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Abstract

Crossmodal matching in single-cell omics is essential for explaining biological
regulatory mechanisms and enhancing downstream analyses. However, current
single-cell crossmodal models often suffer from three limitations: sparse modality
signals, underutilization of biological attributes, and insufficient modeling of regu-
latory interactions. These challenges hinder generalization in data-scarce settings
and restrict the ability to uncover fine-grained biologically meaningful crossmodal
relationships. Here, we present a novel framework which reformulates crossmodal
matching as a graph classification task on Attributed Bipartite Graphs (ABGs). It
models single-cell ATAC-RNA data as an ABG, where each expressed ATAC and
RNA is treated as a distinct node with unique IDs and biological features. To model
crossmodal interaction patterns on the constructed ABG, we propose Bi*Former, a
biologically-driven bipartite graph transformer that learns interpretable attention
over ATAC—RNA pairs. This design enables the model to effectively learn and
explain biological regulatory relationships between ATAC and RNA modalities.
Extensive experiments demonstrate that BiFormer achieves state-of-the-art per-
formance in crossmodal matching across diverse datasets, remains robust under
sparse training data, generalizes to unseen cell types and datasets, and reveals
biologically meaningful regulatory patterns. This work pioneers an ABG-based
approach for single-cell crossmodal matching, offering a powerful framework for
uncovering regulatory interactions at the single-cell omics. Our code is available
at: |https://github.com/wangxiaotang0906/Bi2Former.

1 Introduction

Crossmodal matching [41} 40]] is a fundamental task in fields such as vision-language retrieval [31],
protein—description matching [12], and drug-target [13]] matching, where the goal is to determine
whether two modality-specific inputs correspond to the same semantic entity. This task facilitates the
learning of latent interaction patterns across different data domains. In single-cell omics study, each
cell is profiled with multiple modalities, such as chromatin accessibility (scATAC-seq [10]) and gene
expression (scRNA-seq [30]). These modalities are inherently correlated, resulting in an intrinsic
need for revealing the crossmodal interactions between them. Crossmodal matching in this context
can help to identify whether a pair of ATAC and RNA profiles originates from the same cell. This
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Figure 1: Comparison between (a) previous VAE-based crossmodal learning pipelines and (b) our
ABG-based approach.

task offers unique opportunities to uncover regulatory mechanisms in single-cell omics, as the correct
matches reflect the interaction patterns governed by underlying biology.

Existing crossmodal learning frameworks for single-cell omics, such as Cobolt [14], CLUE [335],
MultiVI [3], and MIDAS [[18], primarily follow a Variational Autoencoder [24] (VAE)-based archi-
tecture to perform modality alignment, data denoising, and shared latent representation learning.
As shown in Figure[Ta] while such methods have demonstrated efficacy in downstream tasks, they
exhibit three critical limitations: (i) Sparse modality signals: the expression vectors of RNA and
ATAC are sparse; thus, modeling them with dense vectors will introduce noise from unexpressed
signals [2]. (ii) Underutilization of biological features: each RNA and ATAC signal carries rich
biological attributes (e.g., statistical summaries, genomic annotations, and DNA sequences), which
are not effectively incorporated by existing methods. (iii) Insufficient modeling of crossmodal
interaction: most current methods do not directly model the interaction between expressed ATAC and
RNA signals, with limitations in understanding the underlying regulation. Moreover, most methods
require paired multi-omics profiles for training, yet such data are costly and scarce. Thus leveraging
limited paired data to achieve robust generalization therefore remains a major challenge.

To address these challenges, we introduce a graph-based perspective built upon the concept of
Attributed Bipartite Graphs (ABGs). ABGs naturally represent two distinct node types with rich
attributes and sparse interactions, making them well-suited for crossmodal biological data. This
paradigm allows for explicit representation of interactions while leveraging both observed data and
node-level features. Motivated by these strengths, we reformulate crossmodal matching in single-cell
omics as an interaction learning problem via graph classification task on ABGs. In our setting,
each expressed RNA and accessible ATAC peak is treated as a node with a unique ID and rich
biological attributes, directly addressing Challenges (i) and (ii). Building on the constructed graph,
we propose Bi*Former, a biologically-driven bipartite graph transformer that learns interpretable
attention over potential ATAC-RNA regulatory pairs, explicitly modeling crossmodal interactions
(addressing Challenge (iii)). Extensive experiments show that Bi*Former not only outperforms
existing state-of-the-art methods in crossmodal matching accuracy across diverse datasets, but also
demonstrates strong robustness under sparse training data and transfer capability across unseen
cell types. Furthermore, it exhibits superior interpretability by revealing biologically meaningful
regulatory patterns at both the cell-level and the cell-type-level.

Our contributions can be summarized as follows:

* To model the crossmodal data in single-cell omics which is sparse with rich attributes and important
interactions, we provide a novel framework in modeling the expressed ATAC and RNA as nodes
and their interactions with ABG. This establishes a valuable training corpus for single-cell omics
and advances the crossmodal matching learning in this field.



« We propose Bi*Former, a biologically-driven crossmodal graph transformer that integrates a
biologically-driven crossmodal attention module with a message-passing architecture. This design
enables the model to effectively learn and explain regulatory relationships between ATAC and RNA
modalities.

« Through extensive experiments, Bi*Former achieves state-of-the-art performance on crossmodal
matching, including robustness under sparse training data and transfer capability across unseen cell
types. Additionally, it provides superior interpretability by uncovering biologically meaningful
ATAC-RNA interactions.

2 Related Work

2.1 Crossmodal Matching

Crossmodal matching aims to determine whether two modality-specific views correspond to the same
underlying entity. It is a fundamental task in many domains, including vision—language retrieval [31]]
and audio—visual matching [9]. In the biomedical domain, crossmodal matching has been applied
to problems such as protein—description matching [[12], drug-target matching [13]], and medical
image-report retrieval [46]]. These applications demonstrate the potential of crossmodal matching
to uncover meaningful interactions across modalities. Typical approaches adopt dual encoders or
cross-attention mechanisms to learn aligned representations across modalities.

In single-cell omics studies [37, 4], crossmodal matching, together with crossmodal generation and
joint embedding, constitutes the core tasks of the field [27]. For example, CLUE [35] introduces
the use of cross-encoders to construct latent representations from modality-incomplete observations.
Cobolt [14]] uses a shared encoder-decoder architecture to integrate multiple modalities into a unified
low-dimensional latent space. MultiVI [3] extends the variational autoencoder framework to jointly
model RNA and ATAC distributions through modality-specific encoders.

In this work, we explicitly focus on crossmodal matching problem as a proxy to learning interaction
patterns. This formulation provides: (i) an efficient and lightweight supervision signal derived from
naturally occurring cells, and (ii) aligns well with biological intuition that ATAC and RNA profiles
from the same cell should reflect true regulatory interactions.

2.2 Learning with Attributed Bipartite Graphs

Attributed bipartite graphs (ABGs) model two distinct node types with heterogeneous features and
sparse interactions, offering a powerful abstraction for many real-world problems. In recommendation
systems [17]], users and items are modeled as nodes in bipartite graphs, where interactions are learned
through collaborative filtering [43]] or Graph Neural Networks [36]]. In fraud detection, ABGs have
been used to represent transactional patterns between customers and merchants, capturing anomalous
links through attribute-aware substructures [33]. Beyond these domains, ABGs have gained attention
in biological settings for modeling drug—target or gene—disease associations [29]. Their strength lies
in combining structural signals from interactions with rich semantic content at the node level.

In this work, we adopt the ABG formalism to model expressed RNA and ATAC nodes within a
single cell. This allows us to filter out noise from unexpressed signals during graph construction
and fully leverage the rich biological features associated with each expressed signals. In addition,
the fine-grained regulatory dependencies can be captured by the proposed attention mechanism
guided by biological priors over the two modalities. It is worth noting that although GLUE [6] and
scMoGNN [47] also employ graph structures, they primarily rely on prior knowledge (e.g., predefined
guidance graphs) to facilitate multi-omics integration. By contrast, Bi?’Former learns and reveals
regulatory knowledge rather than depending on such priors.

3 Graph Construction

3.1 Problem Definition

Given a single cell C, we observe two modality-specific inputs: an RNA expression vector Xgna €
R and an ATAC accessibility vector xatac € RNae | where each element corresponds to the



expression of a gene or chromatin region. Both vectors are high-dimensional, sparse, and enriched
with domain-specific annotations recorded in metadata matrices Hrna (for RNA features) and
Harac (for ATAC features). The objective of crossmodal matching is to predict whether a given
pair (XrNa, Xatac) originates from the same biological cell. Instead of reporting soft probability
scores [35) 47]], we compute hard accuracy based on each pair’s binary prediction. This design
emphasizes precise matching signals, which are particularly important for learning fine-grained
interaction patterns across modalities. A label y € {0,1} is assigned to each pair, where y = 1
denotes a matched pair from the same cell, and y = 0 denotes a mismatched pair from different cells.
The matched pairs are given by signals detected in the same single cell by biological experiments,
while the mismatched pairs are generated by negative sampling methods. To preserve biological
diversity and avoid sampling bias, negative samples are drawn proportionally according to the
distribution of cell types in the dataset, and the number of positive and negative samples is maintained
at a 1:1 ratio. To address the aforementioned challenges, we transform each RNA—ATAC pair into an
ABG and formulate the crossmodal matching problem as a graph classification problem.

3.2 Graph Construction: From Modality Expression to Attributed Bipartite Graphs

Given paired single-cell expression vectors xgna and xarac, wWe construct a bipartite graph G =
(V, X, A), where the node set V represents the expressed features in each modality, the attribute set
X contains the attributes of corresponding nodes, and the bipartite adjacency matrix A represents the
interaction between RNA nodes and ATAC nodes.

Nodalizing Expressed Multimodal Signals into Bipartite Node Set. The node set V consists of
two disjoint subsets: RNA nodes and ATAC nodes. Each RNA node corresponds to a expressed gene
with non-zero value in xgrna, and each ATAC node corresponds to a chromatin region with non-zero
value in xatac. We denote them as:

Virna = {RNA,, | xgna[m] # 0}, Varac = {ATAC,, | xarac[n] # 0}, (D

thus, the full node set of the bipartite graph is: V = Vrna U Varac.

Embedding Biological Attributes into Node Features. Each node v € V is associated with a
biologically-informed feature vector. The overall node features are:

X = {Xpna € RIVoalxdr - ¥ € RIVanclxday
where each node feature is constructed as a concatenation:
X, = Concat(ID(v),Expr(v),BioAttr(v)), )

where ID being a unique identity per RNA/ATAC, Expr denotes the expression level of the node
in the current cell, i.e., the value from xgrna[m] or Xatac[n], and BioAttr encodes the biological
metadata retrieved from Hgrna or Harac, such as chromosomal location, expression statistics, or
DNA sequence encodings.

Edge Design with Biological Prior Knowledge. Edges in the constructed bipartite graph reflect
potential relationships between RNA and ATAC. For edge design, a naive approach is to connect all
nodes in one modality with nodes in another. However, such full connectivity introduces substantial
noise because regulatory interactions are often constrained to nearby genomic loci. Alternatively,
we define the adjacency matrix A € {0, 1}/Vewl>[Vaincl based on the biological prior knowledges,
such as chromosomal co-location. Here, we introduce a chromosomal mask as adjacency matrix
to constrain attention computation within chromosomally plausible regions. These prior-informed
connections improve inductive bias and reduce noise from fully associations.

The Constructed Attributed Bipartite Graph Formalism. Overall, each RNA-ATAC pair is
encoded as an attributed bipartite graph G = (V, X, A), where nodes represent expressed RNAs and
ATACs with biological features, and edges reflect regulatory potential under biological priors. Thus,
we reformulate the crossmodal matching problem as a binary graph classification task, where the
model f : G — g € {0,1} is trained to predict if an ABG represents a matched RNA-ATAC vector.
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Figure 2: Model structure of Bi?Former. It consists of a biologically-driven crossmodal attention
module and a crossmodal message passing architecture. Moreover, the biological pruning strategy
consists of a thresholding and a top-k filtering.

4 Bi’Former: An ABG-based Interaction Learner

To model ATAC-RNA regulatory interactions from the ABG perspective, we propose Bi*Former,
a biologically-driven bipartite graph transformer that integrates a biologically-driven crossmodal
attention module with a message passing architecture. Given a bipartite graph sample G = (V, X, A),
our model processes node features and topology in two key stages:

Biologically-driven Crossmodal Attention. To explicitly model the regulatory interactions be-
tween RNA and ATAC, we introduce a biologically-driven bipartitite attention mechanism. Specifi-
cally, we compute:

Q = XgnaWq, K = XatacWk, Vena = XgnaWv,,  Varac = XaracWy,, 3)

where Q, K € RVealxdn are query and key matrices, respectively, Wg, Wy, € R4 *dr and
Wi, Wy, € R4a*dn are learnable weight matrices.

In this module, we regard the information of RNA as queries  and ATAC as keys K based
on the biological intuition that ATAC regions regulate RNA expression. Different from general
Transformer [38] modules, we compute two separate value matrices Vrna and Varac for the two
modalities such that the modality-specific information can be maintained. These designs can better
adapt to the bipartite information in the two modalities and enable the model to explicitly learn
crossmodal interaction patterns between RNA and ATAC.

As for attention values, we first compute raw crossmodal attention scores between RNA node 7 and
ATAC node a using scaled dot-product over the edges defined by the adjacency matrix A:

QKL pA L =1
Qpq = vy’ r’a, V(r,a) € Vrna X Varac. “)
0, otherwise

To mitigate noise from under-trained nodes and suppress uniform attention distributions, we employ
a biological pruning strategy. The attention scores are first passed through a sigmoid activation and
thresholded by a hyperparameter 7 to eliminate low-confidence signals:

& = Threshold(o(a), ) € RVewlx[Vancl ®)

Subsequently, we retain only the top-k attention scores aligned with each RNA node and binarize the
scores, yielding a sparse binary attention mask & € {0, 1}/Vxalx[Vancl | This constraint aligns with
the biological truth that each gene is typically regulated by a limited number of ATAC peaks [15]].
The resulting binary attention matrix & serves both as an interpretable crossmodal regulatory map
(see details in Appendix [C)) and as a structured graph to guide the subsequent message passing stage.



Crossmodal Message Passing. To generate enriched node representations that incorporate both
intra- and inter-modal information, we design a crossmodal message passing module guided by
the binary attention matrix &. This module enables RNA nodes aggregate regulatory cues from
attended ATAC nodes, while ATAC nodes receive feedback from their associated RNA targets via the
transposed attention map. For each RNA node r and ATAC node a, we aggregate information from
their relevant nodes:

Xraalr] = Grq - Varacla], Xataclal = Grq - VRNA[T 6
NG Zaevmc ra " Varacla],  Xiraclal ZrevRNA ra  VRNAlT], (6)
To preserve node-specific intrinsic semantics, we incorporate a modality-specific self-update module:

Xgrnalr] = MLPgya (Xrna[r]) + Xgo[r],  Xarac[a] = MLPatac(Xarac[a]) + XS%[a]  (7)

where MLP(-) denotes a lightweight feedforward network that captures intra-modal patterns. The
result is a set of updated node embeddings containing both intra-modal and inter-modal knowledge.

Model Training. We adopt a graph-level binary classification objective, where the label y € {0,1}
indicates whether the RNA and ATAC graphs originate from the same cell. To obtain a compact
graph-level representation, we apply average pooling over the final-layer embeddings of the RNA
and ATAC nodes, followed by a concatenation and a multi-layer prediction head:

9 = Predictor (Angool (XRNA) || AvgPool (XATAC)) , )

where XRNA and X atac denote the updated embeddings for all expressed RNA and ATAC nodes
after message passing in Eq AvgPool is the average pooling operator over rows, || denotes vector
concatenation, and Predictor is a 4-layer feedforward network with ReLU activations.

The model is trained end-to-end by minimizing the binary cross-entropy loss on RNA-ATAC pairs:
L=—ylogy—(1-y)log(l-79), ©

using the Adam optimizer [23]. This objective encourages the model to learn crossmodal regulatory
patterns that are predictive of cell identity alignment. The complexity analysis of Bi>Former is shown
in Appendix D] and the limitations are analyzed in Appendix

5 Experiments

In this section, we first introduce the datasets and the baselines in Section[3.1] Then we conduct
extensive experiments to address the following research questions: RQ1: How well does our model
perform on the crossmodal matching task? RQ2: How robust is our model under limited paired
training data? RQ3: How effective is the proposed method on the transfer capability across unseen cell
types? RQ4: What is the contribution of each core component of our model to overall performance?
RQS: How do different hyperparameter settings affect model performance? RQ6: How can we use
our framework for biological interpretation and discovery?

5.1 Experimental Setup

Datasets. To ensure the reliability and comparability of our evaluation, we conduct experiments
on five widely-used benchmark datasets for single-cell omics: ISSAAC-seq [50], 10x Multiome
PBMC [1]], SHARE-seq [28], SNARE-seq [8]], and 10x genomics Multiome. We construct our graph
corpus following the description in Section 3} Details of the original datasets and the constructed
graphs are in Appendix B}

Baselines. We compare Bi*Former against two categories of baselines: (i) VAE-based models,
including MultiVI [3]], CLUE [35]], Cobolt [14], GLUE [6], scMoGNN [47] and scMaui [22]], which
are originally designed for joint embedding or modality reconstruction. We adapt these models
by appending classification heads for the crossmodal matching task. (ii) Methods based on our
constructed graph (i.e., ABG) corpus, including a simple MLP, as well as advanced Graph Neural
Networks (GNNs) such as GCNII [[7], GraphSAGE [16]], and Graph Transformer (GT) [L1], serving
as strong baselines.



Table 1: Crossmodal matching results across various datasets. We report both accuracy and ROC-AUC
as evaluation metrics. Boldface indicates the best performance.

Dataset ISSAAC-seq 10xPBMC SHARE-seq SNARE-seq 10xMultiome Avg.

Metric ACC ROC-AUC ACC ROC-AUC ACC ROC-AUC ACC ROC-AUC ACC ROC-AUC  ACC AUC
MultiVI 66.21+1.46 69.32+1.07 60.93+2.83 63.85£1.96 64.42+2.19 68.87+1.03 56.76+1.94 61.12+1.18 69.35+1.21 72.64+136 63.53 67.16
CLUE 71.28+1.24 75.01£0.98 68.73+1.67 7226 £0.94 63.21 £2.08 67.96+1.19 59.32+1.59 63.17+093 73.72£0.97 7692+ 1.17 67.25 71.06
Cobolt 69.21£2.51 73.69+1.72 61.65+3.05 66.74+1.87 58.67+3.14 61.74+1.62 57.46+2.03 6091+1.39 71.16+1.44 74.15+1.61 63.63 67.45
GLUE 7428 £0.91 77.40£0.92 72.51+1.02 79.68 £0.71 66.89 +1.43 73.14+£1.17 64.47+1.22 6828+121 76.93+0.82 80.98+0.92 71.01 75.90
scMoGNN  73.72+0.96 78.58 £0.89 72.41+1.37 80.76 £0.83 69.84+1.81 74.39+0.94 69.03+122 72.32+£0.97 7549+1.31 80.04+1.01 72.10 77.22
scMaui 71.64+0.97 76.19+0.83 63.19+2.74 6742152 6593+1.78 69.15£0.96 58.42+1.65 63.14+0.95 7507£0.75 7881 +1.13 66.85 70.94
MLP 67.39+ 1.18 71.04£0.79 62.25+3.74 5587 £2.06 58.97+0.74 62.52+0.57 54.74£1.26 59.72+1.01 70.44£2.07 72.62+198 62.76 64.35
GCNII 72.64+1.29 77.32£0.63 73.64+0.98 79.60 £0.54 69.49 £ 1.13 74.01 £0.65 62.71£1.07 67.93+0.59 7628 +1.13 81.06+0.76 70.95 75.98
GraphSAGE 76.98 £0.61 82.37+0.35 76.92+1.32 81.52+0.63 67.56+1.24 70.93+0.72 66.53+0.83 70.56 +0.57 81.94+1.89 85.79+1.44 73.99 78.23
GT 73.42+0.52 80.93£0.31 78.04+0.79 82.04£047 72.17+0.53 7834+£0.36 68.74+0.69 73.890+0.42 80.12+£0.96 85.71+0.61 74.50 80.18

Bi’Former  84.40+0.48 89.24+0.31 88.74 £0.36 92.37+0.16 79.84+0.29 84.96+0.18 73.56+0.37 77.30+0.21 90.41 £0.24 93.41+0.30 83.39 87.46

Other settings. We report experimental results using hyperparameter settings detailed in Ap-
pendix [B.4] selecting those that achieve the highest validation performance. While our hyperparame-
ter grids may not always be optimal, they cover a broad range to ensure each model is adequately
evaluated on every dataset. Each experiment is repeated with 10 different random seeds, and we
report the mean and standard deviation across these runs.

5.2 Modal Matching (RQ1)

We evaluate the performance of Bi*Former on the task of crossmodal matching, where the goal is
to determine whether a pair of ATAC and RNA sequences originates from the same cell. Table|T]
summarizes the results across four benchmark datasets.

First, VAE-based models (e.g., MultiVI, CLUE, Cobolt, GLUE) perform poorly due to their reliance
on sparse expression vectors and underutilization of biological attributes. Modeling both expressed
and unexpressed elements introduces noise and weakens the meaningful regulatory signals. Second,
MLP trained on our constructed ABG corpus benefits from denoised inputs and biological attributes,
achieving modest results. However, its lack of structural and interaction-aware modeling limits its
performance. Third, GNN models (i.e., GCNII, GraphSAGE, GT) further improve performance by
leveraging structural information. However, their inductive biases are typically locality-driven and
lack explicit mechanisms to model biologically meaningful crossmodal interactions.

Bi%Former addresses these limitations by a biologically-driven crossmodal attention mechanism that
filters low-confidence signals, incorporates chromosomal priors, and aligns with the biological truth.
Furthermore, our crossmodal message passing preserves intra-modal semantics while capturing inter-
modal dependencies, enabling Bi*Former to capture fine-grained interaction patterns that general
GNNs cannot model explicitly. As a result, Bi?Former consistently outperforms baselines, surpassing
the strongest VAE baseline by an average of 11.3% and the strongest ABG-based baseline by 8.9% in
accuracy, with the largest improvement of 16.2% and 10.7% on 10xPBMC. These gains underscore
the strength of our biologically grounded framework and its generalizability across diverse datasets.

5.3 Robustness under Sparse Supervision (RQ2)

To evaluate the ability to effectively handle sparsely paired datasets, which is a significant challenge
in biological measurement data, we conducted experiments comparing our model with other baselines
under different training set sizes. As shown in Figure[3] VAE-based methods experience a notable
performance drop when the amount of paired training data is reduced. In particular, when only
20% of the training pairs are available, most baselines lose the ability to effectively distinguish
positive from negative samples. By contrast, BiFormer maintains strong performance even under
such low-resource settings. This robustness arises from its biological attribute-aware design and
its objective that explicitly captures fine-grained crossmodal interaction patterns, enabling efficient
utilization of limited training data.
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Figure 3: Results for crossmodal matching task with different training sizes.
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Dataset ISSAAC-seq  10xPBMC  SHARE-seq SNARE-seq 0.7
MultiVI 4732139 5472168 5281151 51.83%2.15 06
CLUE 61284116 6141131 57314132 5645+ 182
Cobolt 57.84£201 5867£196 5527+247 48.63£251 05
scMaui 6243+ 184 5854%179 5464%205 5249174 Avg. Cosine Similarity  Avg. Positive Match Rate
MLP 6572+ 113 61.84£1.69 5874%1.12 53.67+133
GCNII 7218129 7252£0.78 67.37+096 61.38+127 Figure 4: Cross-model similarity of attention
GraphSAGE ~ 74.15+093 7631£0.65 67.02+131 64.56+0.92 matrices. The metrics are computed between
GT 71.92+082 7643+0.81 69.94+0.95 67.85+0.81 attention matrices of the same held-out cells

Bi’Former 8274 +0.74 8496+ 049 78.07£0.61 71.28+0.32 from models with different train corpus.

5.4 Cross-Cell-Type Generalization (RQ3)

Transfer Capability across Unseen Cell Types. To assess the generalization capability of our
method, we evaluate the performance of Bi”Former under a cross-cell-type setting. Specifically,
we split each dataset into training and test sets with disjoint cell types in a 1:1 ratio (See details
in Appendix [B.3). This setup ensures that the model is evaluated on completely unseen biological
categories. As shown in Table 2] ABG-based methods significantly outperform traditional VAE-
based baselines, emphasizing the benefits of denoised signals and biological attributes for improved
generalization. Moreover, Bi”Former consistently achieves the best performance across all settings,
surpassing the strongest ABG-based baseline by an average of 7.7%, highlighting the benefits of the
biologically-driven design and its strong ability to generalize across cell types.

Analysis of Learned Attention Matrices across Cell Types. Beyond prediction accuracy, we further
investigate whether the attention learned by Bi*Former captures transferable biological regulatory
mechanisms across different cell types. Specifically, we train separate models on corpus of different
cell-type. Then we compare the attention matrices generated for the same test cells among these
models. As shown in Figure 4] attention matrices generated by models trained on different groups of
the same cell type (i.e., Al and A2) remain highly consistent, with average cosine similarity of 0.93.
Moreover, models trained on A1 (one type of blood mononuclear cells from PBMC) and B (another
type of blood mononuclear cells from PBMC) yield relatively similar regulatory patterns (0.80),
whereas those trained on Al and C (one type of neuronal tissue cells from SNARE) show much
lower similarity (0.63). These results suggest that Bi*Former captures cell-type-specific regulatory
interaction patterns that generalize more effectively across biologically similar populations.

5.5 Ablation Study (RQ4)

To understand the contribution of each key component in Bi*Former, we conduct an ablation study
by selectively masking node ID embeddings (i.e., ID(v) in Eq.(2)), biological attributes (i.e., Expr(v)
and BioAttr(v) in Eq.(Z)), biological pruning (BP) in the crossmodal attention module, and the
edge structure informed by prior biological knowledge in the graph corpus.

Results are shown in Table[3] Interestingly, removing ID embeddings leads to a more significant
performance drop than removing biological attributes. This suggests that with sufficient training



Table 3: Ablation study of masking different components in Bi*Former.

Methods | ISSAAC-seq 10xPBMC  SHARE-seq SNARE-seq | Avg.A

Bi2Former 84.40+£0.48 88.74+0.36 79.84+0.29 73.56 +0.37 -
w/o ID 80.64 +1.51 83.06+2.04 76.75+1.87 7097+1.01 | | 3.78
w/o Attribute 81.47+£0.49 84.32+0.38 77.32+0.31 71.74+047 | | 2.93
w/o BP 83.87+£0.64 8579+0.46 7797+0.31 7321+0.36 | |1.43
w/o Edge 78.80+0.57 83.68+0.49 76.72+0.28 70.15+0.39 | |4.28

w/o Attribute, BP, and Edge | 72.39+1.12 70.86+1.74 69.78 +2.14 67.45+1.13 | | 11.52

data, the model is able to effectively learn the interaction patterns between nodes through repeated
exposure—leveraging latent co-occurrence signals across graphs, highlighting the model’s ability to
infer relationships in a data-driven manner under fully supervised conditions.

We next remove the biological pruning, i.e., the sigmoid-threshold activation and top-k mask, which
is designed to suppress low-confidence signals and reflect the biological constraint that genes are
typically regulated by a limited number of ATAC peaks. This results in a modest performance drop,
indicating that our attention sparsification pruning is able to align model with biological priors.

Furthermore, we evaluate the impact of removing the edges by replacing the prior-based adjacency
matrix with a fully connected bipartite graph between expressed ATAC and RNA nodes. This design
removes biological priors and allows unrestricted attention computation across all node pairs. The
performance degrades but remains competitive compared to the VAE-based baselines. Overall, these
confirm two points: (i) our attention mechanism is capable of learning useful interactions even under
noisy topologies, and (ii) biologically grounded edge priors serve as an effective inductive bias,
guiding the model toward more interpretable and accurate regulatory patterns.

Finally, we remove the attributes, biological pruning, and edges, retaining only the expressed nodes.
This modification results in the model only filtering out unexpressed nodes compared to traditional
VAE-based models. We observed a significant performance drop, but the model still outperformed
the strongest VAE-based baseline. This further emphasizes the effectiveness of filtering out noise and
focusing solely on the co-occurrence patterns on expressed nodes.

5.6 Hyperparameter Study (RQS5)

We investigate the influence of key hyperparameters in Bi*Former, focusing on the threshold strategy
and the top-k selection strategy within the Biologically-driven Crossmodal Attention module.

Threshold 7. The threshold parameter 7 is introduced to filter out low-confidence attention signals.
This design is motivated by our early observations that, during the initial training stages, under-
trained nodes tend to produce uniformly distributed attention weights, which introduces considerable
noise and deviates from biologically meaningful regulatory patterns. To address this, we first set
the threshold 7 = 0.5, which effectively suppresses these uniformly noisy distributions. We then
gradually increased the threshold to assess its impact on model performance. As shown in Figure 5}
the optimal threshold varies slightly across different datasets, likely reflecting biological differences
in RNA—-ATAC interaction sparsity across distinct cell types. Higher thresholds enforce stricter gating,
allowing only the most confident and specific regulatory links to be preserved.

Top-k. The top-k sparsification strategy following thresholding is introduced to further align with the
biological assumption that each gene is regulated by a limited number of cis-regulatory elements. We
experiment with & € {5, 10, 15, 20}, and the results shown in Figureindicate that k = 10 performs
the best across most datasets. This finding supports the notion that a small number of ATAC regions
contribute significantly to RNA regulation, aligning well with known biological priors.

5.7 Biological Interpretation and Discovery (RQ6)

Cell-level. In Figure 4] we evaluate the plausibility of the learned attention matrix from a compu-
tational perspective. To further interpret Bi?’Former from a biological standpoint, we leverage the
learned RNA-ATAC attention matrix ¢ as a proxy for regulatory interactions. At the cell-level, &
reveals how accessible ATAC potentially regulate gene expression (RNA), enabling fine-grained
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Figure 5: Experiment results of the hyperparameter of Bi*Former.

cell-specific interpretation. As shown in Appendix each RNA is regulated by a limited number
of ATAC peaks, consistent with known biological principles of gene regulation.

Cell-type-level. By aggregating attention matrices across cells of the same type, we obtain population-
level regulatory maps that reflect cell-type-specific transcriptional programs. These insights facilitate
the comparative analysis of regulatory patterns across cell types. Moreover, to further validate the
biological relevance of our model, we compare the cumulative attention scores against experimentally
derived TF binding scores [21], which reflect the actual activation strength of ATAC peaks in each cell
type and serve as a proxy for the ground truth. The results show that the cumulative attention scores
for CD4 cells exhibit strong agreement with CD4-specific TF binding signals, indicating that our
model successfully identifies biologically meaningful regulatory relationships. Details are provided

in Appendix [C.2]
6 Conclusion

In this work, we present a novel framework that formulates single-cell crossmodal matching as an
interaction learning problem via graph classification task on Attributed Bipartite Graphs (ABGs).
Our study introduces an interpretable ABG-based approach to single-cell crossmodal analysis, paving
the way for more structured and insightful crossmodal learning in biology. This perspective allows
for explicit modeling of interaction while leveraging both observed data and node-level features.
To model the regulatory interactions on these graphs, we propose Bi?Former, a biologically-driven
bipartite graph transformer that learns interpretable attention over potential ATAC-RNA regulatory
pairs, explicitly modeling crossmodal interactions. Extensive experiments across diverse datasets
show that our model achieves state-of-the-art performance in crossmodal matching, generalizes
well to unseen cell types, and uncovers biologically meaningful regulatory interactions. Our study
introduces an interpretable ABG-based approach to single-cell crossmodal analysis, paving the way
for more structured and insightful crossmodal learning in biology.

7 Limitations

While Bi*Former achieves strong performance and interpretability, it does not currently incorporate
rich edge attributes, which can play a crucial role in capturing fine-grained interactions in graph-
based tasks [[19]]. Modeling such edge-level information requires the integration of more detailed
biological priors and suitable encoding strategies. In future work, we plan to extend our framework
by introducing biologically informed edge attributes to fully exploit their representational power.
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much the results can be expected to generalize to other settings.
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2. Limitations
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* The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
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Guidelines:
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All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The datasets, graph dataset generation code, model code, and hyperparameters
are in the code repository.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is available at: https://github.com/wangxiaotang0906/Bi2Former
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: NA
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: NA
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Complexity analysis are conclude in Appendix D]
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» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: NA
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: NA
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: NA
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 4: Statistics of the original datasets.

Methods | #RNA  #ATAC  #Cell (Positive Sample)  #Cell Types
ISSAAC-seq | 32,208 169,180 10,361 23
10xPBMC 29,095 107,194 9,631 19
SHARE-seq 21,478 340,341 32,231 22
SNARE-seq 28,930 241,757 9,190 22
10xMultiome | 13,431 116,490 69,249 22

A Related Works of Graph Neural Networks and Graph Transformers

Graph neural networks (GNNGs) 257,139, |16 44]] propagate and aggregate neighborhood information
through message passing, making them well-suited for biological fields [5) 26} [52] [51]]. In the
heterogeneous graph setting [49, 20, 42[], such mechanisms allow flexible information fusion across
node types and modalities, which aligns with our design of RNA-ATAC bipartite graphs.

Recently, graph transformers [[L1} 148} (32, 54] have gained popularity due to their global receptive
fields and capacity to model complex dependencies. Attention not only captures relations but also
enhances interpretability by quantifying the importance of each interaction [45] [34] 53]

Building on the ABG framework, we design a biologically-driven crossmodal graph transformer
tailored to the single-cell omics context. By incorporating biological priors and biological pruning,
our model learns fine-grained regulatory patterns between ATAC and RNA. The attention module is
carefully designed to highlight interpretable crossmodal signals, enabling us to uncover meaningful
ATAC-RNA interactions patterns at both the cell-level and cell-type-level. Unlike generic graph
attention methods, our approach grounds the attention weights in biological relevance, offering
interpretability beyond performance.

B Experimental Details

B.1 Details of the Original Datasets

We evaluate Bi*Former on four widely-used single-cell omics datasets that provide paired scRNA-seq
and scATAC-seq profiles from the same cells. Summary statistics are provided in Table 4}

ISSAAC-seq. ISSAAC-seq [50] is a large-scale human multi-omics dataset that jointly profiles
chromatin accessibility and gene expression at single-cell resolution. It contains over 10,000 cells
spanning 23 immune and epithelial cell types, making it suitable for evaluating both matching
performance and generalization across diverse cell identities.

10x PBMC. The 10x Multiome PBMC dataset [[1]] includes peripheral blood mononuclear cells
from healthy donors, providing paired ATAC and RNA modalities with moderate sparsity and
cell-type diversity. It is a benchmark dataset in many multimodal learning studies.

SHARE-seq. SHARE-seq [28] is one of the largest publicly available paired multi-omics datasets,
capturing chromatin accessibility and gene expression across over 30,000 cells. Due to its large peak
count and sparse feature distributions, it is particularly challenging for cross-modal modeling.

SNARE-seq. SNARE-seq [8] enables simultaneous profiling of RNA and chromatin accessibility,
particularly focused on neural tissues. Despite a moderate sample size, its high ATAC dimensionality
and tissue-specific regulatory features make it useful for evaluating biological interpretability.

10x Multiome. The 10x Genomics Multiome dataset [27] originates from the 2021 NeurIPS Open
Problems in Single-Cell Analysis competition. The dataset comprises several thousand cells spanning
major immune cell types, with moderate feature sparsity and well-balanced cell-type representa-
tion. These properties make it a widely used benchmark for evaluating crossmodal matching, joint
embedding, and modality-prediction methods under realistic paired-data conditions.
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Table 5: Statistics of our ABG datasets.

Methods | #Graphs ~Avg#RNA Nodes ~Avg#ATAC Nodes Avg#Edges Avg.Sparsity — Split(%)
ISSAAC-seq | 20,722 1,843 7,578 851,136 0.06 60/20/20
10xPBMC 19,262 1,924 7,379 762,927 0.05 60/20/20
SHARE-seq | 64,462 619 3,971 157,132 0.06 60/20/20
SNARE-seq 18,380 937 2,452 133,146 0.05 60/20/20

B.2 Details of the ABG Datasets

The summary statistics of our constructed ABG corpus are detailed in Table[5]

As described in Section [3] during graph construction, we encode biological attributes into the
features of each RNA and ATAC node by BioAttr. Specifically, RNA nodes include attributes:
{!chrom’, means', variances_norm', strand’,’ highly_variable’}, and ATAC nodes include:
{'chrom’, dna_sequence’}. Categorical and Statistics attributes are processed via one-hot encoding
and direct numerical normalization, respectively. The dna_sequence is truncated to 256 dims and
encoded using a sequential encoding scheme.

While matched pairs reflect true biological interaction patterns across modalities, mismatched pairs
are crucial for learning a robust decision boundary. They help the model distinguish meaningful
alignments from random co-occurrence. This discrimination is particularly important given the
high dimensionality and noise in single-cell omics data. To preserve biological diversity and avoid
sampling bias, negative samples are drawn proportionally according to the distribution of cell types in
the dataset. As summarized in Table[5] we maintain a 1:1 ratio of positive to negative pairs, resulting
in a graph dataset that contains twice the number of samples as the original single-cell dataset. Full
implementation details are available in our code repository.

B.3 Details of the Cross-cell-types Setting

To assess the generalization capability of our method, we evaluate the performance of Bi*Former
under a cross-cell-type setting. We split each dataset into training and test sets with disjoint cell types
in a 1:1 ratio. To ensure a balanced partition, we sort all cell types by their number of cells and assign
those at odd and even indices to the training and test sets, respectively. Specifically:

ISSAAC-seq. Training cell types: {"R3 Ex-L5 IT", "R13 In-Drd2", "R8 Ex-L6 IT Bmp3", "R16
In-Sst", "R10 Ex-L6b", "R21 Oligo"}; Test cell types: {"R7 Ex-L6 CT", "R12 Misc", "R6 Ex-L5-PT",
"R20 OPC", "R9 Ex-L6 IT Oprkl", "R22 VLMC"}.

10x PBMC. Training cell types: {"CD14 Mono", "CD8 Naive", "CD16 Mono", "CD8 TEM_1",
"Intermediate B", "CD4 TEM", "Treg", "MAIT", "pDC", "Plasma"}; Test cell types: {"CD4 Naive",
"CD4 TCM", "NK", "CD8 TEM_2", "Memory B", "cDC", "gdT", "Naive B", "HSPC"}.

SHARE-seq. Training cell types: {"Basal", "TAC-1", "CD16 Mono", "alow CD34+ bulge", "Hair
Shaft-Cuticle/Cortex", "ORS", "Medulla", "Dermal Papilla", "IRS", "Dermal Sheath", "Macrophage
DC", "Sebaceous Gland"}; Test cell types: {"Infundibulum", "Spinous", "ahigh CD34+ bulge",
"Dermal Fibroblast", "TAC-2", "Endothelial", "Isthmus", "K6+ Bulge/Companion Layer", "Granular",
"Melanocyte", "Schwann Cell"}.

SNARE-seq. Training cell types: {"E2Rasgrf2", "E6Tle4", "E5Galnt14", "Ast", "InP", "E3Rmst",
"InS", "InV", "OPC", "Mic", "Endo"}; Test cell types: {"E3Rorb", "E4Illrapl2", "E4Thsd7a",
"ES5Parm1", "OliM", "E5Sulf1", "Clau", "InN", "OliI", "Peri"}.

B.4 Hyperparameters

Experimental results are reported on the hyperparameter settings below, where we choose the settings
that achieve the highest performance on the validation set. We choose hyperparameter grids that do
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Figure 6: Case study of RNA—-ATAC attention matrices for a representative single cell under different

threshold values 7. Higher thresholds remove noisy interactions and highlight confident regulatory
links.

not necessarily give optimal performance, but hopefully cover enough regimes so that each model is
reasonably evaluated on each dataset.

* learning_rate € {le — 3,5e — 4,1e — 4,5e — 5,1e — 5}
* weight_decay € {le — 4,5e — 5,1e — 5,5¢ — 6,1le — 6}
* dropout € {0,0.1,0.3,0.5,0.8}

For Bi2Former,

* ID embedding dims € {64, 128,256,512}
« hidden dims € {64, 128,256,512}

* layer_num € {1,2}

C Case of Biological Interpretation and Discovery

C.1 Cell-Level Regulatory Interaction.

To further demonstrate the interpretability of Bi”Former and its capacity to reveal interaction between
ATAC and RNA, we conduct a case study visualizing the learned RNA—ATAC attention matrix &
under varying threshold settings for a representative single cell. As shown in Figure[6] increasing the
threshold 7 progressively suppresses low-confidence signals, resulting in a sparser attention matrix
and more specific and meaningful regulatory signals.

However, we observe that without further constraints, some RNA nodes may either lack any activated
ATAC connections or remain dense connected—both of which deviate from biological priors. To
address this, we introduce a top-k constraint following thresholding. After training with top-k
regularization, the model not only achieves better performance but also produces more interpretable
attention patterns. As illustrated in Figure[7] each RNA is regulated by a limited number of ATAC
peaks, consistent with known biological principles of gene regulation.
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Figure 7: Improved RNA-ATAC interaction map after applying top-k refinement. Each RNA is
connected to a limited number of ATAC peaks, aligning with known biological regulation mechanisms.
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Figure 8: Comparison between TF binding scores and cumulative attention scores within the same
cell type (CD4). The cumulative attention scores produced by our model align closely with the TF
binding intensity in CD4 cells, suggesting that the learned crossmodal interactions accurately capture
cell-type-specific regulatory signals.

C.2 Cell-Type-Level Regulatory Maps.

To investigate how ATAC—RNA regulatory patterns vary across cell types, we aggregate ATAC
expression signals across cells of the same type and analyze the resulting attention-informed regulatory
maps. Specifically, we compute the cumulative attention score as the regulatory strength of each
ATAC peak across different cell types to identify cell-type-specific activation patterns.

As shown in Figure [8]b and Figure []b, clear differences emerge between CD4 and CD14 cell
populations, revealing divergent regulatory patterns that reflect their distinct biological functions.
Moreover, to further validate the biological relevance of our model, we compare the cumulative
attention scores against experimentally derived TF binding scores [21]], which reflect the actual
activation strength of ATAC peaks in each cell type and serve as a proxy for ground truth. In
Figure[8] the cumulative attention scores for CD4 cells exhibit strong agreement with CD4-specific TF
binding signals, indicating that our model successfully identifies biologically meaningful regulatory
relationships. In contrast, Figure[9]shows that CD14 cells exhibit different attention profiles relative to
the CD4 ground truth, underscoring cell-type-specific regulatory patterns. These results highlight the
capacity of our approach to uncover interpretable and biologically grounded crossmodal interactions
at the population level.

Overall, these cell-type-level maps offer a powerful means to dissect cell identity through the strength
of ATAC peak signals.
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Figure 9: Comparison between TF binding scores from CD4 cells and cumulative attention scores

in CD14 cells. CD14 cells exhibit distinct peak activation patterns with the CD4 ground truth,
highlighting the distinct regulatory patterns across cell types.

D Complexity Analysis

In this section, we present the time and space complexity analysis of Bi*Former. For simplicity, we
assume that the feature dimension remains unchanged and that the number of model layers is set
to 1, and the N,. and N, denote the number of RNA and ATAC nodes in the graph, i.e., |Vkna| and
|[Varac|- E is the number of edges (i.e., the number of non-zero entries in the adjacency matrix A),
and dj, is the hidden dimension.

D.1 Time Complexity

The primary time overhead arises from three components: the Biologically-driven Crossmodal Atten-
tion, the Crossmodal Message Passing, and the Predictor. The time complexity of the Crossmodal
Attention is O(N,.d? + N,d? + Edp,). The Crossmodal Message Passing aggregates messages from
sparse attention edges and includes self-attentions, with complexity O((N,. + N, )d3 + Edy,). Finally,
the complexity of the Predictor is a negligible overhead of O(d3 ). Thus the total time complexity of

our method is O((N,. + N,)d? + Edp,).
Compared with VAE-based methods, which operate on full dense expression matrices with time

complexity O(Nd3) (where N is the total number of ATAC and RNA, typically tens of times larger
than the number of expressed NV,. + N, per graph), our method is significantly more efficient.

D.2 Space Complexity

For each graph, we maintain hidden node embeddings, sparse attention matrices, and aggregated
messages. Specifically, the feature storage and value projections require O((N, + N,)dp,); and
the attention matrix and message buffers take O(FEdy). Hence, the overall space complexity is
O((Ny + No)dp, + Edp,).

Compared with VAE-based methods with space complexity O(Ndj},), our method reduces unneces-
sary memory usage on unexpressed nodes, leading to significantly improved memory efficiency.
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