

000 TAMP: TASK-AWARE MULTIMODAL PRE-INTERACTION 001 FOR FINE-GRAINED LARGE LANGUAGE MODELS 002

003 **Anonymous authors**
004
005

006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Current Multimodal Large Language Models (MLLMs) primarily rely on image-level
012 visual-linguistic alignment, limiting their capability in fine-grained visual perception
013 tasks. Existing solutions either serialize coordinates as text inputs, which lose spatial
014 semantics, or introduce specialized expert modules that increase inference latency and
015 exhibit task bias. To address these limitations, we propose TAMP, a Task-aware Multi-
016 modal Pre-Interaction for Fine-Grained Multi-modal LLMs, that automatically recognizes
017 key task-relevant information from instructions and extracts corresponding region fea-
018 tures through a unified and detector-free paradigm. A task-aware region connector with
019 a dual-branch is designed that dynamically handles both referring and grounding tasks.
020 By introducing an instruction template with region placeholders, we seamlessly integrate
021 fine-grained region features into the LLM’s reasoning process. Extensive experiments
022 demonstrate that our approach achieves state-of-the-art performance on both referring and
023 grounding benchmarks while maintaining strong general VQA capabilities.
024

025 1 INTRODUCTION 026

027 Multi-modal Large Language Models (Alayrac et al., 2022; Dai et al., 2023; Liu et al., 2023b; Zhu et al.,
028 2023) (MLLMs) have achieved remarkable progress in visual-language understanding tasks. However, cur-
029 rent MLLMs still struggle with fine-grained visual perception tasks such as referring (Mao et al., 2016; Yu
030 et al., 2016) and grounding (Mao et al., 2016) tasks. The main limitation is that mainstream approaches pri-
031 marily align image-level visual features with LLMs through multimodal instruction tuning based on image-
032 text pairs, while lacking region-level multimodal alignment and supervision signals. This coarse-grained
033 alignment prevents them from accurately localizing objects and modeling spatial relationships in complex
034 scenes. To address the limitations of MLLMs on fine-grained visual perception tasks, existing research has
035 proposed three main solution paradigms, as illustrated in Figure 1.

036 Early works (Zhao et al., 2023; Chen et al., 2024b) attempted to feed regions of interest as serialized bound-
037 ing box coordinates as text prompts, enabling region-level modeling without modifying the model archi-
038 tecture as shown in Figure 1(a). However, LLMs are inherently adept at processing discrete symbols but
039 lack capabilities for modeling continuous spatial coordinates. This causes spatial semantics to be easily lost
040 during the encoding process, making it challenging to efficiently integrate with visual cues and linguistic
041 context. Subsequent work (Pi et al., 2024; You et al., 2023) shifted to using high-dimensional vectors to
042 represent positional information via incorporating specialized expert modules at MLLMs’ input or output as
043 shown as 1(b)(c). However, this paradigm suffers from task bias and efficiency issues: input-side modules
044 benefit referring but not grounding, while output-side modules enhance grounding but require additional
045 processing steps, increasing latency. Multiple loss functions also complicate optimization with limited re-
046 ferring improvements. To jointly address the performance bottlenecks of referring and grounding, latest
methods (Ma et al., 2024; Yin et al., 2025) rely on pretrained object detectors (Zhu et al., 2020) for region

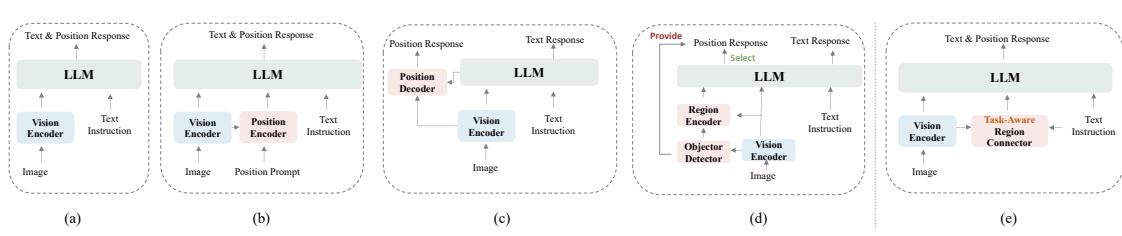


Figure 1: (a) Direct serializing spatial coordinates as text tokens; (b) External input-side position encoder for referring; (c) External output-side position decoder for grounding; (d) External object detector providing region proposals; (e) Task-aware region encoder for unified referring and grounding (Ours).

proposals, extracting local features via mechanisms like ROIAlign (He et al., 2017) for fine-grained reasoning, as illustrated in Figure 1(d). While leveraging mature detection techniques, this approach faces inherent limitations. The performance ceiling of object detectors and domain shift issues fundamentally constrain the model’s localization accuracy. Furthermore, numerous task-irrelevant candidate features significantly extend sequence length, increasing computational complexity while introducing additional noise. In fact, the instructions in fine-grained visual tasks contain heuristic clues that could guide the model to selectively attend to task-relevant key regions.

In this paper, we propose a novel Task-aware Multimodal Pre-Interaction Framework, dubbed TAMP, that can enhance region representation prior to the LLM reasoning. By introducing the pre-perceived region features into the large language model, it can explicitly guide the model to focus on task-relevant region, thereby achieving more precise region-level multimodal understanding, as illustrated in Figure 1(e). Specifically, TAMP employs a task-aware region connector which uniformly handles referring and grounding fine-grained visual tasks through a dual-branch architecture. This connector first automatically parses the task type and semantic information of the input instruction through a task extractor, then dynamically activates the corresponding processing branch and extracts task-relevant fine-grained region features. Furthermore, we design an instruction template with a region placeholder `<region>`, which is dynamically replaced with task-aware region feature, enabling seamless integration of region features into text instructions for subsequent multimodal reasoning.

Our main contributions are summarized as follows:

- We propose a novel Task-aware Multimodal Pre-Interaction Framework for LLM. It explicitly enhances region representation prior to LLM reasoning by performing pre-interaction between image features and task-relevant instruction embeddings, which explicitly guide the model to focus on task-critical regions.
- We design the Task-Aware Region Connector with a unified dual-branch structure to distill task-specific saliency cues and key information from fine-grained instructions. A unified and detector-free training paradigm is achieved by introducing a region placeholder, enabling LLM-friendly instruction tuning while preserving spatial semantics.
- Extensive experiments demonstrate that our approach achieves state-of-the-art performance on both referring and grounding benchmarks, surpassing all existing MLLMs, and maintains robust image-level understanding and reasoning capabilities on traditional general VQA benchmarks.

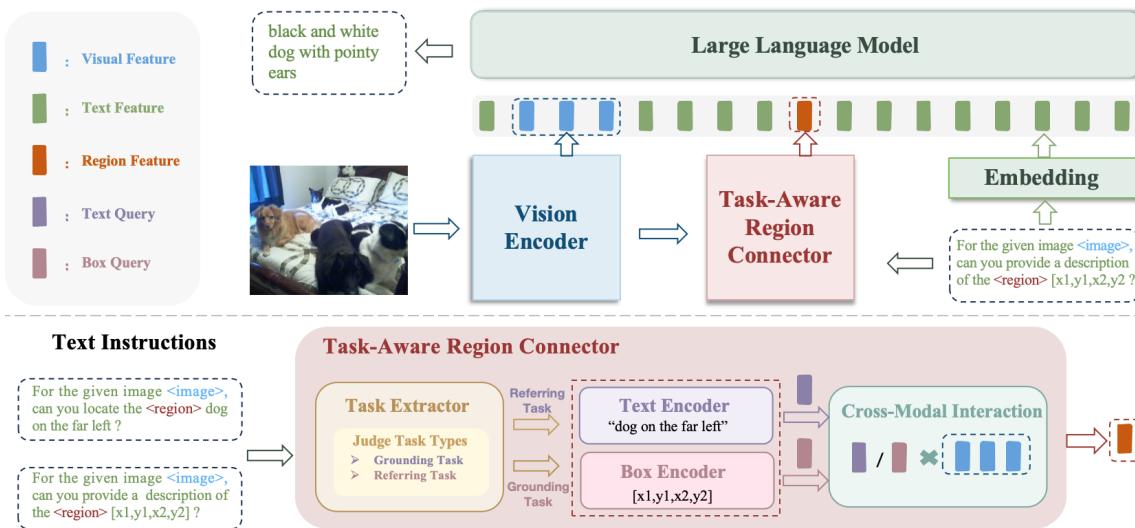


Figure 2: Overview of TAMP. We propose a TAMP Framework for fine-grained visual perception, which is a unified and detector-free training paradigm. The Task-Aware Region Connector is able to distill task-specific saliency cues and key information from instructions for the regions.

2 METHODS

2.1 OVERVIEW

Despite the remarkable progress MLLMs have made in general visual understanding, existing methods exhibit two critical limitations when handling fine-grained visual tasks. First, current approaches fail to fully leverage task-specific information in instructions; Second, these methods lack the capability to selectively focus on relevant visual regions based on task requirements, instead processing the entire image uniformly. Our key insight is that fine-grained visual tasks inherently contain rich task-specific information within their instructions-natural language descriptions for referring tasks and spatial coordinates for grounding tasks, which should guide the model to selectively attend to relevant visual regions. Based on this, we propose a task-aware region connector that establishes effective interaction between task-aware query which encode task-specific information extracted from instructions, and visual features through a unified dual-branch architecture, as illustrated in Figure 2. This module elegantly handles both referring and grounding fine-grained tasks within a unified framework.

2.2 MODEL ARCHITECTURE

As illustrated in Figure 2, TAMP comprises four core components: (1) a vision encoder for image tokenization; (2) a task-aware region connector that dynamically extracts fine-grained region features conditioned on the key task information; (3) visual/region projectors that project visual and region features into the language space; and (4) a LLM for unified modeling of multimodal inputs and outputs.

Vision Encoder. We employ a pre-trained Vision Transformer (ViT) (Dosovitskiy et al., 2020) as our vision encoder Φ_V . This encoder is pre-trained through image-text contrastive learning, enabling its patch-level visual features to capture comprehensive global semantic representations. For an input image $I \in \mathbb{R}^{3 \times W \times H}$, the encoder Φ_V produces a sequence of visual features $F_V = \Phi_V(I)$.

Task-aware Region Connector. Our task-aware region connector Φ_R enables task-aware fine-grained region feature extraction through three key components: (1) a task extractor that parses task-specific information from instructions; (2) a dual-branch encoder to generate task-aware query based on task information; and (3) a cross-modal interaction module dynamically aggregates task-relevant fine-grained region features. To facilitate effective task information extraction, we design specific task templates for both grounding and referring tasks. For referring tasks, the task extractor extracts natural language descriptions within `<ref>` tags and converts them into a semantic query vector Q_{text} through a pre-trained BERT encoder (Devlin et al., 2019). The query vector encodes the semantic information of the target region description; For grounding tasks, the task extractor identifies normalized bounding box coordinates $[x_1, y_1, x_2, y_2]$ within `<loc>` tags and generates position-aware query Q_{box} through a multi-layer MLP to precisely localize spatial regions. Both types of queries are transformed to a shared query space through a unified projection layer, generating the task-aware query Q that serves as input to the cross-modal interaction module. This module employs a query-driven attention mechanism that dynamically adjusts the aggregation strategy of visual features based on task type:

$$\hat{F}_R = \text{CrossAttn}(Q, F_V) = \text{softmax} \left(\frac{QW_Q(F_V W_K)^T}{\sqrt{D_k}} \right) \cdot F_V W_V, \quad (1)$$

$$F_R = \text{LayerNorm}(\text{FFN}(\hat{F}_R)), \quad (2)$$

where F_V represents the feature map output by the visual encoder, W_V , W_Q , and W_K are learnable projection matrices. The detailed instruction templates for specific tasks are provided in Appendix D.

Visual/Region Projector. We utilize two parallel MLP projection heads to transform visual features into the language space: the Visual Projector P_V maps the global visual representation F_V to the visual global token H_v , while the Region Projector P_R maps fine-grained region features F_R to region tokens H_r . This dual-path projection ensures that different types of visual information are processed independently and aligned within a unified language representation space, thereby preserving individualized semantics while enables effective fusion with textual embeddings.

LLM. We adopt the pre-trained LLaMA (Touvron et al., 2023) as our language model and keep its original parameter initialization. The language instruction is embedded by the LLM token embedding layer, which produces language tokens H_t . The LLM takes as input a concatenation of three sequences: the text instruction tokens, global visual tokens produced by the Visual Projector, and region tokens produced by the Region Projector. The probability p of the next token at position i is computed as follows:

$$p(X_a | H_t, H_v, H_r) = \prod_{i=1}^L p(x_i | H_t, H_v, H_r, x_{<i}) \quad (3)$$

where X_a represents the generated answer tokens, $x_{<i}$ represents all previously generated tokens before position i , L is the length of the generated sequence.

2.3 TASK-AWARE INSTRUCTION TEMPLATE DESIGN

To seamlessly integrate fine-grained spatial perception into multimodal large language models, we propose a unified, task-aware instruction template framework. This framework introduces special region tokens and replaces them with task-specific fine-grained region features prior to inference, enabling the model to address a variety of fine-grained visual perception tasks within a single unified paradigm. Current mainstream MLLMs typically adopt standard image-text template for instruction tuning. While this design is suitable for image-level vision-language tasks (e.g., Image Caption and VQA), it cannot effectively support fine-grained tasks that require region-level understanding. To address this limitation, we extend the standard template by introducing a Region Placeholder `<region>` which is a special token that will be dynamically replaced with

188 task-relevant region features extracted by the Task-Aware Region Connector during the model’s forward
 189 propagation. The comparison between standard and fine-grained template is shown below:
 190

198 Figure 3: Standard and fine-grained templates.
 199
 200

201 2.4 MODEL TRAINING STRATEGY

202 We adopt a three-stage progressive training strategy to address key bottlenecks in existing region-level meth-
 203 ods. Latest works rely on pre-trained object detectors and operations like ROIAlign for region feature extrac-
 204 tion. This “detect-extract-aggregate” pipeline has fundamental issues: region features from object detectors
 205 are not aligned with language space, and ROI-aggregated features have limited text-semantic alignment,
 206 increasing inference latency and impairing downstream task performance.
 207

208 Our strategy progressively establishes visual-language alignment from region-level to image-level. First,
 209 We train the task-aware region connector to directly establish region-level visual-language alignment. For
 210 referring tasks, we adopt semantic contrastive loss to ensure accurate capture of region visual content and
 211 mapping to the language space. For grounding tasks, we combine the same semantic contrastive loss with
 212 localization loss to learn both text-region semantic alignment and spatial localization capabilities. Then, We
 213 train the projection layer using large-scale image-text pairs while freezing the task-aware region connector
 214 and language model, establishing image-level visual-language alignment. Finally, we simultaneously op-
 215 timize the projection layer, task-aware region connector, and region projection layer, while fine-tuning the
 216 visual encoder and LLM through LoRA, enabling comprehensive multimodal understanding and instruction-
 217 following capabilities. Details of the training datasets are provided in Appendix C.
 218

219 3 EXPERIMENTS

220 3.1 EXPERIMENTAL SETTING

221 We implement two variants of TAMP, employing CLIP ViT-L-224px(Radford et al., 2021) and EVA-G-
 222 224px (Sun et al., 2023) as image backbones respectively, with LLaMA-2-7B(Touvron et al., 2023) serving
 223 as the LLM. For efficient training, we perform parameter-efficient fine-tuning on both the visual encoder and
 224 LLM through LoRA(Hu et al., 2022), and insert lightweight modules before each self-attention layer. Our
 225 baseline follows the same architecture but without the task-aware region connector, using only global visual
 226 features like conventional MLLM LLaVA (Liu et al., 2023b). Detailed training configurations are provided
 227 in Appendix C.
 228

229 3.2 GROUNDING BENCHMARK RESULTS

230 We evaluate TAMP on RefCOCO (Kazemzadeh et al., 2014), RefCOCO+ (Yu et al., 2016), and RefCOCOg
 231 (Mao et al., 2016) benchmarks to assess its localization capability. As shown in Table 1, TAMP significantly
 232 outperforms baselines in both zero-shot (63.61% with EVA-G) and fine-tuning (88.20% with EVA-G) set-
 233 tings, surpassing all existing models comparable or larger scale, as well as existing specialized grounding
 234

235 Table 1: Comparison on Grounding Benchmark. ‘‘Avg.’’ means the average of top-1 accuracy over all the 8
236 evaluation sets.
237

238 239 Method	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 Model type	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 RefCOCO			240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 RefCOCO+			240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 RefCOCOg	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 val	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 testA	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 testB	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 Avg.
		240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 MDETR (Kamath et al., 2021)	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 G-DINO (Liu et al., 2024)	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 UNINEXT-L (Yan et al., 2023)								
<i>Zero-shot Setting</i>												
Kosmos-2 (Peng et al., 2023)		52.32	57.42	47.26	45.48	50.73	42.24	60.57	61.65	52.21		
GRILL (Jin et al., 2023)		-	-	-	-	-	-	-	47.50	-		
Pink (Xuan et al., 2024)		54.10	61.20	44.20	43.90	50.70	35.00	59.10	60.10	51.00		
LION-12B (Chen et al., 2024a)		58.54	56.41	59.36	45.93	45.73	47.89	66.12	64.69	55.58		
BaseLine-CLIP-L		56.06	63.21	47.11	45.87	51.03	38.92	62.25	60.45	53.11		
TAMP-CLIP-L		63.21	67.85	56.86	50.24	54.63	44.61	68.42	66.59	59.05		
BaseLine-EVA-G		62.41	66.50	58.63	49.35	54.44	46.49	68.59	67.61	59.25		
TAMP-EVA-G		68.16	69.98	64.14	54.03	56.44	51.67	72.63	71.83	63.61		
<i>Fine-tuning Setting</i>												
VisionLLM-H (Wang et al., 2023)		-	86.70	-	-	-	-	-	-	-		
Shikra-13B (Chen et al., 2023c)		87.83	91.11	81.81	82.89	87.79	74.41	82.64	83.16	83.96		
GroundingGPT (Li et al., 2024)		88.02	91.55	82.47	81.61	87.18	73.18	81.67	81.99	83.46		
Ferret-13B (You et al., 2023)		89.48	92.41	84.36	82.81	88.14	75.17	85.83	86.34	85.57		
Pink (Xuan et al., 2024)		88.30	91.70	84.00	81.40	87.50	73.70	83.70	83.70	84.25		
MiniGPTv2 (Chen et al., 2023b)		88.69	91.65	85.33	79.97	85.12	74.45	84.44	84.66	84.29		
PerceptionGPT-13B (Pi et al., 2024)		89.17	93.20	85.96	83.72	89.19	75.31	83.75	84.69	85.62		
Qwen-VL (Bai et al., 2023)		89.36	92.26	85.34	83.12	88.25	77.21	85.58	85.48	85.83		
LION-12B (Chen et al., 2024a)		89.80	93.02	85.57	83.95	89.22	78.06	85.52	85.74	86.36		
VPP-LLaVA-13B (Tang et al., 2025)		90.32	93.02	86.34	84.65	90.78	79.06	85.64	86.01	86.98		
Groma (Ma et al., 2024)		89.53	92.09	86.26	83.90	88.91	78.05	86.37	87.01	86.52		
ROD-MLLM (Yin et al., 2025)		90.2	93.0	86.3	84.8	89.9	77.5	86.7	86.7	86.89		
BaseLine-CLIP-L		88.11	91.87	82.87	81.15	87.50	72.57	82.43	83.44	83.74		
TAMP-CLIP-L		89.28	92.15	84.06	82.77	88.18	74.78	84.17	85.46	85.11		
BaseLine-EVA-G		91.55	92.89	88.07	84.68	89.10	79.40	86.13	86.78	87.33		
TAMP-EVA-G		91.76	93.92	88.34	86.30	90.13	79.93	86.99	88.21	88.20		

266 methods. Notably, while methods like LION, Ferret, and Groma require millions of grounding samples,
267 TAMP achieves superior performance using only 0.5M data through our lightweight task-aware region
268 connector. This fully validates the effectiveness of the task-aware multimodal pre-interaction paradigm.
269

270 3.3 REFERRING BENCHMARK RESULTS

271 We evaluated TAMP’s fine-grained region understanding capability on the RefCOCOg(Mao et al., 2016)
272 and Visual Genome datasets(Krishna et al., 2017). We employed METEOR and CIDEr as evaluation met-
273 rics, which comprehensively measure both the accuracy and fluency of generated descriptions. As shown
274 in Table 2, TAMP-EVA-G achieved the best performance on both datasets, attaining 17.7 METEOR and
275 117.3 CIDEr on RefCOCOg, and 19.4 METEOR and 164.0 CIDEr on Visual Genome. Particularly note-
276 worthy is that compared to the corresponding baseline variants, TAMP demonstrated consistent performance
277 improvements across both visual encoder architectures.
278

282 3.4 GENERAL VQA BENCHMARK RESULTS
283

284 To verify whether our model maintains general visual question answering capabilities while enhancing fine-
285 grained visual understanding abilities, we conducted evaluations on five widely adopted VQA benchmarks:
286 VQAv2(Goyal et al., 2017), AOK-VQA(?), VSR(Liu et al., 2023a), OK-VQA(Marino et al., 2019), and
287 GQA(Hudson & Manning, 2019). These datasets comprehensively examine the model’s multimodal under-
288 standing capabilities from different dimensions.

289 Table 2: Comparison with MLLMs on Referring Benchmark. \dagger indicates an extra stage of task-specific
290 supervised tuning.
291

Method	RefCOCOg		Visual Genome	
	METEOR	CIDEr	METEOR	CIDEr
GRIT (Wu et al., 2024)	15.2	71.6	17.1	142
Kosmos-2 (Peng et al., 2023)	14.1	62.3	-	-
LLaVA-v1.5-7B (Liu et al., 2023b)	12.0	73.1	-	-
VPP-LLaVA-7B (Tang et al., 2025)	12.1	73.1	-	-
ChatterBox (Tian et al., 2024)	14.5	-	-	-
GPT4RoI (Zhang et al., 2024b)	-	-	17.4	145.2
RegionGPT (Guo et al., 2024)	16.9	109.9	17.0	145.6
GLaMM \dagger (Rasheed et al., 2024)	16.1	101.9	19.0	163.9
Groma (Ma et al., 2024)	16.8	107.3	19.0	158.4
ROD-MLLM (Yin et al., 2025)	17.3	113.8	19.0	158.5
BaseLine-CLIP-L	16.1	106.3	17.9	143.9
TAMP-CLIP-L	17.0	110.8	18.5	158.2
BaseLine-EVA-G	17.2	113.9	17.9	140.1
TAMP-EVA-G	17.7	117.9	19.4	164.0

309 As shown in Table 3, our method achieves comparable or superior performance to baseline on most bench-
310 marks, indicating that we have not compromised the model’s general visual understanding capabilities while
311 introducing fine-grained perception abilities. Notably, despite using only 595K pretraining data and 797K
312 instruction tuning data, we still achieve comparable performance to general models trained on larger-scale
313 datasets on most traditional VQA benchmarks. This result strongly demonstrates that our proposed task-
314 aware multimodal pre-interaction paradigm not only effectively enhances fine-grained perception capabili-
315 ties but also successfully maintains the model’s general visual understanding abilities, achieving a good
316 balance between fine-grained understanding and general capabilities.

317 3.5 ABLATION STUDY
318

319 Table 4: Referring and Grounding abilities with dif-
320 ferent box encoder designs.
321

Box Encoder	Referring	Grounding
Multi-Layer MLP	110.8	85.11
Sin/Cos Encoding	101.6	84.95
Sin/Cos + Linear	105.0	84.91

327 **Impact of Box Encoder Design.** Table 4 presents ablation results for different bounding box encoder
328 designs in TAMP-CLIP-L, we measure referring ability with CIDEr score on Refcocog and grounding ability

329 Table 5: Ablation Study on Freezing the
330 task-aware region connector.
331

Status	Referring	Grounding
frozen	84.74	110.0
unfrozen	85.11	110.8

329 Table 3: Comparison with MLLMs on General VQA Benchmark. *indicates that the training data does not
 330 include the GQA dataset. \dagger means our evaluated results by using publicly released checkpoints.
 331

332 Models	333 Vision Encoder	334 Resolution	335 Training Data		336 Performance				
			#PT Data	#IT Data	VQA2	AOK-VQA	VSR	OK-VQA	GQA
InstructBLIP-7B(Dai et al., 2023)	EVA-G	224	129M	1.2M	-	-	54.3	-	49.2
Shikra-7B (Chen et al., 2023c)	ViT-L	224	595K	5.5M	76.7	-	63.3	53.5	47.4*
Qwen-VL-7B (Bai et al., 2023)	ViT-G	448	1.4B	50M	78.8	-	-	58.6	59.3
LLaVA-1.5-7B (Liu et al., 2023b)	ViT-L	336	558K	665K	78.5	-	67.6	-	62.0
MiniGPT-4-13B (Zhu et al., 2023)	EVA-G	224	5M	3.5K	-	-	41.6	37.5	30.8*
MiniGPTv2-7B (Chen et al., 2023b)	EVA-G	448	>5M	>20M	-	-	60.6	56.9	60.3
Pink-7B \dagger (Xuan et al., 2024)	ViT-L	224	595K	1.72M	-	78.54	66.12	58.46	54.74*
Lions-4B (Chen et al., 2024a)	EVA-G	224	2.7M	9.9M	-	59.98	72.96	51.08	49.50*
Lions-13B (Chen et al., 2024a)	EVA-G	224	2.7M	9.9M	-	60.87	73.77	57.33	51.56*
BaseLine-7B	EVA-G	224	595K	797K	79.08	58.94	69.22	59.84	54.85*
TAMP-7B	EVA-G	224	595K	797K	79.84	59.64	68.49	59.96	55.89*

343 Table 6: Performance comparison with different visual encoders and language models on the Grounding
 344 benchmarks.
 345

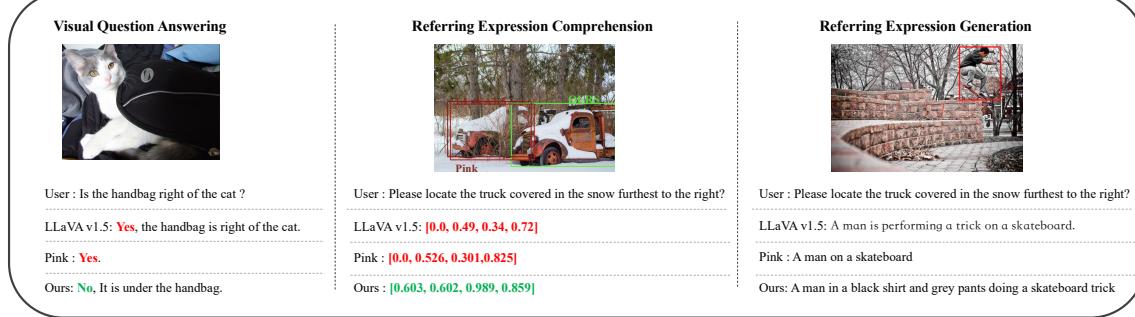
346 Model	347 Vision Encoder(Res)	348 LLM	349 RefCOCO			350 RefCOCO+			351 RefCOCOg		352 Avg.
			353 val	354 testA	355 testB	356 val	357 testA	358 testB	359 val	360 test	
Baseline	CLIP-L/14(336px)	LLaMA-2-7B	89.93	92.61	84.88	82.60	89.21	74.15	85.07	85.93	85.55
Ours	CLIP-L/14(336px)	LLaMA-2-7B	90.31	93.64	85.56	84.05	90.31	76.68	86.25	86.43	86.65
Baseline	CLIP-L/14(336px)	Vicuna1.5-7B	89.98	93.11	84.67	83.65	89.61	75.25	85.44	86.23	85.99
Ours	CLIP-L/14(336px)	Vicuna1.5-7B	90.67	93.21	85.55	84.43	89.98	76.52	86.13	86.57	86.63

355 with average accuracy on grounding benchmarks. As we adopt a dual-branch architecture, the box encoder
 356 design primarily affects referring tasks that require processing spatial coordinates, while grounding tasks
 357 rely on the text branch for encoding linguistic descriptions. Compared to sinusoidal/cosine encoding (score
 358 105.0) and its combination with linear layers (score 105.9), the multi-layer MLP achieves the best referring
 359 accuracy (score 110.8). This advantage stems from the MLP’s ability to learn complex nonlinear mappings
 360 from normalized coordinates to the shared query space. While sinusoidal positional encoding effectively
 361 captures absolute positions, it has limited expressiveness in transforming spatial coordinates into task-aware
 362 queries that can interact with semantic visual features.

363 **Frozen task-aware region connector** As shown in Table 5, we freeze the task-aware region connector after
 364 training to evaluate its effectiveness and we measure referring ability with CIDEr score on Refcocog and
 365 grounding ability with average accuracy on grounding benchmarks. The frozen module maintains strong
 366 performance with 84.74% on Referring and 110.0 CIDEr on grounding tasks, experiencing minimal drops
 367 of 0.37% and 0.8 points respectively. Notably, even with frozen parameters, our model substantially out-
 368 performs baseline grounding benchmarks. This demonstrates the effectiveness of our first-stage pretrain-
 369 ing, where we specifically optimize the task-aware region connector to establish robust region-level visual-
 370 language alignment through semantic contrastive and localization losses, ensuring our proposed task-aware
 371 region connector effectively capture task-relevant region features.

372 **Impact of Vision and Language Backbones.** Table 6 demonstrates the generalizability of our approach
 373 across different backbone architectures. When upgrading from CLIP-L/14(224px) (Radford et al., 2021) to
 374 CLIP-L/14(336px) (Radford et al., 2021) with LLaMA-2-7B (Touvron et al., 2023), our method achieves
 375 86.65% average accuracy compared to the baseline’s 85.55%, maintaining a consistent improvement margin

376 across different visual resolutions. Furthermore, when switching the language model from LLaMA-2-7B to
 377 Vicuna1.5-7B (Chiang et al., 2023) while maintaining CLIP-L/14(336px), our approach yields 86.63% com-
 378 pared to 85.99% baseline, with consistent improvements across all RefCOCO splits. These results validate
 379 that our task-aware region connector effectively enhances region-level understanding across different vision
 380 encoder resolutions and language model architectures, confirming the robustness and transferability of our
 381 design.



394 Figure 4: A comparison of TAMP against MLLMs LLaVA-1.5 and Pink on three benchmark. We mark the
 395 incorrect part in red, and highlight the correct part in green for comparison.

398 3.6 QUALITATIVE ANALYSIS

400 As shown in Figure 4, we compare the performance of our model with LLaVA v1.5 and Pink across three
 401 multimodal tasks. Our model demonstrates superior fine-grained perception and understanding capabilities
 402 in visual question answering, referring expression comprehension, and referring expression generation tasks.
 403 In the referring expression comprehension task, LLaVA v1.5 and Pink’s coordinate localization clearly
 404 deviates to the left, while our model accurately identifies the spatial cue “right side” and generates correct
 405 coordinates. In the referring expression generation task, compared to the simple descriptions produced
 406 by other models, our model precisely captures fine-grained visual attributes such as clothing colors, fully
 407 demonstrating TAMP’s superiority in precise spatial localization and fine-grained visual understanding.

410 4 CONCLUSION

411 This paper proposes the Task-aware Multimodal Pre-Interaction Framework (TAMP), a unified and detector-
 412 free LLM for fine-grained downstream tasks. It adequately addresses the challenges of the performance
 413 ceiling of additional detectors and domain shift issues, which fundamentally constrain localization accuracy
 414 and increase computational complexity. We present a task-aware region connector with a dual-branch
 415 architecture to uniformly handle fine-grained visual tasks. The task and semantic intent from instructions are
 416 parsed, and task-relevant region features are then highlighted via another processing branch. More impor-
 417 tantly, we design an instruction template with a dynamic region placeholder, which is seamlessly replaced
 418 with task-aware region features, ensuring integration of region information into text prompts for subsequent
 419 multimodal reasoning. With only 595K pretraining data and 797K instruction tuning data, our method
 420 achieves state-of-the-art performance on both referring and grounding benchmarks while maintaining strong
 421 general VQA capabilities. Our approach successfully injects precise spatial perception into MLLMs with-
 422 out significant computational overhead, establishing a new paradigm for unified fine-grained multimodal
 understanding.

423 REPRODUCIBILITY STATEMENT
424

425 To ensure the reproducibility of our work, we have made comprehensive efforts to document all aspects
426 of our implementation and experimental setup. Our complete codebase, including the task-aware region
427 connector architecture, training and evaluation scripts, will be made available as supplementary materials
428 upon acceptance. The model architecture details, particularly the dual-branch design of the task-aware re-
429 gion connector, are fully described in Section 2.2 and illustrated in Figure 2. All experimental settings are
430 specified in Section 3.1 and detailed in Appendix C, including learning rates, batch sizes, and optimization
431 schedules. We use publicly available datasets throughout our experiments: LLaVA-CC3M-Pretrain-595K
432 and Object365 for pretraining, and RefCOCO/RefCOCO+/RefCOCOg, Visual Genome, and standard VQA
433 benchmarks for evaluation, with complete dataset statistics provided in Appendix B. The task-specific in-
434 struction templates essential for reproducing our results are comprehensively listed in Appendix D. Our
435 experiments were conducted on 8 NVIDIA A800 GPUs, requiring approximately 48 hours of total train-
436 ing time across three stages. The region-level alignment training details, including the loss functions, are
437 mathematically formulated in Appendix F.

438 REFERENCES
439

440 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
441 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv*
442 preprint *arXiv:2303.08774*, 2023.

443 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
444 Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
445 few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.

446 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
447 Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint*
448 *arXiv:2308.12966*, 1(2):3, 2023.

449 Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi, Peng Li, Maosong Sun, and Yang Liu. Position-enhanced
450 visual instruction tuning for multimodal large language models. *arXiv preprint arXiv:2308.13437*, 2023a.

451 Gongwei Chen, Leyang Shen, Rui Shao, Xiang Deng, and Liqiang Nie. Lion: Empowering multimodal
452 large language model with dual-level visual knowledge. In *Proceedings of the IEEE/CVF Conference on*
453 *Computer Vision and Pattern Recognition*, pp. 26540–26550, 2024a.

454 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorti,
455 Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large language model as a
456 unified interface for vision-language multi-task learning. *arXiv preprint arXiv:2310.09478*, 2023b.

457 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
458 multimodal llm’s referential dialogue magic. *arXiv preprint arXiv:2306.15195*, 2023c.

459 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,
460 Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models
461 with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024b.

462 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
463 Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4
464 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April 2023), 2(3):6, 2023.

470 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale N
 471 Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction
 472 tuning. *Advances in neural information processing systems*, 36:49250–49267, 2023.

473 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
 474 rectional transformers for language understanding. In *Proceedings of the 2019 conference of the North*
 475 *American chapter of the association for computational linguistics: human language technologies, volume*
 476 *1 (long and short papers)*, pp. 4171–4186, 2019.

477 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 478 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
 479 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

480 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 481 matter: Elevating the role of image understanding in visual question answering. In *Proceedings of the*
 482 *IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

483 Qiushan Guo, Shalini De Mello, Hongxu Yin, Wonmin Byeon, Ka Chun Cheung, Yizhou Yu, Ping Luo,
 484 and Sifei Liu. Regiongpt: Towards region understanding vision language model. In *Proceedings of the*
 485 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13796–13806, 2024.

486 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the IEEE*
 487 *international conference on computer vision*, pp. 2961–2969, 2017.

488 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
 489 Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

490 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
 491 compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and*
 492 *pattern recognition*, pp. 6700–6709, 2019.

493 Woojeong Jin, Subhabrata Mukherjee, Yu Cheng, Yelong Shen, Weizhu Chen, Ahmed Hassan Awadallah,
 494 Damien Jose, and Xiang Ren. Grill: Grounded vision-language pre-training via aligning text and image
 495 regions. *arXiv preprint arXiv:2305.14676*, 2023.

496 Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
 497 Mdetr-modulated detection for end-to-end multi-modal understanding. In *Proceedings of the IEEE/CVF*
 498 *international conference on computer vision*, pp. 1780–1790, 2021.

499 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to objects
 500 in photographs of natural scenes. In *Proceedings of the 2014 conference on empirical methods in natural*
 501 *language processing (EMNLP)*, pp. 787–798, 2014.

502 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
 503 Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
 504 using crowdsourced dense image annotations. *International journal of computer vision*, 123(1):32–73,
 505 2017.

506 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
 507 with frozen image encoders and large language models. In *International conference on machine learning*,
 508 pp. 19730–19742. PMLR, 2023.

509 Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li,
 510 Van Tu Vu, et al. Groundinggpt: Language enhanced multi-modal grounding model. *arXiv preprint*
 511 *arXiv:2401.06071*, 2024.

517 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. *Transactions of the Association for*
 518 *Computational Linguistics*, 11:635–651, 2023a.

519

520 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural*
 521 *information processing systems*, 36:34892–34916, 2023b.

522 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei
 523 Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object
 524 detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024.

525

526 Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual tokenization
 527 for grounding multimodal large language models. In *European Conference on Computer Vision*, pp.
 528 417–435. Springer, 2024.

529

530 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy. Generation
 531 and comprehension of unambiguous object descriptions. In *Proceedings of the IEEE conference on computer*
 532 *vision and pattern recognition*, pp. 11–20, 2016.

533

534 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
 535 answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf conference on computer*
 536 *vision and pattern recognition*, pp. 3195–3204, 2019.

537

538 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection. *Advances in Neural Information Processing Systems*, 36:72983–73007, 2023.

539

540 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2:
 541 Grounding multimodal large language models to the world. *arXiv preprint arXiv:2306.14824*, 2023.

542

543 Renjie Pi, Lewei Yao, Jiahui Gao, Jipeng Zhang, and Tong Zhang. Perceptionpt: Effectively fusing visual
 544 perception into llm. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 545 *recognition*, pp. 27124–27133, 2024.

546

547 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana
 548 Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence
 549 models. In *Proceedings of the IEEE international conference on computer vision*, pp. 2641–2649, 2015.

550

551 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 552 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
 553 natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR,
 554 2021.

555

556 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal,
 557 Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel grounding large multi-
 558 modal model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 559 pp. 13009–13018, 2024.

560

561 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
 562 Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the IEEE/CVF*
 563 *international conference on computer vision*, pp. 8430–8439, 2019.

564

565 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques
 566 for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

567

568 Wei Tang, Yanpeng Sun, Qinying Gu, and Zechao Li. Visual position prompt for mllm based visual ground-
 569 ing. *arXiv preprint arXiv:2503.15426*, 2025.

564 Yunjie Tian, Tianren Ma, Lingxi Xie, Jihao Qiu, Xi Tang, Yuan Zhang, Jianbin Jiao, Qi Tian, and Qixiang
 565 Ye. Chatterbox: Multi-round multimodal referring and grounding. *arXiv preprint arXiv:2401.13307*,
 566 2024.

567 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
 568 Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
 569 language models. *arXiv preprint arXiv:2302.13971*, 2023.

570 571 Wenhui Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie
 572 Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for vision-centric
 573 tasks. *Advances in Neural Information Processing Systems*, 36:61501–61513, 2023.

574 575 Jialian Wu, Jianfeng Wang, Zhengyuan Yang, Zhe Gan, Zicheng Liu, Junsong Yuan, and Lijuan Wang. Grit:
 576 A generative region-to-text transformer for object understanding. In *European Conference on Computer
 577 Vision*, pp. 207–224. Springer, 2024.

578 579 Shiyu Xuan, Qingpei Guo, Ming Yang, and Shiliang Zhang. Pink: Unveiling the power of referential
 580 comprehension for multi-modal llms. In *Proceedings of the IEEE/CVF conference on computer vision
 581 and pattern recognition*, pp. 13838–13848, 2024.

582 583 Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu. Universal instance
 584 perception as object discovery and retrieval. In *Proceedings of the IEEE/CVF Conference on Computer
 585 Vision and Pattern Recognition*, pp. 15325–15336, 2023.

586 587 Heng Yin, Yuqiang Ren, Ke Yan, Shouhong Ding, and Yongtao Hao. Rod-mllm: Towards more reliable
 588 object detection in multimodal large language models. In *Proceedings of the Computer Vision and Pattern
 589 Recognition Conference*, pp. 14358–14368, 2025.

590 591 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
 592 Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity. *arXiv preprint
 593 arXiv:2310.07704*, 2023.

594 595 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context in
 596 referring expressions. In *European conference on computer vision*, pp. 69–85. Springer, 2016.

597 598 Hao Zhang, Hongyang Li, Feng Li, Tianhe Ren, Xueyan Zou, Shilong Liu, Shijia Huang, Jianfeng Gao,
 599 Leizhang, Chunyuan Li, et al. Llava-grounding: Grounded visual chat with large multimodal models. In
 600 *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.

601 602 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen, and
 603 Ping Luo. Gpt4roi: Instruction tuning large language model on region-of-interest. In *European conference
 604 on computer vision*, pp. 52–70. Springer, 2024b.

605 606 Liang Zhao, En Yu, Zheng Ge, Jinrong Yang, Haoran Wei, Hongyu Zhou, Jianjian Sun, Yuang Peng, Runpei
 607 Dong, Chunrui Han, et al. Chatspot: Bootstrapping multimodal llms via precise referring instruction
 608 tuning. *arXiv preprint arXiv:2307.09474*, 2023.

609 610 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
 611 language understanding with advanced large language models. *arXiv preprint arXiv:2304.10592*, 2023.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable
 transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.

611 A RELATED WORK
612

613
614 **Multimodal large language models.** With the success of Large Language Models(Achiam et al., 2023; Tou-
615 vron et al., 2023) in natural language processing, researchers begin to explore ways to extend their powerful
616 reasoning capabilities to multimodal understanding tasks. Early pioneering works on MLLMs primarily
617 focus on aligning visual representations with pre-trained language models. Flamingo(Alayrac et al., 2022)
618 introduces frozen visual encoders paired with Perceiver Resampler to extract visual features, which are sub-
619 sequentially processed by frozen language models through gated cross-attention layers. BLIP-2(Li et al., 2023)
620 proposes Q-Former, bridging frozen image encoders and frozen LLMs to enable efficient vision-language
621 pre-training. Subsequent research has aimed to improve the quality and diversity of multimodal instruction
622 tuning. LLaVA(Liu et al., 2023b) introduces visual instruction tuning by converting image-text pairs into
623 instruction-following formats, enabling MLLMs to follow diverse multimodal instructions. InstructBLIP
624 (Dai et al., 2023) further enhances instruction-aware visual feature extraction through instruction-aware Q-
625 Former. Despite these advances, current alignment mechanisms primarily rely on coarse-grained matching
626 of image-text pairs, making it difficult to establish precise region-language correspondences, which has be-
627 come a major bottleneck for MLLMs in fine-grained visual perception tasks.

628 **MLLMs for referring and grounding.** To endow MLLMs with region-level understanding capabilities,
629 researchers have proposed various technical approaches. The first category of methods directly converts
630 bounding box coordinates into text sequences. For instance, works such as Shikra(Chen et al., 2023c),
631 Kosmos-2(Peng et al., 2023), and Pink Xuan et al. (2024) utilize visual localization datasets to enable
632 region-level visual understanding in MLLMs. However, LLMs inherently struggle with processing continu-
633 ous spatial coordinates, leading to the loss of spatial semantics. The second category introduces specialized
634 expert modules to process region information. GPT4RoI(Zhang et al., 2024b) and PVIT(Chen et al., 2023a)
635 employ RoIAlign at the input end to extract region features, while LLaVA-Grounding(Zhang et al., 2024a)
636 adds a localization decoder at the output end. These methods suffer from task bias: introducing expert mod-
637 ules at the input end benefits referring tasks but provides limited help for localization, while adding modules
638 at the output end has the opposite effect, and significantly increase inference latency. The latest methods
639 utilize pre-trained object detectors (Minderer et al., 2023; Zhu et al., 2020) to provide region proposals.
640 ROD-MLLM(Yin et al., 2025) and Groma(Ma et al., 2024) first generate region proposals and then obtain
641 local features through mechanisms such as ROIAlign(He et al., 2017). While this approach can leverage
642 mature detection technologies, significant computational overhead, detector performance limitations, and a
643 large number of irrelevant candidate boxes also limit the overall effectiveness.

644
645 Table 7: The training datasets used for three-stage training.
646

Dataset	Stage 1	Stage 2	Stage 3	Data Number
LLaVA-CC3M-Pretrain-595K (Liu et al., 2023b)		✓		595K
LLaVA-Instruct-150K (Liu et al., 2023b)			✓	158K
Visual Genome(Krishna et al., 2017)			✓	108K
A-OK-VQA?			✓	17K
VQAv2(Goyal et al., 2017)			✓	83K
Flickr30k(Plummer et al., 2015)			✓	30K
Refcoco (Kazemzadeh et al., 2014)			✓	320K
Object365(Shao et al., 2019)	✓			1M

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
Table 8: Summary of the evaluation datasets.

Task	Dataset	Split	Metric
Visual Question Answering	VQAv2	test-dev	VQA Score
	OK-VQA	val	VQA Score
	AOK-VQA	val	VQA Score
	VSR	zero-shot test	Accuracy
	GQA	test-dev	VQA Score
Grounding Task	RefCOCO	val & testA & testB	Accuracy
	RefCOCO+	val & testA & testB	Accuracy
	RefCOCOg	val & test	Accuracy
Referring Task	Refcocog	val	METEOR & CIDEr
	Visual Genome	test	METEOR & CIDEr

B OVERVIEW OF TRAINING AND EVALUATION DATASETS

Table 7 illustrates the dataset usage for the three-stage training strategy. Table 8 lists the benchmark datasets used for model evaluation along with their corresponding evaluation metrics.

C MORE IMPLEMENTATION DETAILS

All experiments were conducted on 8 NVIDIA A800 GPUs. The training process consisted of three stages, requiring 20, 2, and 26 hours respectively. The experimental setup involves a three-stage training procedure with distinct hyper-parameter configurations detailed in Table 9.

Table 9: Hyper-parameter for training of different details.

Configuration	Stage1	Stage2	Stage3
optimizer	AdamW	AdamW	AdamW
epochs	30	1	6
batch size	16,384	128	32
learning rate	1e-4	2e-3	5e-4
learning rate schedule	cosine	cosine	cosine
warm-up ratio	0.03	0.03	0.05
weight decay	0.0	0.0	0.02
resolution	224px	224px	224px

D TASK-SPECIFIED INSTRUCTION TEMPLATES

In Section 2.3, we mentioned using task-specific instruction templates to convert various vision-language datasets into instruction-following format for model training. Table 12 provides the complete set of templates

used across different vision-language tasks, including detailed description, visual question answering, region grounding, referring expression, multi-choice VQA, and grounded captioning. These templates incorporate placeholder variables (e.g., `<question>`, `<description>`, `<location>`) that are dynamically filled with task-specific content during training, enabling the model to handle diverse vision-language scenarios in a unified instruction-following paradigm.

E MORE EXPERIMENTAL RESULTS

Table 10: Results on the General VQA Benchmark, with Vicuna1.5-7B as the LLM.

Models	Vision Encoder	Res.	Training Data		Performance				
			#PT Data	#IT Data	VQAv2	AOK-VQA	VSR	OK-VQA	GQA
BaseLine	VIT-L/14	336	595K	797K	79.47	60.49	67.43	59.52	65.37
TAMP	VIT-L/14	336	595K	797K	79.55	61.07	68.66	58.73	66.88

Table 11: Results on the Referring Benchmark with Vicuna1.5-7B as the LLM.

Method	RefCOCOg		Visual Genome	
	METEOR	CIDEr	METEOR	CIDEr
BaseLine	16.7	111.9	18.0	144.8
TAMP	17.3	114.0	19.3	162.7

The more results that leverage Vicuna1.5-7B (Chiang et al., 2023) as the language model are shown in Table 10 and Table 11. We can observe an improvement in performance on most datasets.

Our comprehensive experimental results in Tables 1, 2, 3, 6, 10, and 11 fully demonstrate the strong generalizability and versatility of the proposed method. Despite the lightweight and simple design of the proposed task-aware region connector, it can be seamlessly integrated into different backbone architectures (CLIP-L, EVA-G paired with LLaMA-2-7B or Vicuna1.5-7B). This unified framework not only significantly enhances the fine-grained perception and understanding capabilities of multimodal large language models, but also maintains their general visual understanding abilities on general VQA tasks. This validates our design philosophy: by extracting key task information from instructions for fine-grained visual tasks and guiding the model to focus on relevant visual regions, effective region-level understanding can be achieved without introducing complex external modules or additional computational overhead.

F REGION-LEVEL ALIGNMENT TRAINING DETAILS

To establish region-level vision-language alignment, we specifically train the task-aware region connector. For referring tasks, we employ semantic contrastive loss to ensure Q_{box} accurately captures regional visual content and maps it to the language space. For grounding tasks, we combine contrastive loss with localization loss, enabling the region feature extracted by Q_{text} to align with the text space while containing precise positional information. The specific loss functions are defined as follows.

Location Loss. Location Loss combines Smooth L1 loss with Generalized Intersection over Union (GIoU) loss:

$$\mathcal{L}_{location} = \alpha \cdot \mathcal{L}_{smooth_l1} + (1 - \alpha) \cdot \mathcal{L}_{GIoU}, \quad (4)$$

752 where the Smooth L1 loss is defined as:

753

$$754 \quad \mathcal{L}_{smooth.l1} = \frac{1}{4} \sum_{i=1}^4 \begin{cases} 0.5(p_i - t_i)^2, & \text{if } |p_i - t_i| < 1, \\ |p_i - t_i| - 0.5, & \text{otherwise,} \end{cases} \quad (5)$$

755

756 where p_i is the predicted value from the model, t_i is the true bounding box value and i is the index that iterates over the bounding box parameters. The GIoU loss takes into account the overall geometric relationship between predicted and ground-truth bounding boxes:

760

$$761 \quad \mathcal{L}_{GIoU} = 1 - \left(IoU - \frac{|A_c - U|}{|A_c|} \right), \quad (6)$$

762

763 where A_c denotes the area of the smallest enclosing box containing both the predicted and ground-truth boxes, and U represents the area of their union. In our experiments, we set $\alpha = 0.7$ to balance the contributions of both loss components.

766 **Semantic Contrastive Loss** Semantic Contrastive Loss employs a CLIP-style symmetric contrastive learning loss:

768

$$769 \quad \mathcal{L}_{semantic} = \frac{1}{2}(\mathcal{L}_{i2t} + \mathcal{L}_{t2i}), \quad (7)$$

770

771 Specifically, for a batch of N samples, we first compute the similarity matrix between normalized features:

772

$$773 \quad S_{ij} = \tau \cdot \langle Q_{texti}, F_{Ri} \rangle, \quad (8)$$

774

775 where F_R is a task-aware region feature and τ is a learnable temperature parameter, initialized to 1/0.07. The similarity of diagonal elements (positive pairs) is then optimized through cross-entropy loss:

776

$$777 \quad \mathcal{L}_{i2t} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(S_{ii})}{\sum_{j=1}^N \exp(S_{ij})}. \quad (9)$$

778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

799 Table 12: Task-specific instruction templates for various vision-language tasks used in model training.
800

801 Task	801 Template
802 Detailed Description	802 What do you see happening in this image? 803 What do you think is going on in this snapshot? 803 What's happening in the scene?
804 Visual Question Answer	804 I require a brief and clear answer for this question: <question> regarding the image. 805 I have a question for you: <question> Can you provide a concise answer based on the image ? 806 Give me a concise answer for <question> while keeping the image in mind.
807 Region Grounding	807 What are the coordinates of <ref><description></ref> in the image?. 808 Please locate <ref><description></ref> in the image. 808 Could you please help me find the coordinates of <ref><description></ref> in the image?
809 Referring - unique description	809 For the given image, can you provide a unique description of the region <loc> <location> </loc>? 810 Please generate a distinguishing description for the region <loc> <location> </loc> in the image. 810 In the photo , how would you describe the selected region <loc> <location> </loc> uniquely?
811 Referring - detailed description	811 For the given image , can you provide a unique description of the region <loc> <location> </loc>? 812 Please generate a distinguishing description for the region <loc> <location> </loc> in the image. 813 In the photo, how would you describe the selected region <loc> <location> </loc> uniquely?
814 Multi-Choices Visual Question Answer	814 For this image, I want to know which option can answer my question: <question> correctly. The options is <option>. 815 Referring to the image ;image;, please select the answer for this question: <question> from the options <option>. 815 For this image, I want to know which option can answer my question: <question> correctly. The options is <option>.
816 Grounded Captioning	816 Can you provide a description of the image and include the coordinates [x1,y1,x2,y2] for each mentioned object? 817 Tell me about the picture and include position info [x1,y1,x2,y2] for the objects you describe. 817 Please interpret this image and give coordinates [x1,y1,x2,y2] for each object you mention.

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845