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Abstract

Machine learning (ML) has the potential to become an essential tool in supporting
clinical decision-making processes, offering enhanced diagnostic capabilities and
personalized treatment plans. However, outsourcing medical records to train ML
models using patient data raises legal, privacy, and security concerns. Federated
learning has emerged as a promising paradigm for collaborative ML, meeting
healthcare institutions’ requirements for robust models without sharing sensitive
data and compromising patient privacy. This study proposes a novel method that
combines federated learning (FL) and Graph Neural Networks (GNNs) to pre-
dict stroke severity using electroencephalography (EEG) signals across multiple
medical institutions. Our approach enables multiple hospitals to jointly train a
shared GNN model on their local EEG data without exchanging patient information.
Specifically, we address a regression problem by predicting the National Institutes
of Health Stroke Scale (NIHSS), a key indicator of stroke severity. The proposed
model leverages a masked self-attention mechanism to capture salient brain con-
nectivity patterns and employs EdgeSHAP to provide post-hoc explanations of the
neurological states after a stroke. We evaluated our method on EEG recordings
from four institutions, achieving a mean absolute error (MAE) of 3.23 in predicting
NIHSS, close to the average error made by human experts (MAE ≈ 3.0). This
demonstrates the method’s effectiveness in providing accurate and explainable
predictions while maintaining data privacy.

1 Introduction

Neurological evaluation involving brain signals is the primary tool in assessing and managing stroke
patients [1, 2, 3]. These evaluations provide insights into the functional state of biological neural
networks affected by stroke, which are essential for guiding clinical decisions and rehabilitation
strategies [4, 5, 6]. However, the susceptible nature of such data poses significant challenges,
particularly regarding privacy and security [7]. These challenges often hinder data sharing across
institutions, limiting the collaborative potential for advancements in clinical neuroscience research
and the development of robust predictive models [8, 9].
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Figure 1: Illustration of a FL setup with hospitals acting as nodes. Each hospital processes data
locally while sharing model updates (represented by arrows) with a central server.

Federated learning (FL) has emerged as a promising solution to these challenges by enabling
multiple institutions to collaboratively train models without sharing sensitive data (Fig. 1) [10, 11].
This approach preserves privacy while leveraging the collective power of diverse datasets. This work
proposes a federated learning framework based on the Message Queuing Telemetry Transport
(MQTT) communication protocol to predict stroke severity using Graph Neural Networks (GNNs)
on brain networks extracted from EEG data. GNNs are particularly suited for this task due to their
ability to model complex relationships within brain networks, capturing both structural and functional
connectivity patterns to provide a better assessment of the stroke impact on brain regions [12, 13, 14,
15]. Moreover, the integration of explainability mechanisms enhances the interpretability of the
model, which is of primary importance in clinical settings where understanding the rationale behind
networks’ decisions is critical.

Dataset and Preprocessing

This study utilizes a comprehensive dataset comprising EEG recordings from 72 patients collected
during hospitalization across four medical centers. The EEG data were analyzed across various
frequency bands to construct brain connectivity graphs. The distribution of patients among the
hospitals is shown in Fig. 2. A standardized data collection protocol was implemented across all
hospitals. EEG signals were recorded at rest, with patients’ eyes closed, for at least 5 minutes during
their stay in the stroke unit. The recordings were obtained using 31 electrodes positioned according
to the international 10− 10 system, with a common reference electrode placed on the mastoid and a
ground electrode.

The EEG data were preprocessed with a band-pass filter between 0.2 and 47 Hz at a 512 Hz sampling
rate, followed by artifact removal through Independent Component Analysis (ICA) [16]. Next,
eLORETA [17] was employed to reconstruct whole-brain sources and calculate Lagged Linear
Coherence (LLC) graphs for the first five frequency bands: δ (2− 4 Hz), θ (4− 8 Hz), α1 (8− 10.5
Hz), α2 (10.5− 13 Hz), and β1 (13− 20 Hz) [4].

The NIH Stroke Scale (NIHSS) is an objective assessment tool to quantify the impact of stroke-related
events. Initially intended to evaluate the effects of intervention in clinical trials, it has since become
a standard tool in clinical and emergency settings for assessing stroke severity. It is an integer
value between 1 and 42, which quickly determines the level of neurological impairment and guides
treatment decisions by systematically evaluating factors such as consciousness, visual fields, motor
function, and language ability.

Despite the growing interest in applying graph theory to brain graphs in the context of neuro-
science [18, 19, 20, 21], existing approaches often fall short in addressing the unique challenges
posed by EEG data. Traditional models lack the structured inductive bias required to capture the
connectivity patterns inherent in EEG data [22, 23, 24, 7]. Our approach addresses these limitations
and ensures that collaborating institutions maintain data privacy [25, 26, 27]. In particular, our
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Figure 2: Number of patients for each hospital in our federation.

approach leverages explicitly a multilayer GNN to capture insights from graphs extracted from the
five different EEG frequency bands defined above. The multilayer network representation allows
for integrating information from various neural oscillatory patterns, enabling the model to learn
interactions across different frequency bands and enhancing its ability to predict stroke severity.

Contributions In this work, we design a federated learning framework building upon recent work
on Multilayer Dynamic Graph Attention Networks for neurological assessments [28] to predict stroke
severity from EEG signals in a privacy-preserving setup. This enables multiple healthcare institutions
to unify multiple graph representations. We evaluate both FedAvg [10] and SCAFFOLD [29]
algorithms, comparing their performance in handling the statistical heterogeneity inherent in multi-
institutional EEG data. Our federated learning system integrates MQTT as an efficient communication
protocol, demonstrating its security in dispatching model updates and aggregation across distributed
clients. We validate our method approach on a dataset of EEG recordings from 72 stroke patients
across multiple institutions, demonstrating its effectiveness in providing accurate predictions while
ensuring data privacy and robustness. Finally, we provide interpretable explanations of model
decisions using EdgeSHAPer [30] to allow for transparent and trustworthy decisions of our predictive
framework.

2 Background and Related Works

This section reviews the concepts of GNNs and FL and discusses previous studies related to EEG-
based stroke assessment.

2.1 Graph Neural Networks

GNNs operate on graph-structured data, where a graph G = (V,E) consists of nodes v ∈ V and edges
(u, v) ∈ E. Each node v is associated with a feature vector xv ∈ Rd. GNNs can be formally defined
as functions of the form GNNw : (G, {xv}v∈V ,w) 7→ yG, where w represents a set of trainable
parameters. The core idea behind GNNs is to learn node or graph-level representations by iteratively
updating node features through message passing:

hl+1
v = com

(
hlv, agg

u∈N (v)

(
M
(
hlu,h

l
v,huv

)))
, (1)

where hlv represents the hidden feature vector of v at layer l, and h0
v = xv, while N (v) is the set

of neighbors of v. For the edge between u and v, huv represents its hidden feature vector. The
function com updates the hidden feature vector with messages received from u ∈ N (v), agg is a
permutation-invariant aggregation function and M is a message function.

Graph Attention Networks GATv2 [31] introduces a self-attention mechanism to account for
the varying importance of neighboring nodes during message passing. For a node v and its neighbor
u ∈ N (v), the attention score sw(xv,xu) is computed as sw(xv,xu) = a⊤ σ (W [xv ∥ xu]), where
W is a learnable weight matrix, a is a learnable vector of attention coefficients, σ is the LeakyReLU
activation function and ∥ denotes concatenation. The attention scores are then normalized via
αv,u = softmaxu∈N (v) (sw(xv,xu)).

2.2 Multi-layer Brain Networks

To represent brain connectivity across different frequency bands, a multi-layer graph approach has
been proposed [28]. The multi-layer graph Ḡ, illustrated in Fig. 3, is defined as Ḡ = {Gα1

,Gα2
,Gβ1

},
where each Gi = (V,Ei) represents a graph for a specific frequency band, sharing the same vertices
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Figure 3: Illustration of the multi-layer network structure. Each layer corresponds to a specific
frequency band, with inter-layer connections helping cross-frequency information flow [28].

V but with unique edge sets Ei. Inter-layer edges Einter connect nodes across different layers, allowing
cross-frequency communication.

Rewiring Brain Networks To address the issue of over-smoothing [32, 33] in fully connected
graphs when using GNNs, a rewiring strategy has been developed [28]. This process transforms the
graph Gl = (V,El) of each brain network layer into a sparse graph G′

l = (V,E′
l) through structural

and functional rewiring.

(a) Structural Rewiring: a spatial proximity function ϕ : V × V → R+ is defined based on
Euclidean distance between Brodmann areas. For each node v ∈ V, the k = 3 spatially
closest nodes are selected.

(b) Functional Rewiring: a function ψl : El → R is defined, mapping each edge to its LLC
value in layer l. Edges above the 99th percentile of LLC values are retained. The final set of
edges in the rewired graph for each layer is E′

l = Eϕ ∪ Eψ ∪ {(v, v) : v ∈ V}, where Eϕ
represents structural connections, Eψ represents functional connections, and self-loops are
included.

This rewiring strategy reduces edge density (retaining only ≈ 5% of the initial number of edges)
while preserving critical functional and structural information, enhancing the GNN’s ability to learn
from the underlying brain network topology.

The proposed GNN architecture, combined with the multi-layer graph representation and rewiring
strategy, allows effective learning from the complex, sparse brain networks derived from EEG data.

2.3 Federated Learning

FL is a paradigm that enables collaborative model training across a federation of multiple insti-
tutions [10, 34]. This approach has gathered interest in domains like digital healthcare, where
regulations and ethical considerations often restrict data sharing [8]. Formally, let Dci represent the
local dataset on client ci and W denote the global model parameters. Each client ci updates the global
model by minimizing a local loss function Lci(W;Dci). The global objective can be expressed as:

min
W

N∑
i=1

ni
n

Lci(W;Dci) (2)

where ni is the number of samples on device ci and n =
∑N
i=1 ni is the total number of samples

across all devices.

Federated Averaging (FedAvg) is one of the most popular algorithm for FL aggregation [10].
FedAvg aims to address the challenges of statistical heterogeneity among participants in federated
systems. The algorithm operates as follows: the server initializes the global model parameters
W0. Then, for each round r = 1, . . . , R, the server samples a subset of clients Sr according to
a probability distribution P and sends the current global model Wr−1 to each of the clients in
the sampled subset. Each client ci ∈ Sr updates the model locally using their dataset Dci by
computing Wr

ci = OPT(Wr−1,Dci), where OPT is the local optimization algorithm (e.g., SGD,
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Adam, RMSProp). The clients then send their updated models back to the server. The server
aggregates these local models to update the global model using a weighted average:

Wr =
∑
ci∈Sr

nci
nSr

Wr
ci (3)

where nci = |Dci | and nSr =
∑
ci∈Sr

nci . This process repeats for R rounds, resulting in the final
global model W∗ = WR. FedAvg unifies the representations learned by individual clients on their
local datasets into a single global model by aggregating their locally updated models. This process
effectively captures patterns and features from each client’s data, integrating them into a single model
that generalizes across the entire dataset distribution. This way of averaging local models allows
FedAvg to unify the collective knowledge of all clients into a single representation while preserving
data privacy, resulting in an improved global model without direct access to the client’s raw data.

Stochastic Controlled Averaging for Federated Learning (SCAFFOLD) is an algorithm proposed
in [29] to address the client drift problem in heterogeneous settings. SCAFFOLD introduces control
variates to correct for the drift in local updates. thereby aligning the clients’ learning processes more
closely with the global objective. Initially, the server initializes the global model parameters W0,
the server control variate c0 and sets all client control variates c0ci = 0 for each client ci. For each
round r = 1, . . . R, the server samples a subset of clients Sr according to a probability distribution P
and sends the current global model Wr−1 along with the server control variate cr−1 to the selected
clients.

Each client ci ∈ Sr initializes their local model with the global model: Wr,0
ci = Wr−1. The client

then performs K local update steps. At each local step k = 1, . . .K, the client updates the model as:

Wr,k
ci = Wr,k−1

ci − ηl
(
∇Fci

(
Wr,k−1
ci

)
− cr−1

ci + cr−1
)

(4)

where ηl is the local learning rate, ∇Fci
(
Wr,k−1
ci

)
is the gradient of the local loss function for client

ci, cr−1
ci is the client control variate, and cr1 is the server control variate. After completing the local

updates, the client computes the model update: ∆i = Wr
ci −Wr−1, and updates its control variate

as:

crci = cr−1
ci − cr−1 +

1

(ηlK)
∆i (5)

The client then returns ∆i, and the updated control variate crci to the server. Upon receiving the
updates from all participating clients, the server aggregates the update to update the global model and
the server control variate:

Wr = Wr−1 +
ηg
|Sr|

∑
ci∈Sr

∆i (6)

cr = cr−1 =
1

|Sr|
∑
ci∈Sr

(crci − cr−1
ci ) (7)

This process repeats for R rounds, resulting in the final global model W∗ = WR.

SCAFFOLD enhanced model aggregation over FedAvg by utilizing control variates to correct for
client drift caused by data heterogeneity. In particular, adjusting local updates with these control
variates allows SCAFFOLD to ensure that the federated learning process aligns clients’ representation
into a unified global model that remains synchronized with the global objective, mitigating undesired
effects of non-I.I.D. data distributions due to statistical heterogeneity. Consequently, SCAFFOLD is
a theoretically sound algorithm that aims to achieve a more accurate and generalized global model
that unifies the collective knowledge of all clients while preserving data privacy. It is also worth
emphasizing that if an early stopping mechanism is implemented for FedAvg and SCAFFOLD, the
training may end at an earlier round r′ < R when certain convergence criteria are met (e.g., the
validation loss stops decreasing). In this case, the final global model becomes W∗ = Wr′ .

2.4 Edge Shapley Values for Model Explainability

While the model in [28] effectively predicts stroke severity from EEG data, its interpretability is
limited to the noise introduced by random initialization of the attention coefficients a. In particular,
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the functional communication between brain regions allows clinicians to understand why the model
makes specific predictions, allowing clinicians to trust and utilize these insights in personalized
treatment plans. Traditional attention mechanisms provide some interpretability by highlighting
important nodes and edges, but they often lack a theoretically grounded measure of each edge’s
contribution to the prediction.

To address this gap, we incorporate EdgeSHAPer [30, 35], as an edge-centric explanation method
based on the Shapley value concept from cooperative game theory [36]. EdgeSHAPer assigns a
Shapley value to each edge in the brain network, quantifying its contribution to the model’s output.
This method uses a principled way to assess the importance of individual neural connections, thereby
offering more profound insights into the brain’s functional reorganization after a stroke.

EdgeSHAPer estimates the Shapley value ϕ(ei) for each edge ei in the graph G, representing the
average marginal contribution of ei to the model’s prediction over all possible subsets of edges. The
Shapley value for an edge is defined as:

ϕ(ei) =
1

|E|
∑

S⊆E\{ei}

f(S ∪ ei)− f(S)(|E|−1
|S|
) (8)

where E is the set of all edges in G, S is a subset of edges not containing ei, and f(S) is the
model’s prediction when only the edges in S are present. The factorial terms account for all possible
orderings of edges, ensuring a fair attribution of importance. Computing the exact Shapley values is
computationally intractable for graphs with many edges due to the combinatorial number of subsets.
Therefore, we employ a Monte Carlo approximation [37]:

ϕ(ei) ≈
1

M

M∑
k=1

[f(Sk ∪ ei)− f(Sk)] , (9)

where M is the number of sampled subsets Sk ⊆ E \ {ei}. We generate these subsets by random
sampling, ensuring that each edge’s contribution is estimated over diverse contexts.

2.5 Related Works

The impact of acute stroke on the topology of cortical networks has been extensively investigated
through EEG analysis, revealing significant, frequency-dependent alterations in network properties.
Specifically, stroke leads to decreased small-worldness in the δ and θ bands and increased small-
worldness in the α2 band across both hemispheres, regardless of lesion location [1]. Distinct
modifications in functional cortical connectivity due to acute cerebellar and middle cerebral artery
strokes have been highlighted, showing different impacts on network architecture and small-world
characteristics across various EEG frequency bands, independent of ischemic lesion size [4, 19].

Additionally, research has shown that acute cerebellar and middle cerebral artery strokes distinctly
affect functional cortical connectivity, with significant differences in EEG-based network remod-
eling across δ, β2, and γ frequency bands, highlighting the unique impact of stroke location on
brain network dynamics [19]. The prognostic role of hemispherical differences in brain network
connectivity in acute stroke patients has been explored using EEG-based graph theory and coher-
ence analysis. Findings indicate that stroke-induced alterations in network architecture can predict
functional recovery outcomes, providing a basis for tailored rehabilitation strategies [24, 23].

The relevance of brain network analysis for stroke rehabilitation has been studied, highlighting
the potential of network-based approaches to inform and guide therapeutic interventions in stroke
recovery [38]. Dynamic functional reorganization of brain networks post-stroke has been emphasized,
providing critical insights into the brain’s adaptive mechanisms following a stroke and supporting
network analysis to understand structural and functional reorganization [3]. Finally, changes in
the contralesional hemisphere following stroke and the implications of the stroke connectome for
cognitive and behavioral outcomes have been explored, enhancing our understanding of the complex
network dynamics involved in stroke pathology and recovery [2, 39, 20]

3 Experimental setup

We designed two distinct federated learning setups to investigate how data distribution affects model
performance. The first configuration mimics real-world conditions by treating individual hospitals
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as clients in the federation, reflecting the natural data distribution within healthcare systems. We
curated three evenly distributed datasets in the second setup, creating a more controlled, idealized
scenario. By comparing these two approaches, we assess whether having a representative distribution
of the entire dataset at each client significantly impacts the learning outcomes. All experiments were
conducted using the same model architecture and training hyper-parameters. We used a batch size of
2 and applied the mean squared error (MSE) loss function. We implemented gradient clipping with a
threshold of 10 to avoid exploding gradient issues. The model’s parameters were optimized using
the Adam optimizer with a learning rate of 0.003 and a weight decay of 0.01 to prevent overfitting.
For both setups, we fixed a test set by randomly sampling 11 elements across the clients to be
representative of the overall data distribution, ensuring consistency in the evaluation process and
reducing the risk of bias. We used M = 100 for the Monte Carlo approximation in 9 to estimate
Shapley values efficiently.

Network architecture and Communication Protocol The model architecture was built on top of
the GATv2 message-passing scheme [31]. The core GNN consisted of 3 GATv2 layers, each with 6
attention heads. To reduce overfitting, we incorporated dropout with a 0.1 probability of randomly
deactivating neurons during training and used the ReLU activation function for non-linearity. A mean
pooling layer was employed as the readout operation following the final GNN layer.

At the core of federated learning systems lies the need for efficient communication protocols to
maintain model performance under resource constraints [10, 40, 41]. Ensuring efficient and secure
data exchange among distributed actors of federated systems requires carefully tailoring the protocol
for communicating models’ parameters among the network nodes. We chose the MQTT protocol
instead of HTTP REST for our setup due to superior bandwidth efficiency, lower latency, and low
overhead, making it suitable for low-power IoT devices [34]. On top of the aforementioned benefits,
MQTT offers one-to-many communication, which is the central point when distributing global
models during FL rounds. It also supports large message payloads (with fragmentation if necessary),
serialization, and compression. The communication network orchestrates FL processes through
MQTT’s publish-subscribe mechanism. Clients (healthcare institutions) exchange model parameters
and configurations by publishing their local models and downloading global models via specific
MQTT topics [42, 43].

This architecture handles both synchronous (all clients wait for each other) and asynchronous (clients
act independently of others) FL operations. For the FL orchestration, there are four different setups:

(a) Both the Parameter Server (PS) and the clients operate synchronously, waiting for all clients
to finish local model optimization before aggregating the global model.

(b) The PS is synchronous, but clients are asynchronous, continuing local training until they
receive a global model update.

(c) Both PS and clients are asynchronous, where the PS aggregates models at regular intervals,
regardless of client completion.

(d) Fully decentralized and asynchronous, clients exchange models directly via MQTT without
a central PS.

We chose option (a) for our experimental setup since we prioritize stability and consistency in the
model aggregation process due to the small data samples. All MQTT exchanges are encrypted
via TLS, and the MQTT broker manages local models until training is completed. The flexible
architecture supports dynamic scaling based on task complexity and computational resources [44].

Comparative Analysis: Our experimental framework spans several learning paradigms, allowing us
to comprehensively evaluate the performance of FL in the context of GNNs. The scenarios explored
include:

(a) Realistic FL Setup: Simulating real-world data distribution among hospital clients.

(b) Idealized FL Setup: Using manually curated datasets with equal distribution.

(c) Centralized Learning: Training a single model on the entire dataset pooled together.

(d) Isolated Learning: Training separate models for each client without collaboration.

This approach allows us to:
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Table 1: Mean and standard deviation across five different initializations for each setup. In isolated
learning, the statistics are also computed across the different clients.

Experiment Setup Algorithm MAE

Isolated Learning Realistic - 3.68± 0.26
Idealized - 3.92± 0.87

Federated Learning
Realistic FedAvg 3.23± 0.06

SCAFFOLD 3.22± 0.05

Idealized FedAvg 3.34± 0.08
SCAFFOLD 3.44± 0.07

Centralized Learning - - 3.22± 0.12

(a) Examine how data distribution affects FL performance by comparing realistic and idealized
setups.

(b) Quantify the benefits of collaborative learning in FL versus training models independently
for each client.

(c) Analyze the trade-offs between FL and centralized learning, providing insights into the
viability of FL in situations where data sharing is limited.

Computational Resources and Code Assets In all experiments we used a machine with an
NVIDIA® RTX 3090 GPU with an Intel® Xeon® @ 2.30GHz on Ubuntu 22.04 LTS 64-bit. The
model was implemented in PyTorch [45] by building on top of PyTorch Geometric library (MIT
license) [46]. PyTorch, NumPy [47], SciPy [48] are BSD licensed, Matplotlib [49] is PSF licensed.

4 Experimental result

The performances across different learning setups are summarized in Tab. 1. Results reflect the
mean absolute error (MAE) and standard deviation across five initializations. The statistics are also
computed across clients in isolated learning setups, while federated and centralized setups leverage
collaborative training.

The Isolated Learning approach, where models are trained independently for each client, shows
weaker performance compared to collaborative methods. In the realistic isolated learning setup,
a MAE of 3.68 ± 0.26 was obtained, while the idealized isolated setup, though more controlled,
resulted in a higher MAE of 3.92 ± 0.87. The high variance in the idealized setting suggests that
the data distribution across clients introduces inconsistencies in model performance, even when the
data covers the full value range. This reflects the challenge of achieving stable results when training
independently without data sharing.

FL consistently outperformed isolated learning. In the realistic FL setup, FedAvg achieved a
MAE of 3.23 ± 0.06, and SCAFFOLD slightly improved with an MAE of 3.22 ± 0.05. This
indicates the robustness of federated learning in harnessing distributed data while maintaining privacy.
The marginal improvement of SCAFFOLD over FedAvg in the realistic scenario suggests that
SCAFFOLD’s correction of client drift is particularly beneficial when client data distributions closely
resemble real-world conditions.

Performance was slightly lower in the Idealized Federated Learning setup, which uses a more
balanced and mixed data distribution across clients. FedAvg reported MAE of 3.34± 0.08, while
SCAFFOLD had an MAE of 3.44± 0.07. Although more evenly distributed, the idealized setup may
obscure the natural variations in client data in realistic conditions. This could explain why models
trained in the idealized setup generalize less effectively to the test set, which likely follows a more
realistic data distribution. Thus, the realistic setup mirrors client-specific data patterns, enhancing
predictive accuracy.

The Centralized Learning setup, where all client data is pooled into a single model, achieved a
MAE of 3.22 ± 0.12, which is identical to the performance of the Realistic Federated Learning
setup using the SCAFFOLD algorithm. This highlights that federated learning, when properly
configured, can achieve the same level of accuracy as centralized learning without requiring data
sharing. Given the privacy constraints in medical settings, federated learning presents a substantial
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Figure 4: Convergence of MAE over training rounds for different setups. Centralized learning shows
the fastest and most stable convergence. The federated learning setups converge more slowly but
arrive at the same level as the centralized. The isolated learning approaches exhibit higher error and
slower convergence, confirming the benefits of collaborative training in federated setups.

alternative, offering equivalent performance while preserving data locality and complying with
privacy regulations. Fig. 4 provides further insights into model convergence across different setups.
The plot shows that centralized learning achieves the fastest convergence, as expected, given its
access to the full dataset. Among federated approaches, the realistic setup converges as smoothly as
the idealized setup.

Explainable Insights Integrating EdgeSHAPer values into our framework enables us to assign a
Shapely value to each edge, which offers several key advantages:

(a) Quantitative Edge Importance: Shapley values provide a theoretically robust measure
of each edge’s significance, enabling us to rank physiological connections based on their
contributions to the model’s predictions. This quantitative assessment ensures a fair and
consistent evaluation of edge importance across brain networks.

(b) Interpretable Visualizations: We visualize the brain network by coloring edges based on
their corresponding Shapley values and sizing nodes according to their weighted degree
centrality derived from those values (see Fig. 5). This dual representation effectively
highlights critical brain regions and their interconnections, making the network dynamics
more comprehensible.

(c) Actionable Insights: Identifying the most significant edges allows clinicians to understand
which neural pathways were most affected by the stroke. This understanding informs the
development of targeted therapeutic interventions, enabling personalized treatment plans
that address the specific neural disruptions identified by our model.

We used a similarity metric based on the normalized Euclidean distance to assess the similarity
between different model variants. This metric was applied to compare sets of weight vectors derived
from the various experiments. Our analysis revealed an average similarity of 0.76, indicating
high coherence among the weight vectors. Notably, the idealized subgroup exhibited an average
similarity of 0.75, while the realistic subgroup achieved a higher similarity of 0.78. The similarity
matrix demonstrated consistently high values across all vector pairs, ranging from 0.73 to 0.78.
This approach provides insights into the convergence patterns and consistency of diverse federated
learning strategies and setups. Furthermore, these results align with our observations regarding the
best MAE, suggesting a strong correlation between higher performance metrics and more cohesive
latent representations. Fig. 5 illustrates these findings, depicting the Edge Shapley Values for our
federated learning setups and highlighting the relative contributions of different nodes and edges to
the model’s predictions.
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Figure 5: Illustration of Edge Shapley Values for various federated learning setups for the same
patient. The color intensity is proportional to the contributions to model predictions. Node sizes are
proportional to their weighted degree centrality, adjusted for the number of connections, highlighting
each node’s significance within the network.

5 Conclusions

Broader Impact The proposed federated learning framework for stroke assessment can assist
clinical neuroscientists’ evaluations by enabling collaborative research and model development across
multiple institutions while maintaining strict data privacy. By allowing hospitals to unify insights
without sharing raw patient data, this approach addresses privacy concerns and broadens the scope
of multi-healthcare collaborations. The model’s ability to predict stroke severity with an error rate
close to human performance and interpretability modules can help clinicians better understand brain
network changes post-stroke, leading to more personalized treatment plans.

Limitations While the proposed federated learning framework offers significant privacy advantages
and demonstrates solid predictive performance, some limitations must be acknowledged. First, the
relatively small sample size of 72 patients restricts the model’s generalizability to more extensive and
diverse clinical populations. Additionally, scalability to broader multi-institutional settings may face
challenges due to variations in data quality, preprocessing protocols, and hardware capabilities across
institutions.

Conclusion This study introduces a novel federated learning framework using GNNs for neurolog-
ical assessments, demonstrating its ability to predict stroke severity from EEG data across multiple
institutions. We show the effectiveness of collaborative model training while preserving data privacy.
Incorporating explainability through EdgeSHAPer further enhances the model’s potential clinical
relevance by providing insights into the neural connections driving predictions. Future work will
focus on expanding the dataset and addressing the technical challenges of scaling the system to larger,
more diverse populations.
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