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Abstract

Existing studies on reinforcement learning (RL) for sepsis management have mostly
followed an established problem setup, in which patient data were aggregated into 4-
hour time steps. Although concerns have been raised regarding the coarseness of this
time-step size, which might distort patient dynamics and lead to suboptimal treatment
policies, the extent to which this happens in practice remains unexplored. In this work,
we conducted empirical experiments for a controlled comparison of four time-step sizes
(∆t=1, 2, 4, 8 h) on this task, following a consistent offline RL pipeline. Our goal was
to quantify how time-step size influences state representation learning, model selection,
and off-policy evaluation. Our results show that smaller time-step sizes (1 h and 2 h)
yielded higher estimated returns than the canonical 4 h setting without reducing the
effective sample size (ESS), however this is influenced by how importance ratios are
truncated during evaluation. In addition, we found that tailoring the action space def-
inition to the distribution treatments under each time-step size led to improved policy
performance. Our work highlights that time-step size and action-space definition are
core design choices that shape policy learning for sepsis treatment.

1 Introduction

Reinforcement learning (RL) has shown great promise for sequential decision-making in healthcare,
enabling data-driven treatment policies for complex conditions such as sepsis (Komorowski et al.,
2018). Unlike typical RL problems in which states and actions are implicitly assumed to occur at
regular intervals, electronic health record (EHR) data are collected at irregular intervals, e.g., vital
signs and laboratory measurements occur only when patients interact with the healthcare system.
This irregularity poses significant challenges for the direct application of RL on such data.

A common workaround is to discretize irregularly sampled data into fixed-length time steps. For
example, aggregating measurements into 4-hour time steps as in the landmark AI Clinician work
(Komorowski et al., 2018). However, studies have demonstrated that such discretization can in-
troduce biases and obscure rapid physiological changes, negatively impacting downstream policy
learning and evaluation (Schulam & Saria, 2018). So far this bias has been studied only in theory,
with no empirical comparison across different time-step sizes. To date, almost all RL-based sep-
sis management studies (including the AI Clinician) adhered to the 4-hour time step and have not
systematically studied the impact of other time-step sizes on the entire policy learning pipeline (see
Appendix A.1).

In this work, we explore the impact of using 1-, 2-, 4-, or 8-hour time steps in the MIMIC-III sepsis
treatment task. While this may seem to be a simple modification for preprocessing, we note that this
has important consequences on the study cohort and action space definition, which poses challenges
for establishing a “fair” comparison. With these considerations in mind, we learned and evaluated
treatment policies at the four different time-step sizes separately following an identical offline RL
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pipeline, which includes latent state representation learning, behavior cloning, batch-constrained Q-
learning, hyperparameter selection, and off-policy evaluation (OPE). We found that finer time-step
sizes (1 h and 2 h) improved the OPE performance over the conventional 4 h setting, whereas the
coarse 8 h time-step size degraded performance. Using a clinically relevant action space further
improved behavior cloning performance compared with a quantile-based action space, which cor-
responds to potentially more reliable OPE metrics. While we observed smaller time-step sizes to
lead to comparable or even higher effective sample sizes (ESS) than larger time-step sizes, we cau-
tion that this result could be an artifact of how importance ratios were truncated during evaluation,
pointing to yet another challenge for establishing a fair comparison. Our findings highlight that both
time-step size and action space discretization are core design choices that shape the learned policy.

2 Background and Related Work
2.1 Time Step Discretization in RL for Healthcare

Definitions.

• Time step k. For each ICU admission we discretize the timeline into T consecutive windows of
fixed length ∆t. The windows start at an anchor time t0. For the sepsis task, t0 is 28 h before the
estimated sepsis onset, and the windows end at most 52 h after onset, yielding a trajectory of up
to 80 h. We define the boundaries

tk = t0 + k∆t, k = 0, . . . , T.

The k-th time step is the half-open interval [tk, tk+1) for k = 0, . . . , T − 1.

• State sk. All vitals and labs recorded inside [tk, tk+1) are aggregated into a raw feature vector ok
(together with static demographics); we then embed it as sk = f(ok) ∈ S.

• Action ak. Treatments administered during the next window [tk+1, tk+2), binned into a discrete
pair (IV fluid dosage, vasopressor dosage). Thus ak is chosen after observing sk and affects the
transition to sk+1.

With rewards rk and a terminal flag donek, the trajectory is

τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ).

Design Choices. When applying reinforcement learning to ICU sepsis management, most studies
discretize each patient’s EHR into 4-hour time steps (∆t = 4 h), treating every time step as a
single Markov decision step. All measurements and treatments within the step are collapsed into the
corresponding state-action pair. Once this aggregation is set, the critical design question is how to
construct those states and actions from raw data. A widely adopted choice, first popularized by the
AI Clinician study (Komorowski et al., 2018), is the interval-end representation: sk consists of the
vitals and labs measured at the end of the k-th 4-hour time step, on the assumption that these values
best capture the patient’s post-treatment physiology.

Prior work. In Appendix A.1 we summarize recent RL-for-sepsis studies. Nearly all adopted
∆t = 4 h, inherited from the AI Clinician Work (Komorowski et al., 2018). Indeed, Lu et al. (2020)
found that using 1-hour time steps substantially altered the learned policy, suggesting that a 4-hour
discretization might obscure important decision timing. However, no controlled study has been done
to compare different ∆t values in otherwise identical setups.

3 Experimental Setup
In our experiments, we applied an identical offline RL pipeline to patient data discretized at four
time-step sizes: 1 h, 2 h, 4 h, and 8 h. We describe the details below.

3.1 Dataset & Cohort Construction

We conducted our study on the MIMIC-III v1.4 critical care database (Johnson et al., 2016), focusing
on adult ICU patients who developed sepsis. Following the work of Subramanian & Killian (2020),
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we extracted each ICU admission’s time series from 28 hours before the first sepsis onset to up
to 52 hours after onset, yielding an episode trajectory with maximum 80 hours for each sepsis
case. Patients younger than 18 were excluded, as were those with implausible data entries (e.g.,
physiologically impossible vital signs). For each ∆t, this resulted in a final cohort of approximately
19, 000 trajectories.

3.2 Offline RL Pipeline

Our pipeline for offline RL comprises the following stages: Pre-processing of raw EHR data →
Approximate Information State (AIS)→ Behavior Cloning (BC) → Batch-Constrained Q-learning
(BCQ) → Weighted Importance Sampling (WIS) for off-policy evaluation (OPE).

Data Pre-processing. All trajectories were discretized into fixed-length time steps, separately for
each time-step size. The data extraction process produced 33 time-varying continuous features per
time step, in addition to 5 static demographic and contextual features. The complete list of these
features is provided in Appendix A.2. We considered two versions of discrete action space of size
25: a QUANTILE-5 grid following Komorowski et al. (2018) and a CLINICAL-THRESHOLD grid
with hand-picked dose cut-offs following Tang et al. (2020). In both versions of the action space, in-
travenous fluid (IV fluid) and vasopressor doses were each divided into 5 levels, yielding 5×5 = 25
possible actions per ∆t. The bin boundaries are summarized in Table 1. As mentioned in Sec-
tion 3.1, each ICU admission was represented as a sequence of state–action–next state transitions
with up to an 80-hour horizon, forming a trajectory. A time step was retained only if it contained at
least one chart, lab, or intervention entry; otherwise it is skipped. Recording typically stopped when
the patient died or was discharged, so the last non-empty time step naturally marked the end of the
trajectory. If no such event occurred within the 80-hour horizon, the sequence was truncated at the
last non-empty step within that window. Raw time-series data (vitals, labs, etc.) were cleaned by
removing implausible outliers and then normalized (per-feature z-scoring using training-set statis-
tics). We performed feature imputation for missing values to obtain complete state vectors at each
time step. Finally, we split the cohort into training, validation, and test sets (70/15/15% of episodes)
using a fixed random seed.

Table 1: Binning strategies for discretizing intravenous (IV) fluids and vasopressors.

Level Quantile-5 (Komorowski et al., 2018) Clinical-Threshold (Tang et al., 2020)

IV fluids (mL/∆t) Vasopressor (µg kg−1 min−1) IV fluids (mL/∆t) Vasopressor (µg kg−1 min−1)

0 = 0 = 0 = 0 = 0
1 (0, q25) (0, q25) (0, 500) (0, 0.08)
2 [q25, q50) [q25, q50) [500, 1000) [0.08, 0.20)
3 [q50, q75) [q50, q75) [1000, 2000) [0.20, 0.45)
4 ≥ q75 ≥ q75 ≥ 2000 ≥ 0.45

q25, q50, q75 denote the 25th, 50th, and 75th empirical percentiles of the non-zero dose distributions for IV fluids
and vasopressors, computed separately.

Approximate Information State. To address the partial observability in patient trajectories, we
learned a compact latent state representation using a recurrent neural network, using the approxi-
mate information state (AIS) in Subramanian et al. (2021) and Killian et al. (2020). Specifically,
we trained a gated recurrent unit (GRU) encoder (Cho et al., 2014) that, at each time t, maps the
concatenated 33-dimensional observation vector, 5-dimensional demographic context, and the ac-
tion at−1 taken at time t, to a D-dimensional latent state zt. The GRU encoder was optimized via
a dual-head objective: one decoder head reconstructs the current observation vector, while another
head predicts the next observation xt+1 given the current latent state and action at in the form of a
parameterized distribution P (xt+1|zt, at). We trained the representation model on the training set
trajectories, monitoring the negative log-likelihood (NLL) of the reconstructions/predictions on the
validation set. For each time-step size, we ran an identical grid search over 5 different latent dimen-
sions and 6 different learning rates (see Appendix A.4). The checkpoint with lowest validation NLL
was selected to extract the latent states at each time step. We treat the D-dimensional latent state zt
as the AIS summarizing the patient’s history up to time t in a Markovian fashion.
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Behavior Cloning. We learned an estimated behavior policy π̂B to mimic the clinicians’ treatment
decisions, which we use for OPE. The model takes the patient’s state representation st as input and
predicts π̂B(a|s), a probability distribution of actions that clinicians would take. We implemented
and compared two behavior cloning approaches: a k-nearest-neighbors (kNN) classifier with k =
100 (Raghu et al., 2018) and a 3-layer feed-forward neural network. Both models were trained on
the training set to classify the clinician’s chosen action at each ∆t. We evaluated their predictive
performance using micro-average area under the receiver operating characteristic curve (AUROC)
on the validation set, and selected the better-performing model as our clinician policy estimate.

Batch-Constrained Q-learning. We adopted the Batch-Constrained Q-learning (BCQ) algorithm
(Fujimoto et al., 2019) for offline policy optimization. In our implementation, the agent’s state input
was the AIS latent zt described above. We defined a sparse reward signal reflecting patient out-
comes, similar to Tang et al. (2020): the episode terminal reward was +100 if the patient survived to
hospital discharge (or was alive at 52 h post-onset) and 0 otherwise. The BCQ implementation used
in our experiments employs a single two-layer feed-forward Q-network. We also trained a separate
behavior-cloning head within BCQ that proposed actions constrained to the behavior dataset’s sup-
port. To guard against out-of-distribution actions, we performed offline filtering: at each decision
point, any action whose estimated behavior probability π̂B(a|s) fell below a threshold ε was disal-
lowed. We trained the BCQ agent on the batch of training trajectories for a fixed number of epochs,
using five different random seeds and eight values of ε (see Appendix A.4), and selected the final
policy which we denote πeval.

Off-policy Evaluation. We evaluated the performance of the learned policy using off-policy evalua-
tion (OPE), specifically weighted importance sampling (WIS). The WIS estimator used importance
weights to re-weight the returns of test trajectories under the assumption that test data were gen-
erated by the behavior policy πB ; using our learned π̂B model, we computed per-step importance
ratios ρt =

πeval(at|st)
π̂B(at|st) for each action at taken by clinicians, and then took a weighted average of the

observed returns and normalizing by the sum of the importance weights across all evaluation tra-
jectories (Liu & Brunskill, 2022). To control the estimator’s variance, we truncated the cumulative
importance ratios W =

∏H
t=1 ρt at a maximum of W ≤ 103 (Ionides, 2008). For each policy,

we estimated the expected return and its standard error via bootstrap resampling (1000 bootstrap
samples from the test set trajectories). We also recorded the effective sample size (ESS) of the WIS
estimator (Elvira et al., 2022), which reflects how many trajectories contribute meaningfully after
weighting. In Section 4.4, we report the WIS estimated performance for each policy along with
the ESS. All results are reported separately for the different discretization experiments. To com-
plement the quantitative metrics, we also use heat maps to visualize how the learned BCQ policies
redistribute treatment probabilities relative to clinicians.

4 Results

We applied our experimental pipeline to four time-step sizes (∆t=1, 2, 4, 8 h) under two action-
space designs—QUANTILE-5 and CLINICAL-THRESHOLD. For every ∆t / action-space pair we
report the following: (i) cohort size and episode length, (ii) BC performance via AUROC, (iii) AIS
reconstruction error across latent dimensions, and (iv) performance of the policy learned by BCQ,
measured by WIS and action frequency heatmaps. These results allow us to isolate the individual
and joint effects of time-step size and action discretization on every stage of the learning pipeline.

4.1 Cohort Statistics

Table 2 reports the number of ICU admissions and time-step counts for each time-step size ∆t.
Across all time-step sizes, the cohort size remained around 19 000 admissions but dropped slightly
at larger ∆t because stays shorter than one step were excluded. The total number of time steps
decreased by a factor of approximately 0.53 each time ∆t doubles (rather than the ideal 0.5). This
is because we retained any partial step at the end of each trajectory (i.e. we used ⌈L/∆t⌉ rather than
⌊L/∆t⌋), so even a small remainder became a full extra step. Minor cohort drift (a few trajectories
drop out at coarser time-step sizes) and slight changes in missing-data filtering further nudged the
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ratio up to ≈ 0.53. The bottom two rows show the average steps per admission and the step count
as a percentage of the 1 h case. Note that these small cohort mismatches across time-step sizes
complicate direct comparisons, while our analysis proceeds using the available cohorts as extracted.

Table 2: Cohort size and time-step counts for different time-step sizes ∆t, plus average steps per
ICU admission and scaling relative to the 1 h case.

1 h 2 h 4 h 8 h

Number of ICU Admissions 18 995 18 987 18 906 18 783
Number of Time Steps 889 227 468 984 247 713 132 038

Avg. Steps per Admission 46.8 24.7 13.1 7.0
Steps (% of 1 h) 100% 52.7% 27.9% 14.8%

4.2 State Representation Models

Following Section 3.2, we first evaluated the quality of our AIS encoder across four time-step
sizes, ∆t ∈ {1, 2, 4, 8} h, and two action-space discretizations (QUANTILE-5 vs. CLINICAL-
THRESHOLD). Table 3 reports both the chosen latent size and its resulting minimum validation
mean square error (MSE). QUANTILE-5 required a reduced latent dimension (64) at coarser time-
step sizes (4 h and 8 h) to stabilize training, whereas the fixed-threshold encoder consistently used
128 dimensions. Across all time-step sizes, the AIS encoder reaches virtually identical validation
performance for both discretization schemes (∆ MSE < 0.001), indicating that any policy-level dif-
ferences we observe subsequently are not driven by differences in representation quality. We also
observe that validation MSE tends to increase as ∆t grows. This is likely because the AIS encoder
is trained to predict future observations with a prediction horizon of ∆t (e.g., the average heart rate
over the next step), so forecasting 1 h ahead is inherently easier than 8 h ahead.

Table 3: AIS encoder results across time-step sizes: selected latent dimension and corresponding
minimum validation MSE with 95 % bootstrap confidence intervals from 1000 bootstrap samples.

∆t (h) QUANTILE-5 CLINICAL-THRESHOLD
latent dim MSE [95% CI] latent dim MSE [95% CI]

1 128 0.2456 [0.2293, 0.2638] 128 0.2454 [0.2286, 0.2655]
2 128 0.3073 [0.2823, 0.3395] 128 0.3074 [0.2825, 0.3397]
4 64 0.4676 [0.3961, 0.5852] 128 0.4669 [0.3944, 0.5854]
8 64 0.4340 [0.4239, 0.4512] 128 0.4348 [0.4250, 0.4521]

4.3 Behavior-Cloning Models

To ensure reliable off-policy evaluation via weighted-importance sampling (WIS), we trained
behavior-cloning (BC) models that estimate clinician action probabilities. Table 4 shows micro-
AUROC of BC across four time steps (∆t = 1, 2, 4, 8 h) for both QUANTILE-5 and CLINICAL-
THRESHOLD action spaces. In every case we observed AUROC is close to or above 0.90, satisfying
common WIS-variance guidelines (Jeong et al., 2024). CLINICAL-THRESHOLD consistently out-
performs QUANTILE-5. While performance decreases slightly as ∆t increases (due to lost temporal
detail), the performance gap remains stable. Overall, the high BC fidelity confirms that our mod-
els supply accurate, well-calibrated behavior probabilities, ensuring that downstream WIS estimates
will be unbiased and low-variance.

4.4 Policy Performance

Section 4.3 shows the ESS-WIS Pareto frontiers obtained during validation. Rather than maximizing
WIS alone, we chose the checkpoint on each frontier that met a practical trade-off: WIS had to be
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Table 4: BC performance (micro-AUROC) across time-step sizes with 95% confidence intervals
estimated from 1000 bootstrap samples.

Action space ∆t (h) AUROC [95% CI]

QUANTILE-5

1 0.8975 [0.8965, 0.8984]
2 0.9063 [0.9049, 0.9076]
4 0.9074 [0.9057, 0.9091]
8 0.9007 [0.8983, 0.9031]

CLINICAL-THRESHOLD

1 0.9572 [0.9565, 0.9579]
2 0.9533 [0.9523, 0.9544]
4 0.9372 [0.9356, 0.9389]
8 0.9140 [0.9115, 0.9165]
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Figure 1: Pareto frontiers of validation WIS versus ESS for each time step ∆t. Dashed lines trace
the non-dominated points; hollow markers denote the model selected for test-time evaluation.

near frontier-optimal and ESS could not fall below the stability threshold used in tuning (∼40 sam-
ples). This guards against high-value but high-variance models. The performance of the resulting
checkpoints are reported in Table 5.

Action-space differences. The QUANTILE-5 discretization achieves the highest test WIS for every
∆t but at the cost of much smaller ESS, most pronounced at 8 h (43 vs. 83). This suggests that
QUANTILE-5 estimates, while numerically superior, may be less reliable than their CLINICAL-
THRESHOLD counterparts.

Time-step effect. Finer time-step sizes (1–2 h) consistently dominate coarser ones in WIS without
a drastic ESS penalty. The 1 h QUANTILE-5 policy, for example, exceeds the clinician baseline by
5.3± 0.6 WIS points while still retaining 331± 16 effective samples. In contrast, at 8 h both BCQ
variants collapse onto near-zero vasopressor doses (Section 5), implying a conservative strategy that
may limit potential gains.

ESS trends. In principle, a finer time-step size (smaller ∆t) yields more decision points, giving the
evaluation policy more chances to diverge from the behavior policy and thereby inflating the variance
of importance weights—so one would expect ESS to shrink as ∆t becomes smaller. Empirically we
observe the opposite: ESS is highest at ∆t=1–2 h and lowest at 8 h.

The explanation lies in our variance-control scheme (see Section 3.2): we truncated each trajectory
weight W at a fixed threshold Wmax = 103. Because smaller ∆t yields larger H , more trajectories
now meet the ceiling, as confirmed by the right–hand mass in Appendix A.3. Clipping a large
fraction of weights at the same value compresses the heavy tail and reduces the variance, thereby
inflating the ESS. In other words, the observed improvement of ESS is actually an artifact of time-
step size independent clipping of importance ratios, rather than evidence of improved OPE.
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Table 5: Test-set WIS value and ESS for BCQ and clinician policies across ∆t.

∆t (h) Policy Threshold ε V̂test (WIS) ESStest

1
Quantile-5 0.50 99.07± 0.48 331± 16
Clinical-threshold 0.30 95.14± 0.79 642± 20
Observed πb – 93.81± 0.43 2795

2
Quantile-5 0.9999 97.11± 1.25 229± 13
Clinical-threshold 0.50 92.55± 2.04 222± 14
Observed πb – 93.79± 0.41 2785

4
Quantile-5 0.50 96.56± 2.03 94± 9
Clinical-threshold 0.9999 94.50± 1.44 210± 12
Observed πb – 93.87± 0.58 2791

8
Quantile-5 0.00 98.27± 1.20 43± 5
Clinical-threshold 0.30 95.17± 2.60 83± 7
Observed πb – 94.03± 0.51 2764

To obtain a fair comparison across resolutions, in future work we will replace the fixed ceiling with
an adaptive rule, e.g. truncating at the 95th percentile of {Wi} for each ∆t.

5 Discussion & Conclusion

What we contribute. Prior RL-for-sepsis studies almost universally employ a fixed 4 h time grid.
We present, to our knowledge, the first systematic comparison of four time-step sizes (1, 2, 4, 8 h)
within a single, controlled pipeline: identical cohort-extraction code, the same AIS encoder archi-
tecture, identical BC and BCQ hyper-parameter grids, and a common WIS evaluator. Our analysis
covers cohort drift, representation learning, BC calibration, policy quality (WIS+ESS), and action
redistribution, thereby isolating the specific impact of time discretization and action-space design.

Why a fair comparison is hard. Changing ∆t inevitably alters (i) the cohort (short stays drop out
at coarser time steps), (ii) the number of decision steps per episode, (iii) the dose that each discrete
action represents, and (iv) the evaluation horizon. Hence policies trained at different time-step sizes
cannot be judged on exactly the same trajectories or action supports. Our strategy is to keep every
component other than ∆t fixed, then interpret results jointly through WIS and ESS so that variance
differences are explicit.

Action-space design remains open. Equal-frequency (QUANTILE-5) bins align with the data distri-
bution but lack clinical meaning; clinically chosen cut-offs (CLINICAL-THRESHOLD) map directly
to practice yet were devised for 4 h time steps. Simply scaling doses by time-step sizes (e.g. halving
thresholds when moving from 4 h to 2 h) could retain semantics, but requires careful validation—a
promising direction for future work.

Cross-granularity evaluation. Evaluating a 4 h policy on 2 h data (or vice-versa) would demand
hierarchical decision models or marginalizing over unobserved mid-step. We leave such multi-rate
OPE as an important extension.

Key empirical insight. Across both action spaces, finer grids (1–2 h) deliver higher WIS without an
excessive loss of ESS, supporting calls to move below the conventional 4 h time step. Nevertheless,
ever-smaller steps are not automatically better: clinical events rarely unfold minute-by-minute, and
excessively fine time-step sizes would inflate horizon length, variance, and computational cost. Fi-
nally, our evaluation still relies on a fixed threshold truncation of trajectory weights, and developing
an adaptive truncation rule remains an open problem for fair comparison across time-step sizes.

Take-home message. Time-step size is a critical design knob in the RL-for-sepsis task. Our re-
sults advocate using finer time-step sizes in sepsis management, which outperform the standard 4
h grid. These results call for principled choices of every component—time-step size, action-space
discretization, and OPE—rather than relying on inherited defaults.
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Figure 2: Frequency heatmap of IV-fluid (y-axis; mL) and vasopressor (x-axis; µg kg−1 min−1)
doses for each ∆t∈{1, 2, 4, 8}. BCQ policies are compared with the empirical clinician distribution
under the two action-space definitions. Darker cells indicate more frequent selections.
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A Appendix

A.1 Time-Step Size Selections in RL Research on Sepsis Care

Table 6: RL studies for sepsis care, summarizing time-step choices and key design aspects.

Paper ∆t Algorithm Dataset Cohort Notes

Raghu et al. (2017) 4 h Dueling DDQN MIMIC-III 17.9k Continuous state; 5×5 IV/vaso bins; first DL-
RL policy (–3.6 % mortality).

Komorowski et al. (2018) 4 h Batch Q-learning MIMIC-III
(+eRI∗)

17.1k AI Clinician; 750 states, 25 actions; external
validation.

Jeter et al. (2019) 4 h Reproduction study MIMIC-III 5.4k Finds no-action policy often rivals AI Clini-
cian; urges caution.

Yu et al. (2019) 1 h Deep IRL MIMIC-III 14.0k Learns reward; highlights mortality factors
(e.g. PaO2).

Tang et al. (2020) 4 h Set-valued DQN MIMIC-III 20.9k Returns top-k near-optimal dose sets for clini-
cian choice.

Killian et al. (2020) 4 h Offline DQN MIMIC-III 17.9k Sequential latent encodings outperform raw
features.

Lu et al. (2020) 1–4 h Dueling DDQN MIMIC-III 17k+ Sensitivity study on features, reward, time
discretization.

Fatemi et al. (2021) 4 h Dead-end discovery MIMIC-III 17k+ Identifies high-risk states; secures policy to
avoid them.

Satija et al. (2021) 4 h MO-SPIBB MIMIC-III 17k+ Safe policy improvement under performance
constraints.

Ji et al. (2021) 4 h Trajectory inspection MIMIC-III 17k+ Clinician “what-if” review reveals policy flaws;
validation tool.

Liang et al. (2023) 4 h Episodic-memory DQN MIMIC-III 17.9k Memory module boosts sample efficiency, low-
ers est. mortality.

Choudhary et al. (2024) 4 h Tabular MDP MIMIC-III ∼18k ICU-Sepsis benchmark: 715 states, 25 actions.
Tu et al. (2025) 1 h CQL (offline) MIMIC-III 14.0k Safety-aware CQL with dense rewards for

variable-length stays.

∗eRI: Philips eICU Research Institute cohort for external validation; DDQN: Double Deep Q-Network; DQN: Deep Q-Network; IRL: Inverse
Reinforcement Learning; CQL: Conservative Q-Learning; MO-SPIBB: Multi-Objective Safe Policy Improvement with Baseline

Bootstrapping.

A.2 Extracted Features for State Representation

Table 7: Observed features extracted from the MIMIC-III database. The upper panel lists the 33-
dimensional time-varying continuous variables fed to the GRU encoder, following the default code
configuration. The lower panel lists the 5 static demographic / contextual variables appended to each
trajectory.

33-d Time-varying continuous features
Glasgow Coma Scale Heart Rate Sys. BP
Dia. BP Mean BP Respiratory Rate
Body Temp (°C) FiO2 Potassium
Sodium Chloride Glucose
INR Magnesium Calcium
Hemoglobin White Blood Cells Platelets
PTT PT Arterial pH
Lactate PaO2 PaCO2
PaO2/FiO2 Bicarbonate (HCO3) SpO2
BUN Creatinine SGOT
SGPT Bilirubin Base Excess

5-d Demographic and contextual features
Age • Gender • Weight • Ventilation Status • Re-admission Status
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A.3 Histograms of Trajectory Weights

Figure 3: Log–histograms of clipped importance–sampling trajectory weights for different time–step
sizes with threshold ε = 0.5, iteration = 10000. All panels share the same y-axis (log–scale) and
clipping threshold Wmax = 103.
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A.4 Additional Hyperparameter Details

Table 8: Hyperparameter values used for training GRU encoder and BCQ models.

Hyperparameter Searched Settings

RNN:
– Embedding dimension, dS {8, 16, 32, 64, 128}
– Learning rate {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 5e-4}

BCQ (with 5 random restarts):
– Threshold, ε {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.999}
– Learning rate 3e-4
– Weight decay 1e-3
– Hidden layer size 256
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