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Abstract

The Mixture-of-Experts (MoE) models have001
gained significant attention in deep learning002
due to their dynamic resource allocation and su-003
perior performance across diverse tasks. How-004
ever, efficiently training these models remains005
challenging. The MoE upcycling technique006
has been proposed to reuse and improve ex-007
isting model components, thereby minimizing008
training overhead. Despite this, simple routers,009
such as linear routers, often struggle with com-010
plex routing tasks within MoE upcycling. In011
response, we propose a novel routing technique012
called Router Upcycling to enhance the per-013
formance of MoE upcycling models. Our ap-014
proach initializes multiple routers from the at-015
tention heads of the preceding attention layer016
during upcycling. These routers collabora-017
tively assign tokens to specialized experts in an018
attention-like manner. Each token is processed019
into diverse queries and aligned with the ex-020
perts’ features (serving as keys). Experimental021
results demonstrate that our method achieves022
state-of-the-art (SOTA) performance, outper-023
forming other upcycling baselines. The code024
will be released on GitHub upon acceptance.025

1 Introduction026

The Mixture-of-Experts (MoE) model has emerged027

as a powerful paradigm in deep learning, enabling028

dynamic allocation of computational resources and029

achieving remarkable performance across a vari-030

ety of tasks (Jacobs et al., 1991; Shazeer et al.,031

2017; Jiang et al., 2024). By combining sets of ex-032

pert networks and gating routers where input data033

is assigned to the most appropriate experts, MoE034

models effectively capture diverse patterns within035

data, enhancing both efficiency and accuracy.036

The convergence and generalization capabilities037

of MoE models heavily depend on the design of038

the routing strategy (Shazeer et al., 2017), as poor039

routers lead to the overtraining of some experts040

and the under-training of others. The commonly041

Figure 1: Performance Comparison between vanilla
MoE from scratch and various upcycling models with
different routers on several benchmarks in Section 4.2.
Notably, Switch Transformer (Fedus et al., 2022) routers
perform much poorly in MoE upcycling.

used dynamic routing method in MoE is to select 042

the expert with the top-k highest scores based on a 043

probability distribution output by an intermediate 044

(mostly linear) layer with learnable parameters that 045

act as the router. However, routing frameworks 046

designed for vanilla MoE models (Shazeer et al., 047

2017) may fall short of newly emerged experts’ evo- 048

lution. For instance, upcycling (Komatsuzaki et al., 049

2023) is proposed as a popular approach that ini- 050

tializes experts from dense checkpoints and outper- 051

forms continued dense model training while reduc- 052

ing MoE training costs (He et al., 2024). Our pre- 053

liminary experiments, as shown in Figure 1, present 054

that leveraging inappropriate router structures in 055

upcycling, such as upcycling with Switch Trans- 056

former (Fedus et al., 2022) routers, leads to poor 057

token assignment to the trained upcycled experts, 058

negatively impacting the performance of MoE up- 059

cycling models. Therefore, exploring appropriate 060

router structures is a crucial field for MoE upcy- 061

cling. However, building and initializing efficient 062

routers remains yet to be explored in MoE upcy- 063

1



Figure 2: (a) Vanilla router (Shazeer et al., 2017). (b) Our proposed Router Upcycling method.

cling. In this paper, we comprehensively examine064

the performance of previous router designs in MoE065

upcycling and propose a novel routing method for066

upcycling. To our knowledge, we are the first to do067

router optimization in the Upcycling scenario.068

Before we push further, we need to figure out069

why previous routers fail. Previous studies (Dai070

et al., 2022; Li et al., 2024; Roller et al., 2021)071

make various attempts to enhance the token-choice072

routing ability, many focusing on the ease of train-073

ing instability that same or similar token repre-074

sentations are routed to different sets of experts075

during training (Dai et al., 2022). Nevertheless,076

most of them are fixed routing methods or simple077

in structure like the vanilla linear router as shown in078

Figure 2(a) and cannot inherit diverse token assign-079

ments, facing drawbacks such as the representation080

collapse issue (Chi et al., 2022). On the other hand,081

expert-choice routing (Zhou et al., 2022) flips the082

routing paradigm by allowing experts to select the083

top-k tokens, rather than tokens selecting the top-k084

experts but falls short in causal language modeling085

due to the reliance on future tokens. More impor-086

tantly, while experts are the same at the beginning087

of the MoE upcycling, different experts always088

choose the same tokens as input in expert-choice089

routing, causing expert under-specialization, where090

assigned tokens are not diverse enough to ensure091

experts are specialized. To summarize, previous092

routers fail to implement diverse token assignments,093

leading to expert under-specialization in MoE up-094

cycling.095

We argue that, while experts are all initialized096

from a well-trained dense checkpoint in vanilla 097

upcycling, a well-organized upcycling framework 098

should also upcycle routers in alignment with upcy- 099

cled experts. In response, we propose a novel rout- 100

ing method, Router Upcycling, as illustrated in Fig- 101

ure 2(b), that enhances MoE models by introducing 102

a mixture of routers initialized from attention mod- 103

ules in a dense checkpoint. Specifically, each router 104

leverages the query transformation from different 105

attention heads in the preceding attention layer to 106

process each token into diverse Queries to highlight 107

token representations from multiple perspectives. 108

Meanwhile, during an additional pre-training pro- 109

cess, each expert’s features are initialized as the 110

average Key calculated by corresponding attention 111

heads in the preceding attention layer. These ex- 112

perts’ features serve as Keys in routers and are 113

independent of the token representation to ensure 114

training stability. In an attention-like manner, rout- 115

ing scores are calculated as the inner product of the 116

diverse Queries and the experts’ Keys, followed by 117

a summation process to obtain the experts’ scores, 118

which are utilized for top-k routing afterward. 119

Intuitively, our proposed routers mutually align 120

token representations and expert features to better 121

route tokens to proper experts. Meanwhile, our 122

proposed router utilizes more parameters than a 123

standard linear router to store historical routing 124

knowledge, enhancing stability and accuracy. Still, 125

its size remains negligible compared to the entire 126

model, making this improvement essentially a "free 127

lunch" for existing models. Most importantly, our 128

upcycling method initializes the MoE model with- 129
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out a random router as before, greatly enhancing130

the stability of MoE upcycling.131

Our method can be integrated into existing MoE132

models with minimal modifications. We demon-133

strate the versatility of our approach by implement-134

ing it on a Qwen (Qwen, 2024) 0.5B dense model.135

Despite negligible routing overhead increase, ex-136

perimental evaluations indicate that our method137

achieves state-of-the-art performance, outperform-138

ing other upcycling baselines. Our model surpasses139

the upcycling baseline with more than 2% in gen-140

eral and an average of 4% more accuracy on the141

ARC datasets.142

The contribution of the paper is as follows.143

• We are the first to do router optimization in144

the upcycling scenario, recognizing the neces-145

sity to upcycle routers and leverage attention146

modules to initialize them.147

• We further expand the idea of upcycling by us-148

ing Router Upcycling, where the MoE model149

is initialized without a random router as be-150

fore, greatly enhancing the stability of MoE151

upcycling.152

• Experimental evaluations indicate that our153

"free lunch" method achieves state-of-the-art154

performance, outperforming other upcycling155

baselines with a more than 2% improvement.156

2 Preliminaries157

2.1 Mixture-of-Experts Layer158

A Mixture-of-Experts (MoE) layer typically con-159

sists of a set of n experts E1, E2, . . . , En and a160

router or gating network G. The experts and router161

work collaboratively, functioning similarly to the162

Feed-Forward Network (FFN) in dense models.163

The router uses a gating function to assign tokens164

to the selected top-k experts Es, s ∈ S based on165

scores from a probability distribution calculated166

by an intermediate (mostly linear) layer (Shazeer167

et al., 2017). Typically, the gating function uses168

the Softmax function over the product of the input169

token and a gating weight matrix, routing tokens to170

the most likely experts.171

Let x ∈ Rd be the input token representation,172

W be the intermediate linear layer that outputs an173

n-dimensional vector, and G(x) and Ei(x) be the174

outputs of the router and each expert Ei, respec-175

tively. The output y of the MoE layer, without176

normalization, can be written as follows:177

G(x) = SoftmaxW (x). (1)178

y =
∑
s∈S

G(x)sEs(x). (2) 179

2.2 Upcycling 180

The vanilla upcycling method (Komatsuzaki et al., 181

2023) initializes an MoE model from a dense model 182

checkpoint. It converts a dense model into an MoE 183

model by duplicating the FFN weights multiple 184

times and initializing a randomized router: 185

E1 = E2 = · · · = En = DenseFFN . (3) 186

3 Router Upcycling 187

3.1 Overview 188

The widely-used vanilla linear router (Shazeer 189

et al., 2017) is too simple to handle diverse to- 190

ken assignments, leading to representation collapse 191

(Chi et al., 2022) and expert under-specialization 192

in MoE upcycling. To address this, we introduce 193

attention-like routers for better alignment between 194

tokens and experts, as shown in Figure 2(b), where 195

tokens act as queries and expert features act as keys. 196

Each token is transformed into multiple queries 197

with different representations. For example, one 198

query may represent the syntax of a token, which is 199

then matched with expert features using attention 200

scoring. This approach allows each query from a 201

token to have a different semantic expression in a 202

specific router subspace. By considering multiple 203

queries, our method constructs an equal number 204

of routers, which work with a Mixture-of-Routers 205

mechanism. 206

This section presents our novel Router Upcy- 207

cling method for MoE models. Following (Komat- 208

suzaki et al., 2023), our method initializes each 209

expert as a copy of the original dense model’s 210

Feed-Forward Networks (FFN), as shown in Equa- 211

tion 3, while keeping the dense model’s other parts 212

unchanged. Our upcycled routers employ novel 213

mechanisms: 214

1. Multiple Routers Initialization from Atten- 215

tion Layers: Initializing routers’ query trans- 216

formations and experts’ keys from attention 217

heads in the preceding attention layers, high- 218

lighting token representations from diverse 219

perspectives. 220

2. Mixture-of-Routers Attention Scoring: Us- 221

ing an attention-like mechanism to compute 222

matching scores between token queries and 223

expert keys, effectively aligning tokens with 224
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experts and incorporating scores from multi-225

ple collaborative routers to ensure specialized226

token routing.227

3.2 Multiple Routers Initialization from228

Attention Layers229

This section demonstrates how to initialize the230

routers using attention heads from the dense model.231

For each layer, we denote WQ and KA as the atten-232

tion query transformations and average attention233

keys in the preceding attention layer, respectively.234

Our method freezes the dense model to collect av-235

erage attention key representations KA during cer-236

tain iterations of an additional pre-training process,237

which will be elaborated in Section 4.1.238

We then concatenate several attention heads con-239

taining WQ and KA, grouping them into m sets240

based on the highest similarity of KA. This pro-241

cess constructs WC
Q and KC

A for m concatenated242

heads, enhancing their representation power with a243

larger hidden size. We will discuss the optimized244

settings in Section 5.2.1, where it is shown that the245

model performs best when the number of routers246

m equals the number of experts n, both being 8 in247

each layer.248

Next, we use WC
Q and KC

A to initialize the token249

query transformations W and expert keys K in our250

proposed mixture of m routers:251

Experti : Ki = (KC
A )i, i = 1, . . . , n, (4)252

253
Routerj : W j = (WC

Q )j , j = 1, . . . ,m, (5)254

The routers transform each token x by projecting255

it into m low-dimensional subspaces using linear256

transformations:257

Qj = W jx, j = 1, . . . ,m, (6)258

where Qj ∈ Rd′ is the j-th query for token x in259

the j-th router, and W j ∈ Rd′×d is the projection260

matrix. Unlike tokens, each expert Ei preserves261

its unique key embedding Ki ∈ Rd′ , independent262

of the token representation, to maintain its stable263

feature. Therefore, the number of keys equals the264

number of experts n in our approach. We demon-265

strate the decreased performance when each expert266

preserves multiple keys in Section 5.2.1.267

3.3 Mixture-of-Routers Attention Scoring268

With the token queries and expert keys built, our269

method routes tokens in an attention-like man-270

ner. Unlike the traditional attention mechanism271

(Vaswani et al., 2023), these queries are from the 272

same token instead of a sequence of tokens, and the 273

keys, held by experts, are independent of tokens. 274

The attention scoring obtains attention-mapping 275

scores by multiplying each token query Qj in m 276

routers by each expert key Ki for each Q-K pair, 277

as shown on the right side of Figure 2(b): 278

Sj
i =

Qj⊤Ki√
d′

, i = 1, . . . , n, j = 1, . . . ,m, (7) 279

where Sj
i represents the matching score between 280

the j-th query of the token and the i-th key of expert 281

Ei. To maintain the diverse amplitude of each low- 282

dimensional Q-K subspace, our method does not 283

use any normalization technique such as the cosine 284

router (Chi et al., 2022). 285

To incorporate attention-mapping scores from 286

collaborative routers, we sum over the query di- 287

mension for each token: 288

Si =
∑
j

Sj
i , i = 1, . . . , n, j = 1, . . . ,m. (8) 289

Finally, to obtain the top-k routing weights R for 290

expert Ei, these scores are sent to a top-k router: 291

R = SoftmaxS. (9) 292

By selecting the top-k experts with the highest rout- 293

ing weights R, we assign tokens to the most appro- 294

priate experts and use Equation 2 to get the output 295

of the experts. 296

This mechanism effectively builds and capital- 297

izes on the inter-expert relationships, ensured by 298

the attention mechanism, guaranteeing that tokens 299

are routed based on multiple facets of their repre- 300

sentations. This leads to a more fine-grained and 301

precise token allocation. Our method stabilizes 302

MoE training by distributing tokens based on their 303

multi-representation matching scores rather than a 304

singular gating score. This approach also dimin- 305

ishes the likelihood of representation collapse (Chi 306

et al., 2022), as experts specialize in processing 307

tokens that align closely with their key representa- 308

tions across multiple subspaces. 309

4 Experiments 310

4.1 Experimental Setup 311

We verified our router upcycling method on a Qwen 312

0.5B model (Qwen, 2024) to obtain an 8x0.5B 313

MoE model with approximately 2.1B total param- 314

eters and around 0.8B activated parameters. Due 315
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Method Vanilla MoE Vanilla Switch Transformer LocMoE Upcycling w/ Router
from scratch Upcycling Upcycling Upcycling MLP routers Upcycling

OpenbookQA 31.4 40.8 27.6 38.2 37.6 42.6
OpenbookQA-fact 34.4 58.0 23.6 51.4 55.0 59.0

ARC-C 27.12 39.66 14.58 29.15 34.92 42.37
ARC-E 30.51 52.73 20.63 45.68 51.15 58.02
Hellaswag 41.45 49.36 25.24 48.83 49.70 50.12
Winogrande 52.57 56.67 48.22 56.12 58.88 56.91

BoolQ 48.13 49.88 47.09 54.19 41.44 55.84
COPA 60 62 49 61 63 64
NQ 4.32 4.85 0.42 4.04 3.96 5.15
TriviaQA 17.74 23.82 5.24 22.16 24.17 24.25

Understanding Average 32.90 49.40 25.60 44.80 46.30 50.80
Reasoning Average 37.91 49.61 27.17 44.95 48.67 51.86
Knowledge Average 32.55 35.14 25.44 35.35 33.14 37.31

Average 34.76 43.78 26.17 41.08 41.98 45.83

Table 1: Performance comparison of different models on benchmark datasets, evaluated with zero-shot schema on
every benchmark.

Figure 3: LM losses during training.

to computational budget limitations, we selected316

this small model as the backbone, one of the best317

dense models with less than 1B parameters. Our318

experiments were conducted under the Megatron319

(Shoeybi et al., 2020) framework on 64 NVIDIA320

H-100 GPUs. Since the model size is relatively321

small, each GPU has a copy of the whole model322

to ensure computational balance, and the micro-323

batch size is set to 4. Models are trained on 100B324

tokens, sampled from a large-scale multilingual cor-325

pus (Gao et al., 2020; Weber et al., 2024) designed326

for continued pretraining.327

Before training, we upcycled the dense model328

by duplicating the FFN 8 times to form n = 8329

experts and apply a top-2 selection, which is a330

classic setting (Jiang et al., 2024) and initializing331

m = 8 of our proposed routers in each layer to332

construct an 8x0.5B MoE model. Other parts of333

the dense model remained unchanged. The average 334

key representations in the router were obtained by 335

freezing the dense model and calculating the av- 336

erage key vectors over 10 iterations, with a batch 337

size of 1024 and a sequence length of 4096. The 338

original dense model employs 16 attention heads, 339

each with a dimension of 64, resulting in a total 340

feature dimension of d = 1024. We merge every 2 341

token query transformations and expert keys with 342

the highest cosine similarity to form m = 8 routers 343

to align with the expert number n = 8, and the 344

intermediate dimension of each router is d′ = 128. 345

The additional router parameters are approximately 346

8× 1024× 128 = 1M for each layer, which is tiny 347

compared to the 2.1B total MoE parameters. 348

During training, we employ the Adam optimizer 349

(Kingma and Ba, 2017) with hyper-parameters set 350

to β1 = 0.9, β2 = 0.95, ϵ = 10−8, gradient clip- 351

ping norm = 1.0 and weight decay = 0.1. We do 352

not use dropout due to the abundant training corpus. 353

The learning rate is scheduled using a warmup- 354

and-step-decay strategy (Dai et al., 2024). In the 355

first 1% of warm-up steps, the learning rate in- 356

creases from 0 to the maximum value, which is set 357

to 5×10−4. The learning rate stays at this constant 358

value until the last 20% of training steps, where 359

it is multiplied by 0.316 (approximately 1/
√
10) 360

at 80% and 90% of the training steps. Each train- 361

ing batch contains 4M tokens, with the batch size 362

and sequence length set to 1024 and 4096, respec- 363

tively. The total number of training steps is 25000 364

to match 100B training tokens. 365

For MoE settings, we do not drop any tokens 366
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during training except for the Switch Transformer367

(Fedus et al., 2022). Our model leverages an auxil-368

iary loss (Lewis et al., 2021) of 0.02 and a router369

z-loss (Zoph et al., 2022) of 0.001 to improve router370

stability.371

4.2 Evaluation Benchmarks372

We conduct experiments on several benchmark373

datasets commonly used in evaluating MoE models,374

grouped by the abilities needed:375

• Understanding: OpenbookQA, OpenbookQA-376

fact (Mihaylov et al., 2018).377

• Reasoning: ARC-C (Clark et al., 2018) and378

ARC-E, Hellaswag (Zellers et al., 2019),379

Winogrande (Sakaguchi et al., 2019).380

• Knowledge: BoolQ (Clark et al., 2019),381

COPA (Gordon et al., 2011), TriviaQA (Joshi382

et al., 2017), NQ (Kwiatkowski et al., 2019)383

We evaluate models in a zero-shot manner to384

showcase their generalization abilities without fur-385

ther instructions.386

4.3 Baselines387

We compare Router Upcycling with five other MoE388

model variants:389

• Vanilla MoE from scratch: A vanilla MoE390

model (Shazeer et al., 2017) using traditional391

softmax gating. A normal initialization (mean392

= 0.0, std = 0.02) is applied to initialize all393

parameters.394

• Vanilla Upcycling: Based on the vanilla MoE395

model, experts’ parameters are upcycled (Ko-396

matsuzaki et al., 2023) as copies of the origi-397

nal dense model’s FFN, and other parameters398

are also converted from the dense model, ex-399

cept routers.400

• Switch Transformer Upcycling: Based on401

the Vanilla Upcycling model, the router is402

changed to the one proposed in Switch Trans-403

former (Fedus et al., 2022).404

• LocMoE Upcycling: Based on the Vanilla405

Upcycling model, the router is changed to the406

one proposed in LocMoE (Li et al., 2024).407

• Upcycling w/ MLP routers: Based on the408

Vanilla Upcycling model, a two-layer MLP409

with a GELU (Hendrycks and Gimpel, 2023)410

activation function is used as the router, 411

with the following dimension transformations: 412

Layer 1: 1024 → 1024; Layer 2: 1024 → 8. 413

Its router parameters are approximately the 414

same as the proposed method. 415

5 Results and Analysis 416

5.1 Performance Comparison 417

Table 1 showcases the performance of our method 418

compared to the baselines. Our findings can be 419

summarized as follows: 420

• Overall Performance: Router Upcycling 421

achieves the highest average performance 422

across all benchmarks, with an average score 423

of 45.83, improving by 2.05 points over the 424

Vanilla Upcycling method. It consistently out- 425

performs other upcycling baselines, demon- 426

strating the robustness and generalization of 427

the proposed routing method. 428

• Understanding Tasks: Router Upcycling ex- 429

cels in understanding tasks, achieving an av- 430

erage score of 50.80, compared to 49.40 by 431

Vanilla Upcycling. The diverse token assign- 432

ments facilitated by the collaborative routers 433

prevent expert under-specialization and ensure 434

exposure to varied token representations. 435

• Reasoning Tasks: In reasoning tasks, Router 436

Upcycling achieves an average score of 51.86, 437

surpassing the next-best score of 49.61 by 438

Vanilla Upcycling. It shows a notable 4% im- 439

provement in accuracy on the ARC datasets, 440

thanks to better alignment of token represen- 441

tations and expert features. 442

• Knowledge Tasks: Router Upcycling leads 443

in knowledge tasks with an average score of 444

37.31, compared to 35.35 by LocMoE Upcy- 445

cling. The initialization of expert features as 446

the average key from the previous attention 447

layer ensures training stability and maintains 448

the integrity of knowledge representation. 449

Our Router Upcycling method achieves more 450

diverse token assignments, leading to expert spe- 451

cialization in MoE upcycling. Additionally, our 452

upcycling method accelerates the evolution of the 453

MoE model more effectively than vanilla upcy- 454

cling, as shown in Figure 3. Normally, the LM 455

loss should rise during the warm-up stage in con- 456

tinued pretraining methods, as our method demon- 457

strates. However, the vanilla upcycling method 458
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Method Vanilla m=2, n=8 m=4, n=8 m=n=8 m=16, n=8 m=32, n=8 m=n=16
Upcycling key=8 key=8 key=8 (Ours) key=16 key=32 key=16

OBQA 40.8 38.0 29.8 42.6 26.8 42.2 37.0
OBQA-fact 58.0 57.8 40.8 59.0 27.6 52.6 54.2

ARC-C 39.66 32.88 34.58 42.37 23.73 41.02 40.00
ARC-E 52.73 45.21 40.92 58.02 23.81 51.15 56.08
Hellaswag 49.36 47.24 39.56 50.12 30.67 49.26 50.00
Winogrande 56.67 57.62 55.56 56.91 52.49 58.48 57.62

BoolQ 49.88 51.65 47.22 55.84 44.43 53.49 41.01
COPA 62 68 63 64 59 64 61
NQ 4.85 3.32 2.52 5.15 1.05 3.96 3.66
TriviaQA 23.82 18.78 13.45 24.25 9.39 22.8 23.93

Average 43.78 42.05 36.74 45.83 29.90 43.90 42.45

Table 2: Ablation study on the number of routers, keys, and experts. m is the router number, key is the number of
keys, and n is the expert number. Note that we have conducted all possible ablation studies on the numbers.

Method Max Pooling Summation

OpenbookQA 44.6 42.6
OpenbookQA-fact 56.4 59.0

ARC-C 37.63 42.37
ARC-E 54.14 58.02
Hellaswag 49.55 50.12
Winogrande 58.17 56.91

BoolQ 56.54 55.84
COPA 63 64
NQ 3.38 5.15
TriviaQA 22.62 24.25

Average 44.60 45.83

Table 3: Performance comparison between two models
utilizing max pooling and summation as mixture meth-
ods.

fails to warm up and improves slowly in the later459

stages. Consequently, after the 50B training sched-460

ule, our Router Upcycling model has a smaller LM461

loss than the vanilla upcycling model, proving its462

utility with lower perplexity. We also verify the463

conclusions from (Komatsuzaki et al., 2023) that464

upcycling performs better than training an MoE465

model from scratch in small training regimes.466

5.2 Ablation Study467

In this section, we further conduct ablation studies468

to assess the impact of different components of our469

method.470

5.2.1 Number of Routers, Keys, and Experts471

We investigate the impact of varying the number of472

routers, keys, and experts on model performance,473

computational overhead, and expression power.474

In Table 2, we set the number of experts to a475

fixed value and study the influence of the number476

of routers and keys. The router number m is a criti-477

cal hyperparameter as it determines how attention 478

heads are grouped and merged in the base model. 479

We experiment with values of m that are powers 480

of 2 and less than or equal to 16 (the number of at- 481

tention heads in the base Qwen model). Two rules 482

are applied to form proper models when the num- 483

ber of routers m and keys key changes compared 484

to a fixed number of experts n: (1) If the router 485

number m < n, attention heads are duplicated 486

n/m times before merging to match the hidden 487

size in the routers, and each expert holds one key, 488

so key = n; (2) If the router number m > n, with- 489

out any duplication, m = key, and each expert 490

preserves more than one key as their feature rep- 491

resentation, which would be selected based on the 492

top-k score of any of its keys. Additionally, we cre- 493

ate a new model variant “m=32, n=8, key=32” by 494

splitting each attention head in the original dense 495

model into two to explore further possibilities. 496

The results indicate no particular trend when the 497

router number m changes, but the model performs 498

best when m=n=8. Apart from m = 8, most other 499

variants are outperformed by the vanilla upcycling 500

method. When m = 16, the performance is the 501

worst, possibly due to the limited expression power 502

of a single attention head with a dimension of only 503

64 for the routing task. However, the model perfor- 504

mance improves when m = 32 despite the smaller 505

attention head dimension. Therefore, we conclude 506

that the attention dimension in routers should not 507

equal the dimension of each attention head in the 508

attention module. Intuitively, aligning the number 509

of routers m with the number of experts n appears 510

to benefit the routing process. 511

In the last column of Table 2, we scale up the 512

model by setting the expert number n = 16 to 513

7



create the variant “m=n=16, key=16”. Its perfor-514

mance is worse than the optimized variant “m=n=8,515

key=8” with only 8 experts. This comparison sug-516

gests that scaling up the number of experts may517

not be effective for our proposed method in small518

regimes.519

5.2.2 Router Mixture Methods520

In this section, we explore alternative mixture meth-521

ods for collaborative routers, comparing summa-522

tion with max pooling to determine the optimal523

method for output aggregation. Max pooling in-524

volves using the top-k router score of all Query-525

Key pairs in all routers to route the token. As shown526

in Table 3, the max pooling method surpasses the527

summation method on minor benchmarks such as528

OpenbookQA, Winogrande, and BoolQ, with im-529

provements of less than 2%. Although max pooling530

can reduce the negligible computational overhead531

in the summation process, the summation method532

generally performs better than max pooling.533

6 Related Work534

The prototype MoE models utilized naive routing535

strategies, where the gate network assigned tokens536

to experts based on their highest scores, typically537

employing a softmax over the product of the input538

token and a gating weight matrix.539

Some works introduce noise and normalization540

to enhance the robustness of routers. Shazeer et541

al. (Shazeer et al., 2017) proposed improvements542

by introducing noise for load balance and retaining543

the top-k experts. Switch Transformers (Fedus544

et al., 2022) address overfitting in fine-tuning tasks545

with limited examples by simplifying the routing546

mechanism using a top-1 gating strategy, reducing547

computational overhead and communication costs.548

Other works focus on adjusting routing mech-549

anisms. StableMoE (Dai et al., 2022) proposes a550

two-stage routing strategy with a distilled router551

for stable decisions. Zuo et al. (Zuo et al., 2022)552

introduce stochastic experts to bypass the router,553

promoting consistency through regularization. Loc-554

MoE (Li et al., 2024) introduces a GrAP layer that555

divides the hidden state of tokens, computes gat-556

ing values without learnable parameters, and adds557

a locality loss to ensure tokens are preferentially558

routed to local experts. Several studies have also ex-559

plored dynamic routing mechanisms (Huang et al.,560

2024a; Zeng et al., 2024), allowing tokens to se-561

lect a varying number of experts based on input562

difficulty, enhancing computational efficiency and 563

model performance. 564

However, these routing mechanisms often en- 565

courage token clustering around expert centroids, 566

leading to representation collapse (Chi et al., 2022). 567

To tackle this, Chi et al. (Chi et al., 2022) leverage 568

dimension reduction using linear projection to iso- 569

late interactions on a low-dimensional hypersphere. 570

Other novel routing methods include expert choice 571

routing (Zhou et al., 2022), where experts select 572

tokens, and hashing-based routing (Roller et al., 573

2021), replacing traditional routers with hashing to 574

address load imbalance. 575

Recent studies have attempted to build attention- 576

like multi-head routers. Wu et al. (Wu et al., 2024) 577

propose using smaller FFNs to process sub-tokens 578

directly, but this approach is unsuitable for upcy- 579

cling scenarios and fails to highlight diverse token 580

representation. Another work (Huang et al., 2024b) 581

tunes parameter settings for higher efficiency based 582

on (Wu et al., 2024). Our method differs by initial- 583

izing a mixture of collaborative routers from atten- 584

tion modules in a dense checkpoint, enhancing the 585

model’s ability to capture diverse patterns within 586

the data and leading to improved performance and 587

stability in MoE upcycling scenarios. 588

7 Conclusion 589

We introduce the first router specifically designed 590

for upcycling in Mixture-of-Experts (MoE) models, 591

utilizing a mixture of collaborative routers initial- 592

ized from the attention module in the base dense 593

model. Our method enhances the routing mech- 594

anism’s precision, efficiency, and alignment by 595

projecting tokens and experts into multiple low- 596

dimensional representations and computing match- 597

ing scores in an attention-like mechanism across 598

these subspaces. 599

Experiment results on benchmark datasets 600

demonstrate that our "free lunch" method achieves 601

state-of-the-art performance, outperforming tradi- 602

tional upcycling methods by more than 2% in gen- 603

eral and 4% on the ARC dataset. This framework 604

pioneers router optimization in the upcycling sce- 605

nario and extends upcycling from only upcycling 606

the experts to upcycling the entire MoE structure. 607

Our future work will optimize hyperparameters, 608

extend the method to other models and tasks, and 609

investigate the theoretical aspects of routing mech- 610

anisms in upcycling for deeper insights. 611
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Limitations612

While our Router Upcycling method demonstrates613

improvements in MoE models, there are some lim-614

itations to consider:615

• Limited Computational Budget: Due to616

a limited computational budget, our experi-617

ments were conducted with only one model.618

This constraint is common among research619

groups in universities, including ours, which620

often lack the resources for extensive com-621

putational experiments. Despite this limita-622

tion, we conducted thorough research on the623

selected model to prove the effectiveness of624

our method. Future work could benefit from625

evaluating our proposed method on a broader626

range of models and larger datasets to validate627

its generalization and robustness.628

• Interpretability Dilemma: Understanding629

how and why the router makes specific rout-630

ing decisions is crucial for further improve-631

ments and trust in MoE models. However,632

the interpretability of the router’s functional-633

ity remains an open question. Previous works634

have introduced concepts like gate importance635

(Shazeer et al., 2017) and analyzed expert636

specialization (Zhang et al., 2022; Zhu et al.,637

2024; Zoph et al., 2022). Nevertheless, many638

contradictions in this field remain and more639

research is needed to fully understand and ex-640

plain the behavior of routers in MoE models.641

Therefore, in this study, we did not conduct642

interpretability experiments. Given the lim-643

ited computational resources, our priority was644

to validate the performance improvements of645

the proposed method.646

• Hyperparameter Sensitivity and General-647

ization: Another limitation to consider is the648

potential impact of hyperparameter settings649

on the performance of our method. While we650

have optimized certain hyperparameters, fur-651

ther tuning and exploration could yield even652

better results. Additionally, our method has653

primarily been tested on a specific architec-654

ture and set of tasks. Extending the evaluation655

to other architectures and diverse tasks would656

provide a more comprehensive understanding657

of its effectiveness and limitations.658

In conclusion, while our Router Upcycling659

method shows promise, addressing these limita-660

tions will be crucial for its broader adoption and 661

further improvement. 662

Impacts and Ethical Considerations 663

The development of the Router Upcycling method 664

for MoE models has several potential impacts: 665

• Enhanced Model Efficiency: By improving 666

the routing mechanism, our method enhances 667

the efficiency and performance of MoE mod- 668

els. This can lead to more accurate and faster 669

models, which are beneficial for various appli- 670

cations in natural language processing (NLP). 671

• Resource Optimization: The ability to up- 672

cycle existing dense models into more effi- 673

cient MoE models can help optimize the use 674

of computational resources. This is particu- 675

larly important for research groups with lim- 676

ited budgets, as it allows them to leverage 677

existing models without extensive retraining 678

from scratch. 679

• Broader Accessibility: Improved efficiency 680

and resource optimization can make advanced 681

NLP models more accessible to a wider range 682

of users, including smaller research groups 683

and organizations with limited computational 684

resources. This democratization of technology 685

can foster innovation and collaboration across 686

the field. 687

While the Router Upcycling method presents 688

substantial advantages, it also raises important eth- 689

ical considerations that must be addressed. The 690

interpretability dilemma, as discussed in our lim- 691

itations section, emphasizes the critical need for 692

transparency in routing decisions to ensure account- 693

ability and trustworthiness. Enhancing the inter- 694

pretability of Mixture-of-Experts (MoE) models 695

is essential for fostering trust in models moving 696

forward, as it allows researchers to understand and 697

verify the decision-making processes. 698
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