Router Upcycling: Leveraging Mixture-of-Routers in Mixture-of-Experts
Upcycling

Anonymous ACL submission

Abstract

The Mixture-of-Experts (MoE) models have
gained significant attention in deep learning
due to their dynamic resource allocation and su-
perior performance across diverse tasks. How-
ever, efficiently training these models remains
challenging. The MoE upcycling technique
has been proposed to reuse and improve ex-
isting model components, thereby minimizing
training overhead. Despite this, simple routers,
such as linear routers, often struggle with com-
plex routing tasks within MoE upcycling. In
response, we propose a novel routing technique
called Router Upcycling to enhance the per-
formance of MoE upcycling models. Our ap-
proach initializes multiple routers from the at-
tention heads of the preceding attention layer
during upcycling. These routers collabora-
tively assign tokens to specialized experts in an
attention-like manner. Each token is processed
into diverse queries and aligned with the ex-
perts’ features (serving as keys). Experimental
results demonstrate that our method achieves
state-of-the-art (SOTA) performance, outper-
forming other upcycling baselines. The code
will be released on GitHub upon acceptance.

1 Introduction

The Mixture-of-Experts (MoE) model has emerged
as a powerful paradigm in deep learning, enabling
dynamic allocation of computational resources and
achieving remarkable performance across a vari-
ety of tasks (Jacobs et al., 1991; Shazeer et al.,
2017; Jiang et al., 2024). By combining sets of ex-
pert networks and gating routers where input data
is assigned to the most appropriate experts, MoE
models effectively capture diverse patterns within
data, enhancing both efficiency and accuracy.

The convergence and generalization capabilities
of MoE models heavily depend on the design of
the routing strategy (Shazeer et al., 2017), as poor
routers lead to the overtraining of some experts
and the under-training of others. The commonly

Performance Comparison

B Vanilla MoE from scratch
70 Vanilla Upcycling
s Upcycling w/ Switch Transformer Routers
60 Emm Router Upcycling (Ours)
50
n
g
S 40
v}
w0
30
20
10
Understanding Reasoning Knowledge
Abilities

Figure 1: Performance Comparison between vanilla
MOoE from scratch and various upcycling models with
different routers on several benchmarks in Section 4.2.
Notably, Switch Transformer (Fedus et al., 2022) routers
perform much poorly in MoE upcycling.

used dynamic routing method in MoE is to select
the expert with the top-k highest scores based on a
probability distribution output by an intermediate
(mostly linear) layer with learnable parameters that
act as the router. However, routing frameworks
designed for vanilla MoE models (Shazeer et al.,
2017) may fall short of newly emerged experts’ evo-
lution. For instance, upcycling (Komatsuzaki et al.,
2023) is proposed as a popular approach that ini-
tializes experts from dense checkpoints and outper-
forms continued dense model training while reduc-
ing MoE training costs (He et al., 2024). Our pre-
liminary experiments, as shown in Figure 1, present
that leveraging inappropriate router structures in
upcycling, such as upcycling with Switch Trans-
former (Fedus et al., 2022) routers, leads to poor
token assignment to the trained upcycled experts,
negatively impacting the performance of MoE up-
cycling models. Therefore, exploring appropriate
router structures is a crucial field for MoE upcy-
cling. However, building and initializing efficient
routers remains yet to be explored in MoE upcy-

(1) Router Initialization

Dense Model

Expert E; Expert Ey Expert E, Attention

TEF'T

1
1 e
1
Query Linear Layer : T T
1 é
Key: Ki,..., K, 1
1
_____________________ J

Expert By Expert Ey Expert E,,

Top-K Routing

Scores: S1,...,S,

A

Top-K Routing E ‘Scores S1 Ss e
] kSum ASum

| L9
I 1

Scores Attention| | K K,

Attention Scoring

)

Q' || S|l s:

K K, " K,

Linear Layer

T

Q| st ||| si

-
Query Q/,j=1,...,m routers

Input: Token Embedding

Query Linear Layer

S . W .

H iy

(a) Vanilla Router

Input: Token Embedding

(b) Router Upcycling

Figure 2: (a) Vanilla router (Shazeer et al., 2017). (b) Our proposed Router Upcycling method.

cling. In this paper, we comprehensively examine
the performance of previous router designs in MoE
upcycling and propose a novel routing method for
upcycling. To our knowledge, we are the first to do
router optimization in the Upcycling scenario.

Before we push further, we need to figure out
why previous routers fail. Previous studies (Dai
et al., 2022; Li et al., 2024; Roller et al., 2021)
make various attempts to enhance the token-choice
routing ability, many focusing on the ease of train-
ing instability that same or similar token repre-
sentations are routed to different sets of experts
during training (Dai et al., 2022). Nevertheless,
most of them are fixed routing methods or simple
in structure like the vanilla linear router as shown in
Figure 2(a) and cannot inherit diverse token assign-
ments, facing drawbacks such as the representation
collapse issue (Chi et al., 2022). On the other hand,
expert-choice routing (Zhou et al., 2022) flips the
routing paradigm by allowing experts to select the
top-k tokens, rather than tokens selecting the top-k
experts but falls short in causal language modeling
due to the reliance on future tokens. More impor-
tantly, while experts are the same at the beginning
of the MoE upcycling, different experts always
choose the same tokens as input in expert-choice
routing, causing expert under-specialization, where
assigned tokens are not diverse enough to ensure
experts are specialized. To summarize, previous
routers fail to implement diverse token assignments,
leading to expert under-specialization in MoE up-
cycling.

We argue that, while experts are all initialized

from a well-trained dense checkpoint in vanilla
upcycling, a well-organized upcycling framework
should also upcycle routers in alignment with upcy-
cled experts. In response, we propose a novel rout-
ing method, Router Upcycling, as illustrated in Fig-
ure 2(b), that enhances MoE models by introducing
a mixture of routers initialized from attention mod-
ules in a dense checkpoint. Specifically, each router
leverages the query transformation from different
attention heads in the preceding attention layer to
process each token into diverse Queries to highlight
token representations from multiple perspectives.
Meanwhile, during an additional pre-training pro-
cess, each expert’s features are initialized as the
average Key calculated by corresponding attention
heads in the preceding attention layer. These ex-
perts’ features serve as Keys in routers and are
independent of the token representation to ensure
training stability. In an attention-like manner, rout-
ing scores are calculated as the inner product of the
diverse Queries and the experts’ Keys, followed by
a summation process to obtain the experts’ scores,
which are utilized for top-k routing afterward.

Intuitively, our proposed routers mutually align
token representations and expert features to better
route tokens to proper experts. Meanwhile, our
proposed router utilizes more parameters than a
standard linear router to store historical routing
knowledge, enhancing stability and accuracy. Still,
its size remains negligible compared to the entire
model, making this improvement essentially a "free
lunch" for existing models. Most importantly, our
upcycling method initializes the MoE model with-

out a random router as before, greatly enhancing
the stability of MoE upcycling.

Our method can be integrated into existing MoE
models with minimal modifications. We demon-
strate the versatility of our approach by implement-
ing it on a Qwen (Qwen, 2024) 0.5B dense model.
Despite negligible routing overhead increase, ex-
perimental evaluations indicate that our method
achieves state-of-the-art performance, outperform-
ing other upcycling baselines. Our model surpasses
the upcycling baseline with more than 2% in gen-
eral and an average of 4% more accuracy on the
ARC datasets.

The contribution of the paper is as follows.

* We are the first to do router optimization in
the upcycling scenario, recognizing the neces-
sity to upcycle routers and leverage attention
modules to initialize them.

» We further expand the idea of upcycling by us-
ing Router Upcycling, where the MoE model
is initialized without a random router as be-
fore, greatly enhancing the stability of MoE
upcycling.

» Experimental evaluations indicate that our
"free lunch" method achieves state-of-the-art
performance, outperforming other upcycling
baselines with a more than 2% improvement.

2 Preliminaries

2.1 Mixture-of-Experts Layer

A Mixture-of-Experts (MoE) layer typically con-
sists of a set of n experts E1, Eo,..., F, and a
router or gating network GG. The experts and router
work collaboratively, functioning similarly to the
Feed-Forward Network (FFN) in dense models.
The router uses a gating function to assign tokens
to the selected top-k experts F;,s € S based on
scores from a probability distribution calculated
by an intermediate (mostly linear) layer (Shazeer
et al., 2017). Typically, the gating function uses
the Softmax function over the product of the input
token and a gating weight matrix, routing tokens to
the most likely experts.

Let 2 € R? be the input token representation,
W be the intermediate linear layer that outputs an
n-dimensional vector, and G(x) and F;(x) be the
outputs of the router and each expert E;, respec-
tively. The output y of the MoE layer, without
normalization, can be written as follows:

G(z) = Softmax W (x). (1)

y=>Y G(x)Es(x).)

s€S
2.2 Upcycling
The vanilla upcycling method (Komatsuzaki et al.,
2023) initializes an MoE model from a dense model
checkpoint. It converts a dense model into an MoE
model by duplicating the FFN weights multiple
times and initializing a randomized router:

FEi=Fy=---=F, =DenseFFN. (3)

3 Router Upcycling

3.1 Overview

The widely-used vanilla linear router (Shazeer
et al., 2017) is too simple to handle diverse to-
ken assignments, leading to representation collapse
(Chi et al., 2022) and expert under-specialization
in MoE upcycling. To address this, we introduce
attention-like routers for better alignment between
tokens and experts, as shown in Figure 2(b), where
tokens act as queries and expert features act as keys.
Each token is transformed into multiple queries
with different representations. For example, one
query may represent the syntax of a token, which is
then matched with expert features using attention
scoring. This approach allows each query from a
token to have a different semantic expression in a
specific router subspace. By considering multiple
queries, our method constructs an equal number
of routers, which work with a Mixture-of-Routers
mechanism.

This section presents our novel Router Upcy-
cling method for MoE models. Following (Komat-
suzaki et al., 2023), our method initializes each
expert as a copy of the original dense model’s
Feed-Forward Networks (FFN), as shown in Equa-
tion 3, while keeping the dense model’s other parts
unchanged. Our upcycled routers employ novel
mechanisms:

1. Multiple Routers Initialization from Atten-
tion Layers: Initializing routers’ query trans-
formations and experts’ keys from attention
heads in the preceding attention layers, high-
lighting token representations from diverse
perspectives.

2. Mixture-of-Routers Attention Scoring: Us-
ing an attention-like mechanism to compute
matching scores between token queries and
expert keys, effectively aligning tokens with

experts and incorporating scores from multi-
ple collaborative routers to ensure specialized
token routing.

3.2 Multiple Routers Initialization from
Attention Layers

This section demonstrates how to initialize the
routers using attention heads from the dense model.
For each layer, we denote W and K 4 as the atten-
tion query transformations and average attention
keys in the preceding attention layer, respectively.
Our method freezes the dense model to collect av-
erage attention key representations K 4 during cer-
tain iterations of an additional pre-training process,
which will be elaborated in Section 4.1.

We then concatenate several attention heads con-
taining Wy and K4, grouping them into m sets
based on the highest similarity of K 4. This pro-
cess constructs Wg and K§ for m concatenated
heads, enhancing their representation power with a
larger hidden size. We will discuss the optimized
settings in Section 5.2.1, where it is shown that the
model performs best when the number of routers
m equals the number of experts n, both being 8 in
each layer.

Next, we use Wg and K g to initialize the token
query transformations W and expert keys K in our
proposed mixture of m routers:

Expert, : K; = (Kﬁf)i, i=1,...,n, 4

Router’ : W/ = (W5), j=1,...,m, (5

The routers transform each token x by projecting
it into m low-dimensional subspaces using linear
transformations:

QP =Wz, j=1,...,m, (6)
where Q7 € R? is the j-th query for token z in
the j-th router, and W7 € R%*4 is the projection
matrix. Unlike tokens, each expert E; preserves
its unique key embedding K; € R? , independent
of the token representation, to maintain its stable
feature. Therefore, the number of keys equals the
number of experts n in our approach. We demon-
strate the decreased performance when each expert
preserves multiple keys in Section 5.2.1.

3.3 Mixture-of-Routers Attention Scoring

With the token queries and expert keys built, our
method routes tokens in an attention-like man-
ner. Unlike the traditional attention mechanism

(Vaswani et al., 2023), these queries are from the
same token instead of a sequence of tokens, and the
keys, held by experts, are independent of tokens.
The attention scoring obtains attention-mapping
scores by multiplying each token query Q7 in m
routers by each expert key K; for each Q-K pair,
as shown on the right side of Figure 2(b):

i — QTK;

(3 \/@)

where Sg represents the matching score between
the j-th query of the token and the ¢-th key of expert
FE;. To maintain the diverse amplitude of each low-
dimensional)-K subspace, our method does not
use any normalization technique such as the cosine
router (Chi et al., 2022).

To incorporate attention-mapping scores from
collaborative routers, we sum over the query di-
mension for each token:

1=1,....,.n,7=1,....m, (7)

Si=> &, i=1..nj=1..,m (8
j

Finally, to obtain the top-k routing weights R for
expert F;, these scores are sent to a top-k router:

R = Softmax S. 9

By selecting the top-k experts with the highest rout-
ing weights 12, we assign tokens to the most appro-
priate experts and use Equation 2 to get the output
of the experts.

This mechanism effectively builds and capital-
izes on the inter-expert relationships, ensured by
the attention mechanism, guaranteeing that tokens
are routed based on multiple facets of their repre-
sentations. This leads to a more fine-grained and
precise token allocation. Our method stabilizes
MOoE training by distributing tokens based on their
multi-representation matching scores rather than a
singular gating score. This approach also dimin-
ishes the likelihood of representation collapse (Chi
et al., 2022), as experts specialize in processing
tokens that align closely with their key representa-
tions across multiple subspaces.

4 Experiments

4.1 Experimental Setup

We verified our router upcycling method on a Qwen
0.5B model (Qwen, 2024) to obtain an 8x0.5B
MOoE model with approximately 2.1B total param-
eters and around 0.8B activated parameters. Due

Method Vanilla MoE Vanilla Switch Transformer LocMoE Upcycling w/ Router
from scratch ~ Upcycling Upcycling Upcycling MLP routers ~ Upcycling

OpenbookQA 314 40.8 27.6 38.2 37.6 42.6
OpenbookQA-fact 34.4 58.0 23.6 51.4 55.0 59.0
ARC-C 27.12 39.66 14.58 29.15 34.92 42.37
ARC-E 30.51 52.73 20.63 45.68 51.15 58.02
Hellaswag 41.45 49.36 25.24 48.83 49.70 50.12
Winogrande 52.57 56.67 48.22 56.12 58.88 56.91
BoolQ 48.13 49.88 47.09 54.19 41.44 55.84
COPA 60 62 49 61 63 64
NQ 4.32 4.85 0.42 4.04 3.96 5.15
TriviaQA 17.74 23.82 5.24 22.16 24.17 24.25
Understanding Average 32.90 49.40 25.60 44.80 46.30 50.80
Reasoning Average 3791 49.61 27.17 44.95 48.67 51.86
Knowledge Average 32.55 35.14 25.44 35.35 33.14 37.31
Average 34.76 43.78 26.17 41.08 41.98 45.83

Table 1: Performance comparison of different models on benchmark datasets, evaluated with zero-shot schema on

every benchmark.

LM Loss vs. Trained Tokens

—— Vanilla Upcycling
2.7 Router Upcycling
2.6
%]
wn
3 2.5
5 Ny
2.4
\Avw__ o
. N/V\"\/V\/\,\L/\/W
2.2
0 20 40 60 80 100

Trained Tokens (B)

Figure 3: LM losses during training.

to computational budget limitations, we selected
this small model as the backbone, one of the best
dense models with less than 1B parameters. Our
experiments were conducted under the Megatron
(Shoeybi et al., 2020) framework on 64 NVIDIA
H-100 GPUs. Since the model size is relatively
small, each GPU has a copy of the whole model
to ensure computational balance, and the micro-
batch size is set to 4. Models are trained on 100B
tokens, sampled from a large-scale multilingual cor-
pus (Gao et al., 2020; Weber et al., 2024) designed
for continued pretraining.

Before training, we upcycled the dense model
by duplicating the FFN 8 times to form n = 8
experts and apply a top-2 selection, which is a
classic setting (Jiang et al., 2024) and initializing
m = 8 of our proposed routers in each layer to
construct an 8x0.5B MoE model. Other parts of

the dense model remained unchanged. The average
key representations in the router were obtained by
freezing the dense model and calculating the av-
erage key vectors over 10 iterations, with a batch
size of 1024 and a sequence length of 4096. The
original dense model employs 16 attention heads,
each with a dimension of 64, resulting in a total
feature dimension of d = 1024. We merge every 2
token query transformations and expert keys with
the highest cosine similarity to form m = 8 routers
to align with the expert number n = 8, and the
intermediate dimension of each router is d’ = 128.
The additional router parameters are approximately
8 % 1024 x 128 = 1M for each layer, which is tiny
compared to the 2.1B total MoE parameters.

During training, we employ the Adam optimizer
(Kingma and Ba, 2017) with hyper-parameters set
to /1 = 0.9, B5 = 0.95, € = 1078, gradient clip-
ping norm = 1.0 and weight decay = 0.1. We do
not use dropout due to the abundant training corpus.
The learning rate is scheduled using a warmup-
and-step-decay strategy (Dai et al., 2024). In the
first 1% of warm-up steps, the learning rate in-
creases from 0O to the maximum value, which is set
to 5 x 10, The learning rate stays at this constant
value until the last 20% of training steps, where
it is multiplied by 0.316 (approximately 1/1/10)
at 80% and 90% of the training steps. Each train-
ing batch contains 4M tokens, with the batch size
and sequence length set to 1024 and 4096, respec-
tively. The total number of training steps is 25000
to match 100B training tokens.

For MoE settings, we do not drop any tokens

during training except for the Switch Transformer
(Fedus et al., 2022). Our model leverages an auxil-
iary loss (Lewis et al., 2021) of 0.02 and a router
z-loss (Zoph et al., 2022) of 0.001 to improve router
stability.

4.2 Evaluation Benchmarks

We conduct experiments on several benchmark
datasets commonly used in evaluating MoE models,
grouped by the abilities needed:

* Understanding: OpenbookQA, OpenbookQA-
fact (Mihaylov et al., 2018).

* Reasoning: ARC-C (Clark et al., 2018) and
ARC-E, Hellaswag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2019).

* Knowledge: BoolQ (Clark et al., 2019),
COPA (Gordon et al., 2011), TriviaQA (Joshi
et al., 2017), NQ (Kwiatkowski et al., 2019)

We evaluate models in a zero-shot manner to
showcase their generalization abilities without fur-
ther instructions.

4.3 Baselines

We compare Router Upcycling with five other MoE
model variants:

* Vanilla MoE from scratch: A vanilla MoE
model (Shazeer et al., 2017) using traditional
softmax gating. A normal initialization (mean
= 0.0, std = 0.02) is applied to initialize all
parameters.

* Vanilla Upcycling: Based on the vanilla MoE
model, experts’ parameters are upcycled (Ko-
matsuzaki et al., 2023) as copies of the origi-
nal dense model’s FFN, and other parameters
are also converted from the dense model, ex-
cept routers.

* Switch Transformer Upcycling: Based on
the Vanilla Upcycling model, the router is
changed to the one proposed in Switch Trans-
former (Fedus et al., 2022).

* LocMoE Upcycling: Based on the Vanilla
Upcycling model, the router is changed to the
one proposed in LocMoE (Li et al., 2024).

* Upcycling w/ MLP routers: Based on the
Vanilla Upcycling model, a two-layer MLP
with a GELU (Hendrycks and Gimpel, 2023)

activation function is used as the router,
with the following dimension transformations:
Layer 1: 1024 — 1024; Layer 2: 1024 — 8.
Its router parameters are approximately the
same as the proposed method.

5 Results and Analysis

5.1 Performance Comparison

Table 1 showcases the performance of our method
compared to the baselines. Our findings can be
summarized as follows:

* Overall Performance: Router Upcycling
achieves the highest average performance
across all benchmarks, with an average score
of 45.83, improving by 2.05 points over the
Vanilla Upcycling method. It consistently out-
performs other upcycling baselines, demon-
strating the robustness and generalization of
the proposed routing method.

* Understanding Tasks: Router Upcycling ex-
cels in understanding tasks, achieving an av-
erage score of 50.80, compared to 49.40 by
Vanilla Upcycling. The diverse token assign-
ments facilitated by the collaborative routers
prevent expert under-specialization and ensure
exposure to varied token representations.

* Reasoning Tasks: In reasoning tasks, Router
Upcycling achieves an average score of 51.86,
surpassing the next-best score of 49.61 by
Vanilla Upcycling. It shows a notable 4% im-
provement in accuracy on the ARC datasets,
thanks to better alignment of token represen-
tations and expert features.

* Knowledge Tasks: Router Upcycling leads
in knowledge tasks with an average score of
37.31, compared to 35.35 by LocMoE Upcy-
cling. The initialization of expert features as
the average key from the previous attention
layer ensures training stability and maintains
the integrity of knowledge representation.

Our Router Upcycling method achieves more
diverse token assignments, leading to expert spe-
cialization in MoE upcycling. Additionally, our
upcycling method accelerates the evolution of the
MoE model more effectively than vanilla upcy-
cling, as shown in Figure 3. Normally, the LM
loss should rise during the warm-up stage in con-
tinued pretraining methods, as our method demon-
strates. However, the vanilla upcycling method

Method Vanilla m=2,n=8 m=4, n=8 m=n=8 m=16,n=8 m=32,n=8 m=n=16
Upcycling key=8 key=8 key=8 (Ours) key=16 key=32 key=16
OBQA 40.8 38.0 29.8 42.6 26.8 422 37.0
OBQA-fact 58.0 57.8 40.8 59.0 27.6 52.6 54.2
ARC-C 39.66 32.88 34.58 42.37 23.73 41.02 40.00
ARC-E 52.73 45.21 40.92 58.02 23.81 51.15 56.08
Hellaswag 49.36 47.24 39.56 50.12 30.67 49.26 50.00
Winogrande 56.67 57.62 55.56 56.91 52.49 58.48 57.62
BoolQ 49.88 51.65 47.22 55.84 4443 53.49 41.01
COPA 62 68 63 64 59 64 61
NQ 4.85 3.32 2.52 5.15 1.05 3.96 3.66
TriviaQA 23.82 18.78 13.45 24.25 9.39 22.8 23.93
Average 43.78 42.05 36.74 45.83 29.90 43.90 42.45

Table 2: Ablation study on the number of routers, keys, and experts. m is the router number, key is the number of
keys, and n is the expert number. Note that we have conducted all possible ablation studies on the numbers.

Method Max Pooling Summation
OpenbookQA 44.6 42.6
OpenbookQA-fact 56.4 59.0
ARC-C 37.63 42.37
ARC-E 54.14 58.02
Hellaswag 49.55 50.12
Winogrande 58.17 56.91
BoolQ 56.54 55.84
COPA 63 64
NQ 3.38 5.15
TriviaQA 22.62 24.25
Average 44.60 45.83

Table 3: Performance comparison between two models
utilizing max pooling and summation as mixture meth-
ods.

fails to warm up and improves slowly in the later
stages. Consequently, after the S50B training sched-
ule, our Router Upcycling model has a smaller LM
loss than the vanilla upcycling model, proving its
utility with lower perplexity. We also verify the
conclusions from (Komatsuzaki et al., 2023) that
upcycling performs better than training an MoE
model from scratch in small training regimes.

5.2 Ablation Study

In this section, we further conduct ablation studies
to assess the impact of different components of our
method.

5.2.1 Number of Routers, Keys, and Experts

We investigate the impact of varying the number of
routers, keys, and experts on model performance,
computational overhead, and expression power.

In Table 2, we set the number of experts to a
fixed value and study the influence of the number
of routers and keys. The router number m is a criti-

cal hyperparameter as it determines how attention
heads are grouped and merged in the base model.
We experiment with values of m that are powers
of 2 and less than or equal to 16 (the number of at-
tention heads in the base Qwen model). Two rules
are applied to form proper models when the num-
ber of routers m and keys key changes compared
to a fixed number of experts n: (1) If the router
number m < n, attention heads are duplicated
n/m times before merging to match the hidden
size in the routers, and each expert holds one key,
so key = n; (2) If the router number m > n, with-
out any duplication, m = key, and each expert
preserves more than one key as their feature rep-
resentation, which would be selected based on the
top-k score of any of its keys. Additionally, we cre-
ate a new model variant “m=32, n=8, key=32" by
splitting each attention head in the original dense
model into two to explore further possibilities.

The results indicate no particular trend when the
router number m changes, but the model performs
best when m=n==8. Apart from m = 8, most other
variants are outperformed by the vanilla upcycling
method. When m = 16, the performance is the
worst, possibly due to the limited expression power
of a single attention head with a dimension of only
64 for the routing task. However, the model perfor-
mance improves when m = 32 despite the smaller
attention head dimension. Therefore, we conclude
that the attention dimension in routers should not
equal the dimension of each attention head in the
attention module. Intuitively, aligning the number
of routers m with the number of experts n appears
to benefit the routing process.

In the last column of Table 2, we scale up the
model by setting the expert number n = 16 to

create the variant “m=n=16, key=16". Its perfor-
mance is worse than the optimized variant “m=n=8,
key=8" with only 8 experts. This comparison sug-
gests that scaling up the number of experts may
not be effective for our proposed method in small
regimes.

5.2.2 Router Mixture Methods

In this section, we explore alternative mixture meth-
ods for collaborative routers, comparing summa-
tion with max pooling to determine the optimal
method for output aggregation. Max pooling in-
volves using the top-k router score of all Query-
Key pairs in all routers to route the token. As shown
in Table 3, the max pooling method surpasses the
summation method on minor benchmarks such as
OpenbookQA, Winogrande, and BoolQ, with im-
provements of less than 2%. Although max pooling
can reduce the negligible computational overhead
in the summation process, the summation method
generally performs better than max pooling.

6 Related Work

The prototype MoE models utilized naive routing
strategies, where the gate network assigned tokens
to experts based on their highest scores, typically
employing a softmax over the product of the input
token and a gating weight matrix.

Some works introduce noise and normalization
to enhance the robustness of routers. Shazeer et
al. (Shazeer et al., 2017) proposed improvements
by introducing noise for load balance and retaining
the top-k experts. Switch Transformers (Fedus
et al., 2022) address overfitting in fine-tuning tasks
with limited examples by simplifying the routing
mechanism using a top-1 gating strategy, reducing
computational overhead and communication costs.

Other works focus on adjusting routing mech-
anisms. StableMoE (Dai et al., 2022) proposes a
two-stage routing strategy with a distilled router
for stable decisions. Zuo et al. (Zuo et al., 2022)
introduce stochastic experts to bypass the router,
promoting consistency through regularization. Loc-
MoE (Li et al., 2024) introduces a GrAP layer that
divides the hidden state of tokens, computes gat-
ing values without learnable parameters, and adds
a locality loss to ensure tokens are preferentially
routed to local experts. Several studies have also ex-
plored dynamic routing mechanisms (Huang et al.,
2024a; Zeng et al., 2024), allowing tokens to se-
lect a varying number of experts based on input

difficulty, enhancing computational efficiency and
model performance.

However, these routing mechanisms often en-
courage token clustering around expert centroids,
leading to representation collapse (Chi et al., 2022).
To tackle this, Chi et al. (Chi et al., 2022) leverage
dimension reduction using linear projection to iso-
late interactions on a low-dimensional hypersphere.
Other novel routing methods include expert choice
routing (Zhou et al., 2022), where experts select
tokens, and hashing-based routing (Roller et al.,
2021), replacing traditional routers with hashing to
address load imbalance.

Recent studies have attempted to build attention-
like multi-head routers. Wu et al. (Wu et al., 2024)
propose using smaller FFNs to process sub-tokens
directly, but this approach is unsuitable for upcy-
cling scenarios and fails to highlight diverse token
representation. Another work (Huang et al., 2024b)
tunes parameter settings for higher efficiency based
on (Wu et al., 2024). Our method differs by initial-
izing a mixture of collaborative routers from atten-
tion modules in a dense checkpoint, enhancing the
model’s ability to capture diverse patterns within
the data and leading to improved performance and
stability in MoE upcycling scenarios.

7 Conclusion

We introduce the first router specifically designed
for upcycling in Mixture-of-Experts (MoE) models,
utilizing a mixture of collaborative routers initial-
ized from the attention module in the base dense
model. Our method enhances the routing mech-
anism’s precision, efficiency, and alignment by
projecting tokens and experts into multiple low-
dimensional representations and computing match-
ing scores in an attention-like mechanism across
these subspaces.

Experiment results on benchmark datasets
demonstrate that our "free lunch" method achieves
state-of-the-art performance, outperforming tradi-
tional upcycling methods by more than 2% in gen-
eral and 4% on the ARC dataset. This framework
pioneers router optimization in the upcycling sce-
nario and extends upcycling from only upcycling
the experts to upcycling the entire MoE structure.
Our future work will optimize hyperparameters,
extend the method to other models and tasks, and
investigate the theoretical aspects of routing mech-
anisms in upcycling for deeper insights.

Limitations

While our Router Upcycling method demonstrates
improvements in MoE models, there are some lim-
itations to consider:

* Limited Computational Budget: Due to
a limited computational budget, our experi-
ments were conducted with only one model.
This constraint is common among research
groups in universities, including ours, which
often lack the resources for extensive com-
putational experiments. Despite this limita-
tion, we conducted thorough research on the
selected model to prove the effectiveness of
our method. Future work could benefit from
evaluating our proposed method on a broader
range of models and larger datasets to validate
its generalization and robustness.

¢ Interpretability Dilemma: Understanding
how and why the router makes specific rout-
ing decisions is crucial for further improve-
ments and trust in MoE models. However,
the interpretability of the router’s functional-
ity remains an open question. Previous works
have introduced concepts like gate importance
(Shazeer et al., 2017) and analyzed expert
specialization (Zhang et al., 2022; Zhu et al.,
2024; Zoph et al., 2022). Nevertheless, many
contradictions in this field remain and more
research is needed to fully understand and ex-
plain the behavior of routers in MoE models.
Therefore, in this study, we did not conduct
interpretability experiments. Given the lim-
ited computational resources, our priority was
to validate the performance improvements of
the proposed method.

* Hyperparameter Sensitivity and General-
ization: Another limitation to consider is the
potential impact of hyperparameter settings
on the performance of our method. While we
have optimized certain hyperparameters, fur-
ther tuning and exploration could yield even
better results. Additionally, our method has
primarily been tested on a specific architec-
ture and set of tasks. Extending the evaluation
to other architectures and diverse tasks would
provide a more comprehensive understanding
of its effectiveness and limitations.

In conclusion, while our Router Upcycling
method shows promise, addressing these limita-

tions will be crucial for its broader adoption and
further improvement.

Impacts and Ethical Considerations

The development of the Router Upcycling method
for MoE models has several potential impacts:

* Enhanced Model Efficiency: By improving
the routing mechanism, our method enhances
the efficiency and performance of MoE mod-
els. This can lead to more accurate and faster
models, which are beneficial for various appli-
cations in natural language processing (NLP).

* Resource Optimization: The ability to up-
cycle existing dense models into more effi-
cient MoE models can help optimize the use
of computational resources. This is particu-
larly important for research groups with lim-
ited budgets, as it allows them to leverage
existing models without extensive retraining
from scratch.

* Broader Accessibility: Improved efficiency
and resource optimization can make advanced
NLP models more accessible to a wider range
of users, including smaller research groups
and organizations with limited computational
resources. This democratization of technology
can foster innovation and collaboration across
the field.

While the Router Upcycling method presents
substantial advantages, it also raises important eth-
ical considerations that must be addressed. The
interpretability dilemma, as discussed in our lim-
itations section, emphasizes the critical need for
transparency in routing decisions to ensure account-
ability and trustworthiness. Enhancing the inter-
pretability of Mixture-of-Experts (MoE) models
is essential for fostering trust in models moving
forward, as it allows researchers to understand and
verify the decision-making processes.

References

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai,
Shuming Ma, Barun Patra, Saksham Singhal, Payal
Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and
Furu Wei. 2022. On the Representation Collapse of
Sparse Mixture of Experts.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions.

http://arxiv.org/abs/2204.09179
http://arxiv.org/abs/2204.09179
http://arxiv.org/abs/2204.09179
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1905.10044

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. DeepSeekMoE: Towards
Ultimate Expert Specialization in Mixture-of-Experts
Language Models.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022. StableMoE:
Stable Routing Strategy for Mixture of Experts.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Andrew S. Gordon, Zornitsa Kozareva, and Melissa
Roemmele. 2011. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning.

Ethan He, Abhinav Khattar, Ryan Prenger, Vijay Kor-
thikanti, Zijie Yan, Tong Liu, Shiging Fan, Ashwath
Aithal, Mohammad Shoeybi, and Bryan Catanzaro.
2024. Upcycling Large Language Models into Mix-
ture of Experts.

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian
error linear units (gelus).

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. 2024a. Harder
Tasks Need More Experts: Dynamic Routing in MoE
Models.

Shaohan Huang, Xun Wu, Shuming Ma, and Furu Wei.
2024b. MH-MoE: Multi-Head Mixture-of-Experts.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Computation, 3:79-87.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William EI Sayed. 2024. Mix-
tral of Experts.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse Upcycling: Training Mixture-of-Experts from
Dense Checkpoints.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452—466.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. BASE Layers:
Simplifying Training of Large, Sparse Models.

Jing Li, Zhijie Sun, Xuan He, Li Zeng, Yi Lin, Entong
Li, Binfan Zheng, Rongqgian Zhao, and Xin Chen.
2024. LocMoE: A Low-Overhead MoE for Large
Language Model Training.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing.

Qwen. 2024. Introducing qwen1.5.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash Layers For Large
Sparse Models.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-Im: Training multi-billion
parameter language models using model parallelism.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,

http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2401.06066
http://arxiv.org/abs/2204.08396
http://arxiv.org/abs/2204.08396
http://arxiv.org/abs/2204.08396
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://api.semanticscholar.org/CorpusID:434646
https://api.semanticscholar.org/CorpusID:434646
https://api.semanticscholar.org/CorpusID:434646
http://arxiv.org/abs/2410.07524
http://arxiv.org/abs/2410.07524
http://arxiv.org/abs/2410.07524
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2403.07652
http://arxiv.org/abs/2403.07652
http://arxiv.org/abs/2403.07652
http://arxiv.org/abs/2403.07652
http://arxiv.org/abs/2403.07652
http://arxiv.org/abs/2411.16205
https://api.semanticscholar.org/CorpusID:572361
https://api.semanticscholar.org/CorpusID:572361
https://api.semanticscholar.org/CorpusID:572361
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2212.05055
http://arxiv.org/abs/2212.05055
http://arxiv.org/abs/2212.05055
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2401.13920
http://arxiv.org/abs/2401.13920
http://arxiv.org/abs/2401.13920
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
https://qwenlm.github.io/blog/qwen1.5/
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen,
Max Ryabinin, Tri Dao, Percy Liang, Christopher
Ré, Irina Rish, and Ce Zhang. 2024. Redpajama: an
open dataset for training large language models.

Xun Wu, Shaohan Huang, Wenhui Wang, and Furu Wei.
2024. Multi-Head Mixture-of-Experts.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang,
and Zhijie Deng. 2024. AdaMoE: Token-Adaptive
Routing with Null Experts for Mixture-of-Experts
Language Models.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2022. Mixture of
Attention Heads: Selecting Attention Heads Per To-
ken.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew Dai, Zhifeng Chen,
Quoc Le, and James Laudon. 2022. Mixture-of-
Experts with Expert Choice Routing.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
LLaMA-MoE: Building Mixture-of-Experts from
LLaMA with Continual Pre-training.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022. ST-MoE: Designing Stable and Trans-
ferable Sparse Expert Models.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng
Gao. 2022. Taming Sparsely Activated Transformer
with Stochastic Experts.

11

http://arxiv.org/abs/2411.12372
http://arxiv.org/abs/2411.12372
http://arxiv.org/abs/2411.12372
http://arxiv.org/abs/2404.15045
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/2406.13233
http://arxiv.org/abs/2406.13233
http://arxiv.org/abs/2406.13233
http://arxiv.org/abs/2406.13233
http://arxiv.org/abs/2406.13233
http://arxiv.org/abs/2210.05144
http://arxiv.org/abs/2210.05144
http://arxiv.org/abs/2210.05144
http://arxiv.org/abs/2210.05144
http://arxiv.org/abs/2210.05144
http://arxiv.org/abs/2202.09368
http://arxiv.org/abs/2202.09368
http://arxiv.org/abs/2202.09368
http://arxiv.org/abs/2406.16554
http://arxiv.org/abs/2406.16554
http://arxiv.org/abs/2406.16554
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2110.04260
http://arxiv.org/abs/2110.04260
http://arxiv.org/abs/2110.04260

	Introduction
	Preliminaries
	Mixture-of-Experts Layer
	Upcycling

	Router Upcycling
	Overview
	Multiple Routers Initialization from Attention Layers
	Mixture-of-Routers Attention Scoring

	Experiments
	Experimental Setup
	Evaluation Benchmarks
	Baselines

	Results and Analysis
	Performance Comparison
	Ablation Study
	Number of Routers, Keys, and Experts
	Router Mixture Methods

	Related Work
	Conclusion

