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Abstract
As NLP models become increasingly integral
to decision-making processes, the need for ex-
plainability and interpretability has become
paramount. In this work, we propose a frame-
work that achieves the aforementioned by gen-
erating semantically edited inputs, known as
counterfactual interventions, which change the
model prediction, thus providing a form of
counterfactual explanations for the model. We
frame the search for optimal counterfactual in-
terventions as a graph assignment problem and
employ a GNN to solve it, thus achieving high
efficiency. We test our framework on two NLP
tasks - binary sentiment classification and topic
classification - and show that the generated ed-
its are contrastive, fluent and minimal, while
the whole process remains significantly faster
than other state-of-the-art counterfactual edi-
tors. 1

1 Introduction

Since the introduction of the Transformer (Vaswani
et al., 2017) the field of NLP has enjoyed an abun-
dance of impressive implementations targeting a va-
riety of linguistic tasks. Explainability (Alammar,
2021; Danilevsky et al., 2020) and interpretability
(Madsen et al., 2022) in NLP are topics of increas-
ing popularity, researching biases and spurious cor-
relations which hinder the generalization capabili-
ties of state-of-the-art (SoTA) models. Adversarial
attacks (Zhang et al., 2020) can trigger alternative
outcomes of NLP models unveiling inner work-
ings, therefore providing post-hoc interpetability.
Several prior attempts in creating adversarially per-
turbed inputs, focused on label-flipping scenarios,
have been presented in recent literature (Michel
et al., 2019; Morris et al., 2020; Li et al., 2020;
Ross et al., 2021), while other general-purpose ap-
proaches (Ross et al., 2022; Wu et al., 2021) at-
tempt to generate more generic perturbations.

1Code available at https://github.com/Jimlibo/
GNN-Counterfactual-Editor

These methods though are accompanied with
shortcomings, despite producing promising results
in linguistic terms. One practical constraint is that
they are computationally expensive (Ross et al.,
2021) and relatively slow during inference (i.e.
MiCE requires more than 47 hours to produce edits
for 1000 samples2). Another emerging issue is the
fact that diverging from generalized textual genera-
tion towards interpretability requires a far more con-
trolled generation process, as the opaque behavior
of general-purpose editors (Wu et al., 2021; Ross
et al., 2022) built upon Large Language Models
(LLMs) often leads to sub-optimal substitutions (Fi-
landrianos et al., 2023) (or at least we have no evi-
dence regarding their optimality and why they were
selected). In fact, creating optimal linguistic inter-
ventions is an algorithmically challenging problem,
requiring efficient optimization of the search space
of alternatives (Zang et al., 2020; Wang et al., 2021;
Lymperaiou et al., 2022; Yin and Neubig, 2022).

In this work, we focus on word-level counterfac-
tual interventions to test the behaviour of textual
classifiers when different words are perturbed. Our
proposal revolves around placing all implemented
interventions under a framework which presents the
following characteristics regarding interventions:

• Optimality: Substitutions should be optimal
-or approximately optimal-, respecting a given
notion of semantic distance.

• Controllability: at least one input semantic
should be substituted in each data sample.

• Efficiency: an optimal solution should be
reached using non-exhaustive search tech-
niques among alternative substitutions.

We approach these requirements by viewing
counterfactual interventions as a combinatorial op-
timization problem, solvable via graph assignment

2This is concluded through our experimentation.
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algorithms from graph theory (Yan et al., 2016).
To further enhance our method, we consider the
use of Graph Neural Networks (GNNs) (Wu et al.,
2019) as a faster approximate substitute of these
algorithms (Yow and Luo, 2022). Our proposed
method can be applied to both model-specific and
general purpose scenarios, since there is no strict
reliance on changing the final label. This property
allows for generated edits to be used for differ-
ent tasks apart from label-flipping, such as seman-
tic similarity (Lymperaiou et al., 2022) or untar-
geted generation (Wu et al., 2021); nevertheless,
in this paper, we focus on classification tasks for
direct comparison with prior work. To this end,
we compare our approach with two SoTA editors
(Wu et al., 2021; Ross et al., 2021) using appropri-
ate metrics for label-flipping, fluency and semantic
closeness. Approaches based on Large Language
Models (Chen et al., 2023; Sachdeva et al., 2024)
are not considered in this work, due to their hard-
ware requirements 3. To sum up our contributions
are:

• We impose optimality and controllability of
word interventions translating them in finding
the optimal assignment between graph nodes.

• We accelerate the assignment process by train-
ing GNNs on these deterministic matchings,
ultimately achieving advanced efficiency.

• Our highly efficient black-box counterfactual
editor consistently delivers SoTA performance
compared to existing white-box and black-box
methods on two diverse datasets and across
four distinct metrics. Remarkably, it achieves
these results in less than 2% and 20% of the
time required by its two competitors, demon-
strating both superior efficacy and efficiency.

• The versatility of our proposed editor is
demonstrated in different scenarios, since it is
able to be optimized towards a specific metric
or perform general-purpose fluent edits.

2 Related work

Exposing vulnerabilities present in SoTA mod-
els has been an active area of research (Szegedy
et al., 2014), endorsing the probing of opaque
models through adversarial/counterfactual inputs.

3Quantization of the LLMs used in these works could alle-
viate the problem at the cost of performance. Experimentation
with this claim is left for future work

Granularity of perturbations ranges from character
(Ebrahimi et al., 2018) to word level (Garg and
Ramakrishnan, 2020; Ren et al., 2019) or even sen-
tence level (Jia and Liang, 2017). In our work, we
focus on semantic changes, following the paradigm
of word-level perturbations.

Manual creation of adversarial examples has
been explored (Gardner et al., 2020; Kaushik et al.,
2020; Mozes et al., 2022) with the purpose of
changing the true label. Automatic text genera-
tion initially implemented via paraphrases (Iyyer
et al., 2018), and most recently using masked lan-
guage modelling (Li et al., 2021; Ross et al., 2021;
Li et al., 2020), targets predicted label changes
in binary/multi-label classification or textual en-
tailment setups. Similarity-driven substitutions
based on word embedding distance (Jin et al., 2020;
Zhu et al., 2023) ensure optimality in local level
for classification tasks, while constraint perturba-
tions guarantee controllability of adversarials (Mor-
ris et al., 2020). Those works partially preserve
some desiderata of our approach; however, they are
model-specific and thus constrained. General pur-
pose counterfactual generators fine-tune LLMs to
offer diverse perturbations, applicable in multiple
granularities (Wu et al., 2021; Gilo and Markovitch,
2022; Ross et al., 2022). Prompting on LLMs
opens novel trajectories for textual counterfactu-
als (Chen et al., 2023; Sachdeva et al., 2024), even
though explainability of interventions is completely
sacrificed, due to the unpredictability of LLM
decision-making. Overall, utilizing LLMs is com-
putationally expensive, while produced substitu-
tions may not be optimal as far as word distance is
concerned (Filandrianos et al., 2023). On the other
hand, interventions through the use of graph-related
optimizations (Zang et al., 2020; Lymperaiou et al.,
2022) have recently emerged, showcasing that ad-
vanced performance and explainability of interven-
tions are on par with computational efficiency.

3 Problem formulation

The basis of our work constitutes a graph-based
structure that places words extracted from sen-
tences on nodes, and their in-between substitution
costs on edges. Let’s consider a bipartite graph
G = (V,E), where the edge set E consists of all
the weighted edges in the graph, and the node set V
consists of the source set S of cardinality |S| = n
and the target set T of cardinality |T | = m, such
that S ∪ T = V , S ∩ T = ∅. Finding optimal



connections between nodes of G has been a long
sought discrete optimization problem of graph the-
ory, where the optimal match for each node s ∈ S
needs to be determined among a predefined candi-
date set of nodes t ∈ T . Assuming that W denotes
the edge weight set consisting of the weights of
all edges e ∈ E, a min weight matching M ⊆ E
searches for a subset of the lightest possible sum
of edge weights

∑
we, we > 0 ∈ W contain-

ing those edges e ∈ E that cover all nodes of
the min(|S|, |T |) set of G. Therefore, in the case
of |S| ≤ |T |, all nodes in S will be substituted4,
should an outcoming edge es→t exists from each
s to any t ̸= s, denoting that this substitution is
feasible. Under these requirements, we formulate
the following constraint optimization problem:

min
∑

we, subject to s ̸= t if ∃es→t (1)

A naive solution to this constraint optimization
problem would be the exhaustive search of all pos-
sible (s, t) combinations, by examining all possible
m! permutations of T until the optimal solution of
min

∑
we is reached. This yields an exponential

complexity of O(mn) (proof in App. D), sup-
posing that G is complete, i.e. each pair of s − t
nodes is connected so that E = S × T, |E| = nm.
Nevertheless, computational efficiency compared
to the naive approach is guaranteed if we view this
constraint optimization problem as a variant of the
rectangular linear assignment problem (RLAP) (Bi-
jsterbosch and Volgenant, 2010): n source nodes
should be assigned to m ≥ n target nodes opti-
mally, so that the total weight of the assignment is
minimized. RLAP also allows multiple matchings
to each source node s thus providing more flexibil-
ity in optimal matchings. Assignment algorithms
borrowed from older literature (Kuhn, 1955; Karp,
1978) are adapted to solve RLAP, achieving best
deterministic complexity of O(mn log n), signifi-
cantly reducing the exponential O(mn).

3.1 Graph neural network for RLAP

Graph Neural Networks (GNNs) (Scarselli et al.,
2009) have emerged as a powerful tool for learning
representations of graph-structured data, making
them particularly well-suited for applications in
which relationships between entities can be natu-
rally expressed as graphs. In the context of linear
assignment problems (Burkard and Çela, 1999),

4These guarantees are explained in Section 4.2

Figure 1: The architecture of the proposed GNN model.
In the node convolution layer, node attributes are up-
dated for a total of S ≥ 2 iterations.

a GNN is employed to solve the linear sum as-
signment problem (LSAP), where n agents need
to be assigned to n jobs under one-to-one match-
ing constraints, while the cumulative cost remains
minimal (Liu et al., 2024). Inspired by this ap-
proach, we adopt and slightly modify the proposed
framework by harnessing a Graph Convolutional
Network (GCN) (Kipf and Welling, 2017) to ac-
commodate RLAP; to the best of our knowledge,
no prior work has leveraged GNN modules to solve
RLAP. The described GCN model consists of three
modules: the encoder, the convolution module and
the decoder (Figure 1).

3.1.1 Encoder/Decoder
Given the bipartite graph G, the encoder module
applies a Multi-Layer Perceptron (MLP) to each
edge to transform the attributes of the constructed
graph into latent representations, thus forming the
embedding features. Note that initially the attribute
of each edge is simply its weight so that eij =
wij , where eij denotes the attributes of the edge
connecting nodes i and j and wij is the weight of
this edge. Also, the raw attributes of the nodes are
initialized as zero-valued vectors. The transformed
graph is then passed to the convolutional module as
input to update its state. The decoder coupled with
the encoder reads out the edge attributes from the
output graph and predicts each edge label through
an update function. Similarly, the update function
is designed as an MLP and mapped to each edge to
form edge labels through a sigmoid activation.

3.1.2 The convolution module
The convolution module is comprised of a node
convolution layer and an edge convolution layer.
For the ith node in the graph, the node convolu-
tion layer collects the information from adjacent
edges and its 1st order neighboring nodes by adap-
tive aggregation weights and updates its attributes.
For each edge, the edge convolution layer aggre-
gates the attribute vectors of the two nodes that



the edge connects, and updates the edge attribute
vector. Although the reception field of the convolu-
tion module regards 1st-order neighborhoods, the
messages on each node can reach all other nodes
after two iterations of convolution, since the graph
is bipartite consisting of two node sets (see Section
3), and each node from one set connects with all
other nodes of the other set. As a result, the recep-
tion field of the convolution module can cover the
whole graph after the 2nd iteration.

The edge convolution layer first collects infor-
mation about each edge based on its two adjacent
nodes using the aggregation function:

eij = [vi ⊙ cu, vj ⊙ cu, eij ⊙ ce] (2)

where eij denotes the attributes of the edge con-
necting node i and node j, vi and vj the attributes
of ith and ith nodes and ⊙ indicates the element-
wise multiplication of two vectors. The operator
[·, ·, ·] concatenates its input vectors channel-wise,
while the vectors cu and ce are the node and edge
channel attention vectors with the same dimensions
as node attributes and edge attributes respectively.
We must also clarify that eij is an intermediate vec-
tor representing the concatenated features the edge
i → j and not the updated edge attribute vector.
After the aggregation function, an update function
ρe designed as an MLP takes the concatenated fea-
tures as input and outputs the updated feature, so
that: eij ← ρe(eij).

The node convolution layer collects information
from adjacent edges and 1st-order neighborhoods
for each node. Specifically, for the ith node in the
bipartite graph G we apply the following function:

vi =
1

Ni

Ni∑
j=1

ρv1([eij ⊙ ce, wij(vj ⊙ cu)]), (3)

eij ∈ Ei and vj ∈ Vi
where ρv1 denotes the function to transform its in-
put to an embedding feature. Ei denotes the at-
tribute set of all edges associated with node vi in
G, and Vi represents the attribute set of 1st-order
adjacent nodes to node vi. For node vi, wij is
the weight measuring the contribution of its ad-
jacent node vj during feature aggregation, and is
computed as wij = τ([vi, vj ]). The collected em-
bedding features are then concatenated with the
current attributes of node vi and are passed to
another transformation function that outputs the
updated attributes for node vi using the formula

vi ← ρu2([vi, vi]). Functions ρv1, ρv2 and τ are all
specified as MLP modules, each of them with a
different architecture and parameters5.

4 Counterfactual generation overview

The workflow of our method (Figure 2) comprises
of three stages. A textual dataset D serves as the
input to our workflow. In the first stage, words are
extracted from D, based on their part of speech
(POS), and used as the source node set S. The
target set T is either a copy of S, or else produced
from an external lexical source such as WordNet
(Miller, 1995), containing all possible candidate
substitutions of the source words (nodes). The S
and T sets form a bipartite graph G (described in
Section 3), with their in-between edge weights re-
flecting word similarity. In the second stage, we
pass the constructed G as input to the trained GCN
which outputs an approximate RLAP solution, in
the form of a list of candidate word pairs. Each
word pair, consists of the source word si ∈ S and
its computed substitution ti ∈ T . In the third and
final stage, we harness beam search to define the fi-
nal changes. Beam search uses a heuristic function
to choose the most suitable substitutions from those
returned by the GNN. The selected words from S
are then substituted with their respective pair from
T , producing a counterfactual dataset D*.

4.1 Graph creation

When constructing the bipartite G, words are ex-
tracted from the original D based on their POS. To
test how well our framework generalizes, we use
both POS-specific and POS-agnostic word extrac-
tion. The former means that we only select to poten-
tially change words that belong to a specific POS
(i.e. adjectives, nouns, verbs, etc.), while the latter
means that we regard all words, irrespective of their
POS. For the edge weights, we employ two differ-
ent approaches, each varying in transparency. For
the first one, we adopt a fully transparent approach
by calculating the distances using a lexical hierar-
chy: the weight of an edge connecting two words
is determined by their similarity value as defined in
WordNet.6 In the second case, we apply different
LLMs to generate word embeddings, namely An-
glE7 (Li and Li, 2023; Sean et al., 2024), GISTEm-

5For more information refer to Liu et al. (2024), where
they explain in-depth the model architecture and parameters.

6path_similarity function between synsets corresponding
to the words (https://www.nltk.org/howto/wordnet.html).

7mixedbread-ai/mxbai-embed-large-v1

https://www.nltk.org/howto/wordnet.html
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1


Figure 2: The pipeline of our method. In the first stage, we construct a bipartite graph using words as nodes, and in
the second stage we utilize a GNN to get feasible substitutions that approximately solve the RLAP. In the final stage,
we use beam search to change appropriate words of the original dataset, thus getting a new counterfactual dataset.

bed8 (Solatorio, 2024), JinaAI9 (Mohr et al., 2024)
and MUG10; then, we set the edge weight equal to
the cosine similarity of the two word embedding
vectors. Since lower similarity is associated with
lighter edges, i.e. more suitable candidates for M ,
the selected words to be substituted will form con-
trastive word pairs. In order to preserve syntax
and human readability in the POS-agnostic case,
we force substitutions between same-POS words
exclusively: thus, we experiment with an edge fil-
tering mechanism, which sets a predefined large
weight to edges, ∼10 times bigger than the nor-
mal edge weights as instructed from WordNet path
similarity or cosine similarity of embeddings. This
way, we avoid cases where a POS is substituted
with a word of different POS, since a significantly
heavier edge cannot be selected to participate in
M . In the POS-specific case, this mechanism is
redundant since all words are of the same POS.

4.2 Substitution pairs computation

For appropriate substitution pairs we need to solve
RLAP on the constructed graph G. As previously
discussed (Section 3), traditional deterministic ap-
proaches achieve this in O(mn log n). While these
methods provide the optimal solution, they lack
speed as the dataset size, and therefore graph size
grows larger. In an attempt to produce substitution
pairs in stable time regardless dataset size, we use a
GNN model (Section 3.1), which approximates the
optimal solution found by deterministic algorithms,
while significantly speeding up the process. This
way, efficiency is guaranteed. By solving the prob-
lem with the constraint of minimum

∑
we, we find

all most dissimilar s→ t pairs, achieving approxi-
mate optimality of concept substitution within G

8avsolatorio/GIST-Embedding-v0
9https://jina.ai/embeddings/

10Labib11/MUG-B-1.6

and ultimately producing contrastive substitution
pairs. At the same time, controllability is par-
tially ensured since the graph G is dense (therefore
there are no disconnected s nodes) and |S| ≤ |T |,
since T is either a copy of S or produced based on
S using antonyms from WordNet (more than one
antonym may correspond to each word). Note here,
that we use the word “partially” as there is a trade-
off between controllability and minimality 11 (see
App. A), which stems from using beam search dur-
ing counterfactual generation. In practice, there are
also a few exceptions in controllability, if a source
concept cannot be mapped on WordNet.

4.3 Counterfactual Generation

As a result of solving RLAP, a matching M ⊂ E
is returned, indicating the optimal substitutions to
n source concepts. We denote as WM

n ⊂ W the
total weight of M that contains n source concepts.
Given this matching, beam search selects which
conceptual substitutions from M will actually be
performed on D. This selection process is neces-
sary since we desire changes to be minimal in terms
of number of words altered per instance, perturbing
only small portions of input, a property which has
been argued to make explanations more intelligible
(Alvarez-Melis et al., 2019; Miller, 2019). In this
context, we also set an upper limit of substitutions
on each text instance, experimenting with both a
fixed and a dynamically set number. In the second
case, for each instance, the upper limit is equal to
the 20% of the total number of words it contains.
We stop the search when the model’s prediction
is flipped or when the upper limit is reached, thus
keeping the number of edits low.

11Minimality here refers to the number of words changed.

https://huggingface.co/avsolatorio/GIST-Embedding-v0
https://jina.ai/embeddings/
https://huggingface.co/Labib11/MUG-B-1.6


5 Experiments

In this section, we present our experiments along
with the results, which showcase that our frame-
work produces fluent, minimal edits with high label-
flipping percentage in a short amount of time com-
pared to the other editors. All experiments were
run on the same system consisting of a 16 GB GPU,
an Intel i7 CPU and 16 GB RAM.

5.1 Experimental Setup

Datasets We evaluate our framework and compare
it with other editors from literature, on two English-
language datasets: IMDB, which contains movie
reviews and is used for binary sentiment classifica-
tion (Maas et al., 2011) and a 6-class version of the
20 Newsgroups used for topic classification (Lang,
1995). Due to the high computational demands of
the compared methods, we sampled 1K instances
from each dataset for evaluation. Running MiCE
on just 1K samples required over 47 hours (see
Table 1), making full dataset experiments impracti-
cal. We chose twice the sample size used in similar
studies comparing the same methods on the same
datasets (Filandrianos et al., 2023).
Predictors We test our edits using the same pre-
dictor models with MiCE (Ross et al., 2021)
in each dataset. These models are based on
RoBERTaLARGE (Liu et al., 2019) and boast a
test accuracy of 95.9% and 85.3% for IMDB and
Newsgroups respectively.
Editors We compare our framework with two
SoTA editors, MiCE (Ross et al., 2021) and
Polyjuice (Wu et al., 2021). MiCE produces
minimal edits optimized for label-flipping, while
Polyjuice is a general purpose editor, whose edits
are not restricted to a specific task. In regard to our
framework, we use the approach of the determinis-
tic RLAP solution as a baseline, and we compare
it with the GNN RLAP optimization. To test the
generalization properties of our work, we also use
POS-restricted and POS-unrestricted substitutions.
Metrics To assess the performance of the differ-
ent editors, we draw inspiration from MiCE and
measure the following properties: (1) flip-rate: the
percentage of instances for which an edit results in
different model prediction (label-flipping); (2) min-
imality: the "size" of the edit as measured by word-
level Levenshtein distance between the original and
edited input. We adopt a normalized version of this
metric with a range of [0, 1] — the Levenshtein
distance divided by the number of words in the

original input; (3) closeness: the semantic similar-
ity between the original and edited input, measured
by BERTscore (Zhang et al., 2019); (4) fluency: a
measure of how similarly distributed the edited in-
put is compared to the original. To evaluate fluency,
we first take a pretrained T5-BASE model (Raffel
et al., 2020) and compute the loss value for both the
edited and original input. Afterwards, we report
their loss_ratio - i.e., edited / original. Since we
aim for a value of 1.0, which indicates equivalent
losses for the original and edited texts, the final
measure of fluency is defined as |1− loss_ratio|.

5.2 Results
The results of our experiments are shown in Table
1, including both IMDB and Newsgroups datasets.
More analysis can be found in App. A, B.

Our proposed editors—deterministic and GNN-
powered—outperform both MiCE and Polyjuice
across the three of the four metrics namely mini-
mality, fluency and closeness. Regarding flip-rate,
MiCE achieves the highest results (99% - 100%,
across the two datasets), followed by our approach:
our best editor reaches values slightly above 90%
(specifically 94.4% for IMDB and 92% for News-
groups). However, this is expected, since MiCE
is the only editor that has white-box access to the
classifier and it is able to strategically construct
edits that affect the classifier the most, regardless
of the input text.

Results also show that our edits tend to be more
minimal when graph construction is based on em-
beddings models instead of WordNet (approxi-
mately 10% of the original tokens are changed
when WordNet is employed, while with embedding
models only 1% of the said tokens change). We
believe this is due to the fact that SoTA embedding
models are able to better depict concept distance
compared to WordNet, and therefore substitutions
based on them are of higher quality, leading to more
contrastive pairs. This means that for the same im-
pact on the classifier’s output, less embedding sub-
stitutions are required compared to WordNet-based
ones. On the other hand, using embedding models
reduces the overall transparency of the method. De-
spite minor discrepancies, all our framework vari-
ants consistently outperform previous techniques
across every metric for Polyjuice and three met-
rics for MiCE. Moreover, even the general-purpose
variation of our framework, which lacks access to
the classifier, yields better results compared to the
white-box MiCE, in just 2% of the time.



IMDB
Editor Fluency ↓ Closeness ↑ Flip Rate ↑ Minimality ↓ Runtime ↓

WordNet

Deterministic w. fluency 0.14 0.969 0.892 0.08 4:09:41
GNN w. fluency 0.07 0.986 0.861 0.12 3:17:51

GNN w. fluency & dynamic thresh 0.057 0.986 0.851 0.146 4:18:34
GNN w. fluency & POS_filter 0.08 0.992 0.862 0.123 0:32:05
GNN w. fluency & edge filter 0.105 0.993 0.845 0.149 3:00:38
GNN w. fluency_contrastive 0.112 0.999 0.914 0.014 2:12:06

GNN w. contrastive 0.048 0.996 0.927 0.01 2:00:15

Embeddings

GNN w. AnglE & contrastive 0.063 0.995 0.944 0.011 0:45:38
GNN w. GIST & contrastive 0.037 0.995 0.882 0.016 0:58:14
GNN w. JinaAI & contrastive 0.047 0.995 0.928 0.017 1:00:56
GNN w. MUG & contrastive 0.036 0.996 0.889 0.013 0:52:19

Polyjuice 0.394 0.787 0.782 0.705 5:01:58
MiCE 0.201 0.949 1.000 0.173 48:37:56

Newsgroups
Editor Fluency ↓ Closeness ↑ Flip Rate ↑ Minimality ↓ Runtime ↓

WordNet

Deterministic w. fluency 0.182 0.951 0.870 0.135 4:20:52
GNN w. fluency 0.074 0.985 0.826 0.151 3:48:37

GNN w. fluency & dynamic thresh 0.043 0.984 0.823 0.148 4:47:14
GNN w. fluency & POS filter 0.044 0.989 0.841 0.143 1:19:57
GNN w. fluency & edge filter 0.12 0.989 0.834 0.151 3:05:08
GNN w. fluency_contrastive 0.088 0.979 0.875 0.033 2:45:31

GNN w. contrastive 0.033 0.989 0.920 0.033 2:02:34

Embeddings

GNN w. AnglE & contrastive 0.005 0.995 0.904 0.027 1:09:13
GNN w. GIST & contrastive 0.001 0.995 0.898 0.02 1:02:55
GNN w. JinaAI & contrastive 0.013 0.993 0.882 0.025 0:57:31
GNN w. MUG & contrastive 0.005 0.996 0.900 0.016 0:53:04

Polyjuice 1.153 0.667 0.8 0.997 6:00:10
MiCE 0.152 0.922 0.992 0.261 47:23:35

Table 1: Experimental results of counterfactual generation. We evaluate different versions of our framework using
the metrics described on subsection 5.1, and we compare it with MiCE and Polyjuice. For each metric (column) the
best value is highlighted in bold. Reported runtimes refer to inference.

As far as runtime is concerned, our editors show
a remarkable improvement in speed compared to
MiCE and Polyjuice. Our deterministic editor,
which is used as a baseline, requires approximately
4 hours for each dataset, while editors that use the
GNN discussed in Section 3.1 achieve faster exe-
cution on average (2-4 hours). Runtime is further
improved with the use of embedding models, where
execution requires less than an hour (52 minutes - 1
hour for IMDB, 53 minutes - 1 hour and 9 minutes
for Newsgroups). This significant speed improve-
ment is one of the main advantages of our frame-
work compared to the two SoTA editors, where
we observed approximately 97% and 83% speed
improvement compared with MiCE and Polyjuice
respectively.

Static vs. Dynamic Threshold To keep the num-
ber of edits relatively low, a way to limit the number
of substitutions per data instance is required, ac-
cepting a potential drop in flip-rate. For this reason,
we use two different approaches. In the first one,
we enforce a static number of maximum substitu-

tions allowed for each textual input, regardless of
its length; after experimentation, the best number
was found to be 10. In the second approach, we
dynamically compute the optimal upper limit (or
threshold) of substitutions based on the total num-
ber of words in the text. After different attempts,
we end up defining that limit as 20% of the total
number of words. Results however, show insignifi-
cant improvement in metrics when using dynamic
threshold, while the runtime is increased (approxi-
mately by 1 hour per dataset). This slow-down is
expected since dynamic threshold introduces an ex-
tra linear complexity for each text instance, in place
of the O(1) complexity of the static case. Static is
our default approach unless stated otherwise.

POS-restricted vs. Unrestricted Substitutions
In an attempt to evaluate our editor’s ability to dis-
tinguish which POS is more influential to a specific
dataset when related words are substituted, we im-
pose restrictions regarding which POS should be
candidates for substitutions, and compare the re-
sults with a POS-unrestricted version of our frame-



work. The IMDB dataset is used for sentiment
classification, and therefore adjectives and adverbs
are presumed to mainly dictate the label (sentiment)
for each instance (Benamara et al., 2005). With that
in mind, we limit our editor to change only those
two POS. Newsgroups is a dataset which belongs
to the topic classification category. Since a topic
is deduced by examining the nouns in a text, we
instruct the editor to take into account only those.
As we observe from Table 1, both editors, with and
without POS filtering, achieve very similar results.
This holds true for both IMDB and Newsgroups
datasets, showing that the observed similarity is
not due to a specific POS restriction. The only
significant difference is seen in runtime (32 - 60
minutes for restricted editors, 2 - 4 hours for unre-
stricted ones), which is to be expected since when
we only consider certain POS at a time, we also
limit the amount of words that will be considered
as candidates for substitution. This means that the
graph nodes and edges of G will be significantly
reduced, thus decreasing the time needed for graph
construction and GNN inference.

Edge Filtering In order to preserve the POS in
each substitution, we apply a penalty mechanism
(filtering) when computing edge weights of the
graph. This mechanism assigns a weight approx-
imately 10× bigger than the normal weights (as
defined from WordNet path similarity or embed-
ding cosine similarity), to each edge that connects
different-POS words. This way, since our frame-
work is trying to find a minimum weight matching,
edges with large weights are almost impossible to
be chosen and therefore substitutions involving dif-
ferent POS have a low occurrence probability. By
examining the results with and without the use of
edge filtering we observe that they are quite similar.
This leads us to assume that such a mechanism is
redundant and its functionality is covered by the
GNN solution to our graph assignment problem.

Contrastive vs fluent contrastive edits Since
the selection of eligible substitutions is a general-
purpose process (only defined by the graph), we ex-
amine the behaviour of our editor when optimized
for label-flipping scenarios. This optimization is
done by altering the heuristic function of beam
search in the last stage of our framework (see Fig-
ure 2). For general-purpose edits, this function
is the metric for fluency discussed in Subsection
5.1, which assists the production of fluent edits.
For label flipping, we use contrastive probability,

which regards the change to the model prediction
for the original label, to determine the best edits
(see GNN w. contrastive in Table 1). Finally, we
also use the average of fluency and contrastive prob-
ability as the heuristic function, which results in
fluent edits with high flip-rate (see GNN w. flu-
ency_contrastive in Table 1). While the general-
purpose edits achieve the lowest flip-rate, they re-
main better in all metrics compared to Polyjuice,
another general-purpose editor. This shows that our
framework can also be used as a general, untargeted
editor with high-quality edits (regarding discussed
metrics); extensive experimentation on this claim is
left for future work. The label-flipping optimized
edits, achieve better results in fluency, closeness
and minimality compared to MiCE, a SoTA white-
box editor optimized for label-flipping. Therefore,
in terms of flip-rate, MiCE demonstrates superior
performance, exceeding ours by 7%, accepting a
significant 20x slowdown in execution.

WordNet vs. Embeddings We investigate the
effect of using cosine similarity of embeddings
in place of WordNet path similarity between two
words, when computing the weight of a specific
edge in the bipartite graph G. On the one hand, de-
terministc hierarchies provide more explainable
relationships between concepts, fully justifying
causal pathways of substitutions. On the other
hand, recently-emerged embedding models can
better capture the relationship and similarity of
two words, compared to WordNet. To keep our
framework relatively lightweight, we deploy the
top four best performing models that participated
in an embedding benchmark competition (Muen-
nighoff et al., 2023) and whose size does not exceed
1.25 GB. Models with that size occupied the top
spots in the competition and any increase in model
size did not result in significant improvements in
performance. Results justify our assumptions, with
our variants that leverage the embedding models
achieving better results in all metrics compared
to our WordNet-based variants. Regarding GPU
inference, the embedding models also outperform
WordNet in terms of speed, since the latter requires
API calls for each word/graph node of V , which
greatly slow down the graph creation process.

6 Conclusion

In this work, we present a framework for generat-
ing optimal and controllable word-level counter-
factuals via graph-based substitutions, which we



evaluate on two classification tasks. We introduce
a GNN approach that enhances our proposed base-
line deterministic graph assignment algorithm and
significantly speeds up the process overall. We
compare our results with two SoTA editors, and
show that we surpass them in most metrics, while
being considerably faster. As future work, we con-
sider integrating more external lexical sources (e.g.
ConceptNet) to enhance the possible substitution
candidates, as well as improving the performance
of the GNN model used to solve RLAP to fur-
ther approximate deterministic optimal solutions.
Other future directions include comparison with
LLM-based counterfactual editors and evaluation
on other NLP tasks apart from classification.

Broader Impacts and Ethics

Our framework is intended to aid the interpretation
of NLP models. As a model-agnostic explanation
method by design (not optimized towards a cer-
tain metric in the default case), it has the potential
to impact NLP system development across a wide
range of models and tasks. In particular, our edits
can assist developers working on the NLP field in
facilitating, debugging and exposing model vulner-
abilities. The framework can also assist in data
augmentation which results in less biased and more
robust systems. As a consequence, downstream
users of NLP models can also be benefited by gain-
ing access to those systems.

While our work focuses on interpreting NLP
models, it could be misused in other contexts. For
instance, malicious users might generate adversar-
ial examples, such as slightly altered hate speech,
to bypass toxic language detectors. Additionally,
using these editors for data augmentation could
inadvertently lead to less robust and more biased
models, as the edits are designed to expose model
weaknesses. To avoid reinforcing existing biases,
researchers should carefully consider how they se-
lect and label edited instances when using them for
training. However, such threats are applicable to
any text editor in NLP literature and are not tailored
on our work.

Limitations

Our framework comes with its challenges. One of
them is that it requires a strong enough GPU (at
least 8GB based on our experiments) to run the
GNN and the embedding models. Such hardware
may not be available to any researcher that wishes

to reproduce our experiments. Another one, is the
dependence of word existence in WordNet, in cases
it serves as a knowledge base for T construction,
or as a means for calculating path similarity. For
example, if a word from the original input does
not exist in the WordNet hierarchy, then we are
unable to find its antonyms and therefore a substi-
tution on that word may not occur. The usage of
other knowledge sources, which could potentially
resolve this limitation, is left for future work. The
usage of embeddings for concept distance defini-
tion partially resolves the WordNet limitation, even
though it results in a slight decrease in explainabil-
ity of edits: the WordNet structure is well-defined
and deterministic, while the model mapping words
onto an embedding space does not come with inher-
ent guarantees of its functionality. Explainability
is also decreased when using the GNN module in
place of the deterministic min weight matching
algorithm for solving RLAP (Kuhn, 1955; Karp,
1978), since the reason why an edge (and therefore
a candidate substitution pair) is selected becomes
less transparent, as a result of a black-box proce-
dure performed by the GNN. Finally, while not
being a direct limitation, the general-purpose appli-
cability of our framework has not been presented
experimentally in the current paper, despite being a
natural consequence stemming from the optimiza-
tion performed on the graph.
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A Trade-offs

Since our editor is a highly customizable one, there
are many trade-offs which must be considered dur-
ing counterfactual generation.

Controllability vs. Minimality Controllable in-
terventions involve changing any semantic that can
be changed in order to observe an outcome; to this
end, we could potentially alter as many words as
possible in order to reach a goal, e.g. label-flipping.
However, in our case, in order to produce minimal
edits, we set a maximum number of substitutions
per textual input and leverage beam search to select
the most appropriate changes. As a consequence,
the default controllability requirement is partially
sacrificed, since it is not guaranteed that all words
that can be substituted will be indeed substituted.
Nevertheless, our framework still produces edits for
each input, meaning that it will change the original
text, although not entirely; this is why we impose
as controllability to modify at least one word of the
original data sample. In our experiments (see Table
1) we have accepted this trade-off since our inter-
est lies more heavily with minimality compared to
controllability. Despite that, it is possible to fully
ensure controllability by arsing the limitations men-
tioned above (i.e. max number of substitutions and
beam search), although such an approach would
results in worse performance regarding minimality.

Optimality vs. Execution Speed In our frame-
work, we use both a deterministic (see Determin-
istic w. fluency from Table 1) and a GNN ap-
proach (see GNN w. fluency from Table 1) to solve
RLAP. With the deterministic approach, optimality
is ensured, since traditional graph matching algo-
rithms have been proved to find the optimal solu-
tion (Kuhn, 1955; Karp, 1978). However, the com-
plexity of those algorithms, which is O(mn log n),
results to slower runtimes as graph size increases
(which is analogous to the number of words to be
substituted and therefore depends on the dataset
size). By replacing the deterministic algorithms
with the trained GNN (see Section 3.1), our frame-
work becomes significantly faster at the cost of
optimality. This is due to the fact that the solu-
tion given by the GNN is an approximation of the
optimal one.

Explainability vs. Execution Speed In our
work, we utilize WordNet as the default way of
computing edge weights between nodes, where
each edge weight is based on the path that connects
a source word s with target word t in WordNet. By
mapping each concept to WordNet synsets, a deter-
ministic concept position is assigned to each word,
providing a fully transparent concept mapping to
a well-crafted lexical structure. The utilization of
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word embeddings casts a shadow on word map-
ping, since we transit to a vector representation
of an uninterpretable multi-dimensional space via
black-box models. Similarity in the embedding
space translates to semantic similarity of physical
concepts, acting as our guarantee towards employ-
ing embedding models.

In combination with the deterministic solution
to RLAP, WordNet mapping guarantees explain-
ability of edits, since all paths s→ t are tractable,
and the choice of edges is fully transparent due to
the deterministic selection process of graph match-
ing algorithms (Bijsterbosch and Volgenant, 2010).
By obtaining the resulting matching M we gain
full access to the set of edits to perform S → T
transition. A sacrifice in explainability is imposed
when using the GNN instead of the deterministic
graph assignment algorithms: the GNN introduces
an uncertainty to the edge selection, since we can-
not be entirely sure why a specific edge was cho-
sen. Although we have trained the GNN to output
the RLAP solution, the model itself still remains
a black-box structure that hides the exact criteria
which decide whether an edge will be selected or
not. Still, in some applications the speedup offered
by the GNN outweighs this drop in explainabil-
ity, while the opposite may hold in cases where
trustworthiness is of utmost importance.

Overall, as observed from our experiments (see
Table 1), leveraging embedding models to compute
edge weights and the GNN to solve RLAP show-
cases major improvements in fluency, flip-rate and
minimality, while also being considerably faster.
Someone could argue that this approach is clearly
better that the fully deterministic one, since it pro-
duces higher quality edits. Despite that, we need
to point out that these improvements come at a
significant cost on explainability, since, due to the
GNN, the edge selection process is no longer trans-
parent and edge weight computation depends on
black-box embedding models.

B Edits Comparison Between Editors

Qualitative comparisons with Polyjuice and MiCE
are presented in this Section to demonstrate the
capabilities of our framework regarding minimal-
ity and flip-rate. For that purpose, we choose an
instance of the IMDB dataset which is originally
classified as ’positive’ and acquire the edited in-
stances from our framework and the two editors
mentioned above. Specifically for Polyjuice, since

its goal is to change the prediction from positive to
negative, we use the control code [negation], which
guides the editor to generate an edit that is the nega-
tion of the original text. The original along with
the edited inputs (red words denote changes made
by each editor) are shown in Figure 3.

Figure 3: Original input and edited inputs from different
editors. The changes that each editor performed are
highlighted in red color.

As we can see, MiCE performs the highest num-
ber of interventions on the original input, with
two of those changes being semantically incorrect
("conservative, conservative" and "both of whom
have"). We also notice that its changes are not en-
tirely word-level, which further deteriorates the ed-
itor’s performance regarding minimality. Polyjuice
on the other hand, makes only one change at the
end of the text, which however has no semantic
meaning; such edits may betray the presence of
a counterfactual editor or a neural model in gen-
eral, coming in contrast with the requirement of
“imperceptible edits” that commonly involves coun-
terfactual interventions. Our editor presents the
best performance out of the three, changing only
one word, while being semantically correct and
very close to the original instance.

Numeric results of Figure 3 instances regarding
minimality and label-flipping are reported in Table
2. Since we only have one textual instance, instead
of flip-rate we use the term prediction flipped to
denote whether the edited input is able to change
the original prediction of the classifier. Note that
Polyjuice is unable to flip the prediction, while both



Edits Minimality ↓ Prediction Flipped

Polyjuice 0.078 False
MiCE 0.256 True
Ours 0.011 True

Table 2: Metric results of the edits presented in Figure 3.
For each property (column) the best value is highlighted
in bold.

MiCE and our framework succeed. Also, our editor
is the best as far as minimality is concerned, with
Polyjuice being second and MiCE being the worst
out of the three.

C GNN Training

For training the GNN incorporated in our frame-
work, we commence from the trained model de-
scribed in Liu et al. (2024) and fine-tune it to our
specific problem, which is RLAP. The process we
follow is almost identical to the one reported by the
authors, with a small difference regarding the loss
function being used. Initially, a synthetic dataset
that consists of M samples12 is created. Each sam-
ple is composed of a cost matrix C in which the
elements are generated from a uniform distribution
on (0, 1) and the corresponding optimal assignment
solution which is obtained by the Hungarian algo-
rithm (Kuhn, 1955). We consider the RLAP as a
binary classification task and divide the elements
in the ground-truth assignment matrix Y gt 13 into
positive labels and negative ones. Since for each
node, there is at most one positive edge among its
adjacent edges and the rest are negative ones, we
use the Balanced Cross Entropy as the loss func-
tion, to avoid the negative labels dominating the
training:

L = −
n∑

i=1

m∑
j=1

(
w × ygt

ij log(yij) + (1− w)×

(1− ygt
ij ) log(1− yij)

) (4)

where yij is the predicted label for edge i → j
which connects source node i and target node j, ygtij
is the corresponding ground-truth vector element
indicating the edge as positive or negative, and w
is the weight which balances the loss to avoid the
negative labels dominating the training. Parameters

12Each sample represents a weighted bipartite graph.
13Y gt is a matrix where element ygt

ij is 1 if the edge con-
necting nodes i and j belongs to the minimum matching, else
it is -1.

n,m denote the cardinality of source and target
nodes sets, so that |S| = n, |T | = m.

As in Liu et al. (2024), training takes 20 epochs
in total, where the learning rate is set as 0.003
initially and declined by 5% after every 5 epochs.

D Proof of naive graph matching
complexity

We will prove the exponential O(|T ||S|) complex-
ity of the naive solution to the constraint op-
timization problem of adversarial s − t match-
ings. Given the example graph of Figure 4
with S = {A,B,C} of cardinality |S| = 3 and
T = {1, 2, 3, 4} of cardinality |T | = 4, the follow-
ing node combinations occur:

Source node A can take |T | = 4 values: A-
1, A-2, A-3, A-4. Node B can independently of
A take |T | = 4 values: B-1, B-2, B-3, B-4. Fi-
nally, C independently of A and B can also take
|T | = 4 values: C-1, C-2, C-3, C-4. Therefore,
all combinations for the |S| = 3 source nodes are
4× 4× 4 = 43 = |T ||S|

Figure 4: Example graph
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