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ABSTRACT

Graph Neural Networks (GNNs) are widely deployed in industry, making their
intellectual property valuable. However, protecting GNNs from unauthorized use
remains a challenge. Watermarking offers a solution by embedding ownership
information into models. Existing watermarking methods have two limitations:
First, they rarely focus on graph data or GNNs. Second, the de facto backdoor-
based method relies on manipulating training data, which can introduce ownership
ambiguity through misclassification and vulnerability to data poisoning attacks
that can interrupt the backdoor mechanism. Our explanation-based watermarking
inherits the strengths of backdoor-based methods (e.g., black-box verification)
without data manipulation, eliminating ownership ambiguity and data dependencies.
In particular, we watermark GNN explanations such that these explanations are
statistically distinct from others, so ownership claims must be verified through
statistical significance. We theoretically prove that, even with full knowledge of our
method, locating the watermark is NP-hard. Empirically, our method demonstrates
robustness to fine-tuning and pruning attacks. By addressing these challenges, our
approach significantly advances GNN intellectual property protection.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017; Hamilton et al.,
2018; Veličković et al., 2018) are widely used for graph-structured data tasks, such as social network
analysis, bioinformatics, and recommendation systems (Zhang et al., 2021; Zhou et al., 2020). Various
giant companies have depend on GNNs: Amazon for product recommendations (Virinchi, 2022);
Google’s TensorflowGNN for Maps traffic prediction (Sibon Li et al., 2021; Oliver Lange, 2020);
Meta for friend/content recommendations (MetaAI, 2023); Alibaba’s AliGraph for fraud and risk
detection (Yang, 2019; Liu et al., 2021b; Li, 2019). Given significant GNN development, ownership
verification is crucial to protect against illegal copying, model theft, and malicious distribution.

Watermarking embeds secret patterns into models (Uchida et al., 2017) to verify ownership. As a
de facto approach, backdoor-based watermarking (Adi et al., 2018; Bansal et al., 2022; Lv et al.,
2023; Yan et al., 2023; Li et al., 2022; Shao et al., 2022; Lansari et al., 2023) insert the watermark
pattern as a “trigger” into clean samples with altered target labels, and trains on both watermarked
and clean data. During verification, ownership is demonstrated by producing the triggered samples
that yield the target label. Backdoor-based watermarking methods have several merits: they are robust
to removal attacks (pruning and fine-tuning), and verification only requires black-box model access.

However, recent works (Yan et al., 2023; Liu et al., 2024; Xu et al., 2023) reveal a fundamental
limitation: backdoor-based methods induce ownership ambiguity, as attackers could falsely claim
misclassified data as ownership evidence. Additionally, embedding watermarks into data properties
creates vulnerability to data poisoning attacks, where an adversary can manipulate the data to
disrupt the watermarking process Steinhardt et al. (2017); Zhang et al. (2019). Recognizing these
limitations, researchers have explored alternate watermark embedding spaces. (Shao et al., 2024)
embed watermarks DNN prediction explanations, avoiding tampering with predictions or parameters.
While offering a compelling alternative to backdoor-based watermarking, their approach assumes a
known ground-truth watermark, introducing challenges like a third-party verification requirement
and potential disputes over the true watermark. Moreover, they do not address graph data’s unique
complexities, including structural dependencies and multi-hop relationships.
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We extend explanation-based watermarks to GNNs, additionally addressing graph-specific challenges
and avoiding the need of a ground-truth watermark for verification. Our approach aligns explanations
of selected subgraphs with a predefined watermark, ensuring robustness to removal attacks and
preserving advantages of explanation-based methods. In doing so, we present the first explanation-
based watermarking method tailored to GNNs.

Our approach: We develop a novel watermarking strategy for protecting GNN model ownership
that both inherits the merits from and mitigates the drawbacks of backdoor-based watermarking. Like
backdoor-based methods, our approach only needs black-box model access. However, in contrast
to using predictions on the polluted watermarked samples, we leverage the explanations of GNN
predictions on clean samples and align them with a predefined watermark for ownership verification.

Before training, the owner selects secret watermarked subgraphs (private) and defines a watermark
pattern (possibly private).1 The GNN trains with a dual-objective loss function that minimizes (1)
classification loss, and (2) distance between the watermark and watermarked subgraph explanations.
Like GraphLIME (Huang et al., 2023), we use Gaussian kernel matrices to approximate node feature
influence on predictions. However, instead of an iterative approach, we use ridge regression to
compute feature attribution vectors in a single step, providing a more efficient, closed-form solution.

Our approach is (i) Effective: Explanations of watermarked subgraphs exhibit high similarity to the
watermark after training. (ii) Unique: This similarity across explanations is statistically unlikely
without watermarking, and hence serves as our ownership evidence. (iii) Undetectable: We prove that,
even with full knowledge of our watermarking method, finding the private watermarked subgraphs is
computationally intractable (NP-hard). (iv) Robust: Empirical evaluations on multiple benchmark
graph datasets and GNN models demonstrate robustness to fine-tuning and pruning-based watermark
removal attacks. We summarize our contributions as follows:

• We introduce the first known method for watermarking GNNs via their explanations, eliminating
ownership ambiguity and avoiding data manipulation problems of black-box watermarking schemes.

• We prove that it is NP-hard for the worst-case adversary to identify our watermarking mechanism.
• We show our method is robust to watermark removal attacks like fine-tuning and pruning.

2 RELATED WORK

White-Box Watermarking. These techniques (Darvish Rouhani et al., 2019; Uchida et al., 2017;
Wang & Kerschbaum, 2020; Shafieinejad et al., 2021) directly embed watermarks into the model
parameters or features during training. For example, Uchida et al. (2017) embed a watermark via a
regularization term, while Darvish Rouhani et al. (2019) propose embedding the watermark into the
activation/feature maps. Although these methods are robust in theory (Chen et al., 2022), they require
full access to the model parameters during verification, which may not be feasible in real-world
scenarios, especially for deployed models operating in black-box environments (e.g., APIs).

Black-Box Watermarking. Black-box approaches verify model ownership using only model
predictions (Adi et al., 2018; Chen et al., 2018; Szyller et al., 2021; Le Merrer et al., 2019). They
often use backdoor mechanisms, training models to output specific predictions for “trigger” inputs as
ownership evidence (Adi et al., 2018; Zhang et al., 2018). These methods have significant downsides.
First, watermarks embedded into data features can be interrupted by data poisoning attacks (Steinhardt
et al., 2017; Zhang et al., 2019). Further, backdoor methods suffer from ambiguity — attackers may
claim naturally-misclassified samples as their own “watermark”(Yan et al., 2023; Liu et al., 2024).
Given these issues with backdoor-based methods, Shao et al. (2024) proposed embedding DNN
watermarks in explanations to avoid prediction manipulation and maintain black-box compatibility.

Watermarking GNNs. Varying size and structure of graphs make watermark embedding challenging.
Moreover, GNNs’ multi-hop message-passing mechanisms are more sensitive to data changes than
neural networks processing more uniform data like images or text (Wang & Gong, 2019; Zügner et al.,
2020; Zhou et al., 2023). The only existing black-box watermarking GNNs (Xu et al., 2023) suffers
from the same issue as backdoor watermarking of non-graph models (Liu et al., 2024) 2. These issues,

1Ownership verification does not require knowledge of the watermark pattern.
2Recent “fingerprinting” method (Waheed et al., 2024) verifies GNN ownership with node embeddings

instead of explicit watermark patterns. However, it is vulnerable to pruning attacks. Relying on intrinsic model
features can limit uniqueness guarantees and risk ownership ambiguity (Wang et al., 2021; Liu et al., 2024).
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coupled with the complexity of graphs, make existing watermarking techniques unsuitable for GNNs.
This highlights the need for novel watermarking schemes.

3 BACKGROUND AND PROBLEM FORMULATION

3.1 GNNS FOR NODE CLASSIFICATION

Let a graph be denoted as 𝐺 = (V, E,X), where V is the set of nodes, E is the set of edges, and
X = [x1, · · · , x𝑁 ] ∈ R𝑁×𝐹 is the node feature matrix. 𝑁 = |V| is the number of nodes, 𝐹 is
the number of features per node, and x𝑢 ∈ R𝐹 is the node 𝑢’s feature vector. We assume the task
of interest is node classification. In this context, each node 𝑣 ∈ V has a label 𝑦𝑣 from a label set
C = {1, 2, · · · , 𝐶}, and we have a set of |V 𝑡𝑟 | labeled nodes (V 𝑡𝑟 , y𝑡𝑟 ) = {(𝑣𝑡𝑟𝑢 , 𝑦𝑡𝑟𝑢 )}𝑢∈V𝑡𝑟 ⊂ V×C
nodes as the training set. A GNN for node classification takes as input the graph 𝐺 and training nodes
V 𝑡𝑟 , and learns a node classifier, denoted as 𝑓 , that predicts the label 𝑦̂𝑣 for each node 𝑣. Suppose a
GNN has 𝐿 layers and a node 𝑣’s representation in the 𝑙-th layer is h(𝑙)𝑣 , where h(0)𝑣 = x𝑣 . Then it
updates h(𝑙)𝑣 for each node 𝑣 using the following two operations:

l(𝑙)𝑣 = Agg
({

h(𝑙−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
, h(𝑙)𝑣 = Comb

(
h(𝑙−1)
𝑣 , l(𝑙)𝑣

)
, (1)

where Agg aggregates representations of a node’s neighbors, and Comb combines a node’s previous
representation and aggregated representation of that aggregation to update the node representation.
N(𝑣) denotes the neighbors of 𝑣. Different GNNs use different Agg and Comb operations.

The last-layer representation h(𝐿)𝑣 ∈ R | C | of training nodes 𝑣 ∈ V 𝑡𝑟 are used to train the node classifier
𝑓 . Let Θ be the model parameters and 𝑣’s softmax scores be p𝑣 = 𝑓Θ (V 𝑡𝑟 )𝑣 = softmax(h(𝐿)𝑣 ), where
𝑝𝑣,𝑐 is the probability of 𝑣 being class 𝑐. Θ are learned by minimizing a classification (e.g., cross-
entropy) loss on the training nodes:

Θ∗ = arg minΘ L𝐶𝐸 (y𝑡𝑟 , 𝑓Θ (V 𝑡𝑟 )) = −Σ𝑣∈V𝑡𝑟 ln 𝑝𝑣,𝑦𝑣 . (2)

3.2 GNN EXPLANATION

GNN explanations identify graph features that influence predictions. Some methods (e.g., GNNEx-
plainer (Ying et al., 2019) and PGExplainer (Luo et al., 2020)) identify important subgraphs, while oth-
ers (e.g., GraphLime (Huang et al., 2023)) identify key node features. Inspired by GraphLime (Huang
et al., 2023), we use Gaussian kernel matrices to capture relationships between node features and pre-
dictions: Gaussian kernel matrices effectively capture nonlinear dependencies and complex variable
relationships, ensuring subtle patterns in the data are effectively represented Yamada et al. (2012).
Using these Gaussian kernel matrices, we employ a closed-form solution with ridge regression (Hoerl
& Kennard, 1970) to compute feature importance in a single step.

Our function 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(·) takes node feature matrix X and softmax scores P = [p1, · · · , p𝑁 ], yielding
𝐹-dimensional attribution vector e showing each feature’s influence on predictions across nodes.
This computes feature attributions (e) by leveraging the relationships between input features (X) and
output predictions (P) through Gaussian kernel matrices.

e = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) = (K̃𝑇 K̃ + 𝜆I𝐹)−1K̃𝑇 L̃. (3)

We defer precise mathematical definitions to Appendix B. For high-level understanding, the matrix K̃
(𝑁2 × 𝐹) encodes pairwise feature similarities between nodes via a Gaussian kernel. L̃ (𝑁2 × 1) uses
a Gaussian kernel to encode pairwise prediction similarities between nodes. The term (K̃𝑇 K̃+𝜆I𝐹)−1,
where 𝜆 is a regularization hyperparameter and I𝐹 is the 𝐹 × 𝐹 identity matrix, solves a ridge
regression problem to ensure a stable and interpretable solution. The product K̃𝑇 L̃ (𝐹 × 1) ties the
Gaussian feature similarities (K̃) to the output prediction similarities (L̃), ultimately yielding the
vector e (𝐹 × 1), which quantifies the importance of each input feature for the GNN’s predictions.

In this paper, the explanation of a GNN’s node predictions means this feature attribution vector e.
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Figure 1: Overview: During embedding, 𝑓 is optimized to (1) minimize node classification loss and
(2) align watermarked subgraph explanations with w. The similarity of 𝐺𝑐𝑑𝑡 ’s binarized explanations,
{ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1, is tested for significance during ownership verification. In this example, 𝐺𝑐𝑑𝑡 are not the
watermarked subgraphs; therefore, {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 fail to exhibit significant similarity and are rejected.

3.3 PROBLEM FORMULATION

We propose an explanation-based GNN watermarking method. Our approach defines a watermark
pattern (w) and selects subgraphs from 𝐺. The GNN 𝑓 is trained to embed the relationship between
w and these subgraphs, enabling their explanations to act as verifiable ownership evidence.

Threat Model: There are three parties: the model owner, the adversary, and the third-party model
ownership verifier. Obviously, the model owner has white-box access to the target GNN model.

• Adversary: We investigate an adversary who falsely claims to own GNN model 𝑓 . We assume
they lacks knowledge of the watermarked subgraphs in 𝐺, but we also evaluate robustness under
challenging scenarios where they might know specific details (e.g., shape or number of watermarked
subgraphs). The adversary tries to undermine the watermark by (1) searching for the watermarked
subgraphs (or similarly-convincing alternatives), or (2) implementing a removal attack.

• Model Ownership Verifier: Following existing backdoor-based watermarking, we use black-box
ownership verification, where the verifier does not need full access to the protected model.

Objectives: Our explanation-based watermarking method aims to achieve the below objectives:

1. Effectiveness. Training must embed the watermark in the explanations of our selected
subgraphs: their feature attribution vectors must be sufficiently3 aligned with vector w.

2. Uniqueness. Aligning watermarked subgraph explanations with w must yield statistically-
significant similarity between explanations that is unlikely to occur in alternate solutions.

3. Robustness. The watermark must be robust to removal attacks like fine-tuning and pruning.

4. Undetectability. Non-owners should be unable to locate the watermarked explanations.

4 METHODOLOGY

Our watermarking method has three stages: (1) design, (2) embedding, and (3) ownership verification.
We introduce stages (2) and (3) first as design relies on them.

Training 𝑓 uses a dual-objective loss function balancing node classification and watermark embedding.
Minimizing watermark loss aligns w with explanations of 𝑓 ’s predictions on watermarked subgraphs,
embedding the watermark. Verification tests for explanations statistically-significant similarity from
their common alignment with w. Lastly, we detail a watermark design that ensures this statistical
significance, which provides unambiguous ownership evidence. Figure 1 overviews our method.

4.1 WATERMARK EMBEDDING

Let training setV 𝑡𝑟 be split as two disjoint subsets: V𝑐𝑙 𝑓 for node classification andV𝑤𝑚𝑘 for wa-
termarking. Select 𝑇 subgraphs {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
} whose nodes {V𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 will be watermarked.

3Note: alignment between explanations and w is a tool for the owner to measure optimization success; for a
watermark to function as ownership evidence, alignment must simply be “good enough” (See Section 5.2.1).
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These subgraphs have explanations {e𝑤𝑚𝑘
1 , . . . , e𝑤𝑚𝑘

𝑇
}, where e𝑤𝑚𝑘

𝑖
= 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
) ex-

plains 𝑓 ’s softmax output P𝑤𝑚𝑘
𝑖

on 𝐺𝑤𝑚𝑘
𝑖

’s nodesV𝑤𝑚𝑘
𝑖

, with features X𝑤𝑚𝑘
𝑖 . Define watermark w

as an 𝑀-dimensional vector (𝑀 ≤ 𝐹), with entries of 1s and −1s.

Inspired by Shao et al. (2024), we use multi-objective optimization to balance classification perfor-
mance with a hinge-like watermark loss. Minimizing this loss encourages alignment between w and
{e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1, embedding the relationship between w and these subgraphs.

L𝑤𝑚𝑘 ({e𝑤𝑚𝑘
𝑖 }𝑇𝑖=1,w) = Σ𝑇

𝑖=1Σ
𝑀
𝑗=1 max(0, 𝜖 − w[ 𝑗] · e𝑤𝑚𝑘

𝑖 [idx[ 𝑗]]), (4)

where e𝑤𝑚𝑘
𝑖
[idx] represents the watermarked portion of e𝑤𝑚𝑘

𝑖
on node feature indices idx with

length 𝑀; idx is same for all explanations {e𝑤𝑚𝑘
𝑖
}𝑇
𝑖=1. We emphasize that idx are not arbitrary, but

are rather the result of design choices discussed later in Section 4.3. The hyperparameter 𝜖 bounds
the contribution of each multiplied pair w[ 𝑗] · e𝑤𝑚𝑘

𝑖
[idx[ 𝑗]] to the summation.

We train the GNN model 𝑓 to minimize both classification loss on the nodesV𝑐𝑙 𝑓 (see Equation 2)
and watermark loss on the explanations of {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
}, with a balancing hyperparameter 𝑟:

min
Θ
L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓 )) + 𝑟 · L𝑤𝑚𝑘 ({e𝑤𝑚𝑘

𝑖 }𝑇𝑖=1,w). (5)

After training, the learned parameters Θ ensures not only an accurate node classifier, but also similarity
between w and explanations {e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 at indices idx. See Algorithm 1 in Appendix for the details.

4.2 OWNERSHIP VERIFICATION

Since they were aligned with the same w, explanations {e𝑐𝑑𝑡
𝑖
}𝑇
𝑖=1 will be similar to each other

after training. Therefore, when presented with 𝑇 candidate subgraphs {e𝑐𝑑𝑡1 , e𝑐𝑑𝑡2 , · · · , e𝑐𝑑𝑡
𝑇
} by a

purported owner (note that our threat model assumes a strong adversary who also knows 𝑇), we must
measure the similarity between these explanations to verify ownership. If the similarity is statistically
significant at a certain level, we can conclude the purported owner knows which subgraphs were
watermarked during training, and therefore that they are the true owner.

Explanation Matching: Our GNN explainer in Equation (3) gives a positive or negative score for
each node feature, indicating its influence on the GNN’s predictions, generalized across all nodes in
the graph. To easily compare these values across candidate explanations, we first binarize them with
the sign function. For the 𝑗 𝑡ℎ index of explanation e𝑐𝑑𝑡

𝑖
, this process is defined as:

ê𝑐𝑑𝑡𝑖 [ 𝑗] =


1 if e𝑐𝑑𝑡
𝑖
[ 𝑗] > 0,

−1 if e𝑐𝑑𝑡
𝑖
[ 𝑗] < 0,

0 otherwise.
(6)

We then count the matching indices (MI) across all the binarized explanations — the number of
indices at which all binarized explanations have matching, non-zero values:4

MI𝑐𝑑𝑡 = MI({ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1) = Σ𝐹
𝑗=1𝟙(({ê

𝑐𝑑𝑡
𝑖 [ 𝑗] ≠ 0, ∀𝑖}) ∧ (ê𝑐𝑑𝑡1 [ 𝑗] = · · · = ê𝑐𝑑𝑡𝑇 [ 𝑗])). (7)

Approximating a Baseline MI Distribution: To test MI𝑐𝑑𝑡 significance, we first approximate
the distribution of naturally-occurring matches: the MIs for all 𝑇-sized sets of un-watermarked
explanations. This involves running 𝐼 simulations (sufficiently large; 𝐼 = 1000 in our experiments),
where we randomly sample sets of 𝑇 subgraphs from 𝐺 and compute the MI of the binarized
explanations for each set. We then derive empirical estimates of the mean and standard deviation,
𝜇𝑛𝑎𝑡𝑒 and 𝜎𝑛𝑎𝑡𝑒 (indicated by the subscript “e”), for the 𝐼 MIs.

Significance Testing to Verify Ownership: We verify the purported owner’s ownership by testing if
MI𝑐𝑑𝑡 is statistically unlikely for randomly selected subgraphs, at a significance level 𝛼𝑣:

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 =

{
𝑇𝑟𝑢𝑒 if 𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣 ,

𝐹𝑎𝑙𝑠𝑒 otherwise.
(8)

where 𝑧𝑡𝑒𝑠𝑡 =
MI𝑐𝑑𝑡−𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒
. Algorithm 2 (Appendix) details the ownership verification process.

4We exclude 0s from our MI count. A 0 in the explanation indicates no dependence between features and
predictions, which could only result from extreme (unlikely) optimization precision. These 0s likely reflect
existing 0s in X, so we conclude they are irrelevant as watermarking metrics.
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4.3 WATERMARK DESIGN

The watermark w is an 𝑀-dimensional vector with entries of 1 and −1. The size and location of w
must allow us to effectively embed unique ownership evidence into GNN.

Design Goal: The watermark should be designed to yield a target MI (MI𝑡𝑔𝑡 ) that passes the statistical
test in Equation (8). This value is essentially the upper bound on a one-sided confidence interval.
However, since we cannot get the estimates 𝜇𝑛𝑎𝑡𝑒 or 𝜎𝑛𝑎𝑡𝑒 without a trained model, we instead use a
binomial distribution to predict estimates 𝜇𝑛𝑎𝑡𝑝 and 𝜎𝑛𝑎𝑡𝑝 (note the subscript “p”).

We assume the random case, where a binarized explanation includes values −1 or 1 with equal
probability (again, ignoring zeros; see Footnote 4). Across 𝑇 binarized explanations, the probability
of a match at an index is 𝑝𝑚𝑎𝑡𝑐ℎ = 2 × 0.5𝑇 . We estimate 𝜇𝑛𝑎𝑡𝑝 = 𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (where 𝐹 is number
of node features), and 𝜎𝑛𝑎𝑡𝑝 =

√︁
𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (1 − 𝑝𝑚𝑎𝑡𝑐ℎ). We therefore define MI𝑡𝑔𝑡 as follows:

MI𝑡𝑔𝑡 = 𝑚𝑖𝑛(𝜇𝑛𝑎𝑡𝑝 + 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝑡𝑔𝑡 , 𝐹), (9)

where 𝑧𝑡𝑔𝑡 is the 𝑧-score for target significance 𝛼𝑡𝑔𝑡 . In practice, we set 𝛼𝑡𝑔𝑡 = 1𝑒 − 5; since MI𝑡𝑔𝑡
affects watermark design, we want to ensure it does not underestimate the upper bound.

Watermark Length 𝑀: For 𝑇 binarized explanations, our estimated lower bound of baseline MI is:

MI𝐿𝐵 = 𝑚𝑎𝑥(𝜇𝑛𝑎𝑡𝑝 − 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝐿𝐵, 0), (10)

where 𝑧𝐿𝐵 is the 𝑧-score for target significance, 𝛼𝐿𝐵 — in practice, 𝛼𝐿𝐵 equals 𝛼𝑡𝑔𝑡 (1𝑒 − 5).

We expect that our watermark must add (MI𝑡𝑔𝑡 −MI𝐿𝐵) net MI at most. However, natural matching
between some indices in the binarized explanations may reduce the watermark’s net contribution. We
therefore pad watermark length.Padding is based on the probability of a natural match. In the worst
case, where MI𝑡𝑔𝑡 indices naturally match, the probability of a watermarked index producing a new
match is (𝐹 −MI𝑡𝑔𝑡 )/𝐹. Consequently, we pad the required 𝑀 by the inverse, 𝐹/(𝐹 −MI𝑡𝑔𝑡 ):

𝑀 = ⌈(MI𝑡𝑔𝑡 −MI𝐿𝐵) × 𝐹/(𝐹 −MI𝑡𝑔𝑡 )⌉ . (11)

Watermark length 𝑀 should yield enough net MI to reach the total, MI𝑡𝑔𝑡 , that the owner needs to
demonstrate ownership. Note that under the assumption that we set 𝛼𝐿𝐵 equal to 𝛼𝑡𝑔𝑡 , Equation (11)
is ultimately a function of three variables: 𝛼𝑡𝑔𝑡 , 𝐹, and 𝑇 .

Watermark Location idx: Each explanation corresponds to node feature indices. It is easiest to
watermark indices at non-zero features. We advise selecting idx from the 𝑀 most frequently non-zero
node features across all 𝑇 watermarked subgraphs. Let X𝑤𝑚𝑘 = [X𝑤𝑚𝑘

1 ; X𝑤𝑚𝑘
2 ; · · ·X𝑤𝑚𝑘

𝑇 ] be the
concatenation of node features of the 𝑇 watermarked subgraphs. Define idx as:

idx = top𝑀

({
∥x𝑤𝑚𝑘

1 ∥0, ∥x𝑤𝑚𝑘
2 ∥0, · · · , ∥x𝑤𝑚𝑘

𝐹 ∥0
})

, (12)

where x𝑤𝑚𝑘
𝑗

is the 𝑗-th column of X𝑤𝑚𝑘 , ∥ · ∥0 represents the number of non-zero entries in a vector,
and top𝑀 (·) returns the indices of the 𝑀 largest values.

4.4 LOCATING THE WATERMARKED SUBGRAPHS

An adversary may attempt to locate watermarked subgraphs to claim ownership. In the worst case,
they have access to 𝐺𝑡𝑟 and know 𝑇 (number of watermarked subgraphs) and 𝑠 (nodes per subgraph).
With 𝐺𝑡𝑟 , they can compute the natural match distribution (𝜇𝑛𝑎𝑡𝑒 , 𝜎𝑛𝑎𝑡𝑒 ) and search for 𝑇 subgraphs
with maximally significant MI, using either brute-force or random search.

Brute-Force Search: If the training graph has 𝑁 nodes, identifying 𝑛𝑠𝑢𝑏 = 𝑠𝑁-node subgraphs
yields

( 𝑁
𝑛𝑠𝑢𝑏

)
options. To find the 𝑇 subgraphs with a maximum MI across their binarized explanations,

an adversary must compare all 𝑇-sized sets of these subgraphs, with
(( 𝑁

𝑛𝑠𝑢𝑏
)

𝑇

)
sets in total.

Moreover, we can reduce the Maximum 𝑘-Subset Intersection (MSI) Clifford & Popa (2011) problem
to the that of a brute search for 𝑇 effective subgraphs. MSI, known to be NP-hard, seeks the 𝑘 subsets
with maximal intersection. Our reduction maps each MSI subset to a potential subgraph in 𝐺, with 𝑘
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Table 1: Watermarking results. Each value is the average of five trials with distinct random seeds.

GCN SGC SAGE Transformer

Acc (Train/test) Acc (Train/test) Acc (Train/test) Acc (Train/test)
Dataset Wmk No Wmk Wmk No Wmk Wmk No Wmk Wmk No Wmk

Photo 91.3 / 89.4 90.9 / 88.3 91.4 / 89.9 90.1 / 88.0 94.2 / 90.8 94.1 / 88.2 99.9 / 90.7 95.0 / 86.8
PubMed 88.6 / 85.8 85.7 / 81.4 88.8 / 85.9 85.3 / 81.4 90.5 / 86.0 91.1 / 81.2 99.7 / 87.9 94.2 / 86.5
CS 98.5 / 90.3 96.8 / 89.8 98.4 / 90.3 96.7 / 90.1 100.0 / 88.4 99.9 / 88.9 100.0 / 93.1 99.4 / 92.2
Reddit2 — — — — — — 83.4 / 79.4 81.0 / 80.4

Wmk Alignmt MI 𝑝-val Wmk Alignmt MI 𝑝-val Wmk Alignmt MI 𝑝-val Wmk Alignmt MI (p-val)

Photo 91.4 <0.001 91.8 <0.001 97.7 <0.001 87.9 <0.001
PubMed 91.5 <0.001 88.9 <0.001 85.2 <0.001 94.0 <0.001
CS 73.8 <0.001 74.5 <0.001 78.2 <0.001 73.9 <0.001
Reddit2 — — — — — — 76.3 <0.001

corresponding to our selected number of subgraphs, 𝑇 . Finding 𝑘 sets with maximum intersection
corresponds to finding 𝑇 subgraphs whose explanations share the maximum matching indices.

Random Search: Adversaries can search for a “good enough” group of subgraphs through random
sampling, making 𝑇 random selections of 𝑛𝑠𝑢𝑏-sized sets of nodes. Given 𝑁 training nodes and 𝑇

watermarked subgraphs of size 𝑛𝑠𝑢𝑏, the probability that an attacker-chosen subgraph of size 𝑛𝑠𝑢𝑏
overlaps with any single watermarked subgraph with no less than 𝑗 nodes is given as:

𝑃(#overlap-nodes ≥ 𝑗) = 1 −
(

𝑗∑︁
𝑚=1

(
𝑛𝑠𝑢𝑏

𝑚

) (
𝑁 − 𝑛𝑠𝑢𝑏
𝑛sub − 𝑚

)/(
𝑁

𝑛sub

))𝑇
. (13)

The sum is the probability a randomly chosen subgraph and a watermarked subgraph share < 𝑗 nodes.
Raising to power 𝑇 gives the probability all watermarked subgraphs have < 𝑗 overlap. 1 minus this
value gives the probability that the random subgraph and any watermarked subgraph share ≥ 𝑗 nodes.

5 EXPERIMENTS

5.1 SETUP

Datasets and Training/Testing Sets: We evaluate our watermarking method on four node classifica-
tion datasets: Amazon Photo (McAuley et al., 2015), CoAuthor CS (Shchur et al., 2019), PubMed
(Yang et al., 2016), and Reddit2 (Zeng et al., 2019) (See Appendix A for details). Our framework can
also extend to other graph tasks; see Appendix F. The graph is split into three sets: 60% for training,
20% for testing, and 20% for further training tasks (e.g., fine-tuning or other robustness evaluations).
Training nodes divide into two disjoint sets: one for GNN classifier training, and one consisting of the
watermarked subgraphs. (sizes as hyperparameters mentioned below.) The test set is for post-training
classification evaluation. The remaining set enables additional training of the pre-trained GNN on
unseen data to assess watermark robustness.

GNN Models and Hyperparameters: We apply our watermarking method to four GNN models:
GCN Kipf & Welling (2017), SGC (Wu et al., 2019), SAGE (Hamilton et al., 2018), and Graph
Transformer (Shi et al., 2020). Our main results use SAGE architecture, and 𝑇 = 4 watermarked
subgraphs, each with the size 𝑠 = 0.5% of the training nodes.5 Key hyperparameters in our water-
marking method, including the significance levels (𝛼𝑡𝑔𝑡 and 𝛼𝑣), balanced hyperparameter (𝑟), and
watermark loss contribution bound (𝜖), were tuned to balance classification and watermark losses. A
list of all hyperparameter values are in the Appendix. Note that our watermark design in Equation
(11) allows us to learn the watermark length 𝑀 .

5.2 RESULTS

As stated in Section 3.3, watermarks should be effective, unique, robust, and undetectable. Our
experiments aim to assess each of these. (For more results see Appendix.)

5Reddit2 is by far the largest, with 232,965 nodes and 23,213,838 edges. For this reason, only Graph
Transformer achieved convergence on Reddit2 in our experiments. Given Reddit’s scale, we also default to the
smaller 𝑠 = 0.03% (46 nodes) for watermarked subgraph size.

7
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Figure 2: Effect of pruning (left) and fine-tuning (right) on MI 𝑝-value, under default settings
(GraphSAGE, 𝑇 = 4, 𝑠 = 0.005). See Appendix figures 6-12 for results with varied settings.

Figure 3: The probability that a randomly-chosen subgraph overlaps with a watermarked subgraph.

5.2.1 EFFECTIVENESS AND UNIQUENESS

Embedding effectiveness can be measured by the alignment of the binarized explanations with the
watermark pattern w at indices idx; this metric can be used by the owner to confirm that w was
effectively embedded in 𝑓 during training. Since the entries of w are 1s and −1s, we simply count the
average number of watermarked indices at which a binarized explanation matches w:

𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = (1/𝑇) × Σ𝑇
𝑖=1Σ

𝑀
𝑗=1𝟙(ê

𝑤𝑚𝑘
𝑖 [idx[ 𝑗]] = w[ 𝑗]). (14)

Watermarking uniqueness is measured by the MI 𝑝-value for the binarized explanations of the 𝑇

watermarked subgraphs, as defined by Equation (8). A low 𝑝-value indicates the MI is statistically
unlikely to be seen in explanations of randomly selected subgraphs. If the watermarked subgraphs
yield a uniquely large MI, it is sufficient, even if alignment is under 100%.

Table 1 shows results under default settings, averaged over five trials with distinct random seeds
and watermark patterns. The MI 𝑝-value is below 0.001 for all 𝑇 > 2; this shows uniqueness of the
ownership claim, meaning the embedding was sufficiently effective.

5.2.2 ROBUSTNESS

We test our method against two types of removal attacks. Pruning compresses models by setting a
portion of weights to zero (Li et al., 2016). Following Liu et al. (2021a); Tekgul et al. (2021), we
use structured pruning, targeting parameter tensor rows and columns based on 𝐿𝑛-norm importance
scores (Paszke et al., 2019). Fine-tuning Pan & Yang (2010) adapts already-trained models to a
new task (Pan & Yang, 2010) and may make GNNs “forget” watermarks, so it is commonly used
for watermark robustness testing Adi et al. (2018); Wang et al. (2020). We test our own method
by continuing training on the validation dataset, 𝐺𝑣𝑎𝑙 , at 0.1 times the original learning rate for 49
epochs. (See Appendix E for results with other learning rates and GNN architectures.)

Figure 2 shows pruning and fine-tuning results. Left: rates of 0.0 (no parameters pruned) to 1.0
(all pruned). In all datasets, the MI 𝑝-value only rises as classification accuracy drops, ensuring the
owner detects pruning before it impacts the watermark. Right: classification accuracy and MI 𝑝-value
during fine-tuning. CS has a near-zero MI 𝑝-value for 25 epochs; Photo, PubMed and Reddit2 have
low MI 𝑝-values for the full duration, demonstrating robustness for extended periods of fine-tuning.

We assert that our method also resists data poisoning. Operating on randomly selected subgraphs
without data-specific assumptions (unlike backdoor methods), our watermark is embedded post-
training-data selection, ensuring immunity to training data changes.

8
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Figure 4: Watermarking metrics for varied 𝑇 .

Figure 5: Watermarking metrics for varied 𝑠.
5.2.3 UNDETECTABILITY

Brute-Force Search: With Equations from Section 4.4, we demonstrate the infeasibility of a brute-
force search for the watermarked subgraphs in our smallest dataset, Amazon Photo (4590 training
nodes). Assume adversaries know the number (𝑇) and size (𝑠) of our watermarked subgraphs. With
default 𝑠 = 0.005, each subgraph has 𝑐𝑒𝑖𝑙 (0.005× 4590) = 23 nodes — there are

(4590
23

)
= 6.1× 1061

possible subgraphs; with default 𝑇 = 4, there are
((4590

23 )
4

)
= 5.8 × 10245 possible candidate subgraphs,

making finding the uniquely-convincing set of watermarked subgraphs computationally infeasible.

Random Search: Figure 3 shows probabilities (Equation 13) that a randomly-chosen subgraph’s
nodes overlap with any watermarked subgraph, for varied sizes 𝑠. For 𝑗 = 1, ... , 5, or all 𝑛𝑠𝑢𝑏 nodes,
probability nears zero that a randomly-selected subgraph overlaps with a common watermarked
subgraph by ≥ 3 nodes (given our default watermark subgraph settings 𝑇 = 4 and 𝑠 = 0.005). (The
exception is Reddit2, where < 5 nodes is an extremely small portion of the whole dataset.)

5.3 ABLATION STUDIES6

Impact of the Number of Watermarked Subgraphs 𝑇: Figure 4 shows how 𝑇 affects watermark
performance metrics. For all datasets, larger 𝑇 increases watermark alignment and a lower 𝑝-value,
although test accuracy decreases slightly on Photo and PubMed. Notably, the default 𝑇 = 4 is
associated with a near-zero 𝑝-value in every scenario. Figure 10 in Appendix also shows the
robustness results to removal attacks against varied 𝑇 : we see that the watermarking method resists
pruning attacks until test accuracy is affected, and fine-tuning attacks for at least 25 epochs.

Impact of the Size of Watermarked Subgraphs 𝑠: Figure 5 shows results with different sizes 𝑠. We
see similar trends as Figure 4: watermarking is generally more effective, unique, and robust for larger
𝑠 values. There is again a slight trade-off between subgraph size and test accuracy. For 𝑠 ≥ 0.003,
our method reaches near-zero 𝑝-values for all datasets, as well as increasing watermark alignment.
Figure 11 in Appendix shows the robustness results: for all datasets, when 𝑠 > 0.005, our method is
robust against pruning attacks generally, and against fine-tuning attacks for at least 25 epochs.

6 CONCLUSION

We introduce the first GNN watermarking method using explanations, avoiding backdoor-based
pitfalls with a statistically unambiguous watermark that resists data attacks. Demonstrating robustness
against removal attempts and proving the statistical impossibility of locating watermarked subgraphs,
our approach significantly advances GNN intellectual property protection.

6Note: Reddit2 is excluded from these ablation studies due to computational constraints, as the trends from
the other three datasets are sufficient to demonstrate the effects of varying 𝑠 and 𝑇 .
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REPRODUCIBILITY STATEMENT

Our datasets and implementation details are introduced in Appendix A and the codes are avail-
able at https://anonymous.4open.science/r/Explanation_Watermarking_
GNN-F6C7.
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APPENDIX

A EXPERIMENTAL SETUP DETAILS

Hardware and Software Specifications. All experiments were conducted on a MacBook Pro (Model Identifier:
MacBookPro18,3; Model Number: MKGR3LL/A) with an Apple M1 Pro chip (8 cores: 6 performance, 2
efficiency) and 16 GB of memory, on macOS Sonoma Version 14.5. Models were implemented in Python with
the PyTorch framework.

Dataset Details. Amazon Photo (simply “Photo” in this paper) is a subset of the Amazon co-purchase network
(McAuley et al., 2015). Nodes are products, edges connect items often purchased together, node features are
bag-of-words product reviews, and class labels are product categories. Photo has 7,650 nodes, 238,163 edges,
745 node features, and 8 classes. The CoAuthor CS dataset (“CS” in this paper) (Shchur et al., 2019) is a graph
whose nodes are authors, edges are coauthorship, node features are keywords, and class labels are the most active
fields of study by those authors. CS has 18,333 nodes, 163,788 edges, 6,805 node features, and 15 classes. Lastly,
PubMed (Yang et al., 2016) is a citation network whose nodes are documents, edges are citation links, node
features are TF-IDF weighted word vectors based on the abstracts of the papers, and class labels are research
fields. The graph has 19,717 nodes, 88,648 edges, 500 features, and 3 classes. Reddit2 (Zeng et al., 2019) is
a large social network where nodes represent posts, edges connect posts if the same user commented on both,
node features are post embeddings, and class labels are communities. It contains 232,965 nodes, 114,848,857
edges, 602 features, and 41 classes.

Hyperparameter Setting Details.

Classification training hyperparameters:

• Learning rate: 0.001-0.001

• Number of layers: 3

• Hidden Dimensions: 256-512

• Epochs: 100-300

Watermarking hyperparameters:

• Target significance level, 𝛼𝑡𝑔𝑡 : set to 1e-5 to ensure a watermark size that is sufficiently large.

• Verification significance level, 𝛼𝑣 : set to 0.01 to limit false verifications to under 1% likelihood.

• Watermark loss coefficient, 𝑟: set to values between 20-100, depending on the amount required to bring 𝐿𝑤𝑚𝑘

to a similar scale as 𝐿𝑐𝑙 𝑓 to ensure balanced learning.

• Watermark loss parameter 𝜖 : set to values ranging from 0.01 to 0.1. Smaller values ensure that no watermarked
node feature index has undue influence on watermark loss.

B GAUSSIAN KERNEL MATRICES

Define K̄ as a collection of matrices {K̄(1) , . . . , K̄(𝐹 ) }, where K̄(𝑘 ) (size 𝑁 × 𝑁) is the centered and normalized
version of Gaussian kernel matrix K(𝑘 ) , and each element K(𝑘 )𝑢𝑣 is the output of the Gaussian kernel function on
the 𝑘 𝑡ℎ node feature for nodes 𝑢 and 𝑣:

K̄(𝑘 ) = HK(𝑘 )H/∥HK(𝑘 )H∥𝐹 , H = I𝑁 −
1
𝑁

1𝑁1𝑇𝑁 , K(𝑘 )𝑢𝑣 = exp
(
− 1

2𝜎2
𝑥

(
x(𝑘 )𝑢 − x(𝑘 )𝑣

)2
)
. (15)

∥ · ∥𝐹 is the Frobenius norm, H is a centering matrix (where I𝑁 is an 𝑁 × 𝑁 identity matrix and 1𝑁 is an all-one
vector of length 𝑁), and 𝜎𝑥 is Gaussian kernel width. Now take the nodes’ softmax scores P = [p1, · · · , p𝑁 ],
and their Guassian kernel width, 𝜎p. Define L̄ as a centered and normalized 𝑁 × 𝑁 Gaussian kernel L, where
L𝑢𝑣 is the similarity between nodes 𝑢 and 𝑣’s softmax outputs:

L̄ = HLH/∥HLH∥𝐹 , L𝑢𝑣 = exp

(
− 1

2𝜎2
p
∥p𝑢 − p𝑣 ∥22

)
. (16)

Let K̃ be the 𝑁2 × 𝐹 matrix [vec(K̄(1) ), . . . , vec(K̄(𝐹 ) )], where vec(·) converts each 𝑁 × 𝑁 matrix K̄(𝑘 ) into a
𝑁2-dimensional column vector. Similarly, we denote L̃ = vec(L̄) as the 𝑁2-dimensional, vector form of the
matrix L̄. Also take 𝐹 × 𝐹 identity matrix I𝐹 and regularization hyperparameter 𝜆.
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Algorithm 1: Watermark Embedding
Input: Graph 𝐺, training nodesV 𝑡𝑟 , learning rate 𝜂, #watermarked subgraphs 𝑇 , watermarked

subgraph size 𝑠, hyperparameter 𝑟 , target significance 𝛼𝑡𝑔𝑡 , watermark loss contribution bound
𝜖 .

Output: A trained and watermarked model, 𝑓 .
Setup: Initialize 𝑓 and optimizer. With 𝛼𝑡𝑔𝑡 , 𝑇 , and number of node features 𝐹 as input,

compute 𝑀 using equation 11. Initialize w with values 1 and −1 uniform at random. With
𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |), randomly sample 𝑇 sets of 𝑛𝑠𝑢𝑏 nodes fromV 𝑡𝑟 . These subgraphs
jointly comprise 𝐺𝑤𝑚𝑘 . Define node setV𝑐𝑙 𝑓 for classification from the remaining nodes in
V 𝑡𝑟 .

for epoch=1 to #Epoch do
𝐿𝑐𝑙 𝑓 ← L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓 ))
𝐿𝑤𝑚𝑘 ← 0
for i=1 to T do

P𝑤𝑚𝑘
𝑖
← 𝑓Θ (V𝑤𝑚𝑘

𝑖
)

e𝑤𝑚𝑘
𝑖
← 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
)

𝐿𝑤𝑚𝑘 ← 𝐿𝑤𝑚𝑘 +∑𝑀
𝑗=1 max(0, 𝜖 − w[ 𝑗] · e𝑤𝑚𝑘

𝑖
[idx[ 𝑗]])

end
𝐿 ← 𝐿𝑐𝑙 𝑓 + 𝑟 · 𝐿𝑤𝑚𝑘

Θ← Θ − 𝜂 𝜕𝐿
𝜕Θ

end

C TIME COMPLEXITY ANALYSIS

The training process involves optimizing for node classification and embedding the watermark. To obtain total
complexity, we therefore need to consider two processes: forward passes with the GNN, and explaining the
watermarked subgraphs.

GNN Forward Pass Complexity. The complexity of standard node classification in GNNs comes from two
main processes: message passing across edges (𝑂 (𝐸𝐹), where 𝐸 is number of edges and 𝐹 is number of node
features), and weight multiplication for feature transformation (𝑂 (𝑁𝐹2), where 𝑁 is number of nodes). For 𝐿
layers, the time complexity of a forward pass is therefore:

𝑂 (𝐿 (𝐸𝐹 + 𝑁𝐹2))

Explanation Complexity. Consider the Formula 3 for computing the explanation: e = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) =
(K̃𝑇 K̃ + 𝜆I𝐹 )−1K̃𝑇 L̃. Remember that K̃ is an 𝑁2 × 𝐹 matrix, 𝐼𝐹 is a 𝐹 × 𝐹 matrix, and L̃ is a 𝑁2 × 1 vector. To
compute the complexity of this computation, we need the complexity of each subsequent order of operations:

1. Multiplying K̃𝑇 K̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝐹 matrix)
2. Obtaining and adding 𝜆I𝐹 (an 𝑂 (𝐹2) operation, resulting in an 𝐹 × 𝐹 matrix)
3. Inverting the result (an 𝑂 (𝐹3) operation, resulting in an 𝐹 × 𝐹 matrix)

4. Multiplying by K̃𝑇 (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝑁2 matrix)
5. Multiplying the result by L̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝑁2 × 1 vector)

The total complexity of a single explanation is therefore 𝑂 (𝐹2𝑁2) +𝑂 (𝐹2) +𝑂 (𝐹3) +𝑂 (𝐹2𝑁2) +𝑂 (𝐹2𝑁2) =
𝑂 (𝐹2𝑁2 + 𝐹3). For obtaining explanations of 𝑇 subgraphs during a given epoch of watermark embedding, the
complexity is therefore:

𝑂 (𝑇 (𝐹2𝑁2 + 𝐹3))

Total Complexity. The total time complexity over 𝑖 epochs is therefore:

𝑂

(
𝑖 ×

(
𝐿 (𝐸𝐹 + 𝑁𝐹2) + 𝑇 (𝐹2𝑁2 + 𝐹3)

))
Training Duration (Wall Time). We evaluate the training duration on the Photo and PubMed datasets under
both watermarked and non-watermarked settings. The corresponding training times are reported in Table 2. In
both cases, the models are trained using 7 subgraphs. The architecture comprises three layers with a hidden
dimension of 256. The results suggest that introducing the watermark does not increase the training time to a
prohibitive degree.
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Algorithm 2: Ownership Verification
Input: A GNN 𝑓 trained by Alg. 1, a graph 𝐺 with training nodesV 𝑡𝑟 , a collection of 𝑇
candidate subgraphs with node size 𝑛𝑠𝑢𝑏, and a significance level 𝛼𝑣 required for verification, 𝐼
iterations.
Output: Ownership verdict.

Phase 1 – Obtain distribution of naturally-occurring matches

Setup:
1. Define subgraphs S = {𝐺𝑟𝑎𝑛𝑑

1 , · · · , 𝐺𝑟𝑎𝑛𝑑
𝐷
}, where each subgraph is size

𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |). Each subgraph 𝐺𝑟𝑎𝑛𝑑
𝑖

is defined by randomly selecting 𝑛𝑠𝑢𝑏 nodes
fromV 𝑡𝑟 . 𝐷 should be “sufficiently large” (𝐷 > 100) to approximate a population.

2. Using Equation 6, collect binarized explanations, ê𝑟𝑎𝑛𝑑𝑖 , for 1 ≤ 𝑖 ≤ 𝐷.
3. Initialize empty list, 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠 = {}.

for i=1 to I simulations do
Randomly select 𝑇 distinct indices 𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑇 from the range {1, · · · , 𝐷}.
For each 𝑖𝑑𝑥𝑖 , letV𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
be the nodes of 𝐺𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and their features, respectively.

Compute ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑖
= 𝑠𝑖𝑔𝑛(𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
, 𝑓 (V𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
)) for each 𝑖 in 1 ≤ 𝑖 ≤ 𝑇 .

Compute the MI on {ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥1
, · · · , ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑇

} using Equation 7, and append to 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠.

Compute 𝜇𝑛𝑎𝑡𝑒 =
Σ𝐼
𝑖=1𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖 ]

𝐼
and 𝜎𝑛𝑎𝑡𝑒 =

√︃
1
𝐼
Σ𝐼
𝑖=1(𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖] − 𝜇𝑛𝑎𝑡𝑒 )2.

Phase 2 – Significance testing

Consider the null hypothesis, 𝐻0, that the observed MI across 𝑇 binarized explanations in
{ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 comes from the population of naturally-occurring matches. We conduct a 𝑧-test to test
𝐻0:

1. For 1 ≤ 𝑖 ≤ 𝑇 , let P𝑐𝑑𝑡
𝑖

= 𝑓 (V𝑐𝑑𝑡
𝑖
) and X𝑐𝑑𝑡

𝑖 be the corresponding features ofV𝑐𝑑𝑡
𝑖

.

2. Let the binarized explanation of the 𝑖𝑡ℎ candidate subgraph be defined as:

ê𝑐𝑑𝑡𝑖 = 𝑠𝑖𝑔𝑛

(
𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑐𝑑𝑡

𝑖 ,P𝑐𝑑𝑡
𝑖 )

)
3. Compute MI𝑐𝑑𝑡 across tensors in {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 using Equation 14.
4. Compute the significance of this value as the p-value of a one-tailed 𝑧-test:

𝑧𝑡𝑒𝑠𝑡 =
MI𝑐𝑑𝑡 − 𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒

𝑝𝑧𝑡𝑒𝑠𝑡 = 1 −Φ(𝑧𝑡𝑒𝑠𝑡 ),

Where Φ (𝑧𝑡𝑒𝑠𝑡 ) is the cumulative distribution function of the standard normal distribution.
5. If 𝑝𝑧𝑡𝑒𝑠𝑡 ≥ 𝛼𝑣 , the candidate subgraphs do not provide adequate ownership evidence. If

𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣 , the candidate subgraphs provide enough evidence of ownership to reject 𝐻0.

D NORMALITY OF MATCHING INDICES DISTRIBUTION

Our results rely on the 𝑧-test to demonstrate the significance of the 𝑀𝐼 metric. To confirm that this test is
appropriate, we need to demonstrate that the 𝑀𝐼 values follow a normal distribution. Table 3 shows the results
of applying the Shapiro-Wilk Ghasemi & Zahediasl (2012) normality test to 𝑀𝐼 distributions obtained under
different GNN architectures and datasets. The results show 𝑝-values significantly above 0.1, indicating we
cannot reject the null hypothesis of normality.

E ADDITIONAL RESULTS

Fine-tuning and pruning under more GNN architectures. The main paper mainly show results on Graph-
SAGE (Hamilton et al., 2018). Here, we also explore GCN Kipf & Welling (2017) and SGC (Wu et al., 2019).
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Table 2: Model Training time (in seconds) with and without watermarking.

Dataset Architecture Epochs Without Watermark (s) With Watermark (s)
Photo GCN 300 91.72 147.25
Photo SAGE 300 109.06 167.28
PubMed GCN 200 59.20 96.84
PubMed SAGE 200 65.18 98.98

Table 3: Shapiro-Wilk Test p-values

Dataset SAGE SGC GCN
Photo 0.324 0.256 0.345
CS 0.249 0.240 0.205
PubMed 0.249 0.227 0.265

Table 4: Watermarking results for varied 𝑇 . Each value averages 5 trials with distinct random seeds.

Number of Subgraphs (𝑇)

2 3 4 5

Dataset GNN
Acc

(Trn/Tst)
Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Photo
GCN 92.5/89.7 73.0 0.087 91.5/88.9 86.1 <0.001 90.9/88.3 91.4 <0.001 90.6/88.2 95.2 <0.001
SGC 92.0/89.4 73.8 0.111 91.0/88.7 82.5 <0.001 90.1/88.0 91.8 <0.001 89.7/87.4 99.4 <0.001
SAGE 95.4/88.9 77.4 0.002 94.4/87.5 90.9 <0.001 94.1/88.2 97.7 <0.001 93.9/87.2 99.4 <0.001

PubMed
GCN 87.0/83.7 75.4 0.003 85.9/82.1 86.6 <0.001 85.7/81.4 91.5 <0.001 85.6/81.4 90.2 <0.001
SGC 86.7/83.1 79.7 <0.001 85.8/81.6 83.8 <0.001 85.3/81.4 88.9 <0.001 84.6/80.0 92.9 <0.001
SAGE 91.9/82.8 76.8 0.009 91.3/81.8 81.0 <0.001 91.1/81.2 85.2 <0.001 90.1/79.6 91.5 <0.001

CS
GCN 97.1/90.3 56.8 0.562 96.8/89.9 67.5 <0.001 96.8/89.8 73.8 <0.001 96.9/90.0 78.9 <0.001
SGC 97.2/90.3 57.1 0.003 96.8/89.9 67.7 <0.001 96.7/90.1 74.5 <0.001 96.6/89.8 77.8 <0.001
SAGE 99.9/90.2 61.5 0.233 99.9/89.4 73.3 <0.001 99.9/88.9 78.2 <0.001 99.9/88.3 84.0 <0.001

Figure 6-Figure 9 shows the impact of fine-tuning and pruning attacks results on our watermarking method
under these two architectures. Watermarked GCN and SGC models fared well against fine-tuning attacks for the
Photo and CS datasets, but less so for PubMed; meanwhile, these models were robust against pruning attacks for
Pubmed and CS datasets, but not Photo. Since the owner can assess performance against these removal attacks
prior to deploying their model, they can simply a matter of training each type as effectively as possible and
choosing the best option. In our case, GraphSAGE fared best for our three datasets, but GCN and SGC were
viable solutions in some cases.

More Results on Effectiveness and Uniqueness. Table 1 in the main paper shows the test accuracy, watermark
alignment, and MI 𝑝-values of our experiments with the default value of 𝑇 = 4. In Table 4, we additionally
present the results for 𝑇 = 2, 𝑇 = 3, and 𝑇 = 5. The results show MI 𝑝-values below 0.001 across all
configurations when 𝑇 ≥ 3. They also show increasing watermark alignment with increasing 𝑇 , however, with a
slight trade-off in classification accuracy: when increasing from 𝑇 = 2 to 𝑇 = 5, watermark alignment increases,
but train and test classification accuracy decreases by an average of 1.44% and 2.13%, respectively; despite this,
both train and test classification accuracy are generally high across all datasets and models.

Fine-Tuning and Pruning under varied watermark sizes. Figures 10 and 11 show the robustness of our
methods to fine-tuning and pruning removal attacks when 𝑇 and 𝑠 are varied. We observe that, for 𝑇 ≥ 4 and
𝑠 ≥ 0.005 — our default values — pruning only affects MI 𝑝-value after classification accuracy has already
been affected; at this point the pruning attack would be detected by model owners regardless. Similarly, across
all datasets, for 𝑇 ≥ 4 and 𝑠 ≥ 0.005, our method demonstrates robustness against the fine-tuning attack for at
least 25 epochs.

Fine-Tuning under varied learning rates. Our main fine-tuning results (see Figure ??) scale the learning
rate to 0.1 times its original training value. Figure 12 additionally shows results for learning rates scaled to
1× and 10× the original training rates. The results for scaling the learning rate by 1× show that larger learning
rates quickly remove the watermark. However, these figures also demonstrate that, by the time training accuracy
on the fine-tuning dataset has reached an acceptable level of accuracy, the accuracy on the original training set
drops significantly, which diminishes the usefulness of the fine-tuned model on the original task. For larger rates
(10×), the watermark is removed almost immediately, but the learning trends and overall utility of the model are
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Figure 6: Pruning GCN models. Figure 7: Pruning SGC Models.

Figure 8: Fine-tuned GCN models. Figure 9: Fine-tuned SGC models.

Figure 10: Pruning and fine-tuning attacks against varied number of watermarked subgraphs (𝑇)

Figure 11: Pruning and fine-tuning attacks against varied sizes of watermarked subgraphs (𝑠)

so unstable that the model is rendered useless. Given this new information, our default choice to fine-tune at
0.1× the original learning rate is the most reasonable scenario to consider.

F FUTURE DIRECTIONS

Extension to Other Graph Learning Tasks.

While we have primarily provided results for the node-classification case, we believe much of our logic can be
extended to other graph learning tasks, including edge classification and graph classification. Our method embeds
the watermark into explanations of predictions on various graph features. Specifically, for node predictions,
we obtain feature attribution vectors for the 𝑛 × 𝐹 node feature matrices of 𝑇 target subgraphs, with a loss
function that penalizes deviations from the watermark. This process can be adapted to link prediction and graph
classification tasks as long as we can derive 𝑇 separate 𝑛 × 𝐹 feature matrices, where 𝑛 represents the number of
samples per group and 𝐹 corresponds to the number of features for the given data structure (e.g., node, edge, or
graph). Below, we outline how this extension applies to different classification tasks:
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Figure 12: Fine-tuning results at increased learning rates (SAGE architecture).

1. Node Classification: The dataset is a single graph. Subgraphs are formed by randomly selecting
𝑛 = 𝑠 · |V 𝑡𝑟 | nodes from the training set (where |V 𝑡𝑟 | is the number of training nodes and 𝑠 is a
proportion of that size). (Note: in this case, 𝑛 is equal to the value 𝑛𝑠𝑢𝑏 referenced previously in the
paper.) For each subgraph:

• The 𝑛 × 𝐹 node feature matrix represents the input features (𝐹 is the number of node features).
• The 𝑛 × 1 prediction vector contains one label per node.
• These inputs are used in a ridge regression problem to produce a feature attribution vector for the

subgraph.
• With 𝑇 subgraphs, we generate 𝑇 explanations.

2. Link Prediction: Again, the dataset is a single graph. Subgraphs are formed by randomly selecting
𝑛 = 𝑠 · |E𝑡𝑟 | edges. For each subgraph:

• Each row in the 𝑛 × 𝐹 feature matrix represents the features of a single link. These features are
derived by combining the feature vectors of the two nodes defining the link, using methods such
as concatenation or averaging. The resulting feature vector for each link has a length of 𝐹.

• The 𝑛 × 1 prediction vector contains one label per edge.
• These inputs are used in a ridge regression problem to produce a feature attribution vector for the

subgraph.
• As with node classification, we generate 𝑇 explanations for 𝑇 subgraphs.

3. Graph Classification: For graph-level predictions, the dataset D𝑡𝑟 is a collection of graphs. We
extend the above pattern to 𝑇 collections of 𝑛 = 𝑠 · |D𝑡𝑟 | subgraphs, where each subgraph is drawn
from a different graph in the training set. Specifically:

• Each subgraph in a collection is summarized by a feature vector of length 𝐹 (e.g., by averaging
its node or edge features).

• For a collection of 𝑛 subgraphs, we construct:
– An 𝑛×𝐹 subgraph feature matrix, where each row corresponds to a subgraph in the collection.
– An 𝑛 × 1 prediction vector, containing one prediction per subgraph.

• These inputs are used in a ridge regression problem to produce a feature attribution vector for the
collection.

• With 𝑇 collections of 𝑛 subgraphs, we produce 𝑇 explanations.

By consistently framing each task as 𝑇 groups of 𝑛 × 𝐹 data points, our method provides a unified approach
while adapting 𝐹 to the specific task requirements.

For instance, Table 5 provides sample results on graph classification using the MUTAG dataset; the results
demonstrate that our method is effective beyond node classification.
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Table 5: Watermarking results: graph classification

# Subgraph Collections 4 5 6
p-value 0.039 0.037 <0.001
Acc (train/test) 0.915/0.900 0.954/0.929 0.915/0.893

Enhancing Robustness.

An important future direction is to safeguard our method against model extraction attacks Shen et al. (2022),
which threaten to steal a model’s functionality without preserving the watermark. One form of model extraction
attack is knowledge distillation attack Gou et al. (2020).

Knowledge distillation has two models: the original “teacher” model, and an untrained “student” model. During
each epoch, the student model is trained on two objectives: (1) correctly classify the provided input, and (2)
mimic the teacher model by mapping inputs to the teacher’s predictions. The student therefore learns to map
inputs to the teacher’s “soft label” outputs (probability distributions) alongside the original hard labels; this
guided learning process leverages the richer information in the teacher’s soft label outputs, which capture
nuanced relationships between classes that hard labels cannot provide. By focusing on these relationships, the
student model can generalize more efficiently and achieve comparable performance to the teacher with a smaller
model and fewer parameters, thus reducing complexity.

We find that in the absence of a strategically-designed defense, the knowledge distillation attack successfully
removes our watermark (𝑝 > 0.05). This is unsurprising, since model distillation maps inputs to outputs but
ignores mechanisms that lead to auxiliary tasks like watermarking.

To counter this, we outline a defense framework that would incorporate watermark robustness to knowledge
distillation directly into the training process. Specifically, during training and watermark embedding, an
additional loss term would penalize reductions in watermark performance. At periodic intervals (e.g., after
every x epochs), the current model would be distilled into a new model, and the watermark performance on
this distilled model would be evaluated. If the watermark performance (measured by the number of matching
indices) on the distilled model is lower than the watermark performance on the main model, a penalty would be
added to the loss term. This would ensure that the trained model retains robust watermarking capabilities even
against knowledge distillation attacks.

G THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were not used in any part of the methodology, data analysis, or
experiments. Their role was solely limited to polishing the language and improving the readability of the
manuscript. All scientific ideas, experimental designs, and results are entirely the work of the authors.
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