
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WATERMARKING GRAPH NEURAL NETWORKS VIA EX-
PLANATIONS FOR OWNERSHIP PROTECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are widely deployed in industry, making their
intellectual property valuable. However, protecting GNNs from unauthorized use
remains a challenge. Watermarking offers a solution by embedding ownership
information into models. Existing watermarking methods have two limitations:
First, they rarely focus on graph data or GNNs. Second, the de facto backdoor-
based method relies on manipulating training data, which can introduce ownership
ambiguity through misclassification and vulnerability to data poisoning attacks
that can interrupt the backdoor mechanism. Our explanation-based watermarking
inherits the strengths of backdoor-based methods (e.g., black-box verification)
without data manipulation, eliminating ownership ambiguity and data dependencies.
In particular, we watermark GNN explanations such that these explanations are
statistically distinct from others, so ownership claims must be verified through
statistical significance. We theoretically prove that, even with full knowledge of our
method, locating the watermark is NP-hard. Empirically, our method demonstrates
robustness to fine-tuning and pruning attacks. By addressing these challenges, our
approach significantly advances GNN intellectual property protection.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017; Hamilton et al.,
2018; Veličković et al., 2018) are widely used for graph-structured data tasks, such as social network
analysis, bioinformatics, and recommendation systems (Zhang et al., 2021; Zhou et al., 2020). Various
giant companies have depend on GNNs: Amazon for product recommendations (Virinchi, 2022);
Google’s TensorflowGNN for Maps traffic prediction (Sibon Li et al., 2021; Oliver Lange, 2020);
Meta for friend/content recommendations (MetaAI, 2023); Alibaba’s AliGraph for fraud and risk
detection (Yang, 2019; Liu et al., 2021b; Li, 2019). Given significant GNN development, ownership
verification is crucial to protect against illegal copying, model theft, and malicious distribution.

Watermarking embeds secret patterns into models (Uchida et al., 2017) to verify ownership. As a
de facto approach, backdoor-based watermarking (Adi et al., 2018; Bansal et al., 2022; Lv et al.,
2023; Yan et al., 2023; Li et al., 2022; Shao et al., 2022; Lansari et al., 2023) insert the watermark
pattern as a “trigger” into clean samples with altered target labels, and trains on both watermarked
and clean data. During verification, ownership is demonstrated by producing the triggered samples
that yield the target label. Backdoor-based watermarking methods have several merits: they are robust
to removal attacks (pruning and fine-tuning), and verification only requires black-box model access.

However, recent works (Yan et al., 2023; Liu et al., 2024; Xu et al., 2023) reveal a fundamental
limitation: backdoor-based methods induce ownership ambiguity, as attackers could falsely claim
misclassified data as ownership evidence. Additionally, embedding watermarks into data properties
creates vulnerability to data poisoning attacks, where an adversary can manipulate the data to
disrupt the watermarking process Steinhardt et al. (2017); Zhang et al. (2019). Recognizing these
limitations, researchers have explored alternate watermark embedding spaces. (Shao et al., 2024)
embed watermarks DNN prediction explanations, avoiding tampering with predictions or parameters.
While offering a compelling alternative to backdoor-based watermarking, their approach assumes a
known ground-truth watermark, introducing challenges like a third-party verification requirement
and potential disputes over the true watermark. Moreover, they do not address graph data’s unique
complexities, including structural dependencies and multi-hop relationships.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We extend explanation-based watermarks to GNNs, additionally addressing graph-specific challenges
and avoiding the need of a ground-truth watermark for verification. Our approach aligns explanations
of selected subgraphs with a predefined watermark, ensuring robustness to removal attacks and
preserving advantages of explanation-based methods. In doing so, we present the first explanation-
based watermarking method tailored to GNNs.

Our approach: We develop a novel watermarking strategy for protecting GNN model ownership
that both inherits the merits from and mitigates the drawbacks of backdoor-based watermarking. Like
backdoor-based methods, our approach only needs black-box model access. However, in contrast
to using predictions on the polluted watermarked samples, we leverage the explanations of GNN
predictions on clean samples and align them with a predefined watermark for ownership verification.

Before training, the owner selects secret watermarked subgraphs (private) and defines a watermark
pattern (possibly private).1 The GNN trains with a dual-objective loss function that minimizes (1)
classification loss, and (2) distance between the watermark and watermarked subgraph explanations.
Like GraphLIME (Huang et al., 2023), we use Gaussian kernel matrices to approximate node feature
influence on predictions. However, instead of an iterative approach, we use ridge regression to
compute feature attribution vectors in a single step, providing a more efficient, closed-form solution.

Our approach is (i) Effective: Explanations of watermarked subgraphs exhibit high similarity to the
watermark after training. (ii) Unique: This similarity across explanations is statistically unlikely
without watermarking, and hence serves as our ownership evidence. (iii) Undetectable: We prove that,
even with full knowledge of our watermarking method, finding the private watermarked subgraphs is
computationally intractable (NP-hard). (iv) Robust: Empirical evaluations on multiple benchmark
graph datasets and GNN models demonstrate robustness to fine-tuning and pruning-based watermark
removal attacks. We summarize our contributions as follows:

• We introduce the first known method for watermarking GNNs via their explanations, eliminating
ownership ambiguity and avoiding data manipulation problems of black-box watermarking schemes.

• We prove that it is NP-hard for the worst-case adversary to identify our watermarking mechanism.
• We show our method is robust to watermark removal attacks like fine-tuning and pruning.

2 RELATED WORK

White-Box Watermarking. These techniques (Darvish Rouhani et al., 2019; Uchida et al., 2017;
Wang & Kerschbaum, 2020; Shafieinejad et al., 2021) directly embed watermarks into the model
parameters or features during training. For example, Uchida et al. (2017) embed a watermark via a
regularization term, while Darvish Rouhani et al. (2019) propose embedding the watermark into the
activation/feature maps. Although these methods are robust in theory (Chen et al., 2022), they require
full access to the model parameters during verification, which may not be feasible in real-world
scenarios, especially for deployed models operating in black-box environments (e.g., APIs).

Black-Box Watermarking. Black-box approaches verify model ownership using only model
predictions (Adi et al., 2018; Chen et al., 2018; Szyller et al., 2021; Le Merrer et al., 2019). They
often use backdoor mechanisms, training models to output specific predictions for “trigger” inputs as
ownership evidence (Adi et al., 2018; Zhang et al., 2018). These methods have significant downsides.
First, watermarks embedded into data features can be interrupted by data poisoning attacks (Steinhardt
et al., 2017; Zhang et al., 2019). Further, backdoor methods suffer from ambiguity — attackers may
claim naturally-misclassified samples as their own “watermark”(Yan et al., 2023; Liu et al., 2024).
Given these issues with backdoor-based methods, Shao et al. (2024) proposed embedding DNN
watermarks in explanations to avoid prediction manipulation and maintain black-box compatibility.

Watermarking GNNs. Varying size and structure of graphs make watermark embedding challenging.
Moreover, GNNs’ multi-hop message-passing mechanisms are more sensitive to data changes than
neural networks processing more uniform data like images or text (Wang & Gong, 2019; Zügner et al.,
2020; Zhou et al., 2023). The only existing black-box watermarking GNNs (Xu et al., 2023) suffers
from the same issue as backdoor watermarking of non-graph models (Liu et al., 2024) 2. These issues,

1Ownership verification does not require knowledge of the watermark pattern.
2Recent “fingerprinting” method (Waheed et al., 2024) verifies GNN ownership with node embeddings

instead of explicit watermark patterns. However, it is vulnerable to pruning attacks. Relying on intrinsic model
features can limit uniqueness guarantees and risk ownership ambiguity (Wang et al., 2021; Liu et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

coupled with the complexity of graphs, make existing watermarking techniques unsuitable for GNNs.
This highlights the need for novel watermarking schemes.

3 BACKGROUND AND PROBLEM FORMULATION

3.1 GNNS FOR NODE CLASSIFICATION

Let a graph be denoted as 𝐺 = (V, E,X), where V is the set of nodes, E is the set of edges, and
X = [x1, · · · , x𝑁] ∈ R𝑁×𝐹 is the node feature matrix. 𝑁 = |V| is the number of nodes, 𝐹 is
the number of features per node, and x𝑢 ∈ R𝐹 is the node 𝑢’s feature vector. We assume the task
of interest is node classification. In this context, each node 𝑣 ∈ V has a label 𝑦𝑣 from a label set
C = {1, 2, · · · , 𝐶}, and we have a set of |V 𝑡𝑟 | labeled nodes (V 𝑡𝑟 , y𝑡𝑟) = {(𝑣𝑡𝑟𝑢 , 𝑦𝑡𝑟𝑢)}𝑢∈V𝑡𝑟 ⊂ V×C
nodes as the training set. A GNN for node classification takes as input the graph 𝐺 and training nodes
V 𝑡𝑟 , and learns a node classifier, denoted as 𝑓 , that predicts the label 𝑦̂𝑣 for each node 𝑣. Suppose a
GNN has 𝐿 layers and a node 𝑣’s representation in the 𝑙-th layer is h(𝑙)𝑣 , where h(0)𝑣 = x𝑣 . Then it
updates h(𝑙)𝑣 for each node 𝑣 using the following two operations:

l(𝑙)𝑣 = Agg
({

h(𝑙−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
, h(𝑙)𝑣 = Comb

(
h(𝑙−1)
𝑣 , l(𝑙)𝑣

)
, (1)

where Agg aggregates representations of a node’s neighbors, and Comb combines a node’s previous
representation and aggregated representation of that aggregation to update the node representation.
N(𝑣) denotes the neighbors of 𝑣. Different GNNs use different Agg and Comb operations.

The last-layer representation h(𝐿)𝑣 ∈ R | C | of training nodes 𝑣 ∈ V 𝑡𝑟 are used to train the node classifier
𝑓 . Let Θ be the model parameters and 𝑣’s softmax scores be p𝑣 = 𝑓Θ (V 𝑡𝑟)𝑣 = softmax(h(𝐿)𝑣), where
𝑝𝑣,𝑐 is the probability of 𝑣 being class 𝑐. Θ are learned by minimizing a classification (e.g., cross-
entropy) loss on the training nodes:

Θ∗ = arg minΘ L𝐶𝐸 (y𝑡𝑟 , 𝑓Θ (V 𝑡𝑟)) = −Σ𝑣∈V𝑡𝑟 ln 𝑝𝑣,𝑦𝑣 . (2)

3.2 GNN EXPLANATION

GNN explanations identify graph features that influence predictions. Some methods (e.g., GNNEx-
plainer (Ying et al., 2019) and PGExplainer (Luo et al., 2020)) identify important subgraphs, while oth-
ers (e.g., GraphLime (Huang et al., 2023)) identify key node features. Inspired by GraphLime (Huang
et al., 2023), we use Gaussian kernel matrices to capture relationships between node features and pre-
dictions: Gaussian kernel matrices effectively capture nonlinear dependencies and complex variable
relationships, ensuring subtle patterns in the data are effectively represented Yamada et al. (2012).
Using these Gaussian kernel matrices, we employ a closed-form solution with ridge regression (Hoerl
& Kennard, 1970) to compute feature importance in a single step.

Our function 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(·) takes node feature matrix X and softmax scores P = [p1, · · · , p𝑁], yielding
𝐹-dimensional attribution vector e showing each feature’s influence on predictions across nodes.
This computes feature attributions (e) by leveraging the relationships between input features (X) and
output predictions (P) through Gaussian kernel matrices.

e = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) = (K̃𝑇 K̃ + 𝜆I𝐹)−1K̃𝑇 L̃. (3)

We defer precise mathematical definitions to Appendix B. For high-level understanding, the matrix K̃
(𝑁2 × 𝐹) encodes pairwise feature similarities between nodes via a Gaussian kernel. L̃ (𝑁2 × 1) uses
a Gaussian kernel to encode pairwise prediction similarities between nodes. The term (K̃𝑇 K̃+𝜆I𝐹)−1,
where 𝜆 is a regularization hyperparameter and I𝐹 is the 𝐹 × 𝐹 identity matrix, solves a ridge
regression problem to ensure a stable and interpretable solution. The product K̃𝑇 L̃ (𝐹 × 1) ties the
Gaussian feature similarities (K̃) to the output prediction similarities (L̃), ultimately yielding the
vector e (𝐹 × 1), which quantifies the importance of each input feature for the GNN’s predictions.

In this paper, the explanation of a GNN’s node predictions means this feature attribution vector e.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview: During embedding, 𝑓 is optimized to (1) minimize node classification loss and
(2) align watermarked subgraph explanations with w. The similarity of 𝐺𝑐𝑑𝑡 ’s binarized explanations,
{ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1, is tested for significance during ownership verification. In this example, 𝐺𝑐𝑑𝑡 are not the
watermarked subgraphs; therefore, {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 fail to exhibit significant similarity and are rejected.

3.3 PROBLEM FORMULATION

We propose an explanation-based GNN watermarking method. Our approach defines a watermark
pattern (w) and selects subgraphs from 𝐺. The GNN 𝑓 is trained to embed the relationship between
w and these subgraphs, enabling their explanations to act as verifiable ownership evidence.

Threat Model: There are three parties: the model owner, the adversary, and the third-party model
ownership verifier. Obviously, the model owner has white-box access to the target GNN model.

• Adversary: We investigate an adversary who falsely claims to own GNN model 𝑓 . We assume
they lacks knowledge of the watermarked subgraphs in 𝐺, but we also evaluate robustness under
challenging scenarios where they might know specific details (e.g., shape or number of watermarked
subgraphs). The adversary tries to undermine the watermark by (1) searching for the watermarked
subgraphs (or similarly-convincing alternatives), or (2) implementing a removal attack.

• Model Ownership Verifier: Following existing backdoor-based watermarking, we use black-box
ownership verification, where the verifier does not need full access to the protected model.

Objectives: Our explanation-based watermarking method aims to achieve the below objectives:

1. Effectiveness. Training must embed the watermark in the explanations of our selected
subgraphs: their feature attribution vectors must be sufficiently3 aligned with vector w.

2. Uniqueness. Aligning watermarked subgraph explanations with w must yield statistically-
significant similarity between explanations that is unlikely to occur in alternate solutions.

3. Robustness. The watermark must be robust to removal attacks like fine-tuning and pruning.

4. Undetectability. Non-owners should be unable to locate the watermarked explanations.

4 METHODOLOGY

Our watermarking method has three stages: (1) design, (2) embedding, and (3) ownership verification.
We introduce stages (2) and (3) first as design relies on them.

Training 𝑓 uses a dual-objective loss function balancing node classification and watermark embedding.
Minimizing watermark loss aligns w with explanations of 𝑓 ’s predictions on watermarked subgraphs,
embedding the watermark. Verification tests for explanations statistically-significant similarity from
their common alignment with w. Lastly, we detail a watermark design that ensures this statistical
significance, which provides unambiguous ownership evidence. Figure 1 overviews our method.

4.1 WATERMARK EMBEDDING

Let training setV 𝑡𝑟 be split as two disjoint subsets: V𝑐𝑙 𝑓 for node classification andV𝑤𝑚𝑘 for wa-
termarking. Select 𝑇 subgraphs {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
} whose nodes {V𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 will be watermarked.

3Note: alignment between explanations and w is a tool for the owner to measure optimization success; for a
watermark to function as ownership evidence, alignment must simply be “good enough” (See Section 5.2.1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

These subgraphs have explanations {e𝑤𝑚𝑘
1 , . . . , e𝑤𝑚𝑘

𝑇
}, where e𝑤𝑚𝑘

𝑖
= 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
) ex-

plains 𝑓 ’s softmax output P𝑤𝑚𝑘
𝑖

on 𝐺𝑤𝑚𝑘
𝑖

’s nodesV𝑤𝑚𝑘
𝑖

, with features X𝑤𝑚𝑘
𝑖 . Define watermark w

as an 𝑀-dimensional vector (𝑀 ≤ 𝐹), with entries of 1s and −1s.

Inspired by Shao et al. (2024), we use multi-objective optimization to balance classification perfor-
mance with a hinge-like watermark loss. Minimizing this loss encourages alignment between w and
{e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1, embedding the relationship between w and these subgraphs.

L𝑤𝑚𝑘 ({e𝑤𝑚𝑘
𝑖 }𝑇𝑖=1,w) = Σ𝑇

𝑖=1Σ
𝑀
𝑗=1 max(0, 𝜖 − w[𝑗] · e𝑤𝑚𝑘

𝑖 [idx[𝑗]]), (4)

where e𝑤𝑚𝑘
𝑖
[idx] represents the watermarked portion of e𝑤𝑚𝑘

𝑖
on node feature indices idx with

length 𝑀; idx is same for all explanations {e𝑤𝑚𝑘
𝑖
}𝑇
𝑖=1. We emphasize that idx are not arbitrary, but

are rather the result of design choices discussed later in Section 4.3. The hyperparameter 𝜖 bounds
the contribution of each multiplied pair w[𝑗] · e𝑤𝑚𝑘

𝑖
[idx[𝑗]] to the summation.

We train the GNN model 𝑓 to minimize both classification loss on the nodesV𝑐𝑙 𝑓 (see Equation 2)
and watermark loss on the explanations of {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
}, with a balancing hyperparameter 𝑟:

min
Θ
L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓)) + 𝑟 · L𝑤𝑚𝑘 ({e𝑤𝑚𝑘

𝑖 }𝑇𝑖=1,w). (5)

After training, the learned parameters Θ ensures not only an accurate node classifier, but also similarity
between w and explanations {e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 at indices idx. See Algorithm 1 in Appendix for the details.

4.2 OWNERSHIP VERIFICATION

Since they were aligned with the same w, explanations {e𝑐𝑑𝑡
𝑖
}𝑇
𝑖=1 will be similar to each other

after training. Therefore, when presented with 𝑇 candidate subgraphs {e𝑐𝑑𝑡1 , e𝑐𝑑𝑡2 , · · · , e𝑐𝑑𝑡
𝑇
} by a

purported owner (note that our threat model assumes a strong adversary who also knows 𝑇), we must
measure the similarity between these explanations to verify ownership. If the similarity is statistically
significant at a certain level, we can conclude the purported owner knows which subgraphs were
watermarked during training, and therefore that they are the true owner.

Explanation Matching: Our GNN explainer in Equation (3) gives a positive or negative score for
each node feature, indicating its influence on the GNN’s predictions, generalized across all nodes in
the graph. To easily compare these values across candidate explanations, we first binarize them with
the sign function. For the 𝑗 𝑡ℎ index of explanation e𝑐𝑑𝑡

𝑖
, this process is defined as:

ê𝑐𝑑𝑡𝑖 [𝑗] =


1 if e𝑐𝑑𝑡
𝑖
[𝑗] > 0,

−1 if e𝑐𝑑𝑡
𝑖
[𝑗] < 0,

0 otherwise.
(6)

We then count the matching indices (MI) across all the binarized explanations — the number of
indices at which all binarized explanations have matching, non-zero values:4

MI𝑐𝑑𝑡 = MI({ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1) = Σ𝐹
𝑗=1𝟙(({ê

𝑐𝑑𝑡
𝑖 [𝑗] ≠ 0, ∀𝑖}) ∧ (ê𝑐𝑑𝑡1 [𝑗] = · · · = ê𝑐𝑑𝑡𝑇 [𝑗])). (7)

Approximating a Baseline MI Distribution: To test MI𝑐𝑑𝑡 significance, we first approximate
the distribution of naturally-occurring matches: the MIs for all 𝑇-sized sets of un-watermarked
explanations. This involves running 𝐼 simulations (sufficiently large; 𝐼 = 1000 in our experiments),
where we randomly sample sets of 𝑇 subgraphs from 𝐺 and compute the MI of the binarized
explanations for each set. We then derive empirical estimates of the mean and standard deviation,
𝜇𝑛𝑎𝑡𝑒 and 𝜎𝑛𝑎𝑡𝑒 (indicated by the subscript “e”), for the 𝐼 MIs.

Significance Testing to Verify Ownership: We verify the purported owner’s ownership by testing if
MI𝑐𝑑𝑡 is statistically unlikely for randomly selected subgraphs, at a significance level 𝛼𝑣:

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 =

{
𝑇𝑟𝑢𝑒 if 𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣 ,

𝐹𝑎𝑙𝑠𝑒 otherwise.
(8)

where 𝑧𝑡𝑒𝑠𝑡 =
MI𝑐𝑑𝑡−𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒
. Algorithm 2 (Appendix) details the ownership verification process.

4We exclude 0s from our MI count. A 0 in the explanation indicates no dependence between features and
predictions, which could only result from extreme (unlikely) optimization precision. These 0s likely reflect
existing 0s in X, so we conclude they are irrelevant as watermarking metrics.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 WATERMARK DESIGN

The watermark w is an 𝑀-dimensional vector with entries of 1 and −1. The size and location of w
must allow us to effectively embed unique ownership evidence into GNN.

Design Goal: The watermark should be designed to yield a target MI (MI𝑡𝑔𝑡) that passes the statistical
test in Equation (8). This value is essentially the upper bound on a one-sided confidence interval.
However, since we cannot get the estimates 𝜇𝑛𝑎𝑡𝑒 or 𝜎𝑛𝑎𝑡𝑒 without a trained model, we instead use a
binomial distribution to predict estimates 𝜇𝑛𝑎𝑡𝑝 and 𝜎𝑛𝑎𝑡𝑝 (note the subscript “p”).

We assume the random case, where a binarized explanation includes values −1 or 1 with equal
probability (again, ignoring zeros; see Footnote 4). Across 𝑇 binarized explanations, the probability
of a match at an index is 𝑝𝑚𝑎𝑡𝑐ℎ = 2 × 0.5𝑇 . We estimate 𝜇𝑛𝑎𝑡𝑝 = 𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (where 𝐹 is number
of node features), and 𝜎𝑛𝑎𝑡𝑝 =

√︁
𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (1 − 𝑝𝑚𝑎𝑡𝑐ℎ). We therefore define MI𝑡𝑔𝑡 as follows:

MI𝑡𝑔𝑡 = 𝑚𝑖𝑛(𝜇𝑛𝑎𝑡𝑝 + 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝑡𝑔𝑡 , 𝐹), (9)

where 𝑧𝑡𝑔𝑡 is the 𝑧-score for target significance 𝛼𝑡𝑔𝑡 . In practice, we set 𝛼𝑡𝑔𝑡 = 1𝑒 − 5; since MI𝑡𝑔𝑡
affects watermark design, we want to ensure it does not underestimate the upper bound.

Watermark Length 𝑀: For 𝑇 binarized explanations, our estimated lower bound of baseline MI is:

MI𝐿𝐵 = 𝑚𝑎𝑥(𝜇𝑛𝑎𝑡𝑝 − 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝐿𝐵, 0), (10)

where 𝑧𝐿𝐵 is the 𝑧-score for target significance, 𝛼𝐿𝐵 — in practice, 𝛼𝐿𝐵 equals 𝛼𝑡𝑔𝑡 (1𝑒 − 5).

We expect that our watermark must add (MI𝑡𝑔𝑡 −MI𝐿𝐵) net MI at most. However, natural matching
between some indices in the binarized explanations may reduce the watermark’s net contribution. We
therefore pad watermark length.Padding is based on the probability of a natural match. In the worst
case, where MI𝑡𝑔𝑡 indices naturally match, the probability of a watermarked index producing a new
match is (𝐹 −MI𝑡𝑔𝑡)/𝐹. Consequently, we pad the required 𝑀 by the inverse, 𝐹/(𝐹 −MI𝑡𝑔𝑡):

𝑀 = ⌈(MI𝑡𝑔𝑡 −MI𝐿𝐵) × 𝐹/(𝐹 −MI𝑡𝑔𝑡)⌉ . (11)

Watermark length 𝑀 should yield enough net MI to reach the total, MI𝑡𝑔𝑡 , that the owner needs to
demonstrate ownership. Note that under the assumption that we set 𝛼𝐿𝐵 equal to 𝛼𝑡𝑔𝑡 , Equation (11)
is ultimately a function of three variables: 𝛼𝑡𝑔𝑡 , 𝐹, and 𝑇 .

Watermark Location idx: Each explanation corresponds to node feature indices. It is easiest to
watermark indices at non-zero features. We advise selecting idx from the 𝑀 most frequently non-zero
node features across all 𝑇 watermarked subgraphs. Let X𝑤𝑚𝑘 = [X𝑤𝑚𝑘

1 ; X𝑤𝑚𝑘
2 ; · · ·X𝑤𝑚𝑘

𝑇] be the
concatenation of node features of the 𝑇 watermarked subgraphs. Define idx as:

idx = top𝑀

({
∥x𝑤𝑚𝑘

1 ∥0, ∥x𝑤𝑚𝑘
2 ∥0, · · · , ∥x𝑤𝑚𝑘

𝐹 ∥0
})

, (12)

where x𝑤𝑚𝑘
𝑗

is the 𝑗-th column of X𝑤𝑚𝑘 , ∥ · ∥0 represents the number of non-zero entries in a vector,
and top𝑀 (·) returns the indices of the 𝑀 largest values.

4.4 LOCATING THE WATERMARKED SUBGRAPHS

An adversary may attempt to locate watermarked subgraphs to claim ownership. In the worst case,
they have access to 𝐺𝑡𝑟 and know 𝑇 (number of watermarked subgraphs) and 𝑠 (nodes per subgraph).
With 𝐺𝑡𝑟 , they can compute the natural match distribution (𝜇𝑛𝑎𝑡𝑒 , 𝜎𝑛𝑎𝑡𝑒) and search for 𝑇 subgraphs
with maximally significant MI, using either brute-force or random search.

Brute-Force Search: If the training graph has 𝑁 nodes, identifying 𝑛𝑠𝑢𝑏 = 𝑠𝑁-node subgraphs
yields

(𝑁
𝑛𝑠𝑢𝑏

)
options. To find the 𝑇 subgraphs with a maximum MI across their binarized explanations,

an adversary must compare all 𝑇-sized sets of these subgraphs, with
((𝑁

𝑛𝑠𝑢𝑏
)

𝑇

)
sets in total.

Moreover, we can reduce the Maximum 𝑘-Subset Intersection (MSI) Clifford & Popa (2011) problem
to the that of a brute search for 𝑇 effective subgraphs. MSI, known to be NP-hard, seeks the 𝑘 subsets
with maximal intersection. Our reduction maps each MSI subset to a potential subgraph in 𝐺, with 𝑘

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Watermarking results. Each value is the average of five trials with distinct random seeds.

GCN SGC SAGE Transformer

Acc (Train/test) Acc (Train/test) Acc (Train/test) Acc (Train/test)
Dataset Wmk No Wmk Wmk No Wmk Wmk No Wmk Wmk No Wmk

Photo 91.3 / 89.4 90.9 / 88.3 91.4 / 89.9 90.1 / 88.0 94.2 / 90.8 94.1 / 88.2 99.9 / 90.7 95.0 / 86.8
PubMed 88.6 / 85.8 85.7 / 81.4 88.8 / 85.9 85.3 / 81.4 90.5 / 86.0 91.1 / 81.2 99.7 / 87.9 94.2 / 86.5
CS 98.5 / 90.3 96.8 / 89.8 98.4 / 90.3 96.7 / 90.1 100.0 / 88.4 99.9 / 88.9 100.0 / 93.1 99.4 / 92.2
Reddit2 — — — — — — 83.4 / 79.4 81.0 / 80.4

Wmk Alignmt MI 𝑝-val Wmk Alignmt MI 𝑝-val Wmk Alignmt MI 𝑝-val Wmk Alignmt MI (p-val)

Photo 91.4 <0.001 91.8 <0.001 97.7 <0.001 87.9 <0.001
PubMed 91.5 <0.001 88.9 <0.001 85.2 <0.001 94.0 <0.001
CS 73.8 <0.001 74.5 <0.001 78.2 <0.001 73.9 <0.001
Reddit2 — — — — — — 76.3 <0.001

corresponding to our selected number of subgraphs, 𝑇 . Finding 𝑘 sets with maximum intersection
corresponds to finding 𝑇 subgraphs whose explanations share the maximum matching indices.

Random Search: Adversaries can search for a “good enough” group of subgraphs through random
sampling, making 𝑇 random selections of 𝑛𝑠𝑢𝑏-sized sets of nodes. Given 𝑁 training nodes and 𝑇

watermarked subgraphs of size 𝑛𝑠𝑢𝑏, the probability that an attacker-chosen subgraph of size 𝑛𝑠𝑢𝑏
overlaps with any single watermarked subgraph with no less than 𝑗 nodes is given as:

𝑃(#overlap-nodes ≥ 𝑗) = 1 −
(

𝑗∑︁
𝑚=1

(
𝑛𝑠𝑢𝑏

𝑚

) (
𝑁 − 𝑛𝑠𝑢𝑏
𝑛sub − 𝑚

)/(
𝑁

𝑛sub

))𝑇
. (13)

The sum is the probability a randomly chosen subgraph and a watermarked subgraph share < 𝑗 nodes.
Raising to power 𝑇 gives the probability all watermarked subgraphs have < 𝑗 overlap. 1 minus this
value gives the probability that the random subgraph and any watermarked subgraph share ≥ 𝑗 nodes.

5 EXPERIMENTS

5.1 SETUP

Datasets and Training/Testing Sets: We evaluate our watermarking method on four node classifica-
tion datasets: Amazon Photo (McAuley et al., 2015), CoAuthor CS (Shchur et al., 2019), PubMed
(Yang et al., 2016), and Reddit2 (Zeng et al., 2019) (See Appendix A for details). Our framework can
also extend to other graph tasks; see Appendix F. The graph is split into three sets: 60% for training,
20% for testing, and 20% for further training tasks (e.g., fine-tuning or other robustness evaluations).
Training nodes divide into two disjoint sets: one for GNN classifier training, and one consisting of the
watermarked subgraphs. (sizes as hyperparameters mentioned below.) The test set is for post-training
classification evaluation. The remaining set enables additional training of the pre-trained GNN on
unseen data to assess watermark robustness.

GNN Models and Hyperparameters: We apply our watermarking method to four GNN models:
GCN Kipf & Welling (2017), SGC (Wu et al., 2019), SAGE (Hamilton et al., 2018), and Graph
Transformer (Shi et al., 2020). Our main results use SAGE architecture, and 𝑇 = 4 watermarked
subgraphs, each with the size 𝑠 = 0.5% of the training nodes.5 Key hyperparameters in our water-
marking method, including the significance levels (𝛼𝑡𝑔𝑡 and 𝛼𝑣), balanced hyperparameter (𝑟), and
watermark loss contribution bound (𝜖), were tuned to balance classification and watermark losses. A
list of all hyperparameter values are in the Appendix. Note that our watermark design in Equation
(11) allows us to learn the watermark length 𝑀 .

5.2 RESULTS

As stated in Section 3.3, watermarks should be effective, unique, robust, and undetectable. Our
experiments aim to assess each of these. (For more results see Appendix.)

5Reddit2 is by far the largest, with 232,965 nodes and 23,213,838 edges. For this reason, only Graph
Transformer achieved convergence on Reddit2 in our experiments. Given Reddit’s scale, we also default to the
smaller 𝑠 = 0.03% (46 nodes) for watermarked subgraph size.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Effect of pruning (left) and fine-tuning (right) on MI 𝑝-value, under default settings
(GraphSAGE, 𝑇 = 4, 𝑠 = 0.005). See Appendix figures 6-12 for results with varied settings.

Figure 3: The probability that a randomly-chosen subgraph overlaps with a watermarked subgraph.

5.2.1 EFFECTIVENESS AND UNIQUENESS

Embedding effectiveness can be measured by the alignment of the binarized explanations with the
watermark pattern w at indices idx; this metric can be used by the owner to confirm that w was
effectively embedded in 𝑓 during training. Since the entries of w are 1s and −1s, we simply count the
average number of watermarked indices at which a binarized explanation matches w:

𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = (1/𝑇) × Σ𝑇
𝑖=1Σ

𝑀
𝑗=1𝟙(ê

𝑤𝑚𝑘
𝑖 [idx[𝑗]] = w[𝑗]). (14)

Watermarking uniqueness is measured by the MI 𝑝-value for the binarized explanations of the 𝑇

watermarked subgraphs, as defined by Equation (8). A low 𝑝-value indicates the MI is statistically
unlikely to be seen in explanations of randomly selected subgraphs. If the watermarked subgraphs
yield a uniquely large MI, it is sufficient, even if alignment is under 100%.

Table 1 shows results under default settings, averaged over five trials with distinct random seeds
and watermark patterns. The MI 𝑝-value is below 0.001 for all 𝑇 > 2; this shows uniqueness of the
ownership claim, meaning the embedding was sufficiently effective.

5.2.2 ROBUSTNESS

We test our method against two types of removal attacks. Pruning compresses models by setting a
portion of weights to zero (Li et al., 2016). Following Liu et al. (2021a); Tekgul et al. (2021), we
use structured pruning, targeting parameter tensor rows and columns based on 𝐿𝑛-norm importance
scores (Paszke et al., 2019). Fine-tuning Pan & Yang (2010) adapts already-trained models to a
new task (Pan & Yang, 2010) and may make GNNs “forget” watermarks, so it is commonly used
for watermark robustness testing Adi et al. (2018); Wang et al. (2020). We test our own method
by continuing training on the validation dataset, 𝐺𝑣𝑎𝑙 , at 0.1 times the original learning rate for 49
epochs. (See Appendix E for results with other learning rates and GNN architectures.)

Figure 2 shows pruning and fine-tuning results. Left: rates of 0.0 (no parameters pruned) to 1.0
(all pruned). In all datasets, the MI 𝑝-value only rises as classification accuracy drops, ensuring the
owner detects pruning before it impacts the watermark. Right: classification accuracy and MI 𝑝-value
during fine-tuning. CS has a near-zero MI 𝑝-value for 25 epochs; Photo, PubMed and Reddit2 have
low MI 𝑝-values for the full duration, demonstrating robustness for extended periods of fine-tuning.

We assert that our method also resists data poisoning. Operating on randomly selected subgraphs
without data-specific assumptions (unlike backdoor methods), our watermark is embedded post-
training-data selection, ensuring immunity to training data changes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Watermarking metrics for varied 𝑇 .

Figure 5: Watermarking metrics for varied 𝑠.
5.2.3 UNDETECTABILITY

Brute-Force Search: With Equations from Section 4.4, we demonstrate the infeasibility of a brute-
force search for the watermarked subgraphs in our smallest dataset, Amazon Photo (4590 training
nodes). Assume adversaries know the number (𝑇) and size (𝑠) of our watermarked subgraphs. With
default 𝑠 = 0.005, each subgraph has 𝑐𝑒𝑖𝑙 (0.005× 4590) = 23 nodes — there are

(4590
23

)
= 6.1× 1061

possible subgraphs; with default 𝑇 = 4, there are
((4590

23)
4

)
= 5.8 × 10245 possible candidate subgraphs,

making finding the uniquely-convincing set of watermarked subgraphs computationally infeasible.

Random Search: Figure 3 shows probabilities (Equation 13) that a randomly-chosen subgraph’s
nodes overlap with any watermarked subgraph, for varied sizes 𝑠. For 𝑗 = 1, ... , 5, or all 𝑛𝑠𝑢𝑏 nodes,
probability nears zero that a randomly-selected subgraph overlaps with a common watermarked
subgraph by ≥ 3 nodes (given our default watermark subgraph settings 𝑇 = 4 and 𝑠 = 0.005). (The
exception is Reddit2, where < 5 nodes is an extremely small portion of the whole dataset.)

5.3 ABLATION STUDIES6

Impact of the Number of Watermarked Subgraphs 𝑇: Figure 4 shows how 𝑇 affects watermark
performance metrics. For all datasets, larger 𝑇 increases watermark alignment and a lower 𝑝-value,
although test accuracy decreases slightly on Photo and PubMed. Notably, the default 𝑇 = 4 is
associated with a near-zero 𝑝-value in every scenario. Figure 10 in Appendix also shows the
robustness results to removal attacks against varied 𝑇 : we see that the watermarking method resists
pruning attacks until test accuracy is affected, and fine-tuning attacks for at least 25 epochs.

Impact of the Size of Watermarked Subgraphs 𝑠: Figure 5 shows results with different sizes 𝑠. We
see similar trends as Figure 4: watermarking is generally more effective, unique, and robust for larger
𝑠 values. There is again a slight trade-off between subgraph size and test accuracy. For 𝑠 ≥ 0.003,
our method reaches near-zero 𝑝-values for all datasets, as well as increasing watermark alignment.
Figure 11 in Appendix shows the robustness results: for all datasets, when 𝑠 > 0.005, our method is
robust against pruning attacks generally, and against fine-tuning attacks for at least 25 epochs.

6 CONCLUSION

We introduce the first GNN watermarking method using explanations, avoiding backdoor-based
pitfalls with a statistically unambiguous watermark that resists data attacks. Demonstrating robustness
against removal attempts and proving the statistical impossibility of locating watermarked subgraphs,
our approach significantly advances GNN intellectual property protection.

6Note: Reddit2 is excluded from these ablation studies due to computational constraints, as the trends from
the other three datasets are sufficient to demonstrate the effects of varying 𝑠 and 𝑇 .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our datasets and implementation details are introduced in Appendix A and the codes are avail-
able at https://anonymous.4open.science/r/Explanation_Watermarking_
GNN-F6C7.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weakness into
a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Security Symposium
(USENIX Security 18), pp. 1615–1631, 2018.

Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha, John P
Dickerson, and Tom Goldstein. Certified neural network watermarks with randomized smoothing. In
International Conference on Machine Learning, pp. 1450–1465. PMLR, 2022.

Huili Chen, Bita Darvish Rouhani, and Farinaz Koushanfar. Blackmarks: Blackbox multibit watermarking for
deep neural networks. ArXiv, abs/1904.00344, 2018. URL https://api.semanticscholar.org/
CorpusID:90260955.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and
Dawn Song. Copy, right? a testing framework for copyright protection of deep learning models. In 2022
IEEE symposium on security and privacy (SP), pp. 824–841. IEEE, 2022.

Raphaël Clifford and Alexandru Popa. Maximum subset intersection. Information Processing Letters, 111(7):
323–325, 2011. ISSN 0020-0190. doi: https://doi.org/10.1016/j.ipl.2010.12.003. URL https://www.
sciencedirect.com/science/article/pii/S0020019010003959.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermarking framework
for ownership protection of deep neural networks. In Proceedings of the twenty-fourth international conference
on architectural support for programming languages and operating systems, pp. 485–497, 2019.

Asghar Ghasemi and Saleh Zahediasl. Normality tests for statistical analysis: A guide for non-statisticians.
International Journal of Endocrinology and Metabolism, 10:486 – 489, 2012. URL https://api.
semanticscholar.org/CorpusID:264609266.

Jianping Gou, Baosheng Yu, Stephen Maybank, and Dacheng Tao. Knowledge distillation: A survey, 06 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs, 2018.
URL https://arxiv.org/abs/1706.02216.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970. ISSN 00401706.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local interpretable model
explanations for graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 35(7):
6968–6972, 2023. doi: 10.1109/TKDE.2022.3187455.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.
URL https://arxiv.org/abs/1609.02907.

Mohammed Lansari, Reda Bellafqira, Katarzyna Kapusta, Vincent Thouvenot, Olivier Bettan, and Gouenou
Coatrieux. When federated learning meets watermarking: A comprehensive overview of techniques for
intellectual property protection. Machine Learning and Knowledge Extraction, 5(4):1382–1406, 2023.

Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. Adversarial frontier stitching for remote neural net-
work watermarking. Neural Computing and Applications, 32(13):9233–9244, July 2019. doi: 10.1007/
s00521-019-04434-z. URL https://hal.science/hal-02264449.

Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. Fedipr: Ownership verification for federated deep
neural network models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4521–4536,
2022.

Garvin Li. Alibaba cloud machine learning platform for ai: Financial risk control experi-
ment with graph algorithms, 2019. URL https://www.alibabacloud.com/blog/
alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%
control-experiment-with-graph-algorithms_594518.

10

https://anonymous.4open.science/r/Explanation_Watermarking_GNN-F6C7
https://anonymous.4open.science/r/Explanation_Watermarking_GNN-F6C7
https://api.semanticscholar.org/CorpusID:90260955
https://api.semanticscholar.org/CorpusID:90260955
https://www.sciencedirect.com/science/article/pii/S0020019010003959
https://www.sciencedirect.com/science/article/pii/S0020019010003959
https://api.semanticscholar.org/CorpusID:264609266
https://api.semanticscholar.org/CorpusID:264609266
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1609.02907
https://hal.science/hal-02264449
https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518
https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518
https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.08710.

Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. Watermarking deep neural networks with greedy residuals. In
Marina Meila and Tong Zhang 0001 (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 6978–6988. PMLR, 2021a. URL http://proceedings.mlr.press/v139/liu21x.
html.

Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N. Asokan. False claims against model ownership
resolution. In 33rd USENIX Security Symposium (USENIX Security 24), pp. 6885–6902, Philadelphia, PA,
August 2024. USENIX Association. ISBN 978-1-939133-44-1. URL https://www.usenix.org/
conference/usenixsecurity24/presentation/liu-jian.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and choose: a
gnn-based imbalanced learning approach for fraud detection. In Proceedings of the web conference 2021, pp.
3168–3177, 2021b.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Pa-
rameterized explainer for graph neural network. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Hualong Ma, Yue Zhao, and Yingjiu Li. A
robustness-assured white-box watermark in neural networks. IEEE Transactions on Dependable and Secure
Computing, 2023.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recommendations
on styles and substitutes. CoRR, abs/1506.04757, 2015. URL http://arxiv.org/abs/1506.04757.

MetaAI. The ai behind unconnected content recommendations on face-
book and instagram, 2023. URL https://ai.meta.com/blog/
ai-unconnected-content-recommendations-facebook-instagram/.

Luis Perez Oliver Lange. Traffic prediction with advanced graph neural net-
works, 2020. URL https://deepmind.google/discover/blog/
traffic-prediction-with-advanced-graph-neural-networks/.

Sinno Pan and Qiang Yang. A survey on transfer learning. Knowledge and Data Engineering, IEEE Transactions
on, 22:1345 – 1359, 11 2010. doi: 10.1109/TKDE.2009.191.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703,
2019. URL http://arxiv.org/abs/1912.01703.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE TNN, 2008.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum. On the robustness of
backdoor-based watermarking in deep neural networks. In Proceedings of the 2021 ACM workshop on
information hiding and multimedia security, pp. 177–188, 2021.

Shuo Shao, Wenyuan Yang, Hanlin Gu, Zhan Qin, Lixin Fan, Qiang Yang, and Kui Ren. Fedtracker: Furnishing
ownership verification and traceability for federated learning model. arXiv preprint arXiv:2211.07160, 2022.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a watermark: Towards
harmless and multi-bit model ownership verification via watermarking feature attribution, 2024. URL
https://arxiv.org/abs/2405.04825.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation, 2019. URL https://arxiv.org/abs/1811.05868.

Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. Model stealing attacks against inductive graph neural
networks, 05 2022.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.

11

http://arxiv.org/abs/1608.08710
http://proceedings.mlr.press/v139/liu21x.html
http://proceedings.mlr.press/v139/liu21x.html
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-jian
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-jian
http://arxiv.org/abs/1506.04757
https://ai.meta.com/blog/ai-unconnected-content-recommendations-facebook-instagram/
https://ai.meta.com/blog/ai-unconnected-content-recommendations-facebook-instagram/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
http://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2405.04825
https://arxiv.org/abs/1811.05868

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jan Pfeifer Sibon Li, Bryan Perozzi, and Douglas Yarrington. Introducing tensorflow graph neural networks, 2021.
URL https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks. In Neural
Information Processing Systems, 2017. URL https://api.semanticscholar.org/CorpusID:
35426171.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. Dawn: Dynamic adversarial watermarking
of neural networks. In Proceedings of the 29th ACM International Conference on Multimedia, MM ’21, pp.
4417–4425, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386517. doi:
10.1145/3474085.3475591. URL https://doi.org/10.1145/3474085.3475591.

Buse GA Tekgul, Yuxi Xia, Samuel Marchal, and N Asokan. Waffle: Watermarking in federated learning. In
2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp. 310–320. IEEE, 2021.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into deep neural
networks. CoRR, abs/1701.04082, 2017. URL http://arxiv.org/abs/1701.04082.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Srinivas Virinchi. Using graph neural networks to recommend re-
lated products, 2022. URL https://www.amazon.science/blog/
using-graph-neural-networks-to-recommend-related-products.

Asim Waheed, Vasisht Duddu, and N Asokan. Grove: Ownership verification of graph neural networks using
embeddings. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 2460–2477. IEEE, 2024.

Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification via manipulating the graph
structure. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2023–2040, 2019.

Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. Watermarking in deep neural networks via
error back-propagation. Electronic Imaging, 2020:22–1, 01 2020. doi: 10.2352/ISSN.2470-1173.2020.4.
MWSF-022.

Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin. High-robustness, low-transferability fingerprinting
of neural networks. arXiv preprint arXiv:2105.07078, 2021.

Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box watermarking of deep neural
networks. Proceedings of the Web Conference 2021, 2020. URL https://api.semanticscholar.
org/CorpusID:225062005.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 6861–6871. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/wu19e.
html.

Jing Xu, Stefanos Koffas, Oğuzhan Ersoy, and Stjepan Picek. Watermarking graph neural networks based
on backdoor attacks. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), pp.
1179–1197. IEEE, 2023.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama. High-dimensional
feature selection by feature-wise kernelized lasso. Neural Computation, 26:185–207, 2012. URL https:
//api.semanticscholar.org/CorpusID:2742785.

Yifan Yan, Xudong Pan, Mi Zhang, and Min Yang. Rethinking {White-Box} watermarks on deep learning
models under neural structural obfuscation. In 32nd USENIX Security Symposium (USENIX Security 23), pp.
2347–2364, 2023.

Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 3165–3166, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings, 2016. URL https://arxiv.org/abs/1603.08861.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 2019.

12

https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://api.semanticscholar.org/CorpusID:35426171
https://api.semanticscholar.org/CorpusID:35426171
https://doi.org/10.1145/3474085.3475591
http://arxiv.org/abs/1701.04082
https://arxiv.org/abs/1710.10903
https://www.amazon.science/blog/using-graph-neural-networks-to-recommend-related-products
https://www.amazon.science/blog/using-graph-neural-networks-to-recommend-related-products
https://api.semanticscholar.org/CorpusID:225062005
https://api.semanticscholar.org/CorpusID:225062005
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://api.semanticscholar.org/CorpusID:2742785
https://api.semanticscholar.org/CorpusID:2742785
https://arxiv.org/abs/1603.08861

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph
sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Hengtong Zhang, T. Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, and Kui Ren. Data poisoning attack
against knowledge graph embedding. In International Joint Conference on Artificial Intelligence, 2019. URL
https://api.semanticscholar.org/CorpusID:195345427.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, and Ian Molloy.
Protecting intellectual property of deep neural networks with watermarking. Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018. URL https://api.semanticscholar.
org/CorpusID:44085059.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current applications
in bioinformatics. Frontiers in Genetics, 12, 2021. ISSN 1664-8021. doi: 10.3389/fgene.2021.690049. URL
https://www.frontiersin.org/articles/10.3389/fgene.2021.690049.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–
81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.2021.01.001. URL https://www.
sciencedirect.com/science/article/pii/S2666651021000012.

Yuchen Zhou, Hongtao Huo, Zhiwen Hou, and Fanliang Bu. A deep graph convolutional neural network
architecture for graph classification. PLOS ONE, 18, 2023. URL https://api.semanticscholar.
org/CorpusID:257428249.

Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on graph
neural networks: Perturbations and their patterns. ACM Trans. Knowl. Discov. Data, 14(5), jun 2020. ISSN
1556-4681. URL https://doi.org/10.1145/3394520.

13

https://api.semanticscholar.org/CorpusID:195345427
https://api.semanticscholar.org/CorpusID:44085059
https://api.semanticscholar.org/CorpusID:44085059
https://www.frontiersin.org/articles/10.3389/fgene.2021.690049
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://api.semanticscholar.org/CorpusID:257428249
https://api.semanticscholar.org/CorpusID:257428249
https://doi.org/10.1145/3394520

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENTAL SETUP DETAILS

Hardware and Software Specifications. All experiments were conducted on a MacBook Pro (Model Identifier:
MacBookPro18,3; Model Number: MKGR3LL/A) with an Apple M1 Pro chip (8 cores: 6 performance, 2
efficiency) and 16 GB of memory, on macOS Sonoma Version 14.5. Models were implemented in Python with
the PyTorch framework.

Dataset Details. Amazon Photo (simply “Photo” in this paper) is a subset of the Amazon co-purchase network
(McAuley et al., 2015). Nodes are products, edges connect items often purchased together, node features are
bag-of-words product reviews, and class labels are product categories. Photo has 7,650 nodes, 238,163 edges,
745 node features, and 8 classes. The CoAuthor CS dataset (“CS” in this paper) (Shchur et al., 2019) is a graph
whose nodes are authors, edges are coauthorship, node features are keywords, and class labels are the most active
fields of study by those authors. CS has 18,333 nodes, 163,788 edges, 6,805 node features, and 15 classes. Lastly,
PubMed (Yang et al., 2016) is a citation network whose nodes are documents, edges are citation links, node
features are TF-IDF weighted word vectors based on the abstracts of the papers, and class labels are research
fields. The graph has 19,717 nodes, 88,648 edges, 500 features, and 3 classes. Reddit2 (Zeng et al., 2019) is
a large social network where nodes represent posts, edges connect posts if the same user commented on both,
node features are post embeddings, and class labels are communities. It contains 232,965 nodes, 114,848,857
edges, 602 features, and 41 classes.

Hyperparameter Setting Details.

Classification training hyperparameters:

• Learning rate: 0.001-0.001

• Number of layers: 3

• Hidden Dimensions: 256-512

• Epochs: 100-300

Watermarking hyperparameters:

• Target significance level, 𝛼𝑡𝑔𝑡 : set to 1e-5 to ensure a watermark size that is sufficiently large.

• Verification significance level, 𝛼𝑣 : set to 0.01 to limit false verifications to under 1% likelihood.

• Watermark loss coefficient, 𝑟: set to values between 20-100, depending on the amount required to bring 𝐿𝑤𝑚𝑘

to a similar scale as 𝐿𝑐𝑙 𝑓 to ensure balanced learning.

• Watermark loss parameter 𝜖 : set to values ranging from 0.01 to 0.1. Smaller values ensure that no watermarked
node feature index has undue influence on watermark loss.

B GAUSSIAN KERNEL MATRICES

Define K̄ as a collection of matrices {K̄(1) , . . . , K̄(𝐹) }, where K̄(𝑘) (size 𝑁 × 𝑁) is the centered and normalized
version of Gaussian kernel matrix K(𝑘) , and each element K(𝑘)𝑢𝑣 is the output of the Gaussian kernel function on
the 𝑘 𝑡ℎ node feature for nodes 𝑢 and 𝑣:

K̄(𝑘) = HK(𝑘)H/∥HK(𝑘)H∥𝐹 , H = I𝑁 −
1
𝑁

1𝑁1𝑇𝑁 , K(𝑘)𝑢𝑣 = exp
(
− 1

2𝜎2
𝑥

(
x(𝑘)𝑢 − x(𝑘)𝑣

)2
)
. (15)

∥ · ∥𝐹 is the Frobenius norm, H is a centering matrix (where I𝑁 is an 𝑁 × 𝑁 identity matrix and 1𝑁 is an all-one
vector of length 𝑁), and 𝜎𝑥 is Gaussian kernel width. Now take the nodes’ softmax scores P = [p1, · · · , p𝑁],
and their Guassian kernel width, 𝜎p. Define L̄ as a centered and normalized 𝑁 × 𝑁 Gaussian kernel L, where
L𝑢𝑣 is the similarity between nodes 𝑢 and 𝑣’s softmax outputs:

L̄ = HLH/∥HLH∥𝐹 , L𝑢𝑣 = exp

(
− 1

2𝜎2
p
∥p𝑢 − p𝑣 ∥22

)
. (16)

Let K̃ be the 𝑁2 × 𝐹 matrix [vec(K̄(1)), . . . , vec(K̄(𝐹))], where vec(·) converts each 𝑁 × 𝑁 matrix K̄(𝑘) into a
𝑁2-dimensional column vector. Similarly, we denote L̃ = vec(L̄) as the 𝑁2-dimensional, vector form of the
matrix L̄. Also take 𝐹 × 𝐹 identity matrix I𝐹 and regularization hyperparameter 𝜆.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1: Watermark Embedding
Input: Graph 𝐺, training nodesV 𝑡𝑟 , learning rate 𝜂, #watermarked subgraphs 𝑇 , watermarked

subgraph size 𝑠, hyperparameter 𝑟 , target significance 𝛼𝑡𝑔𝑡 , watermark loss contribution bound
𝜖 .

Output: A trained and watermarked model, 𝑓 .
Setup: Initialize 𝑓 and optimizer. With 𝛼𝑡𝑔𝑡 , 𝑇 , and number of node features 𝐹 as input,

compute 𝑀 using equation 11. Initialize w with values 1 and −1 uniform at random. With
𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |), randomly sample 𝑇 sets of 𝑛𝑠𝑢𝑏 nodes fromV 𝑡𝑟 . These subgraphs
jointly comprise 𝐺𝑤𝑚𝑘 . Define node setV𝑐𝑙 𝑓 for classification from the remaining nodes in
V 𝑡𝑟 .

for epoch=1 to #Epoch do
𝐿𝑐𝑙 𝑓 ← L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓))
𝐿𝑤𝑚𝑘 ← 0
for i=1 to T do

P𝑤𝑚𝑘
𝑖
← 𝑓Θ (V𝑤𝑚𝑘

𝑖
)

e𝑤𝑚𝑘
𝑖
← 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
)

𝐿𝑤𝑚𝑘 ← 𝐿𝑤𝑚𝑘 +∑𝑀
𝑗=1 max(0, 𝜖 − w[𝑗] · e𝑤𝑚𝑘

𝑖
[idx[𝑗]])

end
𝐿 ← 𝐿𝑐𝑙 𝑓 + 𝑟 · 𝐿𝑤𝑚𝑘

Θ← Θ − 𝜂 𝜕𝐿
𝜕Θ

end

C TIME COMPLEXITY ANALYSIS

The training process involves optimizing for node classification and embedding the watermark. To obtain total
complexity, we therefore need to consider two processes: forward passes with the GNN, and explaining the
watermarked subgraphs.

GNN Forward Pass Complexity. The complexity of standard node classification in GNNs comes from two
main processes: message passing across edges (𝑂 (𝐸𝐹), where 𝐸 is number of edges and 𝐹 is number of node
features), and weight multiplication for feature transformation (𝑂 (𝑁𝐹2), where 𝑁 is number of nodes). For 𝐿
layers, the time complexity of a forward pass is therefore:

𝑂 (𝐿 (𝐸𝐹 + 𝑁𝐹2))

Explanation Complexity. Consider the Formula 3 for computing the explanation: e = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) =
(K̃𝑇 K̃ + 𝜆I𝐹)−1K̃𝑇 L̃. Remember that K̃ is an 𝑁2 × 𝐹 matrix, 𝐼𝐹 is a 𝐹 × 𝐹 matrix, and L̃ is a 𝑁2 × 1 vector. To
compute the complexity of this computation, we need the complexity of each subsequent order of operations:

1. Multiplying K̃𝑇 K̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝐹 matrix)
2. Obtaining and adding 𝜆I𝐹 (an 𝑂 (𝐹2) operation, resulting in an 𝐹 × 𝐹 matrix)
3. Inverting the result (an 𝑂 (𝐹3) operation, resulting in an 𝐹 × 𝐹 matrix)

4. Multiplying by K̃𝑇 (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝑁2 matrix)
5. Multiplying the result by L̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝑁2 × 1 vector)

The total complexity of a single explanation is therefore 𝑂 (𝐹2𝑁2) +𝑂 (𝐹2) +𝑂 (𝐹3) +𝑂 (𝐹2𝑁2) +𝑂 (𝐹2𝑁2) =
𝑂 (𝐹2𝑁2 + 𝐹3). For obtaining explanations of 𝑇 subgraphs during a given epoch of watermark embedding, the
complexity is therefore:

𝑂 (𝑇 (𝐹2𝑁2 + 𝐹3))

Total Complexity. The total time complexity over 𝑖 epochs is therefore:

𝑂

(
𝑖 ×

(
𝐿 (𝐸𝐹 + 𝑁𝐹2) + 𝑇 (𝐹2𝑁2 + 𝐹3)

))
Training Duration (Wall Time). We evaluate the training duration on the Photo and PubMed datasets under
both watermarked and non-watermarked settings. The corresponding training times are reported in Table 2. In
both cases, the models are trained using 7 subgraphs. The architecture comprises three layers with a hidden
dimension of 256. The results suggest that introducing the watermark does not increase the training time to a
prohibitive degree.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2: Ownership Verification
Input: A GNN 𝑓 trained by Alg. 1, a graph 𝐺 with training nodesV 𝑡𝑟 , a collection of 𝑇
candidate subgraphs with node size 𝑛𝑠𝑢𝑏, and a significance level 𝛼𝑣 required for verification, 𝐼
iterations.
Output: Ownership verdict.

Phase 1 – Obtain distribution of naturally-occurring matches

Setup:
1. Define subgraphs S = {𝐺𝑟𝑎𝑛𝑑

1 , · · · , 𝐺𝑟𝑎𝑛𝑑
𝐷
}, where each subgraph is size

𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |). Each subgraph 𝐺𝑟𝑎𝑛𝑑
𝑖

is defined by randomly selecting 𝑛𝑠𝑢𝑏 nodes
fromV 𝑡𝑟 . 𝐷 should be “sufficiently large” (𝐷 > 100) to approximate a population.

2. Using Equation 6, collect binarized explanations, ê𝑟𝑎𝑛𝑑𝑖 , for 1 ≤ 𝑖 ≤ 𝐷.
3. Initialize empty list, 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠 = {}.

for i=1 to I simulations do
Randomly select 𝑇 distinct indices 𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑇 from the range {1, · · · , 𝐷}.
For each 𝑖𝑑𝑥𝑖 , letV𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
be the nodes of 𝐺𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and their features, respectively.

Compute ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑖
= 𝑠𝑖𝑔𝑛(𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
, 𝑓 (V𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
)) for each 𝑖 in 1 ≤ 𝑖 ≤ 𝑇 .

Compute the MI on {ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥1
, · · · , ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑇

} using Equation 7, and append to 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠.

Compute 𝜇𝑛𝑎𝑡𝑒 =
Σ𝐼
𝑖=1𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖]

𝐼
and 𝜎𝑛𝑎𝑡𝑒 =

√︃
1
𝐼
Σ𝐼
𝑖=1(𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖] − 𝜇𝑛𝑎𝑡𝑒)2.

Phase 2 – Significance testing

Consider the null hypothesis, 𝐻0, that the observed MI across 𝑇 binarized explanations in
{ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 comes from the population of naturally-occurring matches. We conduct a 𝑧-test to test
𝐻0:

1. For 1 ≤ 𝑖 ≤ 𝑇 , let P𝑐𝑑𝑡
𝑖

= 𝑓 (V𝑐𝑑𝑡
𝑖
) and X𝑐𝑑𝑡

𝑖 be the corresponding features ofV𝑐𝑑𝑡
𝑖

.

2. Let the binarized explanation of the 𝑖𝑡ℎ candidate subgraph be defined as:

ê𝑐𝑑𝑡𝑖 = 𝑠𝑖𝑔𝑛

(
𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑐𝑑𝑡

𝑖 ,P𝑐𝑑𝑡
𝑖)

)
3. Compute MI𝑐𝑑𝑡 across tensors in {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 using Equation 14.
4. Compute the significance of this value as the p-value of a one-tailed 𝑧-test:

𝑧𝑡𝑒𝑠𝑡 =
MI𝑐𝑑𝑡 − 𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒

𝑝𝑧𝑡𝑒𝑠𝑡 = 1 −Φ(𝑧𝑡𝑒𝑠𝑡),

Where Φ (𝑧𝑡𝑒𝑠𝑡) is the cumulative distribution function of the standard normal distribution.
5. If 𝑝𝑧𝑡𝑒𝑠𝑡 ≥ 𝛼𝑣 , the candidate subgraphs do not provide adequate ownership evidence. If

𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣 , the candidate subgraphs provide enough evidence of ownership to reject 𝐻0.

D NORMALITY OF MATCHING INDICES DISTRIBUTION

Our results rely on the 𝑧-test to demonstrate the significance of the 𝑀𝐼 metric. To confirm that this test is
appropriate, we need to demonstrate that the 𝑀𝐼 values follow a normal distribution. Table 3 shows the results
of applying the Shapiro-Wilk Ghasemi & Zahediasl (2012) normality test to 𝑀𝐼 distributions obtained under
different GNN architectures and datasets. The results show 𝑝-values significantly above 0.1, indicating we
cannot reject the null hypothesis of normality.

E ADDITIONAL RESULTS

Fine-tuning and pruning under more GNN architectures. The main paper mainly show results on Graph-
SAGE (Hamilton et al., 2018). Here, we also explore GCN Kipf & Welling (2017) and SGC (Wu et al., 2019).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Model Training time (in seconds) with and without watermarking.

Dataset Architecture Epochs Without Watermark (s) With Watermark (s)
Photo GCN 300 91.72 147.25
Photo SAGE 300 109.06 167.28
PubMed GCN 200 59.20 96.84
PubMed SAGE 200 65.18 98.98

Table 3: Shapiro-Wilk Test p-values

Dataset SAGE SGC GCN
Photo 0.324 0.256 0.345
CS 0.249 0.240 0.205
PubMed 0.249 0.227 0.265

Table 4: Watermarking results for varied 𝑇 . Each value averages 5 trials with distinct random seeds.

Number of Subgraphs (𝑇)

2 3 4 5

Dataset GNN
Acc

(Trn/Tst)
Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Photo
GCN 92.5/89.7 73.0 0.087 91.5/88.9 86.1 <0.001 90.9/88.3 91.4 <0.001 90.6/88.2 95.2 <0.001
SGC 92.0/89.4 73.8 0.111 91.0/88.7 82.5 <0.001 90.1/88.0 91.8 <0.001 89.7/87.4 99.4 <0.001
SAGE 95.4/88.9 77.4 0.002 94.4/87.5 90.9 <0.001 94.1/88.2 97.7 <0.001 93.9/87.2 99.4 <0.001

PubMed
GCN 87.0/83.7 75.4 0.003 85.9/82.1 86.6 <0.001 85.7/81.4 91.5 <0.001 85.6/81.4 90.2 <0.001
SGC 86.7/83.1 79.7 <0.001 85.8/81.6 83.8 <0.001 85.3/81.4 88.9 <0.001 84.6/80.0 92.9 <0.001
SAGE 91.9/82.8 76.8 0.009 91.3/81.8 81.0 <0.001 91.1/81.2 85.2 <0.001 90.1/79.6 91.5 <0.001

CS
GCN 97.1/90.3 56.8 0.562 96.8/89.9 67.5 <0.001 96.8/89.8 73.8 <0.001 96.9/90.0 78.9 <0.001
SGC 97.2/90.3 57.1 0.003 96.8/89.9 67.7 <0.001 96.7/90.1 74.5 <0.001 96.6/89.8 77.8 <0.001
SAGE 99.9/90.2 61.5 0.233 99.9/89.4 73.3 <0.001 99.9/88.9 78.2 <0.001 99.9/88.3 84.0 <0.001

Figure 6-Figure 9 shows the impact of fine-tuning and pruning attacks results on our watermarking method
under these two architectures. Watermarked GCN and SGC models fared well against fine-tuning attacks for the
Photo and CS datasets, but less so for PubMed; meanwhile, these models were robust against pruning attacks for
Pubmed and CS datasets, but not Photo. Since the owner can assess performance against these removal attacks
prior to deploying their model, they can simply a matter of training each type as effectively as possible and
choosing the best option. In our case, GraphSAGE fared best for our three datasets, but GCN and SGC were
viable solutions in some cases.

More Results on Effectiveness and Uniqueness. Table 1 in the main paper shows the test accuracy, watermark
alignment, and MI 𝑝-values of our experiments with the default value of 𝑇 = 4. In Table 4, we additionally
present the results for 𝑇 = 2, 𝑇 = 3, and 𝑇 = 5. The results show MI 𝑝-values below 0.001 across all
configurations when 𝑇 ≥ 3. They also show increasing watermark alignment with increasing 𝑇 , however, with a
slight trade-off in classification accuracy: when increasing from 𝑇 = 2 to 𝑇 = 5, watermark alignment increases,
but train and test classification accuracy decreases by an average of 1.44% and 2.13%, respectively; despite this,
both train and test classification accuracy are generally high across all datasets and models.

Fine-Tuning and Pruning under varied watermark sizes. Figures 10 and 11 show the robustness of our
methods to fine-tuning and pruning removal attacks when 𝑇 and 𝑠 are varied. We observe that, for 𝑇 ≥ 4 and
𝑠 ≥ 0.005 — our default values — pruning only affects MI 𝑝-value after classification accuracy has already
been affected; at this point the pruning attack would be detected by model owners regardless. Similarly, across
all datasets, for 𝑇 ≥ 4 and 𝑠 ≥ 0.005, our method demonstrates robustness against the fine-tuning attack for at
least 25 epochs.

Fine-Tuning under varied learning rates. Our main fine-tuning results (see Figure ??) scale the learning
rate to 0.1 times its original training value. Figure 12 additionally shows results for learning rates scaled to
1× and 10× the original training rates. The results for scaling the learning rate by 1× show that larger learning
rates quickly remove the watermark. However, these figures also demonstrate that, by the time training accuracy
on the fine-tuning dataset has reached an acceptable level of accuracy, the accuracy on the original training set
drops significantly, which diminishes the usefulness of the fine-tuned model on the original task. For larger rates
(10×), the watermark is removed almost immediately, but the learning trends and overall utility of the model are

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Pruning GCN models. Figure 7: Pruning SGC Models.

Figure 8: Fine-tuned GCN models. Figure 9: Fine-tuned SGC models.

Figure 10: Pruning and fine-tuning attacks against varied number of watermarked subgraphs (𝑇)

Figure 11: Pruning and fine-tuning attacks against varied sizes of watermarked subgraphs (𝑠)

so unstable that the model is rendered useless. Given this new information, our default choice to fine-tune at
0.1× the original learning rate is the most reasonable scenario to consider.

F FUTURE DIRECTIONS

Extension to Other Graph Learning Tasks.

While we have primarily provided results for the node-classification case, we believe much of our logic can be
extended to other graph learning tasks, including edge classification and graph classification. Our method embeds
the watermark into explanations of predictions on various graph features. Specifically, for node predictions,
we obtain feature attribution vectors for the 𝑛 × 𝐹 node feature matrices of 𝑇 target subgraphs, with a loss
function that penalizes deviations from the watermark. This process can be adapted to link prediction and graph
classification tasks as long as we can derive 𝑇 separate 𝑛 × 𝐹 feature matrices, where 𝑛 represents the number of
samples per group and 𝐹 corresponds to the number of features for the given data structure (e.g., node, edge, or
graph). Below, we outline how this extension applies to different classification tasks:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 12: Fine-tuning results at increased learning rates (SAGE architecture).

1. Node Classification: The dataset is a single graph. Subgraphs are formed by randomly selecting
𝑛 = 𝑠 · |V 𝑡𝑟 | nodes from the training set (where |V 𝑡𝑟 | is the number of training nodes and 𝑠 is a
proportion of that size). (Note: in this case, 𝑛 is equal to the value 𝑛𝑠𝑢𝑏 referenced previously in the
paper.) For each subgraph:

• The 𝑛 × 𝐹 node feature matrix represents the input features (𝐹 is the number of node features).
• The 𝑛 × 1 prediction vector contains one label per node.
• These inputs are used in a ridge regression problem to produce a feature attribution vector for the

subgraph.
• With 𝑇 subgraphs, we generate 𝑇 explanations.

2. Link Prediction: Again, the dataset is a single graph. Subgraphs are formed by randomly selecting
𝑛 = 𝑠 · |E𝑡𝑟 | edges. For each subgraph:

• Each row in the 𝑛 × 𝐹 feature matrix represents the features of a single link. These features are
derived by combining the feature vectors of the two nodes defining the link, using methods such
as concatenation or averaging. The resulting feature vector for each link has a length of 𝐹.

• The 𝑛 × 1 prediction vector contains one label per edge.
• These inputs are used in a ridge regression problem to produce a feature attribution vector for the

subgraph.
• As with node classification, we generate 𝑇 explanations for 𝑇 subgraphs.

3. Graph Classification: For graph-level predictions, the dataset D𝑡𝑟 is a collection of graphs. We
extend the above pattern to 𝑇 collections of 𝑛 = 𝑠 · |D𝑡𝑟 | subgraphs, where each subgraph is drawn
from a different graph in the training set. Specifically:

• Each subgraph in a collection is summarized by a feature vector of length 𝐹 (e.g., by averaging
its node or edge features).

• For a collection of 𝑛 subgraphs, we construct:
– An 𝑛×𝐹 subgraph feature matrix, where each row corresponds to a subgraph in the collection.
– An 𝑛 × 1 prediction vector, containing one prediction per subgraph.

• These inputs are used in a ridge regression problem to produce a feature attribution vector for the
collection.

• With 𝑇 collections of 𝑛 subgraphs, we produce 𝑇 explanations.

By consistently framing each task as 𝑇 groups of 𝑛 × 𝐹 data points, our method provides a unified approach
while adapting 𝐹 to the specific task requirements.

For instance, Table 5 provides sample results on graph classification using the MUTAG dataset; the results
demonstrate that our method is effective beyond node classification.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Watermarking results: graph classification

Subgraph Collections 4 5 6
p-value 0.039 0.037 <0.001
Acc (train/test) 0.915/0.900 0.954/0.929 0.915/0.893

Enhancing Robustness.

An important future direction is to safeguard our method against model extraction attacks Shen et al. (2022),
which threaten to steal a model’s functionality without preserving the watermark. One form of model extraction
attack is knowledge distillation attack Gou et al. (2020).

Knowledge distillation has two models: the original “teacher” model, and an untrained “student” model. During
each epoch, the student model is trained on two objectives: (1) correctly classify the provided input, and (2)
mimic the teacher model by mapping inputs to the teacher’s predictions. The student therefore learns to map
inputs to the teacher’s “soft label” outputs (probability distributions) alongside the original hard labels; this
guided learning process leverages the richer information in the teacher’s soft label outputs, which capture
nuanced relationships between classes that hard labels cannot provide. By focusing on these relationships, the
student model can generalize more efficiently and achieve comparable performance to the teacher with a smaller
model and fewer parameters, thus reducing complexity.

We find that in the absence of a strategically-designed defense, the knowledge distillation attack successfully
removes our watermark (𝑝 > 0.05). This is unsurprising, since model distillation maps inputs to outputs but
ignores mechanisms that lead to auxiliary tasks like watermarking.

To counter this, we outline a defense framework that would incorporate watermark robustness to knowledge
distillation directly into the training process. Specifically, during training and watermark embedding, an
additional loss term would penalize reductions in watermark performance. At periodic intervals (e.g., after
every x epochs), the current model would be distilled into a new model, and the watermark performance on
this distilled model would be evaluated. If the watermark performance (measured by the number of matching
indices) on the distilled model is lower than the watermark performance on the main model, a penalty would be
added to the loss term. This would ensure that the trained model retains robust watermarking capabilities even
against knowledge distillation attacks.

G THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were not used in any part of the methodology, data analysis, or
experiments. Their role was solely limited to polishing the language and improving the readability of the
manuscript. All scientific ideas, experimental designs, and results are entirely the work of the authors.

20

	Introduction
	Related Work
	Background and Problem Formulation
	GNNs for Node Classification
	GNN Explanation
	Problem Formulation

	Methodology
	Watermark Embedding
	Ownership Verification
	Watermark Design
	Locating the Watermarked Subgraphs

	Experiments
	Setup
	Results
	Effectiveness and Uniqueness
	Robustness
	Undetectability

	Ablation StudiesNote: Reddit2 is excluded from these ablation studies due to computational constraints, as the trends from the other three datasets are sufficient to demonstrate the effects of varying s and numsub.

	Conclusion
	Experimental Setup Details
	Gaussian Kernel Matrices
	Time Complexity Analysis
	Normality of Matching Indices Distribution
	Additional Results
	Future Directions
	The Use of Large Language Models

