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ABSTRACT

Current Multimodal Large Language Models (MLLMs) primarily rely on image-level
visual-linguistic alignment, limiting their capability in fine-grained visual perception
tasks. Existing solutions either serialize coordinates as text inputs, which lose spatial
semantics, or introduce specialized expert modules that increase inference latency and
exhibit task bias. To address these limitations, we propose TAMP, a Task-aware Multi-
modal Pre-Interaction for Fine-Grained Multi-modal LL.Ms, that automatically recognizes
key task-relevant information from instructions and extracts corresponding region fea-
tures through a unified and detector-free paradigm. A task-aware region connector with
a dual-branch is designed that dynamically handles both referring and grounding tasks.
By introducing an instruction template with region placeholders, we seamlessly integrate
fine-grained region features into the LLM’s reasoning process. Extensive experiments
demonstrate that our approach achieves state-of-the-art performance on both referring and
grounding benchmarks while maintaining strong general VQA capabilities.

1 INTRODUCTION

Multi-modal Large Language Models (Alayrac et al., 2022} Dai et al., 2023}, [Liu et al.| |2023b} [Zhu et al.|
2023)) (MLLMs) have achieved remarkable progress in visual-language understanding tasks. However, cur-
rent MLLMs still struggle with fine-grained visual perception tasks such as referring (Mao et al., [2016; |Yu
et al.|[2016) and grounding (Mao et al.,|2016) tasks. The main limitation is that mainstream approaches pri-
marily align image-level visual features with LLMs through multimodal instruction tuning based on image-
text pairs, while lacking region-level multimodal alignment and supervision signals. This coarse-grained
alignment prevents them from accurately localizing objects and modeling spatial relationships in complex
scenes. To address the limitations of MLLMs on fine-grained visual perception tasks, existing research has
proposed three main solution paradigms, as illustrated in Figure

Early works (Zhao et al., 2023} |Chen et al., 2024b) attempted to feed regions of interest as serialized bound-
ing box coordinates as text prompts, enabling region-level modeling without modifying the model archi-
tecture as shown in Figure [[(a). However, LLMs are inherently adept at processing discrete symbols but
lack capabilities for modeling continuous spatial coordinates. This causes spatial semantics to be easily lost
during the encoding process, making it challenging to efficiently integrate with visual cues and linguistic
context. Subsequent work (Pi et al.| [2024; |You et al., 2023) shifted to using high-dimensional vectors to
represent positional information via incorporating specialized expert modules at MLLMSs’ input or output as
shown as [[[b)(c). However, this paradigm suffers from task bias and efficiency issues: input-side modules
benefit referring but not grounding, while output-side modules enhance grounding but require additional
processing steps, increasing latency. Multiple loss functions also complicate optimization with limited re-
ferring improvements. To jointly address the performance bottlenecks of referring and grounding, latest
methods (Ma et al., [2024; Yin et al., 2025) rely on pretrained object detectors (Zhu et al., [2020) for region
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Figure 1: (a) Direct serializing spatial coordinates as text tokens; (b) External input-side position encoder
for referring; (c) External output-side position decoder for grounding; (d) External object detector providing
region proposals; (e) Task-aware region encoder for unified referring and grounding (Ours).

proposals, extracting local features via mechanisms like ROIAlign (He et al2017)) for fine-grained reason-
ing, as illustrated in Figure[T(d). While leveraging mature detection techniques, this approach faces inherent
limitations. The performance ceiling of object detectors and domain shift issues fundamentally constrain
the model’s localization accuracy. Furthermore, numerous task-irrelevant candidate features significantly
extend sequence length, increasing computational complexity while introducing additional noise. In fact,
the instructions in fine-grained visual tasks contain heuristic clues that could guide the model to selectively
attend to task-relevant key regions.

In this paper, we propose a novel Task-aware Multimodal Pre-Interaction Framework, dubbed TAMP, that
can enhance region representation prior to the LLM reasoning. By introducing the pre-perceived region
features into the large language model, it can explicitly guide the model to focus on task-relevant region,
thereby achieving more precise region-level multimodal understanding, as illustrated in Figure[I|e). Specif-
ically, TAMP employs a task-aware region connector which uniformly handles referring and grounding fine-
grained visual tasks through a dual-branch architecture. This connector first automatically parses the task
type and semantic information of the input instruction through a task extractor, then dynamically activates
the corresponding processing branch and extracts task-relevant fine-grained region features. Furthermore,
we design an instruction template with a region placeholder <region> , which is dynamically replaced
with task-aware region feature, enabling seamless integration of region features into text instructions for
subsequent multimodal reasoning.

Our main contributions are summarized as follows:

* We propose a novel Task-aware Multimodal Pre-Interaction Framework for LLM. It explicitly en-
hances region representation prior to LLM reasoning by performing pre-interaction between image
features and task-relevant instruction embeddings, which explicitly guide the model to focus on
task-critical regions.

* We design the Task-Aware Region Connector with a unified dual-branch structure to distill task-
specific saliency cues and key information from fine-grained instructions. A unified and detector-
free training paradigm is achieved by introducing a region placeholder, enabling LLM-friendly
instruction tuning while preserving spatial semantics.

» Extensive experiments demonstrate that our approach achieves state-of-the-art performance on both
referring and grounding benchmarks, surpassing all existing MLLMs, and maintains robust image-
level understanding and reasoning capabilities on traditional general VQA benchmarks.
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Figure 2: Overview of TAMP. We propose a TAMP Framework for fine-grained visual perception, which is a
unified and detector-free training paradigm. The Task-Aware Region Connector is able to distill task-specific
saliency cues and key information from instructions for the regions.

2 METHODS

2.1 OVERVIEW

Despite the remarkable progress MLLMs have made in general visual understanding, existing methods ex-
hibit two critical limitations when handling fine-grained visual tasks. First, current approaches fail to fully
leverage task-specific information in instructions; Second, these methods lack the capability to selectively
focus on relevant visual regions based on task requirements, instead processing the entire image uniformly.
Our key insight is that fine-grained visual tasks inherently contain rich task-specific information within their
instructions-natural language descriptions for referring tasks and spatial coordinates for grounding tasks,
which should guide the model to selectively attend to relevant visual regions. Based on this, we propose a
task-aware region connector that establishes effective interaction between task-aware query which encode
task-specific information extracted from instructions, and visual features through a unified dual-branch archi-
tecture, as illustrated in Figure[2} This module elegantly handles both referring and grounding fine-grained
tasks within a unified framework.

2.2 MODEL ARCHITECTURE

As illustrated in Figure[2] TAMP comprises four core components: (1) a vision encoder for image tokeniza-
tion; (2) a task-aware region connector that dynamically extracts fine-grained region features conditioned on
the key task information; (3) visual/region projectors that project visual and region features into the language
space; and (4) a LLM for unified modeling of multimodal inputs and outputs.

Vision Encoder. We employ a pre-trained Vision Transformer (ViT) (Dosovitskiy et al[2020) as our vision
encoder ®y,. This encoder is pre-trained through image-text contrastive learning, enabling its patch-level
visual features to capture comprehensive global semantic representations. For an input image I € R3*WxH |
the encoder @y produces a sequence of visual features Fy, = &y (7).
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Task-aware Region Connector. Our task-aware region connector @z enables task-aware fine-grained re-
gion feature extraction through three key components: (1) a task extractor that parses task-specific informa-
tion from instructions; (2) a dual-branch encoder to generate task-aware query based on task information;
and (3) a cross-modal interaction module dynamically aggregates task-relevant fine-grained region features.
To facilitate effective task information extraction, we design specific task templates for both grounding and
referring tasks. For referring tasks, the task extractor extracts natural language descriptions within <ref>
tags and converts them into a semantic query vector (¢, through a pre-trained BERT encoder (Devlin et al.|
2019). The query vector encodes the semantic information of the target region description; For grounding
tasks, the task extractor identifies normalized bounding box coordinates [x1, Y1, Z2, y2] within <loc> tags
and generates position-aware query (Jpo, through a multi-layer MLP to precisely localize spatial regions.
Both types of queries are transformed to a shared query space through a unified projection layer, generating
the task-aware query () that serves as input to the cross-modal interaction module. This module employs a
query-driven attention mechanism that dynamically adjusts the aggregation strategy of visual features based
on task type:

- QWo(Fy W)™
Fpr = CrossAttn(Q, Fy/) = soft e VR ) By WA 1
'r rossAttn(Q, Fyy) = softmax ( B v Wy, €))
Fr = LayerNorm(FFN(F)), 2)

where Fy, represents the feature map output by the visual encoder, Wy,, W, and Wy are learnable projec-
tion matrices. The detailed instruction templates for specific tasks are provided in Appendix D]

Visual/Region Projector. We utilize two parallel MLP projection heads to transform visual features into the
language space: the Visual Projector Py maps the global visual representation Fy to the visual global token
H,, while the Region Projector Pr maps fine-grained region features F'r to region tokens H,. This dual-
path projection ensures that different types of visual information are processed independently and aligned
within a unified language representation space, thereby preserving individualized semantics while enables
effective fusion with textual embeddings.

LLM. We adopt the pre-trained LLaMA (Touvron et al., [2023) as our language model and keep its orig-
inal parameter initialization. The language instruction is embedded by the LLM token embedding layer,
which produces language tokens ;. The LLM takes as input a concatenation of three sequences: the text
instruction tokens, global visual tokens produced by the Visual Projector, and region tokens produced by the
Region Projector. The probability p of the next token at position i is computed as follows:

L
p(Xa|Hy, Hy, Hy) = [ [ p(i|Hy, Hy, Hyy2s) 3)

i=1

where X, represents the generated answer tokens, z; represents all previously generated tokens before
position ¢, L is the length of the generated sequence.

2.3 TASK-AWARE INSTRUCTION TEMPLATE DESIGN

To seamlessly integrate fine-grained spatial perception into multimodal large language models, we propose
a unified, task-aware instruction template framework. This framework introduces special region tokens and
replaces them with task-specific fine-grained region features prior to inference, enabling the model to ad-
dress a variety of fine-grained visual perception tasks within a single unified paradigm. Current mainstream
MLLMs typically adopt standard image—text template for instruction tuning. While this design is suitable for
image-level vision-language tasks (e.g., Image Caption and VQA), it cannot effectively support fine-grained
tasks that require region-level understanding. To address this limitation, we extend the standard template by
introducing a Region Placeholder <region> which is a special token that will be dynamically replaced with
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task-relevant region features extracted by the Task-Aware Region Connector during the model’s forward
propagation. The comparison between standard and fine-grained template is shown below:

Standard Template Fine-grained Template

Image: {Image Tokens}
Region: {<region>}
User: {Task Instruction}
Assistant: {Response}

Image: {Image Tokens}

User: {Task Instruction}
Assistant: {Response}

Figure 3: Standard and fine-grained templates.

2.4 MODEL TRAINING STRATEGY

We adopt a three-stage progressive training strategy to address key bottlenecks in existing region-level meth-
ods. Latest works rely on pre-trained object detectors and operations like ROIAlign for region feature extrac-
tion. This “detect-extract-aggregate” pipeline has fundamental issues: region features from object detectors
are not aligned with language space, and ROI-aggregated features have limited text-semantic alignment,
increasing inference latency and impairing downstream task performance.

Our strategy progressively establishes visual-language alignment from region-level to image-level. First,
We train the task-aware region connector to directly establish region-level visual-language alignment. For
referring tasks, we adopt semantic contrastive loss to ensure accurate capture of region visual content and
mapping to the language space. For grounding tasks, we combine the same semantic contrastive loss with
localization loss to learn both text-region semantic alignment and spatial localization capabilities. Then, We
train the projection layer using large-scale image-text pairs while freezing the task-aware region connector
and language model, establishing image-level visual-language alignment. Finally, we simultaneously op-
timize the projection layer, task-aware region connector, and region projection layer, while fine-tuning the
visual encoder and LLM through LoRA, enabling comprehensive multimodal understanding and instruction-
following capabilities. Details of the training datasets are provided in Appendix

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

We implement two variants of TAMP, employing CLIP ViT-L-224px(Radford et al, [2021) and EVA-G-
224px (Sun et al.l 2023) as image backbones respectively, with LLaMA-2-7B(Touvron et al., 2023)) serving
as the LLM. For efficient training, we perform parameter-efficient fine-tuning on both the visual encoder and
LLM through LoRA(Hu et al.} [2022), and insert lightweight modules before each self-attention layer. Our
baseline follows the same architecture but without the task-aware region connector, using only global visual
features like conventional MLLM LLaVA (Liu et al., [2023b)). Detailed training configurations are provided

in Appendix [C]
3.2 GROUNDING BENCHMARK RESULTS

We evaluate TAMP on RefCOCO (Kazemzadeh et al.,2014), RefCOCO+ (Yu et al.,|2016)), and RefCOCOg
(Mao et al.| 2016) benchmarks to assess its localization capability. As shown in Table[l] TAMP significantly
outperforms baselines in both zero-shot (63.61% with EVA-G) and fine-tuning (88.20% with EVA-G) set-
tings, surpassing all existing models comparable or larger scale, as well as existing specialized grounding
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Table 1: Comparison on Grounding Benchmark. “Avg.” means the average of top-1 accuracy over all the 8
evaluation sets.

Method Model type RefCOCO RefCOCO+ RefCOCOg Ave.
val testA  testB val testA  testB val test
MDETR (Kamath et al.[[2021} 86.75 89.58 81.41 | 79.52 84.09 70.62 | 81.64 80.89 | 81.81
G-DINO (Liu et al.}[2024) Specialist | 90.56 93.19 88.24 | 82.75 88.95 75.92 | 86.13 87.02 | 86.60
UNINEXT-L (Yan et al.|[2023) 9143 9373 8893 | 83.09 87.90 76.15 | 8691 87.48 | 86.95
] Zero-shot Setting

Kosmos-2 (Peng et al.[[2023} 5232 5742 4726 | 4548 50.73 4224 | 60.57 61.65 | 52.21
GRILL (Jin et al.;[2023) - - - - - - - 47.50 -

Pink (Xuan et al.|[2024) 54.10 61.20 4420 | 43.90 50.70 35.00 | 59.10 60.10 | 51.00
LION-12B (Chen et al.}[2024a) Generalist | 58.54 56.41 59.36 | 4593 4573 47.89 | 66.12 64.69 | 55.58
BaseLine-CLIP-L 56.06 6321 47.11 | 45.87 51.03 38.92 | 62.25 60.45 | 53.11
TAMP-CLIP-L 63.21 67.85 56.86 | 50.24 54.63 44.61 | 68.42 66.59 | 59.05
BaseLine-EVA-G 6241 66.50 58.63 | 49.35 5444 4649 | 68.59 67.61 | 59.25
TAMP-EVA-G 68.16 69.98 64.14 | 54.03 56.44 51.67 | 72.63 71.83 | 63.61

Fine-tuning Setting

VisionLLM-H (Wang et al.[[2023) - 8670 - - - - - - -

Shikra-13B (Chen et al.}|[2023c) 87.83 91.11 81.81 | 82.89 87.79 7441 | 82.64 83.16 | 83.96
GroundingGPT (Li et al.|[2024) 88.02 91.55 8247 | 81.61 87.18 73.18 | 81.67 81.99 | 83.46
Ferret-13B (You et al.|[2023) 89.48 9241 8436 | 82.81 88.14 75.17 | 8583 86.34 | 85.57
Pink (Xuan et al./[2024) 88.30 91.70 84.00 | 81.40 87.50 73.70 | 83.70 83.70 | 84.25
MiniGPTv2 (Chen et al.}|[2023b) 88.69 91.65 8533 | 79.97 85.12 7445 | 8444 84.66 | 84.29
PerceptionGPT-13B (Pi et al.|[2024) 89.17 9320 8596 | 83.72 89.19 7531 | 83.75 84.69 | 85.62
Qwen-VL (Bai et al.| 2023) 89.36 9226 8534 | 83.12 88.25 77.21 | 8558 8548 | 85.83
LION-12B (Chen et al.}|2024a) 89.80 93.02 8557 | 83.95 89.22 78.06 | 85.52 85.74 | 86.36
VPP-LLaVA-13B (Tang et al.|2025)  Generalist | 90.32 93.02 86.34 | 84.65 90.78 79.06 | 85.64 86.01 | 86.98
Groma (Ma et al..|[2024) 89.53 92.09 86.26 | 83.90 8891 78.05 | 86.37 87.01 | 86.52
ROD-MLLM (Yin et al.| 2025) 90.2 93.0 86.3 84.8 89.9 71.5 86.7 86.7 | 86.89
BaseLine-CLIP-L 88.11 91.87 82.87 | 81.15 87.50 72.57 | 82.43 83.44 | 83.74
TAMP-CLIP-L 89.28 92.15 84.06 | 82.77 88.18 74.78 | 84.17 85.46 | 85.11
BaseLine-EVA-G 91.55 9289 88.07 | 84.68 89.10 79.40 | 86.13 86.78 | 87.33
TAMP-EVA-G 91.76 93.92 88.34 | 86.30 90.13 79.93 | 86.99 88.21 | 88.20

methods. Notably, while methods like LION, Ferret, and Groma require millions of grounding samples,
TAMP achieves superior performance using only 0.5M data through our lightweight task-aware region con-
nector. This fully validates the effectiveness of the task-aware multimodal pre-interaction paradigm.

3.3 REFERRING BENCHMARK RESULTS

We evaluated TAMP’s fine-grained region understanding capability on the RefCOCOg(Mao et al.l 2016)
and Visual Genome datasets(Krishna et al., [2017). We employed METEOR and CIDEr as evaluation met-
rics, which comprehensively measure both the accuracy and fluency of generated descriptions. As shown
in Table |2l TAMP-EVA-G achieved the best performance on both datasets, attaining 17.7 METEOR and
117.3 CIDEr on RefCOCOg, and 19.4 METEOR and 164.0 CIDEr on Visual Genome. Particularly note-
worthy is that compared to the corresponding baseline variants, TAMP demonstrated consistent performance
improvements across both visual encoder architectures.
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3.4 GENERAL VQA BENCHMARK RESULTS

To verify whether our model maintains general visual question answering capabilities while enhancing fine-
grained visual understanding abilities, we conducted evaluations on five widely adopted VQA benchmarks:
VQAv2(Goyal et al 2017), AOK-VQA(?), VSR(Liu et al., [2023a), OK-VQA(Marino et al. 2019), and
GQA(Hudson & Manning, [2019). These datasets comprehensively examine the model’s multimodal under-
standing capabilities from different dimensions.

Table 2: Comparison with MLLMs on Referring Benchmark. ' indicates an extra stage of task-specific
supervised tuning.

Method RefCOCOg Visual Genome
METEOR CIDEr | METEOR CIDEr
GRIT (Wu et al., [2024) 15.2 71.6 17.1 142
Kosmos-2 (Peng et al., [2023)) 14.1 62.3 - -
LLaVA-v1.5-7B (Liu et al.,|2023b) 12.0 73.1 - -
VPP-LLaVA-7B (Tang et al.,[2025) 12.1 73.1 - -
ChatterBox (Tian et al.|[2024) 14.5 - - -
GPT4Rol (Zhang et al.,[2024b) - - 17.4 145.2
RegionGPT (Guo et al.,[2024) 16.9 109.9 17.0 145.6
GLaMMT (Rasheed et al.|[2024) 16.1 101.9 19.0 163.9
Groma (Ma et al.} [2024]) 16.8 107.3 19.0 158.4
ROD-MLLM (Yin et al., 2025)) 17.3 113.8 19.0 158.5
BaseLine-CLIP-L 16.1 106.3 17.9 143.9
TAMP-CLIP-L 17.0 110.8 18.5 158.2
BaseLine-EVA-G 17.2 113.9 17.9 140.1
TAMP-EVA-G 17.7 117.9 194 164.0

As shown in Table 3] our method achieves comparable or superior performance to baseline on most bench-
marks, indicating that we have not compromised the model’s general visual understanding capabilities while
introducing fine-grained perception abilities. Notably, despite using only 595K pretraining data and 797K
instruction tuning data, we still achieve comparable performance to general models trained on larger-scale
datasets on most traditional VQA benchmarks. This result strongly demonstrates that our proposed task-
aware multimodal pre-interaction paradigm not only effectively enhances fine-grained perception capabil-
ities but also successfully maintains the model’s general visual understanding abilities, achieving a good
balance between fine-grained understanding and general capabilities.

3.5 ABLATION STUDY

Table 4: Referring and Grounding abilities with dif-

ferent box encoder designs. Table 5: Ablation Study on Freezing the

task-aware region connector.

Box Encoder Referring  Grounding

Status Referring  Grounding
Multi-Layer MLP 110.8 85.11
Sin/Cos Encoding ~ 101.6 84.95 iﬁ’éﬁgen g‘s‘ﬁ‘ ﬁg'g
Sin/Cos + Linear 105.0 84.91 ’ ’

Impact of Box Encoder Design. Table |4 presents ablation results for different bounding box encoder
designs in TAMP-CLIP-L, we measure referring ability with CIDEr score on Refcocog and grounding ability
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Table 3: Comparison with MLLMs on General VQA Benchmark. *indicates that the training data does not
include the GQA dataset. T means our evaluated results by using publicly released checkpoints.

M | Vision - Training Data | Performance
odels Encoder Resolution

\ | #PT Data #IT Data | VQAv2 AOK-VQA VSR OK-VQA GQA
InstructBLIP-7B(Dai et al..|[2023) EVA-G 224 129M 1.2M - - 54.3 - 49.2
Shikra-7B (Chen et al.|[2023c) ViT-L 224 595K 5.5M 76.7 - 63.3 53.5 47.4*
Qwen-VL-7B (Bai et al.[|2023) ViT-G 448 1.4B 50M 78.8 - - 58.6 59.3
LLaVA-1.5-7B (Liu et al.|2023b) ViT-L 336 558K 665K 78.5 - 67.6 - 62.0
MiniGPT-4-13B (Zhu et al.|[2023) EVA-G 224 M 3.5K - - 41.6 37.5 30.8*
MiniGPTv2-7B (Chen et al.||2023b) | EVA-G 448 >5M >20M - - 60.6 56.9 60.3
Pink-7B* (Xuan et al.|[2024) ViT-L 224 595K 1.72M - 78.54 66.12 58.46 54.74*
Lions-4B (Chen et al.|[2024a) EVA-G 224 2.7M 9.9M - 59.98 72.96 51.08 49.50*
Lions-13B (Chen et al.[[2024a) EVA-G 224 2.7M 9.9M - 60.87 73.77 57.33 51.56*
BaseLine-7B EVA-G 224 595K 797K 79.08 58.94 69.22 59.84 54.85*
TAMP-7B EVA-G 224 595K 797K 79.84 59.64 68.49 59.96 55.89*

Table 6: Performance comparison with different visual encoders and language models on the Grounding
benchmarks.

Model  Vision Encoder(Res) ~ LLM RefCOCO RefCOCO+ RefCOCOE v

val testA testB val testA testB  val test

Baseline CLIP-L/14(336px) LLaMA-2-7B 89.93 92.61 84.88 82.60 89.21 74.15 85.07 85.93 85.55
Ours CLIP-L/14(336px) LLaMA-2-7B 90.31 93.64 85.56 84.05 90.31 76.68 86.25 86.43 86.65

Baseline CLIP-L/14(336px) Vicunal.5-7B 89.98 93.11 84.67 83.65 89.61 75.25 85.44 86.23 85.99
Ours CLIP-L/14(336px) Vicunal.5-7B 90.67 93.21 85.55 84.43 89.98 76.52 86.13 86.57 86.63

with average accuracy on grounding benchmarks. As we adopt a dual-branch architecture, the box encoder
design primarily affects referring tasks that require processing spatial coordinates, while grounding tasks
rely on the text branch for encoding linguistic descriptions. Compared to sinusoidal/cosine encoding (score
105.0) and its combination with linear layers (score 105.9), the multi-layer MLP achieves the best referring
accuracy (score 110.8). This advantage stems from the MLP’s ability to learn complex nonlinear mappings
from normalized coordinates to the shared query space. While sinusoidal positional encoding effectively
captures absolute positions, it has limited expressiveness in transforming spatial coordinates into task-aware
queries that can interact with semantic visual features.

Frozen task-aware region connector As shown in Table [} we freeze the task-aware region connector after
training to evaluate its effectiveness and we measure referring ability with CIDEr score on Refcocog and
grounding ability with average accuracy on grounding benchmarks. The frozen module maintains strong
performance with 84.74% on Referring and 110.0 CIDEr on grounding tasks, experiencing minimal drops
of 0.37% and 0.8 points respectively. Notably, even with frozen parameters, our model substantially out-
performs baseline grounding benchmarks. This demonstrates the effectiveness of our first-stage pretrain-
ing, where we specifically optimize the task-aware region connector to establish robust region-level visual-
language alignment through semantic contrastive and localization losses, ensuring our proposed task-aware
region connector effectively capture task-relevant region features.

Impact of Vision and Language Backbones. Table [6] demonstrates the generalizability of our approach
across different backbone architectures. When upgrading from CLIP-L/14(224px) (Radford et al., |2021) to
CLIP-L/14(336px) (Radford et al., [2021) with LLaMA-2-7B (Touvron et al., 2023), our method achieves
86.65% average accuracy compared to the baseline’s 85.55%, maintaining a consistent improvement margin
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across different visual resolutions. Furthermore, when switching the language model from LLaMA-2-7B to
Vicunal.5-7B (Chiang et al.,2023) while maintaining CLIP-L/14(336pXx), our approach yields 86.63% com-
pared to 85.99% baseline, with consistent improvements across all RefCOCO splits. These results validate
that our task-aware region connector effectively enhances region-level understanding across different vision
encoder resolutions and language model architectures, confirming the robustness and transferability of our
design.

o on o P

/ Visual Question Answering Referring Expression Comprehension Referring Expression Generation \
9 : 2P
o

Pink
User : Is the handbag right of the cat ? User : Please locate the truck covered in the snow furthest to the right? User : Please locate the truck covered in the snow furthest to the right?
LLaVA v1.5: Yes, the handbag is right of the cat. LLaVA v1.5:[0.0, 0.49, 0.34, 0.72] LLaVA v1.5: A man is performing a trick on a skateboard.

Pink : Yes. Pink : [0.0, 0.526, 0.301,0.825] Pink : A man on a skateboard

Ours: No, It is under the handbag. Ours : [0.603, 0.602, 0.989, 0.859] Ours: A man in a black shirt and grey pants doing a skateboard ty

Figure 4: A comparison of TAMP against MLLMs LLaVA-1.5 and Pink on three benchmark. We mark the
incorrect part in red, and highlight the correct part in green for comparison.

3.6 QUALITATIVE ANALYSIS

As shown in Figure ] we compare the performance of our model with LLaVA v1.5 and Pink across three
multimodal tasks. Our model demonstrates superior fine-grained perception and understanding capabilities
in visual question answering, referring expression comprehension, and referring expression generation tasks.
In the referring expression comprehension task, LLaVA v1.5 and Pink’s coordinate localization clearly de-
viates to the left, while our model accurately identifies the spatial cue “right side” and generates correct
coordinates. In the referring expression generation task, compared to the simple descriptions produced
by other models, our model precisely captures fine-grained visual attributes such as clothing colors, fully
demonstrating TAMP’s superiority in precise spatial localization and fine-grained visual understanding.

4 CONCLUSION

This paper proposes the Task-aware Multimodal Pre-Interaction Framework (TAMP), a unified and detector-
free LLM for fine-grained downstream tasks. It adequately addresses the challenges of the performance
ceiling of additional detectors and domain shift issues, which fundamentally constrain localization accuracy
and increase computational complexity. We present a task-aware region connector with a dual-branch ar-
chitecture to uniformly handle fine-grained visual tasks. The task and semantic intent from instructions are
parsed, and task-relevant region features are then highlighted via another processing branch. More impor-
tantly, we design an instruction template with a dynamic region placeholder, which is seamlessly replaced
with task-aware region features, ensuring integration of region information into text prompts for subsequent
multimodal reasoning. With only 595K pretraining data and 797K instruction tuning data, our method
achieves state-of-the-art performance on both referring and grounding benchmarks while maintaining strong
general VQA capabilities. Our approach successfully injects precise spatial perception into MLLMs with-
out significant computational overhead, establishing a new paradigm for unified fine-grained multimodal
understanding.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made comprehensive efforts to document all aspects
of our implementation and experimental setup. Our complete codebase, including the task-aware region
connector architecture, training and evaluation scripts, will be made available as supplementary materials
upon acceptance. The model architecture details, particularly the dual-branch design of the task-aware re-
gion connector, are fully described in Section and illustrated in Figure 2} All experimental settings are
specified in Section [3.1] and detailed in Appendix [C] including learning rates, batch sizes, and optimization
schedules. We use publicly available datasets throughout our experiments: LLaVA-CC3M-Pretrain-595K
and Object365 for pretraining, and RefCOCO/RefCOCO+/RefCOCOg, Visual Genome, and standard VQA
benchmarks for evaluation, with complete dataset statistics provided in Appendix [B| The task-specific in-
struction templates essential for reproducing our results are comprehensively listed in Appendix [D| Our
experiments were conducted on 8 NVIDIA A800 GPUs, requiring approximately 48 hours of total train-
ing time across three stages. The region-level alignment training details, including the loss functions, are
mathematically formulated in Appendix [F|
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A  RELATED WORK

Multimodal large language models. With the success of Large Language Models(Achiam et al., 2023} Tou-
vron et al., 2023) in natural language processing, researchers begin to explore ways to extend their powerful
reasoning capabilities to multimodal understanding tasks. Early pioneering works on MLLMs primarily
focus on aligning visual representations with pre-trained language models. Flamingo(Alayrac et al., 2022
introduces frozen visual encoders paired with Perceiver Resampler to extract visual features, which are sub-
sequently processed by frozen language models through gated cross-attention layers. BLIP-2(L1 et al., 2023)
proposes Q-Former, bridging frozen image encoders and frozen LLMs to enable efficient vision-language
pre-training. Subsequent research has aimed to improve the quality and diversity of multimodal instruction
tuning. LLaVA(Liu et al., |2023b) introduces visual instruction tuning by converting image-text pairs into
instruction-following formats, enabling MLLMs to follow diverse multimodal instructions. InstructBLIP
(Dai et al., [2023) further enhances instruction-aware visual feature extraction through instruction-aware Q-
Former. Despite these advances, current alignment mechanisms primarily rely on coarse-grained matching
of image-text pairs, making it difficult to establish precise region-language correspondences, which has be-
come a major bottleneck for MLLMs in fine-grained visual perception tasks.

MLLMs for referring and grounding. To endow MLLMs with region-level understanding capabilities,
researchers have proposed various technical approaches. The first category of methods directly converts
bounding box coordinates into text sequences. For instance, works such as Shikra(Chen et al.l |2023c)),
Kosmos-2(Peng et al., 2023), and Pink Xuan et al.| (2024) utilize visual localization datasets to enable
region-level visual understanding in MLLMs. However, LLMs inherently struggle with processing continu-
ous spatial coordinates, leading to the loss of spatial semantics. The second category introduces specialized
expert modules to process region information. GPT4Rol(Zhang et al.,[2024b) and PVIT(Chen et al., [2023a))
employ RolAlign at the input end to extract region features, while LLaVA-Grounding(Zhang et al., 2024a)
adds a localization decoder at the output end. These methods suffer from task bias: introducing expert mod-
ules at the input end benefits referring tasks but provides limited help for localization, while adding modules
at the output end has the opposite effect, and significantly increase inference latency. The latest methods
utilize pre-trained object detectors (Minderer et al. 2023} |Zhu et al.| 2020) to provide region proposals.
ROD-MLLM(Yin et al.} |2025) and Groma(Ma et al., 2024) first generate region proposals and then obtain
local features through mechanisms such as ROIAlign(He et al.| [2017). While this approach can leverage
mature detection technologies, significant computational overhead, detector performance limitations, and a
large number of irrelevant candidate boxes also limit the overall effectiveness.

Table 7: The training datasets used for three-stage training.

Dataset Stage 1 | Stage 2 | Stage 3 | Data Number
LLaVA-CC3M-Pretrain-595K (Liu et al..‘72023b) v 595K
LLaVA-Instruct-150K (Liu et al.|2023b) v 158K
Visual Genome(Krishna et al.| 2017) v 108K
A-OK-VQA? v 17K
VQAv2(Goyal et al.|[2017) v 83K
Flickr30k(Plummer et al.|[2015) v 30K
Refcoco (Kazemzadeh et al.|2014) v 320K
Object365(Shao et al.|[2019) v M
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Table 8: Summary of the evaluation datasets.

Task Dataset Split Metric
VQAvV2 test-dev VQA Score
OK-VQA val VQA Score
Visual Question | AOK-VQA val VQA Score
Answering VSR zero-shot test Accuracy
GQA test-dev VQA Score
RefCOCO val & testA & testB | Accuracy
Grounding Task | RefCOCO+ val & testA & testB | Accuracy
RefCOCOg val & test Accuracy
Refcocog val METEOR & CIDEr
Referring Task | Visual Genome | test METEOR & CIDEr

B OVERVIEW OF TRAINING AND EVALUATION DATASETS

Table[7]illustrates the dataset usage for the three-stage training strategy. Table([]lists the benchmark datasets
used for model evaluation along with their corresponding evaluation metrics.

C MORE IMPLEMENTATION DETAILS

All experiments were conducted on 8 NVIDIA A800 GPUs. The training process consisted of three stages,
requiring 20, 2, and 26 hours respectively. The experimental setup involves a three-stage training procedure
with distinct hyper-parameter configurations detailed in Table 9]

Table 9: Hyper-parameter for training of different details.

Configuration Stagel Stage2  Stage3
optimizer AdamW AdamW AdamW
epochs 30 1 6
batch size 16,384 128 32
learning rate le-4 2e-3 Se-4
learning rate schedule  cosine cosine cosine
warm-up ratio 0.03 0.03 0.05
weight decay 0.0 0.0 0.02
resolution 224px 224px 224px

D TASK-SPECIFIED INSTRUCTION TEMPLATES

In Section we mentioned using task-specific instruction templates to convert various vision-language
datasets into instruction-following format for model training. Table|12{provides the complete set of templates
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used across different vision-language tasks, including detailed description, visual question answering, region
grounding, referring expression, multi-choice VQA, and grounded captioning. These templates incorporate
placeholder variables (e.g., <question>, <description>, <location>) that are dynamically filled with task-
specific content during training, enabling the model to handle diverse vision-language scenarios in a unified
instruction-following paradigm.

E MORE EXPERIMENTAL RESULTS

Table 10: Results on the General VQA Benchmark. with Vicunal.5-7B as the LLM.

Models ‘ Vision Encoder  Res. ‘ Training Data ‘ Performance
| | #PT Data #IT Data | VQAv2 AOK-VQA VSR OK-VQA GQA

BaseLine VIT-L/14 336 595K 797K 79.47 60.49 67.43 59.52 65.37
TAMP VIT-L/14 336 595K 797K 79.55 61.07 68.66 58.73 66.88

Table 11: Results on the Referring Benchmark with Vicunal.5-7B as the LLM.

RefCOCOg ‘ Visual Genome
Method
| METEOR  CIDEr | METEOR  CIDEr
BaseLine 16.7 111.9 18.0 144.8
TAMP 17.3 114.0 19.3 162.7

The more results that leverage Vicunal.5-7B(Chiang et al.,|2023) as the language model are shown in Table
[T0]and Table[TT] We can observe an improvement in performance on most datasets.

Our comprehensive experimental results in Tables [61 [T0} and[TT]fully demonstrate the strong general-
izability and versatility of the proposed method. Despite the lightweight and simple design of the proposed
task-aware region connector , it can be seamlessly integrated into different backbone architectures (CLIP-
L, EVA-G paired with LLaMA-2-7B or Vicunal.5-7B). This unified framework not only significantly en-
hances the fine-grained perception and understanding capabilities of multimodal large language models, but
also maintains their general visual understanding abilities on general VQA tasks. This validates our design
philosophy: by extracting key task information from instructions for fine-grained visual tasks and guiding
the model to focus on relevant visual regions, effective region-level understanding can be achieved without
introducing complex external modules or additional computational overhead.

F REGION-LEVEL ALIGNMENT TRAINING DETAILS

To establish region-level vision-language alignment, we specifically train the task-aware region connector.
For referring tasks, we employ semantic contrastive loss to ensure (Jp,, accurately captures regional visual
content and maps it to the language space. For grounding tasks, we combine contrastive loss with localization
loss, enabling the region feature extracted by Qsc.¢ to align with the text space while containing precise
positional information. The specific loss functions are defined as follows.

Location Loss. Location Loss combines Smooth L1 loss with Generalized Intersection over Union (GIoU)
loss:

ﬁlocation = Q- Lsmooth,ll + (1 - a) : EGIan (4)
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where the Smooth L1 loss is defined as:

4
1 0.5(p; —t;)2,  if|pi—ti| <1
L " =7 7 i , :
smooth_l1 4 ;:1: {pi _ ti| — 0.5, otherwise, ()

where p; is the predicted value from the model, ¢; is the true bounding box value and ¢ is the index that iterates
over the bounding box parameters. The GIoU loss takes into account the overall geometric relationship
between predicted and ground-truth bounding boxes:

A —
Larov =1— (IOU - ||CAU|> ) (6)

where A. denotes the area of the smallest enclosing box containing both the predicted and ground-truth
boxes, and U represents the area of their union. In our experiments, we set « = 0.7 to balance the contribu-
tions of both loss components.

Semantic Contrastive Loss Semantic Contrastive Loss employs a CLIP-style symmetric contrastive learn-
ing loss:

1
Esemantic = §(£i2t + EtQ'L)a (7)
Specifically, for a batch of N samples, we first compute the similarity matrix between normalized features:
Sij =T - (Qtexts> Fri), (8)

where F'r is a task-aware region feature and 7 is a learnable temperature parameter, initialized to 1/0.07.
The similarity of diagonal elements (positive pairs) is then optimized through cross-entropy loss:

exp(Sii)
Ligg = —— —. 9
o = Z Y exn(5y) )
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Table 12: Task-specific instruction templates for various vision-language tasks used in model training.

Task | Template
What do you see happening in this image?
Detailed Description | What do you think is going on in this snapshot?

What’s happening in the scene?

Visual Question
Answer

I require a brief and clear answer for this question: <question> regarding the image.
I have a question for you: <question> Can you provide a concise answer based on the image ?
Give me a concise answer for <question> while keeping the image in mind.

Region Grounding

‘What are the coordinates of <ref><description></ref> in the image?.
Please locate <ref><description></ref> in the image.
Could you please help me find the coordinates of <ref><description></ref> in the image?

Referring - unique
description

For the given image, can you provide a unique description of the region <loc> <location> </loc>?
Please generate a distinguishing description for the region <loc> <location> </loc> in the image.
In the photo , how would you describe the selected region <loc> <location> </loc> uniquely?

Referring - detailed
description

For the given image , can you provide a unique description of the region <loc> <location> </loc>?
Please generate a distinguishing description for the region <loc> <location> </loc> in the image.
In the photo, how would you describe the selected region <loc> <location> </loc> uniquely?

Multi-Choices
Visual Question

For this image, I want to know which option can answer my question: <question> correctly. The options is <option>.
Referring to the image jimage;, please select the answer for this question: <question> from the options <option>.

Answer For this image, I want to know which option can answer my question: <question> correctly. The options is <option>.
Can you provide a description of the image and include the coordinates [x1,y1,x2,y2] for each mentioned object?

Grounded . . oL ; -

Captioning Tell me about the picture and include position info [x1,y1,x2,y2] for the objects you describe.

Please interpret this image and give coordinates [x1,y1,x2,y2] for each object you mention.
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