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ABSTRACT

Spiking Neural Networks (SNNs) can be energy efficient alternatives to
commonly used deep neural networks (DNNs). Through event-driven information
processing, SNNs can considerably reduce the compute requirements of
DNNs. However, high inference latency is a significant hindrance to their
deployment. Computation over multiple timesteps increases latency and incurs
memory access overhead of fetching membrane potentials, both of which lessen
the energy benefits of SNNs. Hence, latency reduction is pivotal to obtain SNNs
with high energy efficiency. However, reducing latency can have an adverse
effect on accuracy. To obtain solutions which optimize the accuracy-energy-
latency trade-off, we propose an iterative training method which starts with an
SNN of T (T>1) timesteps, and reduces T every iteration of training, with
neuron threshold and leak as trainable parameters. This results in a continuum
of SNNs, starting from an SNN trained with T timesteps, all the way up to unit
latency. We use direct input encoding (analog inputs from pixels) with the first
convolutional layer of the network of leaky integrate and fire (LIF) neurons acting
as spike generator. We choose T=5 as our starting point, since it is the minimum
reported latency to achieve satisfactory performance on ImageNet. Training SNNs
directly with 1 timestep results in convergence failure due to layerwise spike
vanishing and difficulty in finding optimum thresholds. The proposed iterative
training approach overcomes this through enabling the learning of suitable layer-
wise thresholds with backpropagation by maintaining sufficient spiking activity,
starting from T timesteps up to 1. Using the proposed training algorithm, we
achieve top-1 accuracy of 93.05%, 70.15% and 67.71% on CIFAR-10, CIFAR-
100 and ImageNet, respectively with VGG16, in just 1 timestep. Compared to a
5 timestep SNN, the 1 timestep SNN achieves ∼ 5X enhancement in efficiency,
with an accuracy drop of ∼ 1%. In addition, 1 timestep SNNs perform inference
with 5X reduced latency compared to state-of-the-art SNNs, and provide 25-33X
higher energy efficiency compared to DNNs, while being comparable to them in
performance. The proposed method also enables training reinforcement learning
agents on Cartpole and Atari pong environments which infer using 1 timestep.

1 INTRODUCTION
Deep neural networks (DNNs) have revolutionized the fields of object detection, classification and
natural language processing (Krizhevsky et al., 2012; Hinton et al., 2012; Deng & Liu, 2018).
However, such performance boost has been achieved at the cost of extremely energy intensive DNN
architectures (Li et al., 2016). Therefore, edge deployment of such DNNs remains a challenge.
One approach to counter this is to perform model compression using pruning (Han et al., 2015b;
Wen et al., 2016), and data quantization (Courbariaux et al., 2016). An alternative route is using
Spiking Neural Networks (SNNs) (Maass, 1997; Roy et al., 2019), which are bio-inspired learning
frameworks and perform computations using binary spikes instead of analog activations used in
standard networks. In this paper, standard networks are referred to as Analog Neural Networks
(ANNs) in contrast to SNNs that operate with leaky integrate and fire (LIF) neurons having spike
activation. As such, the sparse event-driven nature of SNNs makes them an attractive alternative to
ANNs (Frenkel, 2021), specially for resource-constrained machine intelligence.
The performance of SNNs can be characterized by their accuracy, latency and energy efficiency.
While reducing latency is desirable as it leads to efficiency improvements, significant latency
reduction usually impacts accuracy adversely. Most of the commonly used SNNs use Poisson rate-
coding (Diehl et al., 2015; Sengupta et al., 2019), where the firing rates of the spiking neurons
approximate the analog activation of ANNs. Though rate-coding provides comparable results to
ANNs, it suffers from high inference latency (Sengupta et al., 2019; Han et al., 2020). In rate-
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coding, the discretization error caused by representing analog values with spike-trains is inversely
proportional to the number of timesteps. Hence, a large number of timesteps is usually required
to obtain high performance (Sengupta et al., 2019). However, this requirement of multi-timestep
processing causes twofold challenges in SNNs - (i) too long a latency might be unsuitable for real-
time applications, (ii) the need for accumulation of membrane potential (Vmem) over a large number
of timesteps results in higher number of operations, thereby reducing energy-efficiency. Moreover,
in contrast to standard ANNs, additional memory is required to store the intermediate Vmem and
memory access cost is incurred for fetching Vmem at each timestep. Note, the memory access cost
can be significantly higher compared to floating point add operations (Han et al., 2015a). As a
result, reducing inference latency and energy, while achieving the required accuracy is critical for
widespread deployment of SNNs.
To leverage the full potential of SNNs by optimizing the associated accuracy-energy-latency trade-
offs, we propose an iterative training technique which starts with an SNN of T (T>1) timesteps,
and gradually reduces T at every iteration of training using neuron threshold and leak as trainable
parameters alongside the weights. At each stage of latency reduction, the network trained at previous
stage with higher timestep is used as initialization for subsequent training with lower timestep.
Using such an iterative process, we obtain a continuum of SNNs, starting from an SNN trained with
T timesteps, eventually leading up to unit latency. Iterative training is required since we observe
that training SNNs directly with very few timesteps results in convergence failure due to significant
decay of spiking activity in the deeper layers. In order to perform inference with very low latency,
sufficient spikes must be propagated to the final layer in only a few forward passes. To achieve that,
the layerwise neuron thresholds and membrane leak factors must be adjusted properly such that the
neurons can propagate spikes in just few timesteps. Hence, our approach is to learn the optimum
neuron thresholds and membrane leak factors using backpropagation (BP) for any given timestep,
such that enough spikes are available at the later layers for efficient learning. For our experiments,
a hybrid training method (Rathi et al., 2020) is used, where first an ANN is trained, followed by
ANN-SNN conversion, and SNN training with surrogate gradient based backpropagation (Neftci
et al., 2019). We use direct input encoding (analog inputs from pixels) (Rueckauer et al., 2017)
with the first convolutional layer of the network of leaky integrate and fire (LIF) neurons acting as
spike generator. This method is adopted since direct coding with trainable threshold and leak has
enabled reducing the latency of SNNs significantly (Rathi & Roy, 2020). The starting point of the
proposed iterative latency reduction scheme is chosen to be an SNN trained with T=5 timesteps,
since as per literature, it is the minimum required latency to perform satisfactorily on ImageNet
with SNNs (Rathi & Roy, 2020; Zheng et al., 2021). The proposed gradual latency reduction
scheme enables sufficient spike activity to be maintained till the final layer even for extremely low
latencies (up to 1). Consequently, we obtain a continuum of SNNs with varying latency ranging
from T timesteps (T>1) all the way up to 1 timestep. We validate the performance of the proposed
method on image classification tasks and achieve top-1 accuracy of 93.05%, 70.15% and 67.71% on
CIFAR-10, CIFAR-100 and ImageNet, respectively with VGG16, in just 1 timestep. Furthermore,
we investigate the applicability of our technique to SNN-based reinforcement learning (RL) agents
with low latency. This is important since SNNs can potentially provide RL solutions with high
energy efficiency (Tan et al., 2020), which is pivotal for their real-world deployment. We observe
that the proposed method enables training RL agents on Cartpole and Atari pong environments
which can infer with unit latency while maintaining satisfactory performance.

To summarize, the main contributions of this work are as follows,

• We present an iterative training technique that enables training a continuum of SNNs with varying
latency, starting from T timesteps all the way up to 1; the 1 timestep SNN providing the highest
efficiency and lowest latency but with a slight accuracy drop compared to the T=5 timestep SNN.
To the best of our knowledge, this is the first SNN work to achieve competitive classification
performance (top-1 accuracy of 67.71%) on ImageNet using unit latency.

• Since inference can be performed in a single forward pass, our approach does not require the
memory access cost of accumulated membrane potentials, unlike previously proposed SNNs.
However, the trade-off is a slight accuracy degradation compared to SNNs with higher timesteps.

• One timestep SNNs are able to infer with 5X lower latency compared to state-of-the-art SNNs
(requiring latency of 5 timesteps), while achieving comparable or even better accuracy.

• One timestep inference also provides efficient computation due to low spike rate, resulting in
SNNs which are up to 33X energy efficient compared to ANNs with equivalent architecture.
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• The proposed method enables deep-Q reinforcement learning with 1 timestep SNNs, suitable for
edge deployment, as verified on simple tasks like Cartpole and Atari Pong.

2 RELATED WORKS
ANN-SNN Conversion. A widely used approach for training deep SNNs involves training an ANN
and converting to SNN for finetuning (Cao et al., 2015; Diehl et al., 2015; Sengupta et al., 2019).
To minimize conversion loss, the ANNs are usually trained without bias, batch-norm or maxpooling
layers, though some works bypass these constraints using custom layers (Rueckauer et al., 2017).
Proper layerwise threshold adjustment is critical to convert ANNs to SNNs successfully. One
approach of threshold balancing is to choose the layerwise thresholds as the maximum pre-activation
of the neurons (Sengupta et al., 2019). While such assignment provides high accuracy, the associated
drawback is high inference latency (about 1000 timesteps). Alternatively, Rueckauer et al. (2017)
suggest choosing a certain percentile of the pre-activation distribution as the threshold to reduce
inference latency and improve robustness. However, these conversion based methods (Rueckauer
et al., 2017; Han et al., 2020) still require few hundred timesteps to perform satisfactorily.
Backpropagation from Scratch and Hybrid Training. An alternate route of training SNNs
with reduced latency is learning from scratch using backpropagation (BP). To circumvent the non-
differentiability of the spike function, surrogate gradient based optimization has been proposed
(Neftci et al., 2019) to implement BP in SNNs (Huh & Sejnowski, 2018; Lee et al., 2020). Zenke &
Ganguli (2018) propose surrogate gradient based BP on membrane potential. Shrestha & Orchard
(2018) perform BP based on the gradients calculated using the difference between the membrane
potential and the threshold. In Wu et al. (2018), BP is performed on SNNs with a surrogate gradient
defined on the continuous-valued membrane potential. Overall, surrogate-gradient based BPTT
training has resulted in SNNs with high accuracy, but the training is compute intensive compared to
conversion techniques and the latency is still significant (∼100-125 timesteps). Rathi et al. (2020)
propose a hybrid approach where a pre-trained ANN is used as initialization for subsequent surrogate
gradient based SNN learning. Such a hybrid approach improves upon conversion by reducing
latency and speeds up convergence of direct BP from scratch method.
Temporal Encoding. Temporal coding schemes such as phase (Kim et al., 2018) or burst (Park
et al., 2019) coding attempt to capture temporal information into the spike trains; a related method
is time-to-first-spike (TTFS) coding (Park et al., 2020), where each neuron is allowed to spike just
once. While such input coding techniques enhance computational efficiency by reducing the spike
count, the high latency issue persists and incurs high memory access overhead.
Direct Encoding. The analog pixels are directly applied to the 1st layer in direct encoding
(Rueckauer et al., 2017; Rathi & Roy, 2020; Zheng et al., 2021). Using direct coding and utilizing
the first layer as spike generator, Rathi & Roy (2020) achieve competitive performance on ImageNet
with 5 timesteps. Threshold-dependent batch normalization is employed with direct encoding by
Zheng et al. (2021) to obtain high performing SNNs on ImageNet with 6 timesteps. Inspired by
such performance, we adopt the direct encoding method. However, even with direct coding, it has
been challenging for state-of-the-art SNNs (Rathi & Roy, 2020; Zheng et al., 2021) to infer with unit
latency while maintaining high performance on complex datasets, which we aim to address here.
3 BACKGROUND
Spiking Neuron Model. The LIF neuron model (Hunsberger & Eliasmith, 2015) is described as-

τm
dU

dt
= −(U − Urest) +RI, U ≤ Vth (1)

where U , I , τm, R, Vth and Urest denote membrane potential, input representing weighted sum of
spikes, time constant for membrane potential decay, leakage path resistance, firing threshold and
resting potential, respectively. We employ a discretized version of Eqn. 1 given as-

uti = λiu
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where u is the membrane potential, subscripts i and j represent the post and pre-neuron, respectively,
t denotes timestep, λ is the leak constant= e

−1
τm , wij represents the weight between the i-th and j-

th neurons, o is the output spike, and v is the threshold. As indicated by Eqn. 2, we implement a
soft-reset, so, u is reduced by v upon crossing the threshold. The detailed methodology of training
SNN with a certain inference timestep is provided in appendix section A.1. In particular, Algorithm
2 depicts the training scheme for one iteration.
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Figure 1: (a) Schematic of an SNN with dynamics shown for yellow neuron with x as input and y
as output, (b) No output spike for direct transition from 5 to 1 timestep, (c) Output spike in just 1
timestep through Vth/w lowering, (d) Layerwise spike rates, Tx represents a converged SNN with
‘x’ timestep, Tx y represents an SNN with ‘x’ timestep initialized with a ‘y’ timestep trained SNN.

4 PROPOSED LATENCY REDUCTION METHOD
The starting point of our training pipeline follows the proposed methodology in Rathi & Roy
(2020), difference being we utilize batch-norm (BN) during ANN training and subsequently the
BN parameters are fused with the layerwise weights as done in Rueckauer et al. (2017). With
this pretrained ANN, the weights are copied to an iso-architecture SNN and we select the 90.0
percentile of the pre-activation distribution at each layer as its threshold. Then the SNN is trained for
T timesteps (T> 1) using BP which serves as our baseline; training steps are detailed in Algorithm
2. Our starting point is a T=5 timesteps trained network, since it is lowest latency that previous
works have reported for SNN ImageNet training (Rathi & Roy, 2020; Zheng et al., 2021) with high
performance. Going below 5 results in convergence failure due to spike vanishing at deeper layers.
Direct Inference with Unit Timestep. As mentioned in Section 1, our goal is to obtain SNNs
with unit latency to harness the maximum efficiency possible. To that effect, next we explore the
feasibility of directly reducing latency from T=5 to 1. Fig. 1(a) schematically depicts an SNN with
3 neurons (one per layer), we focus on the yellow neuron. Suppose it receives x as input and y is its
output. With the weight (w) and threshold (Vth) trained for 5 timesteps, there is enough accumulation
of membrane potential (Vmem) to cross Vth and propagate spikes to next layer within that 5 timestep
window. However, when we try to perform inference with 1 timestep (Fig. 1(b)), there is no output
spike as the Vmem is unable to reach Vth instantly. Hence, w and Vth need to be adjusted such that
information can propagate even within 1 step. However, balancing the thresholds properly is critical
for SNNs to perform well. If Vth is too high, spikes vanish, but lowering Vth too much results in
too many spikes, leading to unsatisfactory performance (Zheng et al., 2021). Hence, our goal is
adjusting Vth/w through learning using BP, so that only neurons salient for information propagation
are able to spike in 1 timestep (Fig. 1(c)), while other neurons remain dormant.
Direct Transition to Training with Unit Timestep. Next, we begin training with 1 timestep
initialized with the 5 timestep trained SNN, however, the network fails to train. To investigate
this, we plot the layerwise spike rates for a VGG16 on CIFAR10 in Fig. 1(d). For the rest of this
paper, with Tx and Tx y, we denote converged SNN with ‘x’ timestep and an SNN with ‘x’ timestep
initialized with a ‘y’ timestep trained SNN, respectively. While T5 has sufficient spiking activity till
final layer, for T1 5, spikes die out in the earlier layers. Due to such spike vanishing, all outputs at
the end layer are 0, thus BP fails to start training. This happens since the initial Vth and w are trained
for 5 timesteps, so the drastic transition to 1 timestep hinders spikes to propagate till the end.
Gradual Latency Reduction. To mitigate the above issue, we adopt a gradual latency reduction
approach. We observe that for T3 5, though layerwise spike activity decays significantly, there is
still some spikes that reach the final layer. Hence, we start training with 3 timesteps using T5 as
initialization and training is able to converge through BP. The spiking activity is recovered when
learning converges as shown in Fig. 1(d), case T3. Subsequently, we train a network with just 1
timestep by initializing it with T3, and successfully attain convergence. The results for this case is
shown as T1 in Fig. 1(d). Motivated by these observations, we propose an iterative initialization and
retraining method which enables training a continuum of SNNs starting from T timesteps (T> 1) up
to 1. A pseudo-code of training is given in Algorithm 1. Beginning with T5, we gradually reduce
the latency by 1 at each step and train till convergence. While training with a certain latency, the
network is initialized with the higher timestep network trained at previous training stage.
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Table 1: Top-1 classification accuracy (%), Tx denotes SNN with ‘x’ timestep

Architecture Dataset ANN T5 T4 T3 T2 T1
VGG6 CIFAR10 91.59 90.61 90.52 90.40 90.05 89.10

VGG16 CIFAR10 94.10 93.90 93.87 93.85 93.72 93.05
ResNet20 CIFAR10 93.34 92.62 92.58 92.56 92.11 91.10
VGG16 CIFAR100 72.46 71.58 71.51 71.46 71.43 70.15

ResNet20 CIFAR100 65.90 65.57 65.37 65.16 64.86 63.30
VGG16 ImageNet 70.08 69.05 69.03 69.01 68.62 67.71

Algorithm 1 Pseudo-code of training.

Input: Trained SNN with N timesteps (TN ),
timesteps reduced per reduction step (b),
number of epochs to train (e)
Initialize: new SNN initialized with trained
parameters of TN , reduced latency Tr = N−b
while Tr > 0 do

// Training Phase
for epoch← 1 to e do

//Train network with Tr timesteps using
algorithm 2

end for
// Initialize another iso-architecture SNN
with parameters of above trained network
// Timestep reduction
Tr = Tr − b

end while

Latency Reduction as Form of Compression.
SNNs with multiple timesteps are trained with
BP through time (BPTT) (Neftci et al., 2019),
like RNNs. If we unroll SNNs in time,
it becomes obvious that each timestep adds
a hidden state to a spiking neuron. Thus,
reducing latency compresses the SNNs in the
temporal axis and the eventual unit timestep
network consists of a single forward pass, with
no internal states. From a related perspective,
we can perceive gradual latency reduction as
sequential temporal distillation, where at each
step, the network with higher timesteps acts
as the teacher, while the student network
with reduced latency learns from it. Similar
sequential distillation (training by generations)
has been implemented in ANNs (Furlanello
et al., 2018; Yang et al., 2019) to obtain better
performing students. However, in our case, there is no explicit distillation loss and the sequential
training is a requirement for convergence instead of being just a performance enhancement tool.
Also, unlike ANN sequential distillation, the student architecture remains same spatially throughout
all generations in the proposed method and compression occurs in the temporal domain of SNNs.

5 EXPERIMENTS AND RESULTS

Datasets and Models. We perform experiments on CIFAR10, CIFAR100 and ImageNet using
VGG16 and ResNet20, with some studies involving VGG6. The proposed method is also evaluated
on reinforcement learning (RL) using Cartpole and Atari-pong. Appendix A.2 includes architectural
details and training hyper-parameters. The code is submitted as part of the supplementary material.
Results on CIFAR and ImageNet. The experimental results using the proposed scheme for CIFAR
and ImageNet datasets are shown in Table 1. We achieve top-1 accuracy of 93.05% and 70.15%
on CIFAR-10 and CIFAR-100, respectively using VGG16 architecture, with just 1 timestep (T1);
results with ResNet20 are also shown in the Table. Next, to investigate the scalability of the proposed
algorithm, we experiment with ImageNet where we obtain 67.71% top-1 accuracy with T1. As we
sequentially reduce the timestep from 5 to 1, there is a slight accuracy degradation, however that
is due to the inherent accuracy versus latency trade-off in SNNs. Notably, the proposed technique
allows us to bring the SNN latency down to lowest possible limit (1 timestep) while maintaining
comparable accuracy to corresponding ANN as well as the 5 timestep SNN. Additionally, this
provides the option to choose the SNN model suitable for application in hand from a range of
timesteps; if latency and efficiency is the priority, T1 would be preferred, albeit with slightly lower
accuracy compared to T5.
Performance Comparison. Next, we compare our performance with different state-of-the-art
SNNs in Table 2. T1 SNN performs better than or comparably to all these methods, while achieving
significantly lower inference latency. In particular, note that previously it was challenging to
obtain satisfactory performance with low latency on ImageNet, with lowest reported latencies of
5 (Rathi & Roy, 2020) and 6 (Zheng et al., 2021). In contrast, we report 67.71% top-1 accuracy
on ImageNet using T1. Furthermore, Wu et al. (2019b) achieve 90.53% accuracy on CIFAR-10
using 12 timesteps with direct input encoding (similar to us), but the proposed method enables us
to obtain 93.05% accuracy on CIFAR-10 using T1. For CIFAR100, Rathi & Roy (2020) report
69.67% accuracy with 5 timesteps, whereas T1 achieves 70.15%. Overall, T1 SNN demonstrates
5-2500X improvement in inference latency compared to other works while maintaining iso or better
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Table 2: Comparison of T1 SNN to other reported results. SGB, hybrid and TTFS denote surrogate-
gradient based backprop, pretrained ANN followed by SNN fine-tuning, and time-to-first-spike
scheme, respectively and (qC, dL) denotes an architecture with q conv layers and d linear layers.

Reference Dataset Training Architecture Accuracy(%) Timesteps
(Hunsberger & Eliasmith, 2015) CIFAR10 Conversion 2C, 2L 82.95 6000

(Cao et al., 2015) CIFAR10 Conversion 3C, 2L 77.43 400
(Sengupta et al., 2019) CIFAR10 Conversion VGG16 91.55 2500

(Lee et al., 2020) CIFAR10 SGB VGG9 90.45 100
(Rueckauer et al., 2017) CIFAR10 Conversion 4C, 2L 90.85 400

(Rathi et al., 2020) CIFAR10 Hybrid VGG9 90.5 100
(Park et al., 2020) CIFAR10 TTFS VGG16 91.4 680
(Park et al., 2019) CIFAR10 Burst-coding VGG16 91.4 1125
(Kim et al., 2018) CIFAR10 Phase-coding VGG16 91.2 1500
(Wu et al., 2018) CIFAR10 SGB 2C, 2L 50.7 30

(Wu et al., 2019b) CIFAR10 SGB 5C, 2L 90.53 12
(Wu et al., 2019a) CIFAR10 Tandem Learning 5C, 2L 90.98 8

(Zhang & Li, 2020) CIFAR10 SGB 5C, 2L 91.41 5
(Rathi & Roy, 2020) CIFAR10 Hybrid VGG16 92.70 5
(Zheng et al., 2021) CIFAR10 STBP-tdBN ResNet-19 93.16 6

This work (T1) CIFAR10 Hybrid VGG16 93.05 1
(Lu & Sengupta, 2020) CIFAR100 Conversion VGG15 63.2 62

(Rathi et al., 2020) CIFAR100 Hybrid VGG11 67.9 125
(Park et al., 2020) CIFAR100 TTFS VGG16 68.8 680
(Park et al., 2019) CIFAR100 Burst-coding VGG16 68.77 3100
(Kim et al., 2018) CIFAR100 Phase-coding VGG16 68.6 8950

(Rathi & Roy, 2020) CIFAR100 Hybrid VGG16 69.67 5
This work (T1) CIFAR100 Hybrid VGG16 70.15 1

(Sengupta et al., 2019) Imagenet Conversion VGG16 69.96 2500
(Rueckauer et al., 2017) Imagenet Conversion VGG16 49.61 400

(Rathi et al., 2020) Imagenet Hybrid VGG16 65.19 250
(Wu et al., 2019a) Imagenet Tandem Learning AlexNet 50.22 10

(Lu & Sengupta, 2020) Imagenet Conversion VGG15 66.56 64
(Rathi & Roy, 2020) Imagenet Hybrid VGG16 69.00 5
(Zheng et al., 2021) Imagenet STBP-tdBN ResNet-34 67.05 6

This work (T1) Imagenet Hybrid VGG16 67.71 1

classification performance. Table 2 also demonstrates the gradual progression of SNN training from
ANN-SNN conversion to T1 SNN. Initial ANN-SNN conversion methods required latency on the
order of thousands (Sengupta et al., 2019; Hunsberger & Eliasmith, 2015). Surrogate-gradient
based BP (Wu et al., 2019b; Lee et al., 2020) reduced it to few tens to hundred, but scaling up
to ImageNet was challenging. Hybrid training (Rathi et al., 2020) combined these two methods
to bring the latency down to few hundreds on ImageNet. Subsequently, direct input encoding
enabled convergence on ImageNet with latency of ∼ 5 (Rathi & Roy, 2020; Zheng et al., 2021).
The proposed method leverages all these previously proposed techniques and improves upon them
by incorporating the sequential training approach to obtain unit latency. We also achieve better
performance compared to different SNN encoding schemes such as TTFS (Park et al., 2020), phase
(Kim et al., 2018), burst (Park et al., 2019); detailed comparison is provided in Appendix A.3.
Inference Efficiency. Next, we compare the energy efficiency of T1 SNNs with ANNs and multi-
timestep SNNs. In SNNs, the floating-point (FP) additions replace the FP MAC operations. This
results in higher compute efficiency as the cost of a MAC (4.6pJ) is 5.1× to an addition (0.9pJ)
(Horowitz, 2014) in 45nm CMOS technology (as shown in Fig. 2(e)). Appendix A.4 contains the
equations of computational cost in the form of operations per layer in an ANN, #ANNops. For an
SNN, the number of operations is given as #SNNops, q = spike rateq × #ANNops, q; spike rateq
denoting the average number of spikes per neuron per inference over all timesteps in layer q. The
layerwise spike rates across T5 to T1 are shown in Fig. 2(a-c). Note, the spike rates decrease
significantly with latency reduction from 5 to 1, leading to considerably lower operation count in T1
compared to T5. The overall average spike rates using T1 for CIFAR-10, CIFAR-100 and ImageNet
on VGG16 are 0.13, 0.15 and 0.18, respectively; all significantly below 5.1 (relative cost of MAC
to addition), indicating the energy benefits of T1 SNN over the corresponding ANN. The first layer
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Figure 2: Layerwise spike rates for a VGG16 across T5 to T1 (average spike rate in parenthesis) on
(a) CIFAR10, (b) CIFAR100, (c) ImageNet, (d) relative cost of compute between ANN and T1, (e)
operation-wise energy consumption in 45nm CMOS technology (Horowitz, 2014).

with direct input encoded SNNs receive analog inputs, hence the operations are same as an ANN at
this layer. Considering it, we compute the compute energy benefits of T1 SNN over ANN, α as ,

α =
EANN

ESNN
=

∑L
q=1 #ANNops,q ∗ 4.6

# SNNops,1 ∗ 4.6 +
∑L
q=2 # SNNops,q ∗ 0.9

. (4)

The values of α for different datasets and architectures are given in Fig. 2(d). For VGG16, we obtain
α of 33.0, 29.24 and 24.61 on CIFAR-10, CIFAR-100 and ImageNet, respectively. Besides compute
energy, another significant overhead in SNNs occurs due to memory access costs which can be
significantly higher (Han et al., 2015a) compared to FP adds as shown in Fig. 2(e). In multi-timestep
SNNs, weights and membrane potentials have to be fetched at every timestep, incurring significant
data movement cost. However, most previous works (Park et al., 2020; Rathi & Roy, 2020; Zheng
et al., 2021; Rathi et al., 2020) did not consider this cost while comparing the energy benefits of
SNN to ANN. To obtain a fairer comparison, we analyze the costs taking the memory access issue
into consideration. For multi-timestep SNNs, in addition to the weights, Vmem needs to be stored
and fetched at each timestep for all neurons, unlike ANNs. However, the memory requirements
for T1 SNNs are same as ANNs; T1 SNNs neither require any extra memory to store Vmem for
future timesteps, nor do they have any extra memory accesses compared to ANNs as inference is
single shot. The actual improvements in energy due to this depends on the hardware architecture
and system configurations. Hence, we compare the reduction in terms of number of memory access.
For a VGG16, the proposed T1 reduces the number of memory accesses by 5.03× compared to 5
timestep SNN of Rathi & Roy (2020). More generally, our scheme with T1 reduces the number of
memory accesses by approximately T× compared to an SNN trained with T timesteps.

Table 3: Comparison of T1 SNN to ANNb

Reference Dataset Accuracy(%)

(Sakr et al., 2018) CIFAR10 89.6

(Bengio et al., 2013) CIFAR10 85.2

(Deng & Gu, 2020) CIFAR10 91.88
This work (T1) CIFAR10 93.05

(Deng & Gu, 2020) CIFAR100 70.43
This work (T1) CIFAR100 70.15

Comparison with binary activated ANNs. A
key distinction between ANNs and SNNs is
the notion of time. However, T1 SNN and
ReLU activated ANN both infer in single shot,
difference being the neuronal functionality
and output precision. This difference reduces
further with ANNs using binary activations
(ANNb) which also have 0/1 output and full
precision weights, like SNNs. Thus, it is
interesting to compare the performance of T1
SNN and ANNb as shown in Table 3. We
observe that T1 SNN outperforms other ANNb approaches in most cases; our results are slightly
lower on CIFAR100 compared to Deng & Gu (2020), however in their case, the ANN output is
thresholded to saturate at 2, but the values are analog. Note, in all cases, weights are full precision.
Efficacy of iterative training with shallow networks. As mentioned in section 4, gradual training
is required due to spike vanishing at later layers for deep SNNs if direct transition from T5 to
T1 is attempted. However, for shallow networks, if there is some propagation of spikes till the
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Table 4: Accuracy(%) on
CIFAR10 with VGG6

T VGG6g VGG6d
5 90.61 90.15
4 90.52 90.08
3 90.40 89.91
2 90.05 89.35
1 89.10 88.64

Table 5: Accuracy(%) with VGG16, D BN and D nBN denote dataset
D with and without batch-norm respectively

T CIFAR10 BN CIFAR10 nBN CIFAR100 BN CIFAR100 nBN
5 93.90 92.15 71.58 69.86
4 93.87 91.95 71.51 69.84
3 93.85 91.90 71.46 69.76
2 93.72 91.88 71.43 69.30
1 93.05 91.03 70.15 67.76

end, training with T1 following direct conversion from ANN might be possible. To validate this,
we experiment with a VGG6 on CIFAR10 and the results are shown in Table 4. In this table,
VGG6g denotes networks trained with gradual latency reduction and VGG6d denotes networks
directly converted from ANN and trained using that particular timestep, so the result in the last row
of Table 4 is obtained by converting an ANN to SNN and directly training with 1 timestep. We
observe that proposed gradual training scheme provides slightly higher accuracy compared to direct
training in case of shallower networks, though it increases the training overhead. This is consistent
with ANN domain results (Furlanello et al., 2018; Han et al., 2015b), where the authors achieve
better performing networks using sequential model compression compared to direct compression.
Proposed method with and without batch-norm. Recent works have achieved low latency by
adopting batch-normalization (BN) suitably in SNNs (Zheng et al., 2021; Kim & Panda, 2020). To
disentangle the effect of BN from the proposed gradual latency reduction scheme and ensure that
achieving convergence with 1 timestep is orthogonal to using BN, we perform ablation studies as
shown in Table 5. For both CIFAR10 and CIFAR100, we are able to perform training with T5 to
T1 irrespective of using BN during ANN training. Using BN enhances accuracy, but sequential
latency reduction can be performed independently from it. Also, Zheng et al. (2021) report that
using threshold-dependent BN allows reducing latency up to a minimum of 6 timesteps, but we can
go up to 1. Note, in our case, BN is used only during ANN training and the BN parameters are fused
with the weights during ANN-SNN conversion as proposed in Rueckauer et al. (2017); BN is not
used in SNN domain training, so the activations at the output of each layer remain binary.
Skipping intermediate latency reduction steps. Since the proposed scheme increases training
overhead due to sequential retraining, it is worth investigating if this cost can be reduced by skipping
in between latency reduction steps. To that effect, we experiment with 2 cases- (i) training T5
followed by T3 5, followed by T1 3, (ii) including all intermediate latencies with the sequence- T5,
T4 5, T3 4, T2 3 and T1 2. Interestingly, both these cases perform comparably; for CIFAR10, we
obtain 93.01% and 93.05% accuracy, respectively with 1 timestep for cases (i) and (ii). These values
for CIFAR100 are 69.92% and 70.15%, respectively, indicating if the end goal is obtaining T1 SNN,
training overhead can be reduced by skipping intermediate steps. However, in this paper, we report
the whole spectrum of accuracy-energy-latency trade-off from T5 to T1.
Is training following direct conversion from ANN with T1 thresholds feasible? Though the extra
training overhead in our method does not affect our primary goal (inference efficiency) , it would be
better if direct conversion from ANN to T1 would be feasible. This is challenging due to layerwise
spike decay as discussed in detail in section 4. In this part, we revisit this from a different angle.
First, we obtain the layerwise Vth for T1. Then, using this set of Vth, we convert a VGG16 ANN to
SNN, on CIFAR10 and CIFAR100 to investigate whether these thresholds trained for T1 can enable
training with 1 timestep directly following ANN-SNN conversion. However, training failure occurs
in this case too, since during T1 training, the weights (w) get modified in addition to the thresholds,
and layerwise spike propagation depends on both Vth and w. Even if training had converged in
this case, the challenge would remain how to obtain the suitable Vth for T1 without the proposed
iterative process, however it would indicate the existence of deep T1 SNNs which can be trained by
ANN-SNN conversion followed by direct SNN domain T1 training. But in our experiments, we are
unable to find such networks, further validating the need of iterative initialization and retraining.
T1 SNN with magnitude based weight pruning. With T1 SNN, we can obtain maximum
compression possible in the temporal domain of SNNs, as 1 forward pass is the minimum for any
network to produce output. Additionally, we hypothesize that T1 networks might be amenable to
spatial pruning as there is significant redundancy in the layerwise weights of DNNs (Han et al.,
2015b;a). To investigate this, we perform experiments on T1 with magnitude based weight pruning
(Han et al., 2015a). Our result indicate that we can remove 90% of the total weights of a VGG16
without large drop in performance. Using VGG16 (T1), we obtain 91.15% accuracy on CIFAR10
and 68.20% accuracy on CIFAR100, while retaining just 10% of the original spatial connections.
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Figure 3: Average reward (errorbars depict mean±std), using DQN with ANN and SNN on (a)
Cartpole and (b) Atari Pong, (c) layerwise spike rate with SNN-DQN (T1) on Atari Pong.
This provides evidence that spatial pruning techniques can be combined with T1 SNNs to achieve
holistic spatio-temporal compression, albeit with a slight hit to classification accuracy.
Reinforcement learning (RL) with proposed SNNs. Due to their inherent recurrence, SNNs with
multiple timesteps might be more useful in sequential decision-making (such as RL tasks) than
static image classification. However, application of SNNs in RL may be limited if the latency is
too high, since the agent has to make decisions in real-time. The authors in Tan et al. (2020) obtain
high performing RL agents on Atari games with SNNs, but with 500 timesteps. In this section, we
investigate if our technique can enable training SNNs for RL tasks with low latency. Experiments are
performed using deep Q-networks (DQN) (Mnih et al., 2015) with SNNs (SNN-DQN) on cartpole
and Atari pong environments. As shown in Fig. 3(a) and (b), for both cases, we can train SNNs
with 1 timestep. The rewards are obtained by averaging over 20 trials and plotted with error-bars
showing mean±std. In (a), the reward is the duration of the cartpole remaining balanced; DQN with
ANN, SNN(T1) and SNN(T3) achieve 40.3±4.8, 38.7±5.4, 52.2±4.3 reward, respectively. While
T1 SNN performs slightly worse compared to ANN-based DQN, T3 SNN outperforms the ANN.
Similar performance improvement over ANN using SNN for some RL tasks has been reported in
Tan et al. (2020). Next, we experiment with a more complex task, Atari pong game; in this case,
T1 SNN achieves reward of 17.4±3.2 compared to ANN based DQN’s 19.7±1.1. However, with
T5 SNN, we obtain comparable reward (19.4±1.3) to ANN. Notably, we can obtain SNNs for RL
task (pong) with significantly lower latency compared to prior art. On pong, Tan et al. (2020) reports
reward of 19.8±1.3 using 500 timesteps, whereas, we obtain 19.4±1.3 reward using just 5 timesteps.
We believe our training method enables SNNs for RL tasks with comparable performance to ANNs
with ∼ 5 timesteps, and up to 1 timestep with slightly lower performance. Moreover, such latency
reduction translates to considerable energy savings which is critical for agents operating in the real
world. The layerwise spike rates for SNN-DQN (T1) are shown in Fig. 3(c), the average spike rate
is 0.08, which results in 7.55X higher computational energy efficiency compared to ANN-DQN.
Furthermore, if we compare iso-performing networks to ANN-DQN, SNN-DQN (T5) infers with
average spike rate of 0.42, thus providing 5.22X higher computational energy efficiency compared
to ANN-DQN. The details of network topologies used, training setup and additional results are given
in appendix A.5.
6 CONCLUSION
Bio-plausible SNNs hold promise as energy efficient alternatives to ANNs. However, to make SNNs
suitable for edge deployment, mitigating high inference latency is critical. To that end, we propose
an iterative initialization and retraining approach which enables SNNs to infer in a single shot while
maintaining comparable performance to ANNs. We first train an ANN followed by ANN-SNN
conversion. Then SNN domain training with surrogate gradient based backpropagation is performed
with T timesteps (T>1) using direct input encoding and using neuron threshold and leak as trainable
parameters along with weights. At each subsequent stage of training, latency is reduced gradually
using the network trained at previous stage as initialization. This iterative training process results
in a continuum of SNNs from higher timesteps (T>1) up to unit latency (T1). We observe that
T1 SNNs provide the best efficiency and latency; however, the associated trade-off is a slightly
lower classification performance with T1 compared to SNNs with higher timesteps. In particular,
the T1 SNNs enhance computational energy efficiency by 25X on Imagenet compared to ANNs
with similar accuracy. Furthermore, in comparison with state-of-the-art SNNs, T1 SNNs reduce
latency by 5X without significant performance degradation on Imagenet. Moreover, T1 SNNs are
able to eliminate the memory access overhead associated with fetching membrane potentials and
improve compute efficiency by reducing the cumulative spike count significantly compared to SNNs
with high latency. We also investigate the applicability of the proposed technique to SNN-based
reinforcement learning (RL) with low latency and observe that SNN based DQNs can infer with unit
latency while maintaining satisfactory performance on tasks like Cartpole and Atari pong game.
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Reproducibility Statement. We submit our implementation as part of the supplementary material.
Also, the experimental details including the hyperparameters and architectural descriptions are
provided in Appendix section A.2.

REFERENCES

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. In Advances in Neural
Information Processing Systems, pp. 787–797, 2018.
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A APPENDIX

A.1 TRAINING METHODOLOGY

A.1.1 SURROGATE-GRADIENT BASED LEARNING

To train deep SNNs, surrogate-gradient based backpropagation through time (BPTT) (Werbos, 1990)
is used to perform temporal as well as spatial error credit assignment. Spatial credit assignment is
achieved by spatial error distribution across layers, while the network is unrolled in time for temporal
credit assignment. The output layer neuronal dynamics is governed by-

uti = ut−1
i +

∑
j

wijo
t
j , (5)

here ui corresponds to the membrane potential of i-th neuron of final (L-th) layer. The final layer
neurons just accumulate the potential over time for classification purpose, without emitting spikes.
We pass these accumulated final layer outputs through a softmax layer which gives the class-wise
probability distribution and then the loss is calculated using the cross-entropy between the true
output and the network’s predicted distribution. The governing equations are-

Loss = −
∑
i

yilog(si), (6)

si =
eu

T
i∑N

k=1 e
uTk
, (7)

where Loss represents the loss function, y denotes true label, s is the predicted label, T is the total
number of timesteps and N is the number of classes. The derivative of the loss w.r.t. the membrane
potential of the neurons in the final layer is-

∂Loss

∂uTL
= s− y, (8)

and the weight updates at the output layer are done as-

wij,L = wij,L − η∆wij,L, (9)

∆wij,L =
∑
t

∂Loss

∂wtij,L
=
∑
t

∂Loss

∂uTL

∂uTL
∂wtij,L

=
∂Loss

∂uTL

∑
t

∂uTL
∂wtij,L

, (10)

where η is the learning rate, and wtij,L denotes the weight between i-th neuron at layer L and
j-th neuron at layer L − 1 at timestep t. Output layer neurons are non-spiking, hence the non-
differentiability issue is not involved here. The hidden layer parameter update is given by-

∆wij,k =
∑
t

∂Loss

∂wtij,k
=
∑
t

∂Loss

∂oti,k

∂oti,k
∂uti,k

∂uti,k
∂wtij,k

, k = 2, 3, ...L− 1 (11)

where oti,k is the spike-generating function (Eqn. 3), k is layer index. We approximate the gradient
of this function w.r.t. its input using the linear surrogate-gradient (Bellec et al., 2018) as-

∂o

∂u
= γmax{0, 1− |u− v

v
|}, (12)

where γ is a hyperparameter chosen as 0.3 in this work. The layerwise threshold is updated using-

vl = vl − η∆vl, (13)

∆vl =
∑
t

∂Loss

∂vl
=
∑
t

∂Loss

∂otl

∂otl
∂ztl

∂ztl
∂vl

=
∑
t

∂Loss

∂otl

∂otl
∂ztl

(
−vlot−1

l − utl
v2l

)
(14)

and during training stages where more than one timestep is involved, the leak is updated as-

λl = λl − η∆λl, and ∆λl =
∑
t

∂Loss

∂λl
=
∑
t

∂Loss

∂otl

∂otl
∂utl

∂utl
∂λl

=
∑
t

∂Loss

∂otl

∂otl
∂utl

ut−1
l (15)
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Algorithm 2 Procedure of spike-based learning with backpropagation for an iteration.

Input: pixel-based mini-batch of input (X) - target (Y ) pairs, total number of timesteps (T ),
number of layers (L), pre-trained ANN weights (W ), membrane potential (U ), layer-wise
membrane leak constants (λ), layer-wise firing thresholds (V ), learning rate (η)
Initialize: U t

l = 0, ∀l = 1, ..., L
// Forward Phase
for t← 1 to T do
Ot

1 = X;
for l← 2 to L− 1 do

// membrane potential integrates weighted sum of spike-inputs
U t
l = λlU

t−1
l +Wl ∗Ot

l−1

if U t
l > Vl then

// if membrane potential exceeds Vl, a neuron fires a spike
Ot
l = 1, U t

l = U t
l − Vl

else
// else, output is zero
Ot
l = 0

end if
end for
// final layer neurons do not fire
U t
L = U t−1

L +WL ∗Ot
L−1

end for
//calculate loss, Loss=cross-entropy(UT

L ,Y )
// Backward Phase
for t← T to 1 do

for l← L− 1 to 1 do
// evaluate partial derivatives of loss with respect to the trainable parameters by unrolling the
network over time
4W t

l = ∂Loss
∂Ot

l

∂Ot
l

∂Ut
l

∂Ut
l

∂W t
l
, ∆V tl = ∂Loss

∂Ot
l

∂Ot
l

∂ztl

∂ztl
∂Vl

, ∆λtl = ∂Loss
∂otl

∂otl
∂utl

∂utl
∂λl

end for
end for
//update the parametersWl = Wl − η

∑
t ∆W t

l , Vl = Vl − η
∑
t ∆V tl , λl = λl − η

∑
t ∆λtl

A.2 EXPERIMENTAL DETAILS

A.2.1 NETWORK ARCHITECTURE

We modify the VGG and ResNet architectures slightly to facilitate ANN-SNN conversion. 3 plain
convolutional layers of 64 filters are appended after the input layer in the ResNet architecture
(Sengupta et al., 2019). In all cases, average pooling (2×2) is used and the basic block in ResNet
employs a stride of 2 when the number of filters increases. 1×1 convolution is used in the shortcut
path of basic blocks where the number of filters is different in input and output. The architectural
details are-

VGG6: {64, A, 128, 128, A}, Linear

VGG16: {64, D, 64, A, 128, D, 128, A, 256, D, 256, D, 256, A, 512, D, 512, D, 512, A, 512, D,
512, D, 512}, Linear

ResNet20: {64, D, 64, D, 64, A, 64BB, 64BB, 128BB (/2), 128BB, 256BB (/2), 256BB, 512BB
(/2), 512BB}
BB: basic block, Linear: {4096, D, 4096, D, number of classes}, D: Dropout (probability (p)-ANN:
0.5, SNN: 0.2), A: Average Pooling (kernel size = 2× 2)

A.2.2 TRAINING HYPERPARAMETERS

Standard data augmentation techniques are applied for image datasets such as padding by 4 pixels
on each side, and 32×32 cropping by randomly sampling from the padded image or its horizontally
flipped version (with 0.5 probability of flipping). The original 32×32 images are used during testing.
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Figure 4: Accuracy versus latency curve for various SNN coding methods on VGG16, the values
for TTFS (Park et al., 2020), phase (Kim et al., 2018), burst (Park et al., 2019) and rate (Rueckauer
et al., 2017) have been adopted from (Park et al., 2020).

.

Both training and testing data are normalized using channel-wise mean and standard deviation
calculated from training set. The ANNs are trained with cross-entropy loss with stochastic gradient
descent optimization (weight decay=0.0005, momentum=0.9). We train the ANNs for 500 and 90
epochs for CIFAR and ImageNet respectively, with an initial learning rate of 0.01. The learning rate
is divided by 5 at epochs of 0.45, 0.7 and 0.9 fraction of total epochs. The ANNs are trained with
batch-norm (BN) and the BN parameters are fused with the layerwise weights during ANN-SNN
conversion following Rueckauer et al. (2017), we do not have bias terms as BN is used. Additionally,
dropout (Srivastava et al., 2014) is used as the regularizer with a constant dropout mask with dropout
probability=0.5 across all timesteps while training the SNNs. Since max-pooling causes significant
information loss in SNNs (Diehl et al., 2015), we use average-pooling layers to reduce the feature
maps. During ANN training, the weights are initialized using He initialization (He et al., 2015).
Upon conversion, at each training iteration with a certain timestep, the SNNs are trained for 300
epochs with cross-entropy loss and adam optimizer (weight decay=0). Initial learning rate is chosen
as 0.0001, which is divided by 5 at epochs of 0.6, 0.8 and 0.9 fraction of total epochs. While training
the SNNs, dropout probability is kept at 0.2.

A.3 COMPARISON OF ACCURACY VERSUS LATENCY TRADE-OFF WITH VARIOUS ENCODING
METHODS

In this part, we compare our results with various SNN encoding schemes in terms of timesteps
required to reach convergence for a VGG16 network and the results are shown in Fig. 4. The figure
demonstrates the results of “T2FSNN” encoding (Park et al., 2020), where the timing of spikes
carries information and other rate and temporal coding schemes including “Rate” (Rueckauer et al.,
2017), “Phase” (Kim et al., 2018), and “Burst” coding (Park et al., 2019). The left plot in Fig. 4
shows ∼ 200 timesteps is needed for the fastest convergence among these encoding methods for
CIFAR10, whereas, we achieve 93.05% accuracy in just 1 timestep. Similarly, we obtain 70.15%
accuracy in 1 timestep with VGG16 on CIFAR100. The graph on the right in Fig. 4 shows the
results for VGG16 on CIFAR100 using “T2FSNN”, “Burst”, “Phase” and “Rate”. As can be seen,
“T2FSNN” reaches 68% roughly at 500 steps, “Burst” at 1500, “Phase” at 2000, and “Rate” fails
to cross 60% even at 3000 timesteps. Notably, we are not only able to reduce latency by 2 to 3
orders of magnitude compared to these works, but also outperform them in top-1 accuracy by ∼ 2%
using unit inference latency. So, T1 SNN enhances the performance on both ends of the accuracy-
latency trade-off compared to these other approaches. Moreover, while the temporal methods
enhance computational efficiency by reducing the spike count, the high latency issue persists which
incurs high memory access overhead due to the requirement of fetching membrane potential of each
neuron at every timestep. Since our proposed scheme enables one step inference, the neurons are
automatically limited to maximum one spike per neuron like “T2FSNN” (Park et al., 2020), but
our inference latency is significantly lower and no extra memory access operations are involved for
fetching membrane potentials of previous timesteps.
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Figure 5: Rewards during training on Cartpole environment with- (a) ANN-DQN and (b) SNN-DQN
(T1), (c) SNN-DQN (T3), and (d) SNN-DQN (T5).

A.4 COMPUTATIONAL COST

The number of operations in an ANN layer is given as-

#ANNops =

{
kw × kh × cin × hout × wout × cout, Conv layer
nin × nout, Linear layer

where kw(kh) denote filter width (height), cin(cout) is number of input (output) channels,
hout(wout) is the height (width) of the output feature map, and nin(nout) is the number of input
(output) nodes.

A.5 ADDITIONAL RESULTS ON REINFORCEMENT LEARNING

In this section, we provide supplementary results on our experiments on RL tasks (Cartpole and
Atari pong). The details of network architectures, training hyperparameters and training dynamics
are described in the following.

A.5.1 RESULTS ON CARTPOLE

For the cartpole task, we use a small network with 3 convolutional and a fully connected layer. The
first convolutional layer has 16 5X5 filters with stride 2, second and third convolutional layers have
32 5X5 filters with stride 2 each. The fully connected layer has 2 neurons, corresponding to the
number of actions. We use RMSProp as optimizer for training. The networks are trained with batch
size of 128, discount factor (γ) of 0.999 and replay memory of 10000. Figure 5 shows the results
for the cartpole environment. We repeat all experiments for 400 episodes, in this game, the duration
for which the agent is able to continue the game (keep the balance), is the reward; so higher game
duration means better performance. The blue trajectory shows the rewards at each episode, which
has some variation across episodes, the yellow curve shows the accumulated average reward. As
can be seen, the SNN outperforms the ANN in terms of reward with just 3 timesteps. For SNN-
DQN with 1 timestep (T1), the SNNs performs slightly worse compared to ANN-DQN. As we
increase the simulation time-window (number of timesteps), the SNN performance improves further
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Figure 6: Rewards during training on Atari pong environment with- (a) ANN-DQN and (b) SNN-
DQN (T5), (c) SNN-DQN (T3), and (d) SNN-DQN (T1), (e) SNN-Conv DQN (T100), and (f)
layerwise spike rate for the network in (e).

as expected, with the average reward for T5 being 52.2±4.3 (mean±standard deviation), whereas
for the ANN, this metric is 40.3±4.8. We anticipate this improvement in multi-timestep SNNs is
due to inherent memory of previous inputs which results from the residual membrane potential in
the spiking neurons. As a result, SNNs offer an advantage compared to feed-forward ANNs for
tasks with a sequential component. In RL tasks, since the decision-making is sequential and past
frames possess some information about what the next plausible state and corresponding action could
be, SNNs might be better suited to leverage such kind of environment. However, cartpole balancing
is a very simple task, so to further explore the potential of the proposed method in obtaining low
latency solutions for SNN-based RL, we next apply the proposed SNN-DQN framework to Atari
pong environment.
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A.5.2 RESULTS ON ATARI PONG

Atari pong is a two-dimensional gym environment that simulates table tennis. Here, the agent steps
through the environment by observing frames of the game (reshaped to 84X84 pixels), interacts
with the environment with 6 possible actions, and receives feedback in the form of the change in the
game score. For our experiments, we first train an ANN based deep Q network (DQN), where we
use the same DQN proposed in Mnih et al. (2015) with 3 convolution layers and 2 fully connected
layers. The first convolution layer has 32 8X8 filters with stride 4. The second convolution layer
has 64 4X4 with stride 2. The third convolution layer has 64 3X3 filters with stride 1. The fully
connected layer has 512 neurons. The number of neurons in the final layer for any game depends
on the number of valid actions for that game, which in this case is 6. Training is performed with
Adam optimizer with learning rate 0.00001, batch size 128, discount factor(γ) 0.99 and replay buffer
size 100000. Results of our experiments are shown in Fig. 6. Rewards obtained during ANN-DQN
training are depicted in Fig. 6 (a). As mentioned in the discussion of RL-SNN in section 5 of the
main manuscript, ANN-DQN achieves reward of 19.7±1.1. The training dynamics using T5, T3
and T1 SNN DQN are shown in Fig. 6 (b), (c), (d) respectively. Reward and efficiency analysis of
these networks compared to ANN-DQN is given in section 5 of the main manuscript. Additionally,
we report the performance of DQNs with converted SNNs in Fig. 6 (e). Note, these SNNs do not
undergo any training in SNN domain, rather they are converted from corresponding ANN-DQNs
and used for inference. Reward obtained the converted SNN with 100 timesteps is 19.4±1.3, so
converted SNN-DQNs (SNN-conv DQNs) perform comparably to ANN-DQNs as also reported in
Tan et al. (2020), however the bottleneck is they require ∼100 timesteps for high performance.
Using the proposed method, we obtain T5 SNN-DQNs with comparable performance to their ANN
counterparts, but with considerably lower compute cost (5.22X). We have reported the spike rates
for T1 SNN-DQN in Fig. 3 (c). For comparison purposes, we also consider the layerwise spike rate
for the converted SNN-DQN as shown in Fig. 6 (f), of the main text. In this case, the average spike
rate is 2.92, which leads to 1.75X higher energy efficiency for the SNN-conv DQN (T100) compared
to ANN-DQN. As a result, T5 SNN DQN provides 2.98X improvement in energy efficiency over
SNN-conv DQNs as proposed in Tan et al. (2020), while achieving comparable performance.
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