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ABSTRACT

Effective and reliable control over Large Language Model behavior is a significant
challenge. While activation steering methods, which add steering vectors to a
model’s hidden states, are a promising approach, existing techniques often lack
precision and interpretability in how they influence model outputs. We introduce
Feature Guided Activation Additions (FGAA), a novel activation steering method
that leverages insights from Contrastive Activation Addition (CAA) and Sparse
Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of
a Sparse Autoencoder (SAE) and employing optimization techniques to select
desired SAE features, FGAA constructs precise, human-interpretable steering
vectors that provide better steering effects while maintaining coherence of steered
model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B
models across various steering tasks demonstrate that FGAA outperforms existing
steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also
highlight important trade-offs between steering scale and general model capabilities
that are consistent across all tested steering methods.

1 INTRODUCTION

The reliable and effective control of Large Language Models (LLMs) has emerged as an increasingly
significant challenge in recent years. While researchers have developed various approaches to
influence LLM behavior, the limitations of existing methods warrant careful consideration. Fine-
tuning (Ouyang et al., 2022) offers some behavioral control but demands substantial computational
resources and carefully curated datasets, making it impractical for many applications. Similarly,
instruction-based approaches through prompting (Wallace et al., [2024) provide a degree of influence
over model outputs but often lack robustness when faced with adversarial inputs or complex tasks.
Activation steering has recently gained attention as an alternative methodology that potentially
addresses these shortcomings by directly manipulating the model’s hidden state representations
during inference. This technique involves introducing steering vectors at specific points in the forward
pass to guide the model’s behavior in desired directions. Nevertheless, current implementations
of activation steering face challenges related to interpretability, precision, and consistency which
frequently resulting in unpredictable behavioral shifts and degraded output quality that limit their
practical utility.

Recent work on SAE-Targeted Steering (SAE-TS) (Chalnev et al., 2024) demonstrated the value of
using Sparse Autoencoders (SAEs) to extract targetable features during steering. Building on this and
Contrastive Activation Addition (CAA) (Rimsky et al.l 2024)), we present Feature Guided Activation
Additions (FGAA).

We evaluate FGAA against multiple baselines, including traditional activation steering, SAE decoder
steering, and SAE-TS, across various steering tasks on both Gemma-2-2B and Gemma-2-9B models
(Riviere et al.,|2024). Our experiments demonstrate that FGAA achieves superior performance in both
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steering effectiveness and output coherence, particularly in complex steering tasks where maintaining
text coherence has traditionally been challenging.

This work contributes to the field of controlled text generation in several ways:

1. We develop a novel method FGAA for constructing steering vectors, harnessing benefits
from SAE insights, as well as CAA and SAE-TS methods.

2. We evaluate FGAA on multiple tasks, showing that it outperforms existing activation steering
methods in steering performance and steered output quality.

3. We investigate the impact of varying steering scales on the generalization capabilities of
models across a diverse range of activation steering methods.

Our findings advance both theoretical understanding of LLM activation patterns and practical steering
methodology.

2 RELATED WORK

Mechanistic Interpretability and SAEs Bereska and Gavves (Bereska & Gavves| [2024) outlined
the central hypothesis of mechanistic interpretability: models learn human-comprehensible algorithms
and can be understood, despite having no incentive to make these algorithms legible to humans during
loss minimization. A key challenge in this field was identified by Scherlis er al. (Scherlis et al.|
2022), who found that individual neurons often encode multiple distinct features (polysemanticity),
making direct analysis of neuron behavior difficult. This is caused by superposition, the phenomenon
of models representing more features than they have dimensions (Elhage et al., |2022). Sparse
Autoencoders (SAEs) emerged as a solution to this challenge, with Cunningham et al. (Huben
et al., 2024)) demonstrating that SAEs could extract interpretable features from these superposed
representations in transformer models. Bricken et al. (Bricken et al., [2023)) further showed how these
extracted features could be manipulated during inference to affect model behavior. Our work uses
SAE:s to extract interpretable features from different inputs, to construct a set of desired SAE features
to steer for.

Linear Representation Hypothesis Park ef al. (Park et al. |2023) introduced the Linear Rep-
resentation Hypothesis, showing that neural networks encode high-level concepts linearly in their
representation spaces. Several studies support this hypothesis: the extraction of linear features using
SAEs (Bricken et al.,[2023), the effectiveness of linear probes in detecting features in the residual
stream (Chanin et al.| [2024), and the results from activation steering methods. We leverage this
linearity assumption in both our feature selection process and its use of linear effect approximators to
optimize steering vectors.

Activation Steering Turner et al. (Turner et al.,|2024) introduced activation steering (or activation
engineering) to influence LLM behavior by modifying model activations during inference. Building
on this work, Panickssery (Rimsky et al.| 2024} introduced CAA, which computes steering vectors
by averaging the difference in residual stream activations between sets of positive and negative
examples of a particular behavior. Chalnev ef al. (Chalnev et al., [2024) developed linear effect
approximators, a linear function that predicts how steering vectors affect SAE features, allowing
for targeted steering vector construction with reduced side effects. In our work, we apply the effect
approximator framework to optimize CAA-derived steering vectors which are represented as SAE
features.

3 FEATURE GUIDED ACTIVATION ADDITIONS

FGAA enhances CAA by operating directly in the SAE’s latent space and employing optimization
techniques to create more effective and coherent steering vectors. Our method consists of several
key components that work together to identify and utilize the most relevant activation patterns while
minimizing unwanted effects. For the rest of this paper, in the interest of clarity, positive and negative
examples of a particular behavior used in CAA are termed as desired and undesired examples, while
features refer to SAE latents.
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3.1 SAE-BASED CONTRASTIVE ANALYSIS
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Figure 1: Diagram showing the process for computing vgif on a simplified "Anger" task.

Unlike traditional CAA which operates on raw activations, FGAA computes contrastive differences
in the SAE activation space. Given sets of positive and negative examples X+ and X ~ which exhibit
desired and undesired behaviors respectively, and an SAE with encoder f, we compute the difference
vector as:

Vaitr = X+| > fn |X_‘ > flhue (1)

zeXt zeX—

where h;(x) represents the hidden state activations at layer [ for input x, and f(h;(x)) represents the
mean SAE feature activations across all tokens. This produces a vector in the SAE’s latent space
that captures the key differences between desired and undesired behavior in terms of interpretable
features.

3.2 FEATURE FILTERING
We apply three critical filtering steps to transform the difference vector into the target vector:

1. Density Filtering: We zero out features with activation density above a threshold 6:

0 if p(i) > 0
vairr(i) otherwise

Vﬁllered(i) = { )

where p(7) is the activation density of feature 7 and # = 0.01 in our implementation.

2. BOS Feature Removal: We zero out features that activate most strongly on the Beginning
Of Sequence (BOS) token:

0 if isBOS (i)
Viilered (1) Otherwise

Viltered (Z) = { (3)

where isBOS() identifies features that have the highest activations at the BOS token. For
Gemma family models, they are represented as <bos>.

3. Top-k Selection: Based on feature activation values, we retain the n, most positively
activating and ny most negatively activating features:

Viarget = Concat(topm (Vﬁltered)a tOPnz (_Vﬁllered))a ni,ng € z* 4)
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The three filtering steps in FGAA were developed through empirical observation of feature activation
patterns across multiple steering tasks. Density filtering addresses a common issue where high-density
features (those that activate frequently across many inputs) tend to dominate the difference vector
despite their limited task specificity. By filtering out features with activation density above 8 = 0.01,
we ensure the steering vector focuses on more specialized features that better characterize the target
behavior. Similarly, BOS feature removal was implemented after observing a family of features that
exclusively had the strongest activation on the BOS token (Appendix [G), which often introduced
artifacts in generation while contributing little to the desired steering effect. These features typically
encode general linguistic patterns rather than task-specific behaviors. Finally, the selection of top nq
positive and ny negative features helps eliminate noise from weakly activated features, focusing the
steering vector on the most significant behavioral indicators.

3.3 LINEAR APPROXIMATOR OPTIMIZATION

We employ effect approximators (Chalnev et al.| 2024) to solve for the optimal steering vector to
produce the desired feature effects in Viyger. The linear effect approximator can be represnted as a
function § = M + b, where x is the dy,,4e1-dimensional steering vector, M is a dyodel X dsac
matrix, b has dimension dg,e, and g is the predicted steering effects vector of dimension dgye.

The approximator consists of a weight matrix W and bias vector b. Given our desired feature vector
Viarget» W€ compute the optimized steering vector vp:

WVtarget . Wb
| W]

&)

V, =
ot | | tharget

For our implementation, Vg is L1 normalised for this calculation for consistent scaling of the
relevant features, which helps maintain stable steering effects regardless of the magnitude of the
original target vector.

3.4 FINAL STEERING APPLICATION

The final FGAA steering vector is applied to the model’s hidden state at layer [ during generation:

hy=h; + AV opt (6)

where « is a scaling factor which we refer to as steering scale.

4 EVALUATIONS AND DISCUSSION

4.1 EFFECTIVENESS OF FGAA FOR STEERING

For our evaluations, FGAA is implemented using a pre-trained Gemma Scope (Lieberum et al.,|2024)
SAE with 16,384 features for the residual stream at layer 12 for Gemma-2-2B and Gemma-2-9B
models. We selected these two models due to both computational constraints and the availability of
open pre-trained SAE weights. Similarly, we apply steering to the residual stream at layer 12 and
utilize pretrained effect approximators from (Chalnev et al.,2024) for both Gemma models. We focus
on layer 12 in our evaluation, as collecting training data for effect approximators is time-intensive
and must be done separately for each layer. Additionally, only layer 12 approximators for the models
above have been made publicly available.

We evaluate FGAA against existing steering methods using the evaluation framework from (Chalnev
et al., |2024)), employing gpt-4o-mini to assess both behavioral alignment and coherence on a 1-10
scale, which we then rescale to the range [0,1]. Let B represent the behavioral score which measures
steering target achievement, and C' represent coherence which evaluates semantic correctness post-
steering (exact criterion in Appendix [C). We define the Behavioral-Coherence Score (BCS) as:

BCS=BxC, B,Celo,1] 0)
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We generate FGAA steering vectors using optimal n; and ny values found from a hyperparameter
sweep in Appendix [AT] Each steering vector is applied to the model by adding the steering vector to
the residual stream at every token position, sampling 100 steered text completions, each 33 tokens
long beginning with the open-ended prompt "<bos>I think". For fair evaluation, all steering
vectors are L2 normalised before applied. The following are implementation details for the other
steering methods.

Contrastive Activation Addition (CAA), defined as the mean difference of model activations
between a set of desired and undesired examples, averaged over token positions and examples.

SAE feature steering, using the decoder vector of a single relevant SAE feature.

SAE targeted steering (SAE-TS), setting the same relevant SAE feature used for SAE feature
steering as the only active feature in Viyge.
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Figure 2: Plots showing mean BCS with 95% confidence intervals for the CAA, SAE, SAE-TS and
FGAA steering methods on 9 tasks, for Gemma-2-2B.

Table 1: Mean BCS across steering methods on Gemma models. Best performing method per goal is
underlined, best performing method on average in bold.

Gemma-2-2B Gemma-2-9B
Goal CAA SAE SAE-TS FGAA (Ours) | CAA SAE SAE-TS FGAA (Ours)
Anger 0.1553 0.0778  0.2642 0.3220 0.2405 0.1622  0.2356 0.2116
Christian 0.3504 0.0896  0.3548 0.4815 0.3800 0.1736  0.3062 0.3640
Conspiracy | 0.3523 0.2289  0.3356 0.3733 0.4195 0.2753  0.3202 0.4133
French 0.2743 0.0469  0.3035 0.3909 0.3235 0.3294  0.3909 0.4405
London 0.0331 0.0035 0.5570 0.5185 0.0519 0.1084 0.3407 0.3430
Love 0.3262 0.1494 0.4316 0.5798 0.3795 0.1072  0.2877 0.5437
Praise 0.1699 0.3062 0.2679 0.5914 0.2519 0.4247  0.5383 0.5785
Want to die | 0.1311 0.0933  0.2198 0.3642 0.1449 0.1696 0.1294 0.1269
Wedding 0.1886 0.2681 0.5506 0.6101 0.2647 0.2896 0.5714 0.5595
Average 0.2201 0.1404  0.3650 0.4702 0.2729 0.2267 0.3467 0.3979
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Table [T]demonstrates FGAA’s superior performance across most tasks in the Gemma-2-2B model,
while exhibiting heterogeneous effectiveness in the larger Gemma-2-9B architecture. FGAA achieves
optimal performance in 8 out of 9 tasks for the 2B model, with notable improvements in semantic
steering tasks such as "Praise’ and "Love’. However, the performance distribution shifts substantially
in the 9B architecture, where steering effectiveness is more evenly distributed among methods.
Notably, CAA demonstrates superior performance in sentiment-based tasks. This pattern could
suggest that FGAA’s effectiveness exhibits non-linear scaling characteristics with model size.
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Figure 3: Plots showing mean BCS with 95% confidence intervals for the CAA, SAE, SAE-TS and
FGAA steering methods on 9 tasks, for Gemma-2-9B.

Advantages over Existing Methods FGAA addresses key limitations of current steering ap-
proaches:

* Programmatic Feature Selection: SAE-TS and SAE methods requires manual selection
of a single feature to steer towards. FGAA programmatically identifies a spectrum of
relevant features, while preserving the relationships in magnitude between them (refer to
Table [A.1] for an example). This is more realistic as, especially in lower width SAEs, it
cannot be expected that every concept the LLM learns be cleanly encoded as an SAE latent.
The presence of polysemantic and uninterpretable features extracted from SAEs across
varying widths and models shows strong evidence for this, prompting research into Meta-
SAEs (Anonymous), [2025)) to further break down superposition. Instead, by representing
concepts as a target vector in the feature space, we are able to achieve more precise concept
representation. In larger width SAEs, this automated feature selection becomes more
helpful due to the phenomena of feature splitting (Chanin et al.l [2024)), where a feature
represented in a single latent in a smaller SAE can split into two or more latents in a larger
SAE. FGAA systematically handles such cases by programmatically determine the relative
steering magnitudes between semantically similar features. FGAA also handles the rare
case where only targeting a single feature is the most effective steering approach, as detailed
in Appendix

* Interpretability: While current CAA methods operate in opaque activation spaces, FGAA’s
backwards approach—determining desired effects in feature space before constructing
steering vectors—provides explicit control over which features are steered, and to what
extent. Through automatic interpertability (Paulo et al.| [2024), SAE features can be labelled
with human-interpretable descriptions (examples in Appendix [B), allowing practitioners



Published at Building Trust Workshop at ICLR 2025

to directly understand which semantic aspects of the model’s behavior are being modified
during steering. This transparency also allows us to filter away redundant components
of the steering vector (via methods in Section [3.2)) which would otherwise be present in
CAA-derived vectors, allowing for more precise steering interventions.

4.2 EFFECTS OF STEERING ON GENERAL MODEL CAPABILITIES

We evaluate the impact of steering methods on model capabilities through perplexity testing on the
OpenWebText (Gokaslan & Cohen, [2019)) dataset and performance on MMLU (Massive Multitask
Language Understanding) (Hendrycks et al.|[2021) and MMLU-Pro (Wang et al.,[2024) benchmarks.
MMLU is a comprehensive evaluation benchmark that tests Al models using multiple choice questions
spanning 57 different subjects, from STEM fields to humanities and social sciences. While the original
MMLU primarily focuses on testing factual knowledge, MMLU-Pro builds upon this foundation by
introducing more complex questions that require deeper reasoning abilities and increases the number
of possible answers from 4 to 10 per question.

For perplexity evaluation, we use a sample of 100 records from OpenWebText, evaluating using
steering vectors derived from the 9 steering tasks in Table[T] For MMLU and MMLU-Pro evaluations,
we use fixed subsets of questions to ensure consistent comparison across steering methods: the first 5
questions from each subject category in MMLU, and the first 10 questions from each category in
MMLU-Pro. Due to computational constraints, we limit these benchmark evaluations to steering
vectors from 3 representative tasks in Table [T} Anger, Christian Evangelist, and Conspiracy. All
experiments use Gemma-2-2B with steering vectors applied at layer 12 of the residual stream.

Perplexity vs Steering Scale

—— CAA
—e— SAE
—e— SAETS

—e— FGAA

Mean Perplexity (Ratio to Baseline)

Baseline (Perplexity: 10.53)

Steering Scale

Figure 4: Relative perplexity vs steering scale (0-300). Lower values indicate better preserved
language modeling. Results averaged across steering vectors from 9 different tasks, evaluated on the
first 100 records in OpenWebText.
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MMLU Performance with Different Steering Vectors MMLU Pro Performance with Different Steering Vectors
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Figure 5: Benchmark performance vs steering scale (0-200). Higher values indicate better capability
preservation. Results averaged across steering vectors from 3 tasks (Anger, Christian Evangelist and
Conspiracy).

Figure {] shows perplexity results across steering scales from 0 to 300, highlighting several critical
insights. In the early-stage range (0-40), SAE’s direct feature manipulation proves notably aggressive,
while other methods maintain closer adherence to baseline performance. All methods demonstrate
a distinct inflection point around scale 40, suggesting a universal threshold where steering begins
to significantly impact model capabilities. We caution against drawing strong conclusions from
high-scale (>150) behavior as all methods produce absurdly incoherent output in this range.

This degradation pattern is further corroborated by benchmark performance on MMLU and MMLU-
Pro (Figures [5a] [5b). Both benchmarks demonstrate that model capabilities are largely preserved at
lower steering scales but deteriorate as steering intensity increases. At scales below 50, all methods
maintain close to baseline performance. However, beyond this threshold, we observe a consistent
pattern of degradation across all steering approaches, with performance declining sharply between
scales of 50 and 150 before converging near zero at higher scales.

These findings highlight an important trade-off in activation steering: while lower steering scales
(<50) allow for behavioral modifications while preserving model capabilities, stronger steering
interventions come at an increasing cost to general model performance. The similar degradation
patterns show that this trade-off must be considered regardless of steering method.

An intriguing observation is the slight increase in MMLU-Pro performance at low steering scales for
CAA, SAE-TS, and SAE methods. This phenomenon may be analogous to how low levels of noise
can enhance LLM inference performance, similar to effects observed with techniques like NEFTune
(Jain et al.,[2024). At very low steering scales, these steering vectors might function as beneficial
noise that temporarily improves model capabilities before the more disruptive effects of steering
become dominant at higher scales. The absence of this initial performance bump in FGAA, which
instead shows stable performance, suggests its steering interventions are more precisely targeted.
This aligns with FGAA’s design objective of creating focused steering interventions through feature
space optimization rather than introducing broader activation perturbations. While this observation
merits further investigation to fully understand the underlying mechanisms, such analysis falls outside
the scope of this paper.

5 LIMITATIONS

Our current approach relies heavily on the quality of feature extraction by the underlying SAE, and
performance could potentially improve with advances in SAE architectures that achieve more precise
monosemantic feature separation. The method’s effectiveness may be limited by the SAE’s ability to
capture complex and atomic concepts in its latent space, particularly for abstract or nuanced steering
tasks.

The optimal selection of n; and ny parameters appears to be task-dependent, making it challenging
to establish universal guidelines for parameter selection. Also, developing metrics to evaluate the
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effectiveness of our feature filtering methods proves to be a challenging task due to the qualitative
nature of interpreting features.

6 FUTURE WORK

Future work could proceed along several promising directions. First, investigating how SAE width
and quality of SAE features affects steering performance with FGAA could help establish optimal
feature space dimensionality for general steering tasks. In addition, exploring techniques to minimize
capability degradation at higher steering scales while maintaining steering effectiveness would address
one of the key challenges identified in our experiments.

We believe the most promising direction to pursue would be applying FGAA to existing works in
the activation steering space, to see if FGAA performance improvements carry over to safety tasks
such as controlling sycophancy, hallucination and refusal in RLHF models (Rimsky et al.,|2024) and
reducing their social biases (Durmus et al., [2024)).

7 CONCLUSION

This work introduced FGAA, a novel approach that combines CAA with insights from SAE repre-
sentations to improve steering effectiveness in language models. Our evaluations demonstrated that
FGAA achieves superior performance compared to existing steering methods across multiple tasks,
particularly for the Gemma-2-2B model where it outperformed baselines in 8 out of 9 steering tasks.
The method’s success highlights the value of operating directly in interpretable feature spaces while
maintaining precision through systematic feature filtering and optimization.

Our analysis revealed important insights about activation steering in general: performance degrades
notably above certain steering scales, and there exists a fundamental tradeoff between steering
strength and preservation of model capabilities.

The development of FGAA represents a significant step forward in controlled text generation,
offering both theoretical insights into activation patterns in LLMs and practical advances in steering
methodology. While challenges remain in areas such as SAE quality optimization and parameter
selection, the method’s demonstrated effectiveness across multiple tasks and architectures provides a
strong foundation for future research. Particularly promising directions include investigating SAE
width effects, developing techniques to minimize capability degradation at higher scales, and exploring
applications to safety-critical steering tasks. These advances in precise model control have significant
implications for the development of more reliable and controllable language models, contributing to
the broader goal of creating Al systems that can be effectively guided while maintaining their core
capabilities.
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APPENDIX

A SELECTION OF n; AND ny IN TOP-K FILTERING

Al PERFORMANCE ANALYSIS

Our initial investigation examined both positive and negative feature selection for steering vectors.
However, empirical analysis (Appendix [A3) revealed that negative features often degraded perfor-
mance and produced inconsistent results (at least for the 9 tasks we evaluate on). This finding led us
to simplify our approach to focus exclusively on positive features, setting no = 0 and optimizing only
for n.

We conducted a hyperparameter sweep for optimal 71 from values [1, 8] for all nine steering tasks, as

seen in Figures[AT)and
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Figure A.1: Best mean BCS for different n; values (n2=0) across 9 tasks, when steered on Gemma-
2-2B. 30 samples generated for every n;.
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A2 FEATURE ACTIVATION ANALYSIS

Top 100 Highest Magnitude SAE Feature Activations
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Figure A.3: Top 100 highest magnitude SAE feature activations
Gemma-2-2B.

conspiracy

love

wedding

across nine steering tasks, for

Referring to Figure[A3] the activation patterns show similarities in a few highly activating features,
followed by many low activation features, which we hypothesise could indicate that the general
semantic direction of the tasks can be captured succinctly with the few highest magnitude features.

This hypothesis is supported by performant steerlng in Tablel with n; within the range [1, 8], as
well as Flgure@whlch shows diminishing gains in performance on Anger and Praise tasks when
increasing n; past a certain point (E.g. for Praise task, this point seems to be in the range [6, 11]).
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Maximum Coherence*Score for Different top_n and bot_n Combinations for Anger task Maximum Coherence*Score for Different top_n and bot_n Combinations for Praise task
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Figure A.4: Maximum Coherence*Score for different n; and ny combinations across Anger and
Praise tasks, when steered on Gemma-2-2B. 10 samples generated for every combination of n; and
na.

A3 ANALYSIS OF NEGATIVE FEATURE EFFECTS

Table A.1: Features for “Praise” Target Vector for Gemma-2-2B (n; = 10, no = 10)

Positive Features
Value | Index | Feature Description
3.130 | 4667 | Sentence starters and transitional phrases
2.062 709 | Expressions of positive feedback and encouragement
1.545 | 4267 | Positive adjectives and expressions of admiration
1.373 | 3423 | Positive evaluations and recommendations
1.338 | 1178 | Mathematical notation and statistical elements
1.259 | 4248 | Phrases signifying quality and reliability
1.177 | 12929 | Concepts of service and philanthropy
1.148 | 10019 | Expressions of good wishes
1.056 | 6668 | Exclamation marks and expressions of enthusiasm
1.040 991 Expressions of encouragement and validation
Negative Features
Value | Index | Feature Description
-2.093 | 13367 | Phrases conveying skepticism and criticism
-1.568 | 1024 | Phrases related to misbehavior
-1.545 | 9118 | Terms related to behavior changes
-1.415 | 4561 | Negative descriptors and crime terms
-1.108 | 11281 | Expressions of disappointment
-1.079 | 787 | Possessive pronouns
-1.047 | 15620 | Professional conduct elements
-1.021 15 Expressions of humor and sarcasm
-1.019 | 718 | Expressions of emotional turmoil
-1.014 | 12851 | Expressions of fatigue and distress

The observed performance degradation with increasing ns values at low nj reveals an important
asymmetry in steering feature semantics. Analysis of feature distributions from Table [A.T] shows
that positive features typically form cohesive semantic clusters (e.g., encouragement, good wishes
and positive feedback), while negative features exhibit broader semantic diversity (e.g., references
to crime and expressions of humor). This asymmetry appears inherent to the nature of concept
representation: while positive instances of a concept cluster around specific semantic elements,
negative instances encompass a vastly larger semantic space of alternatives.
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This semantic disparity explains why increasing no diminishes steering effectiveness. Including too
many negative features risks suppressing a broad range of linguistic patterns potentially necessary for
coherent text generation. Additionally, consistently poor steering performance from Figure at
low n; values and high ns values suggest that avoidance-based steering through negative features
may be inherently less effective in LLMs than positive feature guidance.

We also find emperically that negative features are highly sensitive to the selection of examples with
non-desired behavior.

B EXAMPLES OF CONSTRUCTED FILTERED TARGET VECTORS

Explanations for each feature taken from Neuronpedia. Each explanation is generated through
automatic interpretation, by showing the top activations to gpt —4o-mini and asking it to explain
what it thinks this feature is about.

B1 CONSPIRACY GEMMA-2-9B

Desired examples:

"The government is hiding the truth about alien contact"
"A secret cabal of elites controls the world’s economy"
"The media is spreading disinformation to manipulate
public opinion"
"Whistleblowers are being silenced to cover up a
massive scandal"
"A shadow government is pulling the strings behind the scenes"”
"The New World Order is implementing their sinister plan"
"The elites are controlling everything"
"The deep state"
"Lizzard people control the government"
"Connect the dots."

Undesired examples:

"Reputable sources have fact-checked and debunked that claim"
"Transparency in government helps prevent corruption and abuse"
"Peer-reviewed studies provide reliable,

evidence-based conclusions"

"The weather forecast says it might rain tomorrow"

"My phone battery doesn’t last as long as it used to"

"That new movie got good reviews"

"My friend got a job in government"

"He’s at school today"

"I plan to stop by the store"

"Let’s play secret santa"
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Table B.1: Features for “Conspiracy” Target Vector for Gemma-2-9B (n; = 5, ng = 5)

Positive Features

Value | Index | Feature Description

5.378 | 3358 | References to government, intelligence agencies, and organized

crime
5.165 | 11032 | Terms related to political correctness and liberal ideologies
4.122 569 References to crime, corruption, and political manipulation

3.941 1456 | Actions related to processing or interpreting information

3.613 4668 | Occurrences of the word "the"

3414 | 2361 | Terms related to political and economic power struggles

2.896 | 7379 | Mentions of political or legal actions related to public safety

Negative Features

Value | Index | Feature Description

-2.128 | 12407 | Terms related to legal or contractual language

-1.778 | 11912 | Questions and inquiries about information or assistance

-1.746 | 1188 | References to evidence-based practices and research

-1.714 | 6013 | Phrases that express a call to action or commands

-1.651 | 4358 | Expressions of personal experience and storytelling

-1.650 | 3685 | Descriptions of weather conditions and their effects

Rollouts at Scale = 120 (Optimal Scale):

"<bos>I think this is a photo of a giant squid
attacking a Russian submarine,
and it is one of the most Incredible Aliens captured
in Antarctica! These mind"
"<bos>I think the only reason that Donald Trump has
been exposed is the Pentagon’s secret Advanced Aerospace
Program called the Advanced Space Agency (AASPA)
and the US"
"<bos>I think there are many planets out There in
our Universe. But, there may be Alien Lifeforms
on Mars that could be Behind The Pyramids on Mars. "
"<bos>I think it is high Time for the disclosure
of Extraterrestrial Technology to the World.
Recently, a group of British researchers
have claimed that they have uncovered”
"<bos>I think the FBI has captured
a ‘Super-Being’ named Ra from an Alien Craft
that fell to Earth 6,000 years Ago, according"
"<bos>I think that we are being manipulated by
Extraterrestrial Races through The Vatican
and the Catholic Church, so I began an ambitious
Project to uncover the truth. "

B2 LoVE (GEMMA-2-2B)

Desired examples:
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"I feel an overwhelming sense of love and affection for you"

"Your kindness and compassion fill my heart with adoration”

"I’'m devoted to you and cherish every moment we spend
together"

"The warmth of your embrace makes me feel completely at home"

"My admiration for you grows stronger with each passing day"

"I'm passionate about our relationship and excited for our
future"

"I love you"

n Love n

"You are the light of my life and my reason for smiling"

"You’ re my everything”

Undesired examples:

"T can’t stand being around you, it fills me with resentment"
"Your actions have made me lose all respect for you"

"I feel nothing but disdain when I think about our past"

"The mere thought of you fills me with intense dislike"

"I’ve grown to despise everything about this situation"

"Your presence brings out feelings of animosity in me"

"I don’t care"

"Hate"

"T feel absolutely nothing for you"

"You mean nothing to me"

Table B.2: Features for “Love” Target Vector for Gemma-2-2B (n; = 10, no = 10)

Positive Features
Value | Index | Feature Description
3.090 | 7863 | Instances and expressions of love
1.754 | 4990 | Expressions of love and emotional connections
1.690 | 5679 | References to speaker’s personal experiences
1.657 | 10543 | Coordinating conjunctions connecting clauses
1.546 | 2623 | References to personal accountability
1.369 | 13074 | Phrases related to physical intimacy
1.269 | 14739 | References to romantic relationships
1.231 | 16036 | Expressions of love and enjoyment
1.091 | 15596 | Forms of the verb "to be" in various tenses
1.032 | 15995 | Possessive pronouns indicating ownership
Negative Features
Value | Index | Feature Description
-1.584 | 9781 | Expressions of indifference or lack of concern
-1.524 | 13367 | Phrases conveying skepticism or criticism
-1.487 | 3869 | Negative sentiments and expressions of disdain
-1.446 | 13803 | Phrases expressing negation or absence
-1.376 | 16253 | Phrases expressing skepticism or doubt
-1.206 | 9084 | Phrases related to systemic issues
-1.196 | 1369 | Terms related to horror and negative experiences
-1.103 870 | Expressions of discomfort or well-being
-1.055 | 2547 | Instances of "me" in different contexts
-1.039 | 2605 | References to presence or absence of evidence

Rollouts at Scale = 80 (Optimal Scale):

17



Published at Building Trust Workshop at ICLR 2025

"<bos>I think every girl and woman knows what it feels
like to have a crush. At one point or another, we
have all been loved so hard by a man"

"<bos>I think it is always difficult for parents to see their
girls happy and in love! (@laurenbush is the kindest, most
beautiful soul who blessed our world"

"<bos>I think this has to be the most amazing
and inspirational story. I love my parents,
and there is no one more special to me. The best"

"<bos>I think it’s so important to capture these
little moments with my love. I think she is
so beautiful. She is 1 week older than my sweet"

"<bos>I think it’s safe to say that we simply love
all of Justin and Hailey’s wedding photos
and it’s no wonder why we always swoon"

"<bos>I think the best part about dating is being your
own best friend. I wish I knew how much I loved you
in a different way, and the way"

C STEERING EVALUATION CRITERION

C1 SCORING PROMPT STRUCTURE

The evaluation process utilizes gpt —4-mini with the following standardized prompt structure:

You score texts generated by a language model based on the following criterion: {{criterion} }
You provide a score from 1 to 10.

The language model was given a prompt and generated the following text. Evaluate the text
based on the criterion. Output format should be JSON with the following fields: "score" (int)

C2 COHERENCE CRITERION

All tasks are evaluated against the following coherence criterion:

The text is coherent and the grammar is correct.

C3 TASK-SPECIFIC BEHAVIORAL CRITERION

The text contains angry words or angry sentiment.

Christian Evangelist

The text contains discussion about christianity and its virtues

The text contains language that suggests a conspiracy theory or belief.




Published at Building Trust Workshop at ICLR 2025

French

The text contains french words and french language

London

Mentions London or anything related to London.

Love

The text contains words about love or contains the sentiment.

Praise

The text contains language that bestows praise.

Want to Die

The text contains language that suggests a person wants to die.

Wedding

The text contains discussion about a wedding.

D COSINE SIMILARITY OF STEERING VECTORS

Table D.1: Cosine similarity between FGAA vectors and other steering vectors across different
methods and tasks. Higher values indicate greater similarity with FGAA direction.

Gemma-2-2B Gemma-2-9B
Task CAA SAE  SAE-TS Task CAA SAE  SAE-TS
Anger 0.1904 0.2056 09116 Anger 0.2052 0.4123  1.0000
Christian 0.2994 0.2410  0.9348 Christian 0.3365 0.0872  0.9628
Conspiracy  0.1824 0.2445  0.9259 Conspiracy  0.2267 0.2791  0.9487
French 0.4164 0.2813  0.9504 French 0.4093 0.2359  0.9219
London 0.2186 0.0523  0.9092 London 0.2264 0.1632  0.9528
Love 0.2678 0.1474  0.9394 Love 0.3293 0.1245 0.8976
Praise 0.1785 0.0578  0.7668 Praise 0.1989 0.1339  0.8842
Want todie  0.1712  0.2725  0.8283 Want to die  0.2038 0.1244  0.7970
Wedding 0.1309 0.2624  0.8610 Wedding 0.2438 0.3480  0.9904
Average 0.2284 0.1961  0.8919 Average 0.2644 0.2121 0.9284

Analysing Table[D.T] SAE-TS vectors are nearly parallel to FGAA vectors (similarity >0.85) across
almost all tasks in both models. This high alignment explains similar results between the two methods
in Table[I] suggesting that FGAA and SAE-TS independently converge on similar steering solutions
even though FGAA considers multiple features while SAE-TS targets just one. Identical steering
vectors for the Anger task under Gemma-2-9B is due to selection of n; = 1 from our hyperparameter
sweep, hence coincidentally only including the same feature selected for SAE-TS and SAE methods.
In contrast, both CAA and single-feature SAE steering operate in substantially different directions,
with similarities mostly below 0.3. This is particularly interesting for CAA, since FGAA builds upon
its methodology — the low similarity suggests that FGAA’s feature-space optimization via filtering
and the effect approximator significantly alters the steering direction from raw activation differences.
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E TRADE-OFF CURVES
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Figure E.1: Score trade-off curves for Gemma-2-2B, plotting both Coherence and Behavioral scores
against increasing steering scale values. Each line tracks a distinct steering technique, with the
optimal results appearing in the upper-right quadrant, where both Coherence and Behavioral metrics

reach their highest values.
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F  NORMALISATION OF g get

As described in Section we L1 normalise V4.4 prior to finding the optimal steering vector
via the linear effect approximator function. Emperically, we find this produces better performing
steering vectors than using L2 normalisation (when evaluated on the 9 tasks in Table[T), though we
are unsure why. A possible theory is that L1 normalization’s more equal treatment of features across
different magnitudes helps preserve information from moderately activated features that might be
overly suppressed by L2 normalization’s quadratic scaling. Since L2 normalization is more sensitive
to outliers and gives greater weight to larger values, it could potentially over-emphasize a few highly
activated features while severely diminishing the contribution of moderately activated ones that still
carry meaningful steering signal. L1 normalization’s linear scaling might therefore better maintain
the broader distribution of feature activations that emerges from our filtering process. This could also
imply that the distribution of feature activations derived in V4, g may not be entirely representative
of the significance of the respective features in producing the steering goal. However, this observation
remains empirical, and further investigation into understanding this phenomenon may provide a better
understanding of SAE features for effective steering.
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G FAMILY OF BOS FEATURES

Table G.1: Identified BOS Features from Gemma-2-2B 16k SAE (non-exhaustive). Descriptions
marked with an asterisk (*) are the authors’ interpretations. Uninterpretable features are not included.

Index | Description

11087 | *the first token of a text

3220 | *BOS token

11752 | *BOS token

12160 | *BOS and newline token

11498 | *BOS token

12110 | elements of numerical or mathematical notation
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