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Abstract

Understanding the behavior of nonlinear differential equations is an extremely1

difficult problem. This problem is compounded by the frequent chaotic behavior2

demonstrated by high-dimensional dynamical systems. A subset of these systems,3

namely strange attractors, are of particular interest due to their sensitive dependence4

on initial conditions. Analytical reports on the stability of these attractors rely5

heavily on the ability to solve the underlying equations. In this work, an attractor6

network is used for the identification of different regions and the parameters7

resulting in that particular region, in well-defined strange attractors. The network8

takes in the initial configuration of the system, stores the pattern of neuronal firing9

as a state vector, and predicts the behavior of the attractor.10

1 Introduction11

Nonlinear dynamical systems are notoriously difficult to solve analytically. Existing methods like12

Euler’s method Euler (1989) and Runge-Kutta method Runga Kutta (1895) prove to be ineffective13

when the approximations are set dynamically. Consider solving Equation 1 using Euler’s method14

with an initial condition y(0) = 0.3.15

y
′
= e

x
sin(y) (1)

Since this method is based on approximations, any slight deviations in the system’s rudimentary16

phase will have cascaded results. This dependence on initial conditions is a characteristic of strange17

chaotic attractors David Ruelle (1989). These attractors can display a rich variety of nonlinearities,18

which usually contain irregular and unpredictable time evolution of globally deterministic systems19

with a nonlinear coupling of its local variables. However, in certain cases identifying the nature of20

these nonlinearities is beneficial, as it decides the chaotic regime the system will evolve towards.21

Events like boundary crisis Grebogi (2016), which is a catastrophic bifurcation in a system, force the22

system to converge towards a non-chaotic state.23

Accomplishing this task often requires a very high level of approximation which is achieved most24

commonly by universal approximators like neural networks and support vector machines. Recently,25

the field of deep learning has shown a lot of promise in solving differential equations Serrano-Perez26

(2021). Adaption of the network parameters provides shows high potential in the manipulation of27

these attractors and the associated high-dimensional nonlinear systems. One particular architecture of28

neural networks, namely attractor networks Amit (1992) Han (2018), can retain and forget information29

regarding the training phase, providing more flexibility in estimating the evolution of a system.30
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2 Methodology31

2.1 Dynamical System32

In our work, we consider dynamical systems which describe the position of all points in a space33

S ∈ Rn. Furthermore, the dynamical system is a continously differentiable function φ:R×Rn → Rn.34

Let S is governed by a system of differential equations F (X) ∈ Rn. A set4, with flow φt is called35

an attractor if it satisfies the following conditions:36

• 4 is compact and invariant37

• 4 follows the transitive property38

• There exists at least one open set U containing4 such that for each X ∈ U , φt(X) ∈ U39

and ∩t > 0 φt(U) =440

These attractors are considered to be strange attractors when they display sensitive dependence on41

initial conditions. Furthermore, the equations governing these attractors depict a bounded region of42

the phase-space having a positive Lyapunov exponent.43

Determining the trajectory of most dynamical systems is difficult since the systems are known to be44

approximated i.e, the parameters may not be known. These approximations cast doubt on the validity45

of numerical solutions. One method of addressing these queries is by performing stability analysis46

tests such as Lyapunov stability test Shevitz (1994).47

2.2 Lyapunov Stability48

A point of equilibrium for an attractor is considered to be stable if solutions remain in the neighbour-49

hood for all future timesteps. For a set of differential equations X ′ = F (X), X∗ is said to be a stable50

equilibrium point if, for every neighbourhood O of X∗, there is neighbourhood O1 of X∗ in O such51

that every solution in X(t) with X(0) = X0 in O1 is defined and remains in O, ∀t > 0.52

We denote the generated flow by X ∈ X 1(M) and let subset A ⊂M and subset R ⊂ R. We define53

set XR(A) = {X t(q) : (q, t) ∈ A × R}. A ⊂ M is Lyapunov stable for X if for every open set54

U containing A there exists an open set V containing A such that X t(V ) ⊂ U ∀t > 0. The key55

properties of a Lyapunov set4 are listed below.56

• If xn ∈M and tn > 0 satisfy xn → x ∈ 4 and X tn(xn)→ y, then y ∈ 4.57

• The globally unstable manifold W (4) ⊂ 4.58

• For a transitive set τ of X and τ∩4 6= , then τ ⊂ 4.59

2.3 Attractor Networks60

Attractor networks are a special class of recurrent neural networks, which have an associative memory61

component with synaptic feedback loopsYanan (2020). The network takes in the initial configuration62

of the differential equations and provides the dynamic attractor as an output. These networks store63

and utilize information regarding the neuronal firing patterns observed during the training phase. In64

our work, we use a recurrently connected continuous attractor network with N layers evaluated for tn65

time intervals. The subset of the network is shown in Figure 1.66

The pattern observed by each layer is stored as a state vector. The synapses of the networks then67

construct the pattern vectors, which correspond to trajectories in the phase space. In this process,68

the system evolves autonomously allowing for continuous modifications. Note that the layers need69

to be able to display ergodicity breaking i.e, the state vectors will be confined to a restricted space70

region, decided by the initial configurations. The continuous attractor network algorithm for manifold71

prediction is shown in Algorithm 1.72
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Algorithm 1 Continous Attractor Network
Input: number of layers, number of neurons per layer, time steps for prediction
for number_of_layers do

for number_of_neurons do
for number_of_time_steps do

Initialize model with given parameters
Train neural network with initialized variable
Construct phase space diagram and evaluate the trajectories

end for
end for

end for

Figure 1: Illustration of a sample of the continous attractor network with two networks. For N layers,
the total computational layers are (N + 1)(n − 1) which invovle free parameters to optimize and
predict the manifolds of the equations.

3 Experimental Analysis73

3.1 Strange Attractors74

The strange attractor considered in this study are the Lorenz Tucker (1999) and Rossler attractor75

Rossler (2017). The differential equations defining the Lorenz Attractor and Rossler are given in76

Equations 2 and 3, respectively.77

x
′
= σ(y − x)

y
′
= x− (ρ− z)− y

z
′
= xy − βz

(2)

78

x
′
= (y − x)

y
′
= x+ ay

z
′
= b+ z(x+ c)

(3)

79

3.2 Experimental Results80

Since both the attractors have an equal number of input and output parameters, the input and output81

of the network remain the same. The number of layers and the number of nodes per layer are flexible82

enough to accommodate any outliers. Each network accepts the state vector provided by the previous83

network, while the training phase is active only for T train time steps. The exact configurations of84

the network are mentioned in Table 1. The phase spaces for each attractor with variations in the85

parameters are shown in Figure 2. The training phase is represented by a different tinge as compared86

to the prediction phase.87

88
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Table 1: Model Configuration for Lorenz and Rossler experiments

Parameter Value
Number of layers 10
Neurons per layer [32,64,128]
Training Epochs 10

Optimizer Adam
Training phase end time 25

(a)

(b)

Figure 2: Manifolds for (a) Rossler System with parameter set [a, b, c] =
[0.3, 0.2, 5.7], [0.2, 1.4, 5.7], [0.1, 0.1, 12.6]], (b) Lorenz System with parameter set
[σ, β, ρ] = [[10, 8/3, 28], [10, 8/3, 27], [10, 3, 28]]

3.3 Analysis89

The experiments were conducted by varying the parameters and the followed behavior was observed.90

We observed that for the Rossler equations, the system falls into a chaotic state under the following91

two conditions: a increases beyond 0.2, keeping the other variables constant, and when c is increased92

beyond 6, keeping the other variables constant. For the Lorenz equations, the system displays chaotic93

behaviour for [σ, β, ρ] = [10, 83 , 27]. The system reverts to a periodic motion for ρ values greater than94

28.95

4 Conclusion96

In this work, we present the applicability of continuous attractor networks to determine the parameter97

set corresponding to the various stability regions of strange attractors. Two prominent strange98

attractors, Lorenz and Rossler were considered in this work. The continuous attractor network made99

predictions based on the initial conditions supplied to the network.100
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