

L
ln ∥ut3∥ − Φ(ut3) + lim inf

t

∫ t

t3

d

ds

[
1

4
ln ∥us∥2 − Φ(us)

]
ds

=
1

L
ln ∥ut3∥ − Φ(ut3) + lim inf

t

∫ t

t3

d

ds

[
⟨us, u̇s⟩
2∥us∥2

− Φ(us)

]
ds

≤ 1

L
ln ∥ut3∥ − Φ(ut3) + lim inf

t

∫ t

t3

[
Qs(γs + n)

n∥us∥2
− 1

n
Qsγ̂

]
ds

≤ 1

L
ln ∥ut3∥ − Φ(ut3) +

1

n
lim inf

t

∫ t

t3

[−ϵQ] ds

= −∞,

a contradiction, and since ϵ ∈ (0, γ̂/4) was arbitrary, it follows that lim inf γt ≥ γ̂.
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C PROOFS FOR SECTION 2

This section contains proofs for Section 2, all of which have a dependence on γntk rather than γgl.
The SGD proofs will come first, as they are easier and serve as a warmup.

C.1 SGD PROOFS

Before proceeding with the proof of Theorem 2.3, the following technical lemma (little more than
an application of Freedman’s inequality) will be a sufficient martingale concentration inequality for
the test error bound.

Lemma C.1 (Nearly identical to (Ji & Telgarsky, 2020b, Lemma 4.3)). Define Q(W ) :=
Ex,y|ℓ′(p(x, y;W ))| and Qi(W ) := |ℓ′(p(xi, yi;W ))|. Then

∑
i<t

[
Q(Wi)−Qi(Wi)

]
is a mar-

tingale difference sequence, and with probability at least 1− δ,∑
i<t

Q(Wi) ≤ 4
∑
i<t

Qi(Wi) + 4 ln(1/δ),

Proof. This proof is essentially a copy of one due to Ji & Telgarsky (2020b, Lemma 4.3); that one
is stated for the analog of pi used there, and thus needs to be re-checked.

Let Fi := {((xj , yj)) : j < i} denote the σ-field of all information until time i, whereby
xi is independent of Fi, whereas wi deterministic after conditioning on Fi. Consequently,
E
[
Q(Wi)−Qi(Wi)|Fi

]
= 0, whereby

∑
i<t

[
Q(Wi)−Qi(Wi)

]
is a martingale difference se-

quence.

The high probability bound will now follow via a version of Freedman’s inequality (Agarwal et al.,
2014, Lemma 9). To apply this bound, the conditional variances must be controlled: noting that
|ℓ′(z)| ∈ [0, 1], then Q(Wi) −Qi(Wi) ≤ 1, and since Qi(Wi) ∈ [0, 1], then Qi(Wi)

2 ≤ Qi(Wi),
and thus

E
[(
Q(Wi)−Qi(Wi)

)2 ∣∣ Fi

]
= E

[
Qi(Wi)

2
∣∣ Fi

]
−Q(Wi)

2

≤ E
[
Qi(Wi)

∣∣ Fi

]
− 0

= Q(Wi).

As such, by the aforementioned version of Freedman’s inequality (Agarwal et al., 2014, Lemma 9),∑
i<t

[
Q(Wi)−Qi(Wi)

]
≤ (e− 2)

∑
i<t

E
[(
Q(Wi)−Qi(Wi)

)2 ∣∣ Fi

]
+ ln(1/δ)

≤ (e− 2)
∑
i<t

Q(Wi) + ln(1/δ),

which rearranges to give

(3− e)
∑
i<t

Q(Wi) ≤
∑
i<t

Qi(Wi) + ln(1/δ),

which gives the result after multiplying by 4 and noting 4(3− e) ≥ 1.

With Lemma C.1 and the Gaussian concentration inequalities from Appendix B.3 in hand, the proof
of Theorem 2.3 is as follows.

Proof of Theorem 2.3. Let (wj)
m
j=1 be given with corresponding (āj , v̄j) := θj := θ(wj)/

√
m

(whereby ∥θj∥ ≤ 2 by construction), and define

r :=
10η

√
m

γntk

≤ γntk

√
m

640
, R := 8r =

80η
√
m

γntk

≤ γntk

√
m

80
, W := rθ +W0,
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which implies r ≥ 1, and R ≥ 1, and η ≤ R/16. For the remainder of the proof, rule out the
7δ failure probability associated the second part of Lemma B.4, whereby simultaneously for every
∥W ′ −W0∥ ≤ R,

min
i

〈
W, ∂̂pi(W

′)
〉
≥ rγntk

√
m

2
− 160r2 ≥ rγntk

√
m

4
=

γ2
ntkm

2560
≥ ln(t), (C.1)

min
i

〈
θ, ∂̂pi(W

′)
〉
≥ γntk

√
m−

√
32 ln(n/δ)− 4R− 4 ≥ γntk

√
m− γntk

√
m

8
− γntk

√
m

10
≥ γntk

√
m

2
,

(C.2)

and also ∥a0∥ ≤ 2 and ∥V0∥ ≤ 2
√
m.

The proof now proceeds as follows. Let τ denote the first iteration where ∥Wτ−W0∥ ≥ R, whereby
τ > 0 and maxs<τ ∥Ws −W0∥ ≤ R. Assume contradictorily that τ ≤ t; it will be shown that this
implies ∥Wτ −W0∥ ≤ R.

Consider any iteration s < τ . Expanding the square,

∥Ws+1 −W∥2 = ∥Ws − η∂̂ℓs(Ws)−W∥2

= ∥Ws −W∥2 − 2η
〈
∂̂ℓs(Ws),Ws −W

〉
+ η2

∥∥∥∂̂ℓs(Ws)
∥∥∥2

= ∥Ws −W∥2 + 2ηℓ′s(Ws)
〈
∂̂ps(Ws),W −Ws

〉
+ η2ℓ′s(Ws)

2
∥∥∥∂̂ps(Ws)

∥∥∥2 .
By convexity, ∥Ws −W0∥ ≤ R, and eq. (C.1),

ℓ′s(Ws)
〈
∂̂ps(Ws),W −Ws

〉
= ℓ′s(Ws)

([〈
∂̂ps(Ws),W

〉
− ps(Ws)

]
− ps(Ws)

)

≤ ℓs

(〈
∂̂ps(Ws),W

〉
− ps(Ws)

)
− ℓs(Ws)

≤ ln(1 + exp(− ln(t)))− ℓs(Ws),

≤ 1

t
− ℓs(Ws),

which combined with the preceding display gives

∥Ws+1 −W∥2 ≤ ∥Ws −W∥2 + 2η

(
1

t
− ℓs(Ws)

)
+ η2ℓ′s(Ws)

2
∥∥∥∂̂ps(Ws)

∥∥∥2 .
Since this inequality holds for any s < τ , then applying the summation

∑
s<τ and rearranging gives

∥Wτ −W∥2 + 2η
∑
s<τ

ℓs(Ws) ≤ ∥W0 −W∥2 + 2η +
∑
s<τ

η2ℓ′s(Ws)
2
∥∥∥∂̂ps(Ws)

∥∥∥2 .
To simplify the last term, using ∥V0∥ ≤ 2

√
m and ∥a0∥ ≤ 2 and ∥Ws −W0∥ ≤ R gives∥∥∥∂̂ps(W )

∥∥∥2 = ∥σ(Vsxs)∥2 +
∥∥∥∑

j

ejai,jσ
′(vT

i,jxs)xs

∥∥∥2
≤
∥∥σ(Vsxs)

∥∥2 +∥as∥2

≤ 2∥Vs − V0∥2 + 2∥V0∥2 + 2∥as − a0∥2 + 2∥a0∥2

≤ 2R2 + 8m+ 8,

≤ 10m,

and moreover the first term can be simplified via

∥Wτ −W∥2 = ∥Wτ −W0∥2 − 2
〈
Wτ −W0,W −W0

〉
+ ∥W −W0∥2

≥ ∥Wτ −W0∥2 − 2r∥Wτ −W0∥+ ∥W −W0∥2,
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whereby combining these all gives

∥Wτ −W0∥2 − 2r∥Wτ −W0∥+ ∥W −W0∥2 + 2η
∑
s<τ

ℓs(Ws)

≤ ∥Wτ −W∥2 + 2η
∑
s<τ

ℓs(Ws)

≤ ∥W0 −W∥2 + 2η +
∑
s<τ

η2ℓ′s(Ws)
2
∥∥∥∂̂ps(Ws)

∥∥∥2
≤ ∥W0 −W∥2 + 2η + 10η2m

∑
s<τ

|ℓ′s(Ws)|,

which after canceling and rearranging gives

∥Wτ −W0∥2 + 2η
∑
s<τ

ℓs(Ws) ≤ 2r∥Wτ −W0∥+ 2η + 10η2m
∑
s<τ

|ℓ′s(Ws)|.

To simplify the last term, note by eq. (C.2) that

∥Wτ −W0∥ = sup
∥W∥≤1

⟨W,Wτ −W0⟩

≥ 1

2

〈
−θ̄,Wτ −W0

〉
=

η

2

∑
s<τ

〈
−θ, ∂̂ℓs(Ws)

〉
=

η

2

∑
s<τ

|ℓ′s(Ws)|
〈
θ, ∂̂pi(Ws)

〉
≥ η

2

∑
s<τ

|ℓ′s(Ws)|
γntk

√
m

2
, (C.3)

and thus, by the choice of R, and since ∥Wτ −W0∥ ≥ 1 and η ≤ R/16,

∥Wτ −W0∥2 + 2η
∑
s<t

ℓs(Ws) ≤ 2r∥Wτ −W0∥+ 2η +
40η

√
m∥Wτ −W0∥

γntk

≤
(
R

4
+

R

8
+

R

2

)
∥Wτ −W0∥.

Dropping the term 2η
∑

s<t ℓs(Ws) ≥ 0 and dividing both sides by ∥Wτ −W0∥ ≥ R > 0 gives

∥Wτ −W0∥ ≤ R

4
+

R

8
+

R

2
< R,

the desired contradiction, thus τ > t and all above derivations hold for all s ≤ t.

To finish the proof, combining eq. (C.3) with ∥Wt −W0∥ ≤ R = 80η
√
m/γntk gives∑

s<t

|ℓ′s(Ws)| ≤
4∥Wt −W0∥
ηγntk

√
m

≤ 320

γ2
ntk

.

Lastly, for the generalization bound, defining Q(W ) := Ex,y|ℓ′(p(x, y;W ))|, discarding an addi-
tional δ failure probability, by Lemma C.1,∑

s<t

Q(Ws) ≤ 4 ln(1/δ) + 4
∑
s<t

|ℓ′s(Ws)| ≤ 4 ln(1/δ) +
1280

γ2
ntk

.

Since 1[ps(Ws) ≤ 0] ≤ 2|ℓ′s(Ws)|, the result follows.

It remains to argue that ∥W1 −W0∥ is large; to this end, it already holds by instantiating eq. (C.3)
with τ = 1 that

∥W1 −W0∥ ≥ ηγntk|ℓ′0(W0)|
√
m

4
,
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so it only remains to show that |ℓ′0(W0)| is not too small. By Lemma B.3, discarding an additional
failure probability δ, it holds that |F (x0;W0)| ≤ 4 ln(1/δ), and therefore

|ℓ′0(W0)| =
1

1 + exp(p0(W0))
≥ 1

1 + 1/δ4
≥ δ4,

which combines to give ∥W1 −W0∥ ≥ ηγntkδ
4√m
8 as desired.

C.2 GF PROOFS

This section culminates in the proof of Theorem 2.1, which is broken into a few main lemmas:
Lemma C.3 first controls the empirical risk R̂ similarly to the proof of Theorem 2.3, then Lemma C.4
establishes large margins, whereby Lemma C.6 develops a suitable Rademacher complexity bound,
which combine to quickly give the proof of Theorem 2.1.

Before proceeding with the main proofs, the following technical lemma is used to convert a bound
on ℓ′ to a bound on ℓ.
Lemma C.2. For ℓ ∈ {ℓlog, ℓexp}, then |ℓ′(z)| ≤ 1/8 implies ℓ(z) ≤ 2|ℓ′(z)|.

Proof. If ℓ = ℓexp, then ℓ′ = −ℓ, and thus ℓ(z) ≤ 2|ℓ′(z)| automatically. If ℓ(z) = ℓlog, the
logistic loss, then |ℓ′(z)| ≤ 1/8 implies z ≥ 2. By the concavity of ln(·), for any z ≥ 2, since
1 + e−z ≤ 7/6, then

ℓ(z) = ln(1 + e−z) ≤ e−z ≤ (7/6)e−z

1 + e−z
≤ 2|ℓ′(z)|,

thus completing the proof.

Next comes the proof of Lemma C.3, which follows the same proof plan as Theorem 2.3.
Lemma C.3. Suppose the data distribution satisfies Assumption 1.2 for some γntk > 0, let time t be
given, and suppose width m satisfies

m ≥
(
640 ln(t/δ)

γntk

)2

.

Then, with probability at least 1 − 7δ, the GF curve (Ws)s∈[0,t] on empirical risk R̂ with loss
ℓ ∈ {ℓlog, ℓexp} satisfies

R̂(Wt) ≤
1

5t
, (training error bound),

sup
s<t

∥Ws −W0∥ ≤ γntk

√
m

80
, (norm bound).

Note that this bound is morally equivalent to the SGD bound in Theorem 2.3 after accounting for
the γ2

ntk “units” arising from the step size.

Proof of Lemma C.3. This proof is basically identical to the SGD in Theorem 2.3. Despite this,
proceeding with amnesia, let rows (wj)

m
j=1 of W0 be given with corresponding (āj , v̄j) := θj :=

θ(wj)/
√
m (whereby ∥θj∥ ≤ 2 by construction), and define

r :=
γntk

√
m

640
, R := 8r =

γntk

√
m

80
, W := rθ +W0,

with immediate consequences that r ≥ 1 and R ≥ 8. For the remainder of the proof, rule out the 7δ
failure probability associated with the second part of Lemma B.4, whereby simultaneously for every
∥W ′ −W0∥ ≤ R,

min
i

〈
W, ∂̂pi(W

′)
〉
≥ rγntk

√
m

2
− 160r2 ≥ rγntk

√
m

4
=

γ2
ntkm

2560
≥ ln(t), (C.4)

min
i

〈
θ, ∂̂pi(W

′)
〉
≥ γntk

√
m−

√
32 ln(n/δ)− 4R− 4 ≥ γntk

√
m− γntk

√
m

8
− γntk

√
m

10
≥ γntk

√
m

2
.

(C.5)
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The proof now proceeds as follows. Let τ denote the earliest time such that ∥Wτ −W0∥ = R; since
Ws traces out a continuous curve and since R > 0 = ∥W0 −W0∥, this quantity is well-defined. As
a consequence of the definition, sups<τ ∥Ws − W0∥ ≤ R. Assume contradictorily that τ ≤ t; it
will be shown that this implies ∥Wτ −W0∥ < R.

By the fundamental theorem of calculus (and the chain rule for Clarke differentials), convexity of ℓ,
and since ∥Ws −W0∥ ≤ R holds for s ∈ [0, τ), which implies eq. (C.4) holds,

∥Wτ −W∥2 − ∥W0 −W∥2 =

∫ τ

0

d

ds
∥Ws −W∥2 ds

=

∫ τ

0

2
〈
Ẇs,Ws −W

〉
ds

=
2

n

∫ τ

0

∑
i

ℓ′i(Ws)
〈
∂̄pi(Ws),Ws −W

〉
ds

=
2

n

∫ τ

0

∑
i

ℓ′i(Ws)

([〈
∂̂pi(Ws),W

〉
− pi(Ws)

]
− pi(Ws)

)
ds

≤ 2

n

∫ τ

0

∑
i

(
ℓi

(〈
∂̂pi(Ws),W

〉
− pi(Ws)

)
− ℓi(Ws)

)
ds

≤ 2

n

∫ τ

0

∑
i

(
1

t
− ℓi(Ws)

)
ds

≤ 2− 2

∫ τ

0

R̂(Ws) ds.

To simplify the left hand side,

∥Wτ−W∥2−∥W0−W∥2 = ∥Wτ−W0∥2−2
〈
Wτ −W0,W −W0

〉
≥ ∥Wτ−W0∥2−2r∥Wτ−W0∥,

which after combining, rearranging, and using r ≥ 1 and ∥Wτ −W0∥ ≥ R ≥ 1 gives

∥Wτ −W0∥2 + 2

∫ τ

0

R(Ws) ds ≤ 2 + 2r∥Wτ −W0∥ ≤ 4r∥Wτ −W0∥,

which implies

∥Wτ −W0∥ ≤ 2r =
R

2
< R,

a contradiction since Wτ is well-defined as the earliest time with ∥Wτ − W0∥ = R, which thus
contradicts τ ≤ t. As such, τ ≥ t, and all of the preceding inequalities follows with τ replaced by t.

To obtain an error bound, similarly to the key perceptron argument before, using eq. (C.5),

∥Wt −W0∥ = sup
∥W∥≤1

⟨W,Wt −W0⟩

≥ 1

2

〈
−θ,Wt −W0

〉
=

1

2

〈
−θ,

∫ t

0

ȧs ds

〉

=
1

2n

∫ t

0

∑
i

|ℓ′i(Ws)|
〈
θ, ∂̂pi(Ws)

〉
ds

≥ γntk

√
m

4n

∫ t

0

∑
i

|ℓ′i(Ws)|ds,

which implies
1

n

∫ t

0

∑
i

|ℓ′i(Ws)|ds ≤
4∥Wt −W0∥

γntk

√
m

≤ 1

20
,
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and in particular

inf
s∈[0,t]

1

n

∑
i

|ℓ′i(Ws)| ≤
1

tn

∫ t

0

∑
i

|ℓ′i(Ws)|ds ≤
4∥Wt −W0∥

tγntk

√
m

≤ 1

20t

and so there exists k ∈ [0, t] with

1

n

∑
i

|ℓ′i(Wk)| ≤
1

10t
.

Since this also implies maxi |ℓ′i(Wk)| ≤ n/(10t) ≤ 1/10, it follows by Lemma C.2 that R̂(Wk) ≤
1/(5t), and the claim also holds for t′ ≥ t since the empirical risk is nonincreasing with gradient
flow.

Next is the explicit maximum margin guarantee, which was missing from the SGD analysis.

Lemma C.4. Suppose the data distribution satisfies Assumption 1.2 with margin γntk > 0 and pa-
rameter mapping θ, and let ((xi, yi))

n
i=1 be an iid draw. Let (Ws)s≥0 denote the GF curve resulting

from loss ℓ ∈ {ℓlog, ℓexp}. Suppose the width m satisfies

m ≥ 256 ln(n/δ)

γ2
ntk

,

fix a distance parameter R := γntk

√
m/32, and let time τ be given so that ∥Wτ −W0∥ ≤ R/2 and

R̂(Wτ ) < ℓ(0)/n. Then, with probability at least 1−7δ, there exists a time t with ∥Wt−W0∥ = R
so that for all s ≥ t,

∥Ws −W0∥ ≥ R and γ̊(Ws) ≥
γ2

ntk

4096
,

and moreover the rebalanced iterate Ŵt := (at/
√
γntk, Vt

√
γntk) satisfies p(x, y;Wt) = p(x, y; Ŵt)

for all (x, y), and
γ̃(Wt)

2∥at∥ · ∥Vt∥
≥ γ̊(Ŵt) ≥

γntk

4096
.

Before discussing the proof, a few remarks are in order. Firstly, the final large margin iterate Wt is
stated as explicitly achieving some distance from initialization; needing such a claim is unsurprising,
as the margin definition requires a lot of motion in a good direction to clear the noise in W0. In
particular, it is unsurprising that moving O(

√
m) is needed to achieve a good margin, given that

the initial weight norm is O(
√
m); analogously, it is not surprising that Lemma C.3 can not be

used to produce a meaningful lower bound on γ̊(Wτ ) directly. Lastly, while these comments seem
natural when normalizing by ∥Wt∥2, the normalization ∥at∥ · ∥Vt∥ does not obviously have these
deficiencies.

Another thing to highlight is that the use of Lemma C.3 for warm start is only needed for ℓlog, and
not for ℓexp; it is unclear how this discrepancy translates to practice, where ℓlog dominates.

Proof of Lemma C.4. By the second part of Lemma B.4, with probability at least 1− 7δ, simultane-
ously ∥a∥ ≤ 2, and ∥V ∥ ≤ 2

√
m, and for any ∥W ′ −W0∥ ≤ R, then

min
i

〈
θ, ∂̂pi(W

′)
〉
≥ γntk

√
m−

[√
32 ln(n/δ) + 8R+ 4

]
≥ γntk

√
m

2
,

where θj := θ(wj)/
√
m as usual, and ∥θ∥ ≤ 2; for the remainder of the proof, suppose these

bounds, and discard the corresponding 7δ failure probability. Moreover, for any W ′ with R̂(W ′) <
ℓ(0)/n and ∥W ′ −W0∥ ≤ R, as a consequence of the preceding lower bound and also the property∑

i qi(W
′) ≥ 1 Ji & Telgarsky (2019, Lemma 5.4, first part, which does not depend on linear
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predictors), ∥∥∂̄γ̃(W ′)
∥∥ = sup

∥W∥≤1

〈
W, ∂̄γ̃(W ′)

〉
≥ 1

2

〈
θ,
∑
i

qi∂̄pi(W
′)

〉

=
1

2

∑
i

qi

〈
θ, ∂̄pi(W

′)
〉

≥ γntk

√
m

4

∑
i

qi

≥ γntk

√
m

4
.

Now consider the given Wτ with R̂(Wτ ) < ℓ(0)/n and ∥Wτ − W0∥ ≤ R/2. Since s 7→ Ws

traces out a continuous curve and since norms grow monotonically and unboundedly after time τ

(cf. Lemma B.5), then there exists a unique time r with ∥Wt −W0∥ = R. Furthermore, since R̂ is
nonincreasing throughout gradient flow, then R̂(Ws) < ℓ(0)/n holds for all s ∈ [τ, t]. Then

γ̃(Wt)− γ̃(Wτ ) =

∫ t

τ

〈
∂̄γ̃(Ws), Ẇs

〉
ds

=

∫ t

τ

∥∂̄γ̃(Ws)∥ · ∥Ẇs∥ ds

≥ γntk

√
m

4

∫ t

τ

∥Ẇs∥ ds

≥ γntk

√
m

4

∥∥∥∫ t

τ

Ẇs

∥∥∥ds
=

γntk

√
m

4
∥Wt −Wτ∥ ds

≥ γntkR
√
m

8

≥ γ2
ntkm

256
.

Since ∥W0∥ ≤ 3
√
m, thus ∥Wt∥ ≤ 3

√
m+γntk

√
m/32 ≤ 4

√
m, and the normalized margin satisfies

γ̊(Wt) ≥
γ̃(Wτ )

∥Wt∥2
+

1

∥Wt∥2

∫ t

τ

d

ds
γ̃(Ws) ds ≥ 0 +

γ2
ntkm/256

16m
=

γ2
ntk

4096
.

Furthermore, it holds that γ̊(Ws) ≥ γ̊(Wt) for all s ≥ t (Lyu & Li, 2019), which completes the
proof for Wt under the standard parameterization.

Now consider the rebalanced parameters Ŵt := (at/
√
γntk, Vt

√
γntk); since m ≥ 256/γ2

ntk, which
means 16 ≤ γntk

√
m, then

∥at∥ ≤ ∥a0∥+ ∥at − a0∥ ≤ 2 +R ≤ γntk

√
m

8
+

γntk

√
m

32
≤ γntk

√
m

4
,

∥Vt∥ ≤ ∥V0∥+ ∥Vt − V0∥ ≤ 2
√
m+R ≤ 3

√
m,

then the rebalanced parameters satisfy

∥Ŵt∥ ≤ ∥at/
√
γntk∥+ ∥Vt

√
γntk∥ ≤

√
γntkm

4
+ 3

√
γntkm ≤ 4

√
γntkm,

and thus, for any (x, y), since

p(x, y;Wt) =
∑
j

aj(t)σ(vj(t)
Tx) =

∑
j

aj(t)√
γntk

σ(
√
γntkvj(t)

Tx) = p(x, y; Ŵt),
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then

γ̊(Ŵt) = min
i

pi(Ŵt)

∥Ŵt∥2
= min

i

pi(Wt)

∥Ŵt∥2
≥ γ̃2m/256

16γntkm
≥ γntk

4096
,

and lastly to complete the proof note by AM-GM that

∥Ŵt∥2 =
1

γntk

∥at∥2 + γntk∥Vt∥2 ≥ 2∥at∥ · ∥Vt∥,

whereby γ̊(Ŵt) =
γ̃(Wt)

∥Ŵt∥2
≤ γ̃(Wt)

2∥at∥·∥Vt∥ .

Next comes a margin-based Rademacher complexity bound; as Rademacher complexity has not
been used or defined within this work, here is a brief description of the main definition, with further
detail deferred tp standard references (Shalev-Shwartz & Ben-David, 2014). First, for a given set of
vectors V ⊆ Rn, the Rademacher complexity Rad(V ) is

Rad(V ) =
1

n
Eϵ sup

u∈V
⟨ϵ, u⟩ ,

where ϵ ∈ {±1}n has iid Rademacher coordinates, meaning Pr[ϵi = +1] = 1
2 = Pr[ϵi = −1]. The

set V will typically be the set of outputs of some class of predictors G on a finite sample X = (xi)
n
i=1

of size n, using the notation

G|X =
{(

g(x1), . . . , g(xn)
)
: g ∈ G

}
⊆ Rn.

Our bound below will replace G with a variety of bounded two-layer networks of any width. This
bound can be viewed as a strengthening of the proofs of (Vardi et al., 2022), where the bound here
holds for all widths simultaneously (with no dependence on width), and is normalized by the tighter
quantity

∑
j ∥ajvj∥.

Lemma C.5. For any B ≥ 0 and any X = (xi)
n
i=1 with ∥xi∥ ≤ 1,

Rad
({

x 7→ F (x;W ) : m ≥ 0,W ∈ Rm×(d+1), ∥W∥2 ≤ 2B
}
|X

)
≤ Rad

({
x 7→ F (x;W ) : m ≥ 0, (a, V ) = W ∈ Rm×(d+1), ∥a∥ · ∥V ∥ ≤ B

}
|X

)

≤ Rad


x 7→ F (x;W ) : m ≥ 0, (a, V ) = W ∈ Rm×(d+1),

∑
j

∥ajvj∥ ≤ B


|X


≤ 2B√

n
.

Proof. The first two inequalities are easier, and follow by set inclusion. In detail, note for any fixed
W = (a, V ), by Cauchy-Schwarz and AM-GM, that∑

j

∥ajvj∥ =
∑
j

|aj | · ∥vj∥ ≤ ∥a∥ · ∥V ∥ ≤ 1

2

(
∥a∥2 + ∥V ∥2

)
=

∥W∥2

2
,

which implies for each m the inclusions{
W ∈ Rm×(d+1) : ∥W∥2 ≤ 2B

}
⊆
{
(a, V ) = W ∈ Rm×(d+1) : ∥a∥ · ∥V ∥ ≤ B

}
⊆

(a, V ) = W ∈ Rm×(d+1) :
∑
j

∥ajvj∥ ≤ B

 ,

which in turn implies the first two Rademacher inequalities in the statement since Rademacher com-
plexity can not decrease with the growth of sets.
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For the final inequality, recall the definition of symmetric convex hull sconv(·) as used throughout
Rademacher complexity (Shalev-Shwartz & Ben-David, 2014):

sconv(S) :=


m∑
j=1

pjuj : m ≥ 0, p ∈ Rm, ∥p∥1 ≤ 1, uj ∈ S

 .

Then, recalling the notation ãj and ṽj for normalized counterparts to aj and vj , the set of vectors U
in the final Rademacher term can be written

U :=

x 7→
∑
j

ajσ(v
T

jx) : m ≥ 0,W ∈ Rm×(d+1),
∑
j

∥ajvj∥ ≤ B


|X

=

x 7→
∑
j

∥ajvj∥ãσ(ṽT

jx) : m ≥ 0,W ∈ Rm×(d+1)


|X

=

x 7→

∑
k

∥akvk∥

∑
j

∥ajvj∥∑
k ∥akvk∥

ãσ(ṽT

jx) : m ≥ 0,W ∈ Rm×(d+1),
∑
j

∥ajvj∥ ≤ B


|X

= B

x 7→
∑
j

pjσ(ṽ
T

jx) : m ≥ 0,W ∈ Rm×(d+1), p ∈ Rm, ∥p∥1 ≤ 1


|X

= B · sconv
({

x 7→ σ(vTx) : ∥v∥2 = 1
}
|X

)
,

and by standard rules of Rademacher complexity (Shalev-Shwartz & Ben-David, 2014),

Rad(U) ≤ B · Rad
(

sconv
({

x 7→ σ(vTx) : ∥v∥2 = 1
}
|X

))
≤ 2B · Rad

({
x 7→ σ(vTx) : ∥v∥2 = 1

}
|X

)
≤ 2B√

n
.

The large margin generalization bound is now an immediate consequence of Lemma C.5 and a
refined margin-based Rademacher bound due to Srebro et al. (2010, Theorem 5). This bound will
use the refined normalized margin

γ1(W ) :=
mini pi(W )∑

j ∥ajvj∥
, (C.6)

where Cauchy-Schwarz and AM-GM imply γ1(W ) ≥ mini pi(W )
∥a∥·∥V ∥ ≥ 2γ(W ) as in the proof of

Lemma C.5.

Lemma C.6. With probability at least 1− δ over the draw of ((xi, yi))
n
i=1, for every width m, every

choice of weights (a, V ) = W ∈ Rm×(d+1) with γ1(W ) > 0 (cf. eq. (C.6)) satisfies

Pr[p(x, y;W ) ≤ 0] ≤ O

(
ln(n)3

nγ1(W )2
+

ln 1
δ

n

)
.

Proof. Combining a refined Rademacher-based margin bound due to (Srebro et al., 2010, Theorem
5) with the 2-layer Rademacher complexity estimate from Lemma C.5 gives, with probability at
least 1 − δ, for every margin level γ2 > 0, for every W ∈ Rm×(d+1) with γ1(W ) ≥ γ2, defining
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Uγ2
:= {x 7→ F (x;W )/

∑
j ∥ajvj∥ : γ1(W ) ≥ γ2}|X ,

Pr[p(x, y;W ) ≤ 0] = O

(
ln(n)3

γ2
2

Rad(Uγ2
)2 +

ln ln 1
γ2

+ ln 1
δ

n

)

= O

(
ln(n)3

γ2
2

(
1

n

)
+

ln 1
δ

n

)
,

which implies the desired statement.

Thanks to Lemmas C.3 and C.4, the proof of Theorem 2.1 is now immediate.

Proof of Theorem 2.1. As in the statement, define R := γntk

√
m/32; the analysis now uses two

stages. The first stage is handled by Lemma C.3 run until time τ := n, whereby, with probability at
least 1− 7δ,

R̂(Wτ ) ≤
1

5n
<

ℓ(0)

n
, ∥Wτ −W0∥ ≤ γntk

√
m

80
≤ R

2
.

The second stage now follows from Lemma C.4: since Wτ as above satisfies all the conditions of
Lemma C.4, there exists Wt with ∥Wt−W0∥ = R, and γ̃(Wt)/(∥at∥·∥Vt∥) ≥ γntk/2048, and since
even these mixed-norm margins are nondecreasing (Lyu & Li, 2019, Section H), the claim also holds
for all Ws with s ≥ t, and the generalization bound follows from Lemma C.6, using

∑
j ∥ajvj∥ ≤

∥a∥·∥V ∥ and mini pi(W ) ≥ γ̃(W ), which holds for both {ℓlog, ℓexp}. Lastly, since ∥Ws∥ → ∞ and
since lims→∞ ∥as∥/∥Vs∥ = 1 (Du et al., 2018a), it follows that lims→∞ ∥Ws∥2/(∥as∥ ·∥Vs∥) = 2,
which gives the final claim.

Lastly, the proof of Corollary 2.2, giving a simple construction where GF escapes bad KKT points.

Proof of Corollary 2.2. First it is shown that the provided choice of (a, V ) with aj = 1 and vj =
(1, 0) is a KKT direction. With probability 1−21−n, both elements of the support of the distribution
are sampled, and for convenience reorder the sampled data so that x1 = z1, and x2 = z2, and
the other data are arbitrary (though yi = +1 for all examples). It will be shown that the choice
λ1 = λ2 = 1/(2γ0) and λi = 0 for i ≥ 3 are a valid choice of Lagrange multipliers, certifying that
(a, V ) is a KKT direction. Firstly, derivative condition is easy to check since the Clarke differential
is evaluated where the ReLU is differentiable, and it holds directly that

aj = 1

=
γ0
2γ0

+
γ0
2γ0

= λ1σ(v
T

jx1) + λ2σ(v
T

jx2),

vj = (1, 0)

=

(
γ0
2γ0

+
γ0
2γ0

,

√
1− γ2

0

2γ0
−
√

1− γ2
0

2γ0

)
= λ1ajx1 + λ2ajx2

= λ1aj∇vσ(v
T

jx1) + λ2aj∇vσ(v
T

jx2).

Lastly, note that p1(W ) = mγ0 = p2(W ), therefore the rescaling Ŵ := W/
√
mγ0 correctly

satisfies p1(Ŵ ) = 1 = p2(Ŵ ), whereby Ŵ is a KKT point with margin mγ0/∥W∥2 = γ0/2, and
W is a KKT direction with margin γ0/2.

For the GF guarantee, it suffices to provide a quick estimate for γntk and invoke Lemma C.3. Specif-
ically, consider the rather loose but convenient weight mapping

θ(a, v) :=


0 ∥(a, v)∥ ≥ 2,

(0, sgn(a)(0, 1)) v2 ≥ |v1|,
(0, sgn(a)(0,−1)) v2 < −|v1|.
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Then, for the point z1, since
√

1− γ2
0 > γ0, it follows that

E
〈
θ((a, v)), ∂̄p(z1,+1; (a, v))

〉
= E1[v2 ≥ |v1| ∧ ∥(a, v)∥ ≤ 2]

(
0 + |a|σ′(γ0v1 +

√
1− γ2

0v2)
√
1− γ2

0

)
+ E1[v2 < 0 ∧ ∥(a, v)∥ ≤ 2]

(
0− |a|σ′(γ0v1 +

√
1− γ2

0v2)
√
1− γ2

0

)
≥ E|a|1[v2 ≥ |v1| ∧ ∥(a, v)∥ ≤ 2]

√
1− γ2

0

≥
√
1− γ2

0

16
,

where the last step follows from standard Gaussian computations. The case for z2 is analogous,
which establishes that Assumption 1.1 holds with γntk ≥

√
1− γ2

0/16, which implies the result by
applying Theorem 2.1, using the simplification

√
1− γ2

0 ≥ 1/2 since γ0 ≤ 1/4, and lastly obtaining
convergence to KKT directions via (Lyu & Li, 2019; Ji & Telgarsky, 2020a).

D PROOFS FOR SECTION 3

This section develops the proofs of Theorem 3.2 and Theorem 3.3. Before proceeding, here is a
quick sampling bound which implies there exist ReLUs pointing in good directions at initialization,
which is the source of the exponentially large widths in the two statements.

Lemma D.1. Let ϵ > 0 and ((αk, βk))
r
k=1 with (αk, βk) ∈ R × Rd be given with ∥βk∥ = 1, and

suppose ((aj , ṽj))
m
j=1 are sampled iid so that with Pr[sgn(aj) = +1] = Pr[sgn(aj) = −1] = 1/2

and ṽj is distributed uniformly on the surface of the unit sphere in Rd (e.g., sample vj ∼ Nd and
choose ṽj := vj/∥vj∥). If

m ≥ 4

(
2

ϵ

)d−1

ln
r

δ
,

then with probability at least 1− δ, for every (αk, βk) there exists (aj , ṽj) with sgn(αk) = sgn(aj)
and ∥βk − ṽj∥ ≤ ϵ (equivalently, ṽT

jβk ≥ 1− ϵ2/2).

Proof. By standard sampling estimates (Ball, 1997, Lemma 2.3), for any fixed k and j, then

Pr[∥ṽj − βk∥ ≤ ϵ] ≥ 1

2

(
ϵ

2

)d−1

,

and since all ((aj , ṽj))mj=1 are iid,

Pr[∃j � sgn(αk) = sgn(aj) ∧ ∥ṽj − βk∥ ≤ ϵ] = 1− Pr[∀j � sgn(αk) ̸= sgn(aj) ∨ ∥ṽj − βk∥ > ϵ]

= 1− Pr[sgn(αk) ̸= sgn(a1) ∨ ∥ṽ1 − βk∥ > ϵ]m

= 1−
(
1/2 + (1/2) · (1− Pr[∥ṽ1 − βk∥ ≤ ϵ])

)m
≥ 1−

(
1− (ϵ/2)d−1/4

)m
≥ 1− exp

(
−m

4
(ϵ/2)d−1

)
≥ 1− δ

r
,

and union bounding over all (βk)
r
k=1 gives the first claim; for the alternative form, it suffices to note

∥ṽj − βk∥2 = 2− 2ṽT
jβk and to rearrange.

First comes the proof of Theorem 3.2, whose entirety is the construction of a potential Φ and a
verification that it satisfies the conditions in Lemma B.7.

35



Proof of Theorem 3.2. The method of proof is to define a potential Φ as

Φ(W ) :=
1

4

∑
k

|αk| ln
∑
j

ϕk,j∥ajvj∥,

where (heavily dropping time indices and even the argument wj to reduce clutter)

ϕk,j(wj) := ϕk,j := ϕ
(
α̃kajσ(v

T

jβk)− (1− ϵ)∥ajvj∥
)
,

ϕ(z) := max{0,min{1, z}},

and to then verify the conditions of Lemma B.7 with τ = 0 and γ̂ := γnc−ϵ
2r , where the test error

bound follows by Lemma C.6. By the lower bound on m and Lemma D.1, it follows that Φ(W0) >
−∞, and moreover, for any t ≥ 0, by AM-GM,

Φ(Wt) ≤
1

2

∑
k

|αk| ln
∑
j

ϕk,j∥wj∥2 ≤ 1

2

∑
k

|αk| ln ∥Wt∥2 =
1

2
ln ∥Wt∥,

whereby it only remains to show dΦ/dt ≥ Qγ̂/n. To this end, note that if we could show

d

dt
ϕk,j(wj(t)) ≥ 0 ∀j, k, t, (D.1)

then the proof is complete, since after noting the calculation

d

dt
∥ajvj∥ =

d

dt

〈
ajvj , ajvj

〉1/2
=

2
〈
ajvj , ȧjvj + aj v̇j

〉
2
〈
ajvj , ajvj

〉1/2
=

〈
ajvj ,−

∑
i ℓ

′
iyi

[
vjσ(v

T
jxi) + a2jσ

′(vT
jxi)xi

]〉
n∥ajvj∥

=
−
∑

i ℓ
′
ipi(wj)∥wj∥2

n∥ajvj∥

= − 1

n

∑
i

ℓ′iãjσ(ṽ
T

jxi)∥wj∥2,

then (d/ dt)Φ(Wt) can be lower bounded as

d

dt
Φ(w) =

1

4

∑
k

|αk|

∑
j

[
ϕk,j

d
dt∥ajvj∥+ ∥ajvj∥ d

dtϕk,j

]
∑

j ϕk,j∥ajvj∥

≥ 1

4

∑
k

|αk|
−
∑

i ℓ
′
iyi
∑

j ϕk,j ãjσ(ṽ
T
jxi)∥wj∥2∑

j ϕk,j∥ajvj∥

=
1

4n
Q
∑
k

|αk|
∑
i∈Sk

qi
yi
∑

j ϕk,jα̃kσ
(
(ṽj − βk + βk)

Txi

)
∥wj∥2∑

j ϕk,j∥ajvj∥

≥ 1

4n
Q
∑
k

αk

∑
i∈Sk

qi

∑
j ϕk,j (γnc − ϵ) 2∥ajvj∥∑

j ϕk,j∥ajvj∥

≥ 1

n
Q
(
γnc − ϵ

2r

)
;

the rest of the proof will establish eq. (D.1). Note moreover that eq. (D.1) has an explicit interpreta-
tion as nodes getting trapped in good directions.
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Fix any j, k, t, and first note

d

dt
α̃kajσ(v

T

jβk) = α̃k

[
ȧjσ(v

T

jβk) + aj
d

dt
σ(vT

jβk)

]
= − 1

n
α̃k

∑
i

ℓ′iyi

[
σ(vT

jxi)σ(v
T

jβk) + a2jσ
′(vT

jβk)x
T

iβk

]
,

= − 1

n
α̃k

∑
i

ℓ′iyi

[
∥vj∥2σ(ṽT

jxi)σ(ṽ
T

jβk) + a2jσ
′(vT

jβk)x
T

iβk

]
,

whereby (d/ dt)ϕk,j = 0 when the argument to ϕ is not in [0, 1], and otherwise

d

dt
ϕk,j =

d

dt

[
α̃kajσ(v

T

jβk)− (1− ϵ)∥ajvj∥
]

= − 1

n

∑
i

ℓ′iyi

[
∥vj∥2ãjσ(ṽT

jxi)
(
α̃kãjσ(ṽ

T

jβk)− (1− ϵ)
)

+ a2j

(
α̃kσ

′(vT

jβk)β
T

kxi − (1− ϵ)ãjσ(ṽ
T

jxi)
) ]

.

Analyzing the two bracketed terms separately, the first (the coefficient to ∥v∥2) is nonnegative since
the term in parentheses is a rescaling of the argument to ϕ within ϕk,j , which was assumed in [0, 1],
meaning α̃kãjσ(ṽ

T
jβk)− (1− ϵ) ≥ 0.

The second bracketed term (the coefficient of a2j ) is more complicated. To start, fix any exam-
ple (xi, yi), define zi := xiyi for convenience, and define and orthogonal decomposition zi :=

cβk + c⊥z⊥ with ∥z⊥∥ = 1 and necessarily c⊥ ≤
√
1− c2 since ∥zi∥ ≤ 1, but more importantly

c⊥/c ≤
√
ϵ/2 by Assumption 3.1. Similarly, define ũj := ãj ṽj for convenience, and additionally

an orthogonal decomposition ũj = qβk +
√
1− q2u⊥, which made use of ∥ũj∥ = ∥ṽj∥ = 1, and

note
1− q2 ≤ 1− (1− ϵ)2 ≤ 2ϵ− ϵ2 ≤ 2ϵ.

With this notation in hand, the second term becomes

α̃kβ
T

kxiyi − (1− ϵ)ãj ṽ
T

jxiyi = c− (1− ϵ)
〈
qβk +

√
1− q2u⊥, cβk + c⊥z⊥

〉
= c

[
1− (1− ϵ)

(
q +

c⊥
c

√
1− q2

)]

≥ c

[
1− (1− ϵ)

(
1 +

√
ϵ/2 ·

√
2ϵ
)]

= c
[
1− (1− 2ϵ+ ϵ2)

]
≥ 0,

as desired: dϕk,j/ dt ≥ 0 for every pair (k, j), meaning eq. (D.1) has been established, and the
proof is complete.

To close, the proof of Theorem 3.3.

Proof of Theorem 3.3. As in the proof of Theorem 3.2, the method of proof will be to construct
a potential function Φ and then verify the conditions on Lemma B.7 with the choices τ = 0 and
γ̂ := γgl/2 = γgl − ϵ where ϵ := γgl/2 throughout the proof, and to then apply Lemma C.6 to obtain
the test error bound. Throughout the proof, use W = ((aj , bk))

m
j=1 to denote the full collection of

parameters, even in this scalar parameter setting, and define b̃j := sgn(bj) in mimicry of ãj and ṽj .
To develop Φ, a few other properties must first be checked.
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The first property is that a2k = b2k for all times t; this follows directly, from the initial condition
ak(0)

2 = bk(0)
2 = 1/

√
m, since at any later time t it holds that

ak(t)
2 − bk(t)

2 = ak(t)
2 − ak(0)

2 − bk(t)
2 + bk(0)

2

=

∫ t

0

(
akȧk − bk ḃk

)
ds

=
1

n

∫ t

0

∑
i

|ℓ′i|
(
akσ(bkv

T

kxi)− akσ
′(bkv

T

kxi)v
T

kxi

)
ds

= 0.

This also implies that a2k + b2k = 2a2k = 2|ak| · |bk| throughout.

Next, for each βk, choose j so that ∥b̃j(0)ṽj − βk∥ ≤ ϵ = γgl/2 and ãj(0) = sgn(αk); this holds
with probability at least 1− δ via Lemma D.1 since ṽj(0)ṽj is equivalent in distribution to sampling
ṽj alone. For the rest of the proof, reorder the weights ((aj , bj , vj))

m
j=1 so that each (αk, βk) is

associated with (ak, bk, vk). Moreover, it will be shown later in the proof that ∥b̃j(t)ṽj − βk∥ ≤ ϵ
and ãj(t) = sgn(αk) in fact hold for all t.

Now define the potential

Φ(W ) :=
1

4

r∑
k=1

|αk| ln
(
a2k + b2k

)
.

Note directly that Φ(W0) > −∞ by the above application of Lemma D.1 and choice of
((ak, bk))

r
k=1, and moreover that

Φ(W ) =
1

4

r∑
k=1

|αk| ln
(
a2k + b2k

)
≤ 1

4

r∑
k=1

|αk| ln ∥W∥2 =
1

2
ln ∥W∥,

whereby it only remains to verify (d/ dt)Φ(Wt) ≥ Qγgl/(2n).

To this end, let T denote the earliest time such that ak(T ) = 0 for some k ∈ {1, . . . , r}, which also
means bk(T ) = 0 for that k and moreover T is the earliest time bk′(T ) = 0 for any k′ ∈ {1, . . . , r}
since a2k = b2k unconditionally for all t. Then, for any t ∈ [0, T ),

d

dt
Φ(W ) =

1

n

∑
k

∑
i

|ℓ′i|yi|αk|
akσ(bkv

T

kxi)

a2k + b2k

=
1

n
Q
∑
k

∑
i

qiyiαk
|ak|∥bkvk∥σ(̃bkṽT

kxi)

2|ak| · |bk|

=
1

n
Q
∑
k

∑
i

qiyiαkσ
(
(̃bkṽk − βk + βk)

Txi

)
≥ 1

n
Q
∑
k

∑
i

qiyiαkσ
(
βT

kxi

)
− 1

n
Q
∑
k

∑
i

qi|αk|
∥∥∥b̃kṽk − βk

∥∥∥
≥ 1

n
Qγgl

∑
i

qi −
ϵ

n
Q
∑
k

∑
i

qi|αk|

=
1

n
Q
∑
i

qi
(
γgl − ϵ

)
=

Qγgl

2n
> 0,

which establishes the desired lower bound on (d/ dt)Φ for t ∈ [0, T ), but moreover establishes
(after integrating along [0, T )) that Φ(WT ) ≥ Φ(W0) > −∞, which means there can not exist k
with ak(T ) = 0, since that would mean bk(T ) = 0 as well (as above) and thereby Φ(WT ) = −∞.
Consequently, T = ∞ and (d/ dt)Φ ≥ Qγgl/(2n) holds for all t, and the proof is complete.
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