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ABSTRACT
This paper describes the DiffuGesture entry to the GENEA Chal-
lenge 2023. In this paper, we utilize conditional diffusion models to
formulate the gesture generation problem. The DiffuGesture sys-
tem generates human-like gestures from the two-person dialogue
scenario, which are responsive to the interlocutor motions and ac-
company with the input speech. DiffuGesture system is built upon
the recent DiffGesture [39]. Specifically, we introduce a lightweight
transformer encoder to fuse the temporal relationships between
human gestures and multi-modal conditions. Moreover, we adopt
implicit classifier-free guidance to trade off between diversity and
gesture quality. According to the collective evaluation released by
GENEA Challenge 2023, our system demonstrates strong competi-
tiveness in the appropriateness evaluation.

CCS CONCEPTS
• Computing methodologies→ Animation; Neural networks;
• Human-centered computing→ Virtual reality.
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1 INTRODUCTION
Human gestures serve as a distinct mode of communication in daily
conversations, which assists the speakers in conveying semantic
information more effectively and facilitates interpersonal commu-
nication. [21, 29]. Therefore, generating realistic co-speech human
gestures from conversations plays a crucial role in achieving im-
proved interaction between virtual entities and humans. Our goal
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is to generate co-speech human gestures from the two-person dia-
logue. However, generating human gestures with multi-modal data
such as audio, text, and conversational cues in two-person dialogue
remains a challenging and unresolved problem.

Early research in data-driven co-speech gesture generation ap-
proaches often relies on statistical analysis. Levine [16] et al. utilize
probabilistic models to establish the relationship between audio and
gestures. In recent years, deep learning methods have been increas-
ingly applied in co-speech gesture generation. Kucherenko [12] et
al. and Yoon [34] et al. employ the multi-layer perceptron (MLP) and
recurrent neural network (RNN) methods to generate deterministic
human gestures, respectively. However, these approaches do not
adequately address the implicit mapping between the data and ges-
tures [13]. To achieve more diverse and personalized gesture move-
ments and improve the mapping between data and gestures, there
emerge methods using GAN [3, 25, 30], diffusion models [27, 32, 39]
and VQ-VAE [20, 22].

However, thesemethodsmainly focus on single-person co-speech
gesture generation. In this paper, we present a novel approach for
co-speech human gesture generation in the two-person dialogue
scenario. Specifically, given the behavior of the interlocutor and
the audio and textual transcriptions of the main agent, we generate
the reaction and co-speech movements of the main agent, respec-
tively. Inspired by [39], we adopt conditional diffusion models for
co-speech gesture generation from the two-person dialogue. Specif-
ically, we introduce a lightweight transformer encoder to enhance
the contextual relevance between human gestures and multi-modal
conditions. Finally, we introduce implicit classifier-free guidance
to trade off between diversity and gesture quality.

The main contributions of our work are:
• We present an early attempt to utilize conditional diffusion mod-
els for co-speech human gesture generation from two-person
dialogue, which generates impressive co-speech gesture move-
ments.

• We introduce a lightweight transformer encoder that effectively
fuses the temporal relationships between human gestures and
multi-modal conditions.

2 RELATEDWORK
In this section, we will discuss the previous work in the fields of
gesture generation and diffusion model generation.

2.1 Data-driven Gesture Generation
The data-driven approach to gesture generation has found extensive
applications across various domains.In recent years, researchers
have utilized audio [6, 17, 18, 22], transcribed text [3, 10, 23, 26, 27,
36], and multimodal data [2, 19, 33] to drive gesture generation. The

https://doi.org/10.1145/3610661.3616552
https://doi.org/10.1145/3610661.3616552


ICMI ’23 Companion, October 9–13, 2023, Paris, France Zhao, et al.

use of audio-driven gesture generation is quite common in various
applications. For example, Ginosaret et al. [6] utilize an adversarial
discriminator to regress gestures from audio. Qian et al. [22] employ
conditional learning to achieve audio-driven gesture generation,
alleviating the ambiguity in simultaneous speech and gesture syn-
thesis. Audio2gestures [18] and DanceFormer [17] use a variational
autoencoder [11] and Transformer [28], respectively, to generate
gestures from audio. Text-driven motion synthesis can be seen as
learning a joint embedding of the text feature space and the motion
feature space[22]. Text2gestures [3] establishes the connection be-
tween text and gesture actions using a transformer. T2M-GPT [36]
and MotionGPT[10], built upon generative pre-trained transformer
(GPT), treat gesture actions as a language and utilize VQ-VAE to
transform text into gesture actions. MDM [27] and MotionClip [26]
preprocess transcribed text using CLIP[23] to establish the conver-
sion between action and text embeddings.

Recently, there has been an increasing trend in co-speech ges-
ture generation to use multimodal data, including audio, text, and
speaker ID. Yoon et al. [33] proposed a model that combines multi-
modal context and adversarial training to generate gestures that
resemble human-like movements and are synchronized with the
speech content and rhythm. Rhythmic Gesticulator [2] is the first
model to use neural networks to establish the relationship between
gestures and audio in terms of rhythm and semantics. HA2G [19]
leverages contrastive learning strategies to fully utilize the rich
connections between speech audio, text, and human gestures, re-
sulting in the generation of realistic gesture movements. However,
none of the aforementioned works considered the influence of other
individuals in dyadic conversations on the embodied agents.

2.2 Diffusion Models
Diffusion models are a type of probabilistic generative model based
on stochastic processes [8], where initial data points gradually
evolve towards the target distribution through a diffusion process
at each time step. Dhariwal et al. [5] introduce classifier guidance to
improve sample quality and generate higher-quality results. Then,
the introduction of the Classifier-Free Guidance [9] eliminates the
need for explicit classification models and supports more open-
ended and exploratory generation in various tasks. Diffusionmodels
have recently been widely applied in various fields, such as image
generation [24], 3D shape generation [31], video generation [7].

More recently, in the context of gesture generation tasks, dif-
fusion generative models [1, 27, 37, 39] have also been employed
for co-speech gesture generation. Inspired by the work of DiffGes-
ture [39] in 2D gesture generation, we have developed a framework
for generating 3D gesture poses from multimodal data in a two-
person dialogue scenario.

3 METHOD
Given the behavior of the interlocutor and the audio and textual
transcriptions of themain agent, our goal is to generate the listening
reactions and co-speech motions simultaneously. The architecture
of our system is depicted in Figure 1(a). We first introduce the
problem definition in Section 3.1. Then we present the diffusion
process and reverse process for gesture generation in Section 3.1.
Finally, we develop a transformer encoder to fuse the temporal

relationships between human gestures and multi-modal conditions
in Section 3.3.

3.1 Problem Definition
Given the sequences of 3D full-body motions, we represent them as
𝑥 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛} ∈ R𝑁×3𝐽 , 𝑁 represents the sequence length
and 𝐽 denotes the total joint number. The reverse denoising process
𝐺 of the diffusion model is parameterized by \ to synthesize the
main agent skeleton sequence 𝑥𝑚 , which is further conditioned
on the multi-modal conditions 𝐶 and the initial poses of the pre-
vious 𝑀 frames 𝑥𝑝𝑟𝑒 . The learning objective can be expressed as
𝑎𝑟𝑔𝑚𝑖𝑛\

𝑥𝑚 −𝐺\ (𝐶, 𝑥𝑝𝑟𝑒 )
.

3.2 Diffusion-based Gesture Generation
Inspired by the previous work [39], we extend this model in the
two-person dialogue scenario. Unlike generating 2D skeletal upper-
body poses in [39], we synthesize the full-body human gestures in
a two-person dialogue scenario.

Diffusion Process. The diffusion process, also known as the
forward process, is used to approximate the posterior distribution
𝑞(𝑥1:𝑇 |𝑥0). It gradually introduces Gaussian noise into the original
distribution based on the variance sequence 𝛽1, ..., 𝛽𝑡 , where 𝛽𝑖 ∈
(0, 1). The diffusion process is defined as follows:

𝑞(𝑥1:𝑁
𝑡 |𝑥1:𝑁

𝑡−1) = N(
√︁
𝛽𝑡𝑥

1:𝑁
𝑡−1, (1 − 𝛽𝑡 )𝐼 ), (1)

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥1:𝑁
𝑡 |𝑥1:𝑁

𝑡−1), (2)

where 𝑥1:𝑁
𝑡 represents themain agent motion sequence {𝑝𝑚}𝑁𝑖=1 at 𝑡

denoising step. Next, we will slightly abuse the use of letters and use
𝑥 to represent 𝑥1:𝑁 . By progressively adding noise in this manner
to the original gesture motions 𝑥0, it approaches a distribution that
closely resembles white noise.

Reverse Process. The reverse process, also known as the gener-
ation process, estimates the joint distribution 𝑝\ (𝑥0:𝑇 ). The reverse
process of diffusion models also maintains the form of Gaussian
transition. Additionally, following the idea of classifier-free guid-
ance, we train the model in both unconditional and conditional
generation settings to generate more realistic and diverse gesture
motions. The reverse process is defined as follows:

𝑝\ (𝑥0:𝑇 ) = 𝑝\ (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝\ (𝑥𝑡−1 |𝑥𝑡 ,𝐶), (3)

𝑤ℎ𝑒𝑟𝑒 𝑝\ (𝑥𝑡−1 |𝑥𝑡 ,𝐶) = N(𝑥𝑡−1; `\ (𝑥𝑡 , 𝑡,𝐶),
∑︁
\

(𝑥𝑡 , 𝑡)). (4)

Equation 4 represents the conditional generation and we set the
conditions 𝐶 as zero (denoted as 𝜙) for unconditional generation
in the training stage. The corrupted noisy gesture sequence 𝑥𝑡 is
sampled by 𝑞(𝑥𝑡 |𝑥0).

Traning loss. According to DDPM [8], the previous corrupted
gesture sequence 𝑥𝑡−1 is defined as follows:

𝑥𝑡−1 =
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖√
𝛼𝑡

, (5)

𝑤ℎ𝑒𝑟𝑒 𝛼𝑡 =

𝑡∏
𝑖=1

1 − 𝛽𝑖 . (6)
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Figure 1: Overview of the Diffu2guesture framwork. In the preprocessing stage (yellow), we develop a condition encoder and a
propose encoder to process multi-modal data and previous poses, respectively. Then we concatenate the two outputs together to
create condition features 𝐶. In the training stage (green), we introduce classifier-free guidance to train the transformer encoder.
In the sampling stage (pink), we start with random noise 𝑥𝑇 and generate a clean sample 𝑥0 through 𝑇 denoising steps.

So we can denoise the Gaussian noise to the original gesture motion
distribution step by step. Then, we use the Mean Squared Error
(MSE) loss to compute the loss between the estimated noise and
the actual noise at each time step [39]:

L𝑠𝑖𝑚𝑝𝑙𝑒 = E𝑞

[𝜖 − 𝜖\ (√𝛼𝑡𝑥0 +
√

1 − 𝛼𝑡𝜖,𝐶, 𝑡)
2]

. (7)

Where 𝜖\ is the predicted Gaussian noise, and 𝜖 represents the
actual added noise. During the training process, we randomly mask
the conditions 𝐶 for the unconditional setting.

Sampling. Generating motion from speech is an implicit map-
ping rather than a direct one-to-one correspondence between speech
and gestures. To ensure a better correlation between audio and
actions, we introduce classifier-free guidance [5]. From the perspec-
tive of gesture generation, we can consider it as follows:

𝐺𝑀 = 𝐺 (𝑥𝑡 , 𝜙, 𝑡) + 𝑠 · (𝐺 (𝑥𝑡 ,𝐶, 𝑡) −𝐺 (𝑥𝑡 , 𝜙, 𝑡)). (8)

Where 𝑠 is a hyperparameter. As mentioned in the training loss
section, during the training process, we utilize random masking to
create unconditional input for training unconditional models. Then,
we train a single transformer encoder and MLP layer under various

conditioning setups between conditional models and unconditional
models. This enables us to realize classifier-free guidance.

Based on the aforementioned context, diffusion models can be
used to generate natural embodied agent gestures in a two-person
dialogue setting.

3.3 Cross-Modal Attention Encoding
Generating 3D gesture poses using conditional diffusion models is
different from generating images. Both the pose sequence 𝑥 and the
multi-modal conditions 𝐶 exhibit strong temporal dependencies.
Here, we need to establish a module to ensure that our results are
time-dependent. Unlike previous work in the GENEA 2022 chal-
lenge that utilizes LSTM [4], VQVAE [20], and graph models [38],
we employ a lightweight transformer encoder to encode 𝑁 frames
of continuous motions and multi-modal data. We align the noisy
gesture sequence 𝑥𝑡 and multi-modal conditions 𝐶 in the time di-
mension and treat each frame as a separate token. The time step 𝑡 is
treated as a separate token. We then utilize attention mechanisms
for encoding.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 . (9)
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Where 𝑄 , 𝐾 , and 𝑉 are the query, key, and value matrix from input
tokens, in the multi-head attention mechanism.

4 EXPERIMENT
4.1 Data Processing
The only dataset we used is the GENEA Challenge 2023 [14] dataset,
which is an extension of Lee et al.’s TalkingWith Hands [15] dataset.
The dataset includes participants consisting of a main agent (tasked
with generating motion) and an interlocutor (the other party in the
conversation). The conversation data in the dataset is in dyadic form,
providing audio and text transcriptions for both parties, speaker
IDs, and motion. In the provided official data, each recorded con-
versation is duplicated with flipped roles to augment the training
data.

We fully leverage the various information available in the dataset,
including the audio and transcribed text between the main agent
and the interlocutor, as well as the speaker IDs. We follow the
same processing approach as the baseline [4] for handling audio,
transcriptions, and human body joints. We obtain three audio fea-
tures at a sampling rate of 44100: mel-spectrograms, MFCCs, and
prosodies. The frames generated have a rate of 30 FPS and their
length matches the duration of the motion sequence. We encode
the text using Fasttext, resulting in word vectors of dimension 300.
Additionally, two extra dimensions are used to indicate whether the
speaker is silent or laughing. Furthermore, we define the identity
information of each speaker using one-hot encoding.

For the processing of motion data, we also select 25 joints, in-
cluding the root node, which have a significant influence on skele-
ton motion. These joints are represented in a dimension of 78. To
generate high-quality motion sequences, we segment the motion
sequence into chunks of 300 frames each, which serve as inputs
to the diffusion process. To ensure continuity between adjacent
motion segments, we extract the preceding 50 previous poses as
part of the generation condition. After aligning the audio features,
encoded text, identity information, and speakers’ motion sequences
in the temporal dimension, we obtain the same length as the motion
sequences. Similarly, the previous pose is mapped to the correspond-
ing dimension after being processed by the prepose encoder.

4.2 Evaluation
The evaluation of our approach is conducted through subjective
assessment by the organizers of the GENEA Challenge 2023 and
other participating teams. The organizers recruit study participants
residing in the UK, IE, USA, CAN, AUS, and NZ, who had English
as their first language, via crowdsourcing platforms to perform
the evaluations. Multiple attention checks are implemented dur-
ing the experiment to ensure the participants’ engagement and
attentiveness. The evaluation of this challenge consisted of three
aspects: human-likeness; appropriateness for agent speech;
appropriateness for the interlocutor. The specific results are
presented in Table 1 and Table 2. The natural motion is labeled NA.
Our method is labeled SB in the tables.

Human-likeness. The study participants watch 8 to 10 seconds
of video and rate the motion of the virtual character as human-like,
independent of the dialogue content and the speaker. DiffuGesture
performs poorly on this metric.
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(a) Appropriateness for agent speech
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(b) Appropriateness for the interlocutor

Figure 2: The bar plots display response distribution in ap-
propriateness studies. The blue bar represents preferred
matched motion responses, and the red bar represents pre-
ferred mismatched motion responses. The height of each bar
corresponds to the fraction of responses in each category. On
top of each bar is also a confidence interval for the mean ap-
propriateness score, scaled to fit the current axes. The dotted
black line indicates chance-level performance. Conditions
are ordered by mean appropriateness score.

Appropriateness for agent speech. This metric evaluates
whether the motion of the virtual character is appropriate for the
given speech while controlling for the overall human-likeness of
the motion [35]. During the testing process, study participants are
presented with a pair of videos, both from the same condition,
where one video matches the specific speech and the other is from
an unrelated speech. Both videos play the specific speech, and par-
ticipants are asked to select the video they believe best matches the
speech.

Appropriateness for the interlocutor. During the conver-
sation process, both participants in the dialogue influence each
other. Therefore, this metric evaluates whether the motion of the
virtual character is appropriate for the given interlocutor’s behav-
ior (including speech and motion) while controlling for the overall
human-likeness of the motion. Study participants are also presented
with a pair of videos, where the behavior of the main agent remains
fixed, but the behavior of the interlocutor is randomly replaced in
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Table 1: Summary statistics of user-study responses from both appropriateness studies, with confidence intervals for the mean
appropriateness score (MAS) at the level 𝛼 = 0.05. “Pref. matched” identifies how often test-takers preferred matched motion in
terms of appropriateness after splitting ties. Conditions are ordered by mean appropriateness score.

(a) Appropriateness for agent speech

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

(b) Appropriateness for the interlocutor

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014

Table 2: Summary statistics of user-study ratings from the
human-likeness study, with confidence intervals at the level
𝛼 = 0.05. Conditions are ordered by decreasing sample me-
dian rating. Our entry is SB.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9

one of the videos. Participants are then asked to select the video
that best matches the behavior of the interlocutor. DiffuGesture
has achieved promising results in this metric.

5 DISCUSSION
As shown in Table 1, we achieve satisfactory results in both met-
rics of appropriateness for agent speech and the interlocutor. Our
scores for these two metrics are 0.13 and 0.07, respectively. For the

appropriateness of the interlocutor, we achieve favorable results.
The score of the “Preferred Matche” category is 51.8%. Furthermore,
as shown in Figure 2(b), a considerable proportion of participants
chose our results as their preferred matched motion responses. We
believe that several factors contribute to these results. Firstly, we
make effective use of the provided information, including audio,
transcribed text, and interlocutor behavior. Our data processing
methods have demonstrated their effectiveness. Additionally, the
introduced cross-modal attention encoder proves to be effective. It
enables us to adequately encode information from different modal-
ities, thus generating plausible motions of the main agent with
respect to the behavior of the interlocutor.

We also achieve unsatisfactory results in the human-likeness
metric, with a score of only 24. The challenge provides long-term
human gesture sequences with variable lengths. Our naive diffu-
sion models without specific designs only support generating fixed-
length motion sequences. We segment the condition sequences
and simply predict 300 frames for each segment and concatenate
the predicted fixed-length motion sequences to generate the com-
plete motions. This results in noticeable jitter at the junctions of
the predicted fixed-length motion sequences. To eliminate the phe-
nomenon, we also make some effort such as taking the previously
predicted motions and acceleration between adjacent frames as
part of the conditions. Furthermore, we also increase the length
of generated sequences to reduce the discontinuities of generated
motions. However, these naive methods do not yield the expected
results. The acceleration constraint reduces the richness of the gen-
erated motions, making them less human-like. We also mention
that the provided motion sequences for evaluation are not final
optimized ones. This may cause undesired evaluation results.
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6 CONCLUSION
We propose the DiffuGesture as described in this paper to partici-
pate in the GENEA Challenge 2023. Based on conditional diffusion
models, we develop a system that generates co-speech human ges-
tures for the main agent in the two-person dialogue. In our system,
we encode the features of audio, transcriptions, interlocutor behav-
ior using a transformer encoder. Furthermore, we adopt classifier-
free guidance to trade off between diversity and gesture quality. The
evaluation results show that DiffuGesture performs well in terms
of appropriateness for the interlocutor metric. However, compared
to other systems participating in the challenge, it does not generate
high-fidelity human-like motions effectively.

In the future, we will continue to explore conditional diffusion
models to generate high-fidelity co-speech human gestures in vari-
ous scenarios. We aim to handle the generation of variable-length
motion sequences and reduce the distortion of motions at break-
points. Additionally, we intend to investigate the incorporation of
semantic supervision to aid in the generation of co-speech gestures.
We will focus on these aspects in our future work.
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A RESEARCH METHODS
A.1 Significant differences for Appropriateness
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(a) Appropriateness for agent speech
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(b) Appropriateness for the interlocutor

Figure 3: Significant differences between conditions in the
two appropriateness studies. White means the condition
listed on the y-axis achieved an MAS significantly above the
condition on the x-axis, black means the opposite (y scored
below x), and grey means no statistically significant differ-
ence at level 𝛼 = 0.5 after correction for the false discovery
rate.

A.2 Significant differences for Human-likeness

...over condition x, in terms of human-likeness

S
ig
n
ifi
ca
n
t
p
re
fe
re
n
ce

fo
r
co
n
d
it
io
n
y
..
.

NA SG SF SJ SL SE SH BD SD BM SI SK SA SB SC

NA

SG

SF

SJ

SL

SE

SH

BD

SD

BM

SI

SK

SA

SB

SC

(a) Appropriateness for agent speech

Figure 4: Significance of pairwise differences between con-
ditions. White means that the condition listed on the 𝑦-axis
rated significantly above the condition on the 𝑥-axis, black
means the opposite (𝑦 rated below 𝑥), and grey means no
statistically significant difference at the level 𝛼 = 0.05 after
Holm-Bonferroni correction.
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