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ABSTRACT

We focus on reducing communication overhead in multiplayer games, where fre-
quently exchanging strategies between players is not feasible and players have
noisy or outdated strategies of the other players. We propose Decoupled SGDA, an
extension of Stochastic Gradient Descent Ascent (SGDA), where players perform
independent updates using outdated strategies of opponents, with periodic strat-
egy synchronization. For Strongly-Convex-Strongly-Concave (SCSC) games, we
demonstrate that Decoupled SGDA achieves near-optimal communication com-
plexity comparable to the best-known GDA rates. For weakly coupled games
where the interaction between players is lower relative to non-interactive part of
the game, Decoupled SGDA significantly reduces communication costs compared
to standard SGDA. Our findings extend to multi-player games. To provide insights
into the effect of communication frequency and convergence, we extensively study
the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in
settings where the noise over the players is imbalanced, Decoupled SGDA signif-
icantly outperforms federated minimax methods.

1 INTRODUCTION

Several real-world problems in diverse areas, such as economics and computer science, can fre-
quently be described as N -player differentiable games (Von Neumann & Morgenstern, 2007). While
players may have competing objectives, the aim is to identify an equilibrium, a strategy where no
player benefits from deviating unilaterally. Examples of such games in machine learning include
Generative Adversarial Networks (GANs, Goodfellow et al., 2014), adversarial robustness (Madry
et al., 2017; Shafahi et al., 2019; Robey et al., 2023) and multi-agent reinforcement learning (e.g.,
Lowe et al., 2017; Li et al., 2019).

Minimax optimization problems are a special case of N -player games, where the aim is to find a
saddle point of an objective fpu,vq that minimizes fpu, ¨q over u and maximizes fp¨,vq over v.

Several gradient-based methods have been proposed for solving the above problem (Korpelevich,
1976; Popov, 1980; Balduzzi et al., 2018; Nouiehed et al., 2019; Chavdarova et al., 2020; Kovalev
& Gasnikov, 2022). One of the most widely used is the gradient descent method. In the context of
zero-sum minimax games, this approach is referred to as Gradient Descent Ascent (GDA), where
the minimizing player takes descent steps and the maximizing player takes ascent steps.

In some situations, however, players may not have direct access to their opponents’ exact strate-
gies. The u–player might only have a noisy estimate of v when updating its parameters, and vice
versa. In extreme cases, players might operate with outdated strategies from their opponents, with
limited opportunities to synchronize. We refer to this scenario as games with intermittent strategy
communication (ISC-games). Here are a few illustrative examples:

• Corporate competitors. Companies frequently adjust their strategies based on individual objec-
tives and the strategies of their competitors. For instance, Netflix may need to lower its prices if
a competitor like Max reduces its subscription rates (Jagadeesan et al., 2022). Corporations may
occasionally release (noisy) general information about their strategies, giving each company an
imperfect understanding of its competitor’s actions. Alternatively, companies might hire experts
to estimate competitor strategies using publicly available data, although this process is expensive
and infrequent.
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• N -agents with restricted communication. In control theory, applications involving drones or
robots are modeled with N -player games (see Spica et al., 2020; Laine et al., 2021; Zhou et al.,
2021, and references therein). However, due to factors like long distances or limited battery life
caused by weight constraints, communication between agents regarding learned strategies is costly
and can only occur intermittently.

In summary, this paper focuses on the following questions.

• Can players learn “locally” when relying on noisy or outdated strategies from their opponents in
ISC-games?

• How do the convergence rate and communication costs of the proposed optimization method com-
pare to the baseline? Is acceleration achievable?

To address the former, we propose a simple extension of the gradient descent method where agents
perform local updates while using outdated strategies from their opponents. For minimax prob-
lems, we refer to this method as Decoupled SGDA, and for N -player games Decoupled SGD. The
second question is explored in detail by analyzing the convergence rate of Decoupled SGD(A) and
identifying the problem class where acceleration is achieved, which we refer to as Weakly Coupled
Games.

Contributions. Our contributions include:

• We introduce Decoupled SGD(A) for games with intermittent strategy communication, where
each player performs K updates based on outdated strategies from the other players, followed by
a synchronization step to exchange the updated strategies of all players.

• We analyze its convergence in both the strongly-convex strongly-concave (SCSC) setting and in
N -player games where each player’s utility is strongly convex. Additionally, we identify a specific
regime, termed Weakly Coupled Games, where Decoupled SGD(A) demonstrates communication
acceleration compared to the baseline GD(A), by removing the dependency on player condition-
ing. Moreover, under an additional assumption on the interactive part of the game, our method can
outperform the optimal first-order method in terms of communication rounds for solving SCSC
games.

• We study the convergence of Decoupled SGDA for quadratic minimax games with bilinear cou-
pling between the players, providing in-depth insights into the algorithm’s convergence behavior.
We provide a convergence guarantee for Federated Minimax games in the context of our method,
matching the state-of-the-art results of Local SGDA.

• Through numerical experiments, we demonstrate the efficacy of Decoupled SGDA (i) in minimax
optimization and non-convex GAN settings in weakly coupled games, and (ii) over federated
learning in settings where opponents have gradients with imbalanced noise.

• We also propose a heuristic to accelerate the convergence of decoupled SGDA in Appendix G and
present numerical evidence demonstrating its practical effectiveness.

To simplify the exposition, the main body of the paper focuses on the minimax setting, while the
extension to N -player games is presented in Appendix C.

1.1 RELATED WORKS

Our work draws from multiple lines of work, and herein, we review these and discuss the difference
with federated learning. Appendix E gives additional discussion and lists works on decentralized
optimization. The latter are further from our work in that there is no centralized communication,
and nodes communicate with neighbors.

Game optimization. Nemirovski (2004); Nesterov (2007) achieve a rate of Op 1
T q for convex-

concave minimax problems. For strongly-convex-strongly-concave games, (i) Thekumparampil
et al. (2019) combine Nestrov’s Accelerated Gradient and mirror-prox and achieve Õp 1

T 2 q rate of
convergence, (ii) Wang & Li (2020) explore ideas from accelerated proximal point and achieve a
linear rate, and (iii) Kovalev & Gasnikov (2022) propose a method with Op

?
κuκv log

1
ϵ q rate of

convergence which matches the lower bounds (Zhang et al., 2022b; Ibrahim et al., 2020). Sev-
eral works focus on accelerating the convergence of GDA (Lee et al., 2024; Zhang et al., 2022a).
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Quadratic games with bilinear coupling are studied in (Zhang et al., 2021). Nouiehed et al. (2019)
propose a method that performs multiple first-order steps on only one of the parameters to solve min-
imax problems. Tsaknakis et al. (2021) study a generalized minimax problem with linear constraints
coupling the decision variables. Tseng & Yun (2009) study coordinate gradient descent method for
minimizing the sum of a smooth and separable convex function. Jain et al. (2018) shows that accel-
erated stochastic gradient descent can outperform traditional stochastic gradient descent in minimax
optimal statistical risk for least squares regression. Yoon & Ryu (2021) present algorithms with
accelerated Op1{k2q last-iterate rates for smooth minimax optimization—outperforming existing
methods—and establish the optimality of this rate through a matching lower bound.

Federated learning. Building on the foundational work of McMahan et al. (2017), numerous works
have explored distributed minimization, or federated learning, across various settings (e.g., Stich,
2018; Koloskova et al., 2020; Karimireddy et al., 2020; Woodworth et al., 2020a;b). In the context
of minimax optimization, Deng & Mahdavi (2021); Sharma et al. (2022) extended the so-called
Local SGD to the minimax setting, achieving convergence rates for different classes of functions
in both heterogeneous and homogeneous regimes. Although both Federated Minimax and Decou-
pled SGDA are designed to solve minimax optimization problems in a distributed fashion, their
approaches to achieving this are fundamentally different. Refer to Section F.1 for more details.

2 SETTING AND PRELIMINARIES

We consider the following saddle-point problem over X “ Xu ˆ Xv , with Xu “ Rdu ,Xv “ Rdv :

min
uPXu

max
vPXv

fpu,vq, (SP)

where f : X Ñ R is a differentiable function. Its solution is defined as a point x‹ ” pu‹,v‹q P X
satisfying the following variational principle: fpu‹,vq ď fpu‹,v‹q ď fpu,v‹q for all pu,vq P X .
We define the following operator F : X Ñ X :

F pxq :“ p∇ufpxq,´∇vfpxqq, x P X . (1)

An important property of this operator is that F px‹q “ 0.

Notation. We use bold lower-case letters for vectors and bold capital letters for matrices. We
consider unconstrained two-player games where the decision vectors of the players (typically de-
noted by u and v) live in the spaces Xu “ Rdu and Xv “ Rdv , respectively. The corresponding
product space X “ Xu ˆ Xv “ Rd (with d “ du ` dv) consists of vectors x “ pu,vq P Rd,
where u P Xu and v P Xv . For a differentiable function f : X Ñ R, we denote partial gradients
at a point x “ pu,vq P X w.r.t. the corresponding variables by ∇ufpxq and ∇vfpxq, respectively,
so that ∇fpxq “ p∇ufpxq,∇vfpxqq. We use x¨, ¨y to denote the standard inner product, keeping
the same notation for each of the vector spaces we consider. We assume that the spaces Xu and
Xv are equipped with Euclidean norms, denoted by ∥u∥u, ∥v∥v . The norm in the space X is then
defined by ∥x∥ “ pα∥u∥2u `β∥v∥2vq1{2 where α, β ą 0. We use the notation ∥gu∥u,˚, ∥gv∥v,˚ and
∥g∥˚ :“ p 1

α}gu}2u,˚ ` 1
β }gv}2v,˚q1{2 to denote the corresponding dual norms.

Stochastic Oracles with Noise Imbalance. Following standard conventions, we assume that both
players—the minimization player u, and the maximization player v—have access unbiased stochas-
tic oracles Gupx, ξq, Gvpx, ξq, with the property ErGupx, ξqs “ F pxq, ErGvpx, ξqs “ F pxq. We
make the following assumption on the variance:
Assumption 1. There exists finite constants σ2

uu, σ2
vv such that for all x P X :

E
∥∥“pGupx, ξq ´ F pxqq

‰

u

∥∥2
u,˚

ď σ2
uu E

∥∥“pGvpx, ξq ´ F pxqq
‰

v

∥∥2
v,˚

ď σ2
vv .

Here, we use the operator r¨si to denote the coordinates corresponding to player i P tu, vu. For
convenience, we define σ2 :“ σ2

uu ` σ2
vv .

Note that we only require that the noise of self-gradients is bounded, i.e. σ2
uu and σ2

vv . How-
ever, we do not make any assumption on the noise for the estimates of the gradients of the
other player. Concretely, the variances σ2

uv :“ E
∥∥“pGupx, ξq ´ F pxqq

‰

v

∥∥2
v,˚

and σ2
vu :“

3
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E
∥∥“pGvpx, ξq ´ F pxqq

‰

u

∥∥2
u,˚

can be arbitrarily large, possibly unbounded. This is is contrast to
other works on stochastic min-max optimization, that require the variance of both Gu and Gv to be
bounded.

Monotonicity and Smoothness. We outline the necessary assumptions for establishing the con-
vergence of our method.
Assumption 2 (Strong monotonicity). Operator F from (1) is strongly monotone with parameter
µ ą 0, i.e., for all x,x1 P X , the following inequality holds:

xF pxq ´ F px1q,x ´ x1y ě µ∥x ´ x1∥2.
Assumption 3 (Lipschitz smoothness). Operator F from (1) is L-Lipschitz, i.e., for all x,x1 P X ,
the following inequality holds:

∥F pxq ´ F px1q∥˚ ď L∥x ´ x1∥ . (2)

In the sequel, we will also need to use more refined smoothness constant Lc which is defined by the
following inequalities holding for all x ” pu,vq,x1 ” pu1,v1q P X :

∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ ď Lc∥v ´ v1∥v ,
∥∇vfpu,vq ´ ∇vfpu1,vq∥v,˚ ď Lc∥u ´ u1∥u .

(3)

We will show in Section 4 that this constant plays an important role in communication acceleration
as it captures how interactive the game is. In this work, we assume that there exists one constant Lc

which can be used for both inequalities.

For the reader’s convenience, Tables 2 and 3 in the appendix summarize our notations.

3 DECOUPLED SGDA FOR TWO-PLAYER GAMES

In this section we introduce decoupled SGDA and explain its motivation.

General Idea: Communication Efficient Strategy Exchange. A standard way for solving (SP)
is as follows:

xt`1 “ xt ´ γGpxt, ξq with Gpx, ξq “

ˆ

∇ufpu,v; ξq

´∇vfpu,v; ξq

˙

. (SGDA)

However, in a distributed setting, the players need one round of communication to exchange their
parameters put,vtq in every step of the method.

To alleviate this communication issue, earlier works proposed so-called local update methods that
reduce the amount of communication by performing local parameter updates for each player sepa-
rately. For instance, both player could perform K ě 1 updates on a local copy of the parameters.
After every communication round, local variables are initialized as xv

t “ xu
t “ xt, and updated as:

xu
t`K “ xu

t ´ γ
K´1
ÿ

i“0

Gupxu
t`i, ξt`iq, xv

t`K “ xv
t ´ γ

K´1
ÿ

i“0

Gvpxv
t`i, ξt`iq. (local-SGDA)

The local variables are then synchronized in a communication round, xt`K :“ 1
2

`

xu
t`K ` xv

t`K

˘

.
This is a standard approach in distributed optimization. However, this method does not apply to our
setting, as we would need to assume that the stochastic noise of the oracles Gu and Gv is bounded.

We are considering a setting where the two players may not have access to their opponent’s strategies
or gradients, and only assume that the private components of the gradients have bounded variance,
see Assumption 1. For this setting, we therefore propose that each player should only use the
reliable information, that is rGupx, ξqsu for player u, and rGvpx, ξqsv for player v. We can write
our proposed method compactly as:

xr
K “ xr

0 ´ γ
K´1
ÿ

t“0

G0pxr
t , ξtq with G0pxr

t , ξq ”

ˆ

∇ufpur
t ,v

r
0; ξq

´∇vfpur
0,v

r
t ; ξq .

˙

(decoupled-SGDA)

4
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Our operator has the property that ErG0px, ξqs “ F0pxq with bounded variance σ2 where F0pxq “

p∇ufpu,v0q,´∇vfpu0,vqq. Here, the index t denotes the local update step in the current local
update phase, and the superscript r indexes the local phases. We also use x0 ” pu0,v0q to denote the
parameters of the players at the beginning of some round r. One communication round is needed for
exchanging the updated parameters pur

K ,vr
Kq when passing to the next round. Next, we introduce

one more assumption on operator F0.
Assumption 4 (Strong monotonicity). Operator F0 is strongly monotone with parameter µ0 ą 0,
i.e., for all x,x1 P X , the following inequality holds:

xF0pxq ´ F0px1q,x ´ x1y ě µ0∥x ´ x1∥2.

Note that one can show µ0 “ mint
µu

α , µv

β u where f is µu-strongly convex in u and µv-strongly-
concave in v (see Lemma 6).

Intuition. To provide some intuition on why decoupled SGDA might work, consider that the ob-
jective of minimax games (SP) can be written as:

fpu,vq “ gpuq ´ hpvq ` rpu,vq (4)

where gpuq and hpvq represent the independent contributions of each player, and rpu,vq captures
the interaction between them.

In the special case when rpu,vq ” 0, i.e., there is no interaction, the problem does not require any
communication: the optimal solution can be found by minimizing g and h separately. A method
like SGDA is, therefore, not a good choice in this setting, as it requires communication in every
step of the method, although this is unnecessary. If the contrast, when the coupling rpu,vq is
significant, then optimizing g and h separately might not be a good strategy. Decoupled SGDA aims
to find a balance between the two extremes. In the following, we will characterize some settings,
where Decoupled SGDA provably uses significantly less communication rounds than SGDA, or
other baselines (see also Table 1).

Method. We begin this section by providing details of our method. Decoupled SGDA has a round-
wise update scheme allowing each player to share his parameters only once in a while. At the
beginning of each round r, each player receives the most recent parameters of the other player. Then
all players start taking K local steps and updating only their own parameters using the information
they received at the beginning of the round from other players. Note that our method is a general
framework and one can use any first-order method to take local steps. As a baseline in this work, we
consider simple GD updates. We formalize our method in Algorithm 1. For simplicity in notation,
we now consider a two-player minimax game to motivate our method and highlight its differences
from existing paradigms. The constants α, β are determined by the vector norm that we specify.

Algorithm 1 Decoupled SGDA for two-player games

1: Input: step size γ, initialization x0 “ pu0,v0q, R, K
2: for r P t1, . . . , Ru do
3: for t P t1, . . . ,Ku do
4: Update local model ur

t`1 Ð ur
t ´ γpαq´1∇ufpur

t ,v
r
0; ξq

5: Update local model vr
t`1 Ð vr

t ` γpβq´1∇vfpur
0,v

r
t ; ξq

6: end for
7: Communicate pur

K ,vr
Kq to each player

8: end for
9: Output: xR

K “ puR
K ,vR

Kq

Extensions of Decoupled SGDA. It is clear that our method is a general framework, providing
flexibility for various modifications and adaptations. For instance, our method allows for any first-
order update rule to be applied for the local steps like GDA, Extra Gradient (EG), and Optimistic
Gradient Descent Ascent (OGDA). Note that in this work, we focused on GDA updates, leaving the
analysis of other methods for future work. Moreover, in Section G, we present Decoupled SGDA
with Ghost Sequence, where each player aims to estimate the other player’s parameters using the
so-called Ghost Sequence, which leads to further acceleration in terms of the number of rounds.

5
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4 CONVERGENCE GUARANTEES

We first need to introduce the notion of Weakly Coupled Games / Regime and next we provide the
convergence guarantee for our method.
Definition 1 (Weakly Coupled and Fully Decoupled Games1). Given a SCSC zero-sum minimax
game fpu,vq. We define the coupling degree parameter θ for this game as follows:

θ :“
Lc

µ0
. (5)

This variable measures the level of interaction in the game. A smaller value of θ indicates less
interaction. For any fpu,vq, we say the game is Weakly Coupled if the following inequality holds:

θ

c
ď 1 (6)

where c ą 1 is an absolute constant and will be specified based on the setting. We say the game is
Fully Decoupled if we have θ “ 0 which implies rpu,vq “ 0 (see Equation (4)).

It’s clear that fully decoupled games are the extreme case of weakly coupled games. In weakly
coupled games, interaction between the two players is relatively minor compared to their individual
self-interactions. This regime suggests that the influence of the u player on v (and vice versa) is suf-
ficiently small, allowing the players’ dynamics to be driven mainly by their own quadratic behavior,
with minimal influence from interaction. In the fully decoupled games, the problem of finding the
saddle point reduces to solving two independent minimization and maximization problems which is
usually much easier and has been well-studied.

Theorem 1. For any R,K ě Ω
´

1
γµ log

`

4
θ

˘

¯

, after running Decoupled SGDA for a total of T “

KR iterations on a function f , with the stepsize γ ď
µ0

L2 if the game is weakly coupled with c “ 4

(4θ ď 1) or γ ď min
␣

µ
L2 ,

µ
KLδ ,

µ
Kδ2

(

otherwise, we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´max
!

p1 ´ 4θqR,
γµ

2
KR

)¯

`
σ2γ

µ
min

! 8θ

1 ´ 4θ
, 2
)

,

where δ :“ Lc?
αβ

, σ2 :“ σ2
uu ` σ2

vv , and D “ ∥x0 ´ x‹∥.

Corollary 2. Decoupled GDA with a stepsize of γ “
µ0

L2 converges to the saddle point without any
communication on fully decoupled games (θ “ 0) if K Ñ 8.

The above result is an obvious case in which our method beats any first-order method that does not
make use of local steps. For the sake of comparison, we define the condition numbers2: κu “ Lu

µu
,

κv “ Lv

µv
and κuv “ κvu “ Lc?

µuµv
. Also we use κ “ L

µ . The most recent rate proposed for

GDA Lee et al. (2024) needs O
`

pκu ` κvq logp 1
ϵ q
˘

rounds of communication when the game is
fully decoupled. A major drawback of GDA in this setting is that poor conditioning in one of the
players (large κu, κv) increases the number of rounds significantly while our method overcomes this
problem by utilizing local steps.
Corollary 3. With the choice of γ “

µ
RL2 if the game is weakly coupled and γ “

min
␣

µ
32KL2 ,

1
µKR lnpmaxt2, µ2D2

σ2 KRuq
(

otherwise, we get

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´max
!

p1 ´ 4θqR,
µ2

2L2
R
)¯

` σ2 min

"

8θ

RL2p1 ´ 4θq
,

1

µ2KR

*

.

Consequently, to reach Er∥xR
K ´ x‹∥2s ď ϵ, it suffices to perform R “

maxt 1
4´θ logp 2D2

ϵ q, 16θ
σ2L2p1´4θqϵu rounds with K “ L2

µµ0
logp 4

θ q if the game is weakly cou-

pled, or R “ 2L2

µ2 logpD2

ϵ q with K “ 2
µ2ϵ otherwise.

1w.l.o.g. and for clarity, we assumed α “ β “ 1. One can easily verify that θ :“ 1?
αβ

¨
Lc
µ0

in the general
form (see Lemma 8).

2∥∇ufpu,vq ´ ∇ufpu1,vq∥ ď Lu∥u ´ u1∥ and ∥∇vfpu,vq ´ ∇vfpu,v1
q∥ ď Lv∥v ´ v1∥

6
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Method Communication Complexity
(Fully Decoupled)

Communication Complexity
(General Bound)

Speed Up

GDA
Lee et al. (2024)

pκu ` κvq log 1
ϵ pκu ` κv ` κ2

uvq log 1
ϵ κc ď 1

4 (weakly coupled)

EG/OGDA
Mokhtari et al. (2020)

pκu ` κvq log 1
ϵ pκu ` κvq log 1

ϵ κc ď 1
2

b

1 ´ 1
maxtκuκvu

APPA
Lin et al. (2020)

?
κuκv log3 1

ϵ

?
κuκv log3 1

ϵ κc ď 1
2

b

1 ´ 1?
κuκv

FOAM
Kovalev & Gasnikov (2022)

?
κuκv log 1

ϵ

?
κuκv log 1

ϵ κc ď 1
2

b

1 ´ 1?
κuκv

Decoupled SGDA (ours) 0 min
!

1
1´4κc

log 1
ϵ , κ2 log 1

ϵ

)

—

Table 1: Comparison of communication complexity (rounds complexity—ours, vs. iteration complexity–other
methods’) and the acceleration condition. Speed up lists the conditions under which Decoupled SGDA achieves
acceleration relative to the respective method.

Linear convergence. Our rate benefits from an exponential convergence in terms of the number of
rounds. The main feature of Theorem 1 is the absence of κu, κv , or κ in the weakly coupled regime.
This is particularly interesting because the condition number for each player can be extremely large,
which would typically comes with a high communication overhead. However, in the weakly coupled
regime, our rate depends on the coupling degree θ which can be very small or even zero.

Noise term. Another important aspect of our rate is its dependency on σ in the noise term. As
discussed in Assumption 1, one can assume that each player has access to a very accurate gradient
oracle with respect to its own parameters, while a very noisy oracle is used to access the gradient
with respect to the other player’s parameters. Our method has no dependency on σuv or σvu, which
can be much larger than σ. In addition, the noise term is multiplied by the factor θ

1´4θ , which goes

to zero when θ “ 0. Note that in this case, based on the lower bound Ω
´

1
γµ ln

`

4
θ

˘

¯

, we know that
K Ñ 8, which is expected as we also have a linear speed-up in terms of the number of local steps
in the non-weakly coupled regime. Now, we state the communication complexity of our method:

Corollary 4. For any K ě Ω
´

1
γµ ln

`

4
θ

˘

¯

, after running Decoupled SGDA on a weakly coupled
game with c “ 4, we have the following communication complexity in order to achieve ϵ accuracy
in the noiseless setting:

Decoupled GDA

R “ O
´ 1

1 ´ 4θ
log

1

ϵ

¯

vs.

GDA

R “ O
´

pκu ` κv ` κ2
uvq log

1

ϵ

¯

Moreover, Decoupled SGDA in weakly coupled regime has always a better communication complex-
ity compared to the baseline GDA. In another word, 1

1´4θ ď κu ` κv ` κ2
uv .

Table 1 compares our method with other first-order methods in terms of communication complexity
in both the fully decoupled and weakly coupled regimes. It is clear that in the fully decoupled regime,
our method outperforms all other methods. Furthermore, it is expected to compare our method
with GDA by considering it as the baseline because our method uses GD local updates (and not
updates using EG or momentum). In Corollary 4, we stated that we always have a better complexity
compared to GDA in the weakly coupled regime. However, we can show that under a slightly
stronger assumption, our method achieves better communication complexity than the optimal first-
order method for solving SCSC games.

Corollary 5. For any SCSC zero-sum minimax game with coupling degree θ ď 1
2

b

1 ´ 1?
κuκv

,

our method achieves a better communication complexity than FOAM which is the optimal first-
order method for solving SCSC games. In another word, if 1

1´4θ !
?
κuκv , our method achieves

significant communication acceleration compared to FOAM.
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Corollary 5 shows our method can outperform the optimal first-order method in terms of the number
of communication rounds. The assumption θ ď 1

2

b

1 ´ 1?
κuκv

is stronger than the weakly coupled

assumption. One can verify that in the limiting case when maxtκu, κvu Ñ 8, which means either
one or both players have very poor conditioning, this assumption reduces to θ ď 1

2 , which is the
definition of a weakly coupled game with c “ 2. The main drawback of all existing methods is
that they do not utilize the fact that the interactive part of the game might have a minor effect.
For instance, the communication complexity of two popular methods, EG and OGDA, is given as
O
`

κ log
`

1
ϵ

˘˘

, as proposed in Mokhtari et al. (2020), where κ depends on maxtLu, Lv, Lcu, which
is too pessimistic when the interaction between players is low. Even the method proposed by Lin
et al. (2020), with complexity O

`?
κuκv log

3
`

1
ϵ

˘˘

, which is near-optimal, and Kovalev & Gasnikov
(2022), with complexity O

`?
κuκv log

`

1
ϵ

˘˘

, which is the optimal method, match the lower bound
of Ω

`?
κuκv log

`

1
ϵ

˘˘

proposed by Zhang et al. (2022b), have dependencies on κu and κv that can
be significantly large. However, our rate depends on the quantity θ, which can be very small or even
zero when the interaction between players is low.

5 EXPERIMENTS

In this section, we evaluate the empirical performance of Decoupled SGDA. For all experiments
described herein, we provide additional implementation details (and hyperparameters) in Section I.

Quadratic Games Herein, we consider the following problem class:

min
u

max
v

1

2
xu,Auy ´

1

2
xv,Bvy ` xu,Cvy , (QG)

where u,v P R d
2 , and A,B,C are d

2 ˆ d
2 positive definite matrices. We will use varying C to

control the players’ interaction.

Figure 1 illustrates the performances of Decoupled-SGDA on the (QG) for varying numbers of
local steps K and different intensities of the interactive term of (QG). The results show that as
the interactive term weakens, Decoupled SGDA converges more quickly than the GDA baseline
(K “ 1). Additionally, with a stronger interactive term, increasing the number of local steps K
leads to faster convergence for the same number of synchronization rounds. Figure 2 depicts the
performances over a spectrum of payoff functions controlled by the constant matrix C in (QG).
In the Weakly Coupled Game regime, highlighted by shading, Decoupled SGDA outperforms the
baseline GDA. In Figure 2 (right), we compare it with other optimization methods, demonstrating
that Decoupled SGDA achieves similar results with significantly fewer communication rounds in
the weakly coupled regime.
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Figure 1: Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row) of
GDA (K “ 1) and Decoupled SGDA with K “ t2, 5u on the (QG) problem (d “ 2). C in (QG) is a constant
here—the larger, the stronger the interactive term. Left-to-right: decreasing the constant c P t10, 3.5, 2, 7, 0u.
The markers denote the local steps and star the solution. See § 5 for discussion.

Communication Efficiency For Non-convex Functions While our theoretical focus was on
SCSC games, in this section, we explore if our insights extend to broader problem instances. We
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Figure 2: Number of rounds (log-scale; lower is better) to reach epsilon accuracy for varying λmaxpCq

in (QG). Left: Decoupled GDA with different K-values and GDA (K “ 1). Right: comparison between
GDA, Decoupled GDA, Optimistic GDA (Popov, 1980), ALT–alternating GDA and Extragradient (Korpele-
vich, 1976).

focus on a Toy GAN non-convex game as follows:

min
u

max
v

␣

Eϕ„N p0,ΣqrϕTvϕs ´ Eϕ„N p0,1qrpuϕqTvpuϕqs ` λ1}u}2 ´ λ2}v}2
(

, (toyGAN)

where u P Rd1 , v P Rd2 .

Figure 3 shows the smallest gradient norm (lower is better) each algorithm can achieve for a fixed
number of communication rounds, with varying values of 1{λ. As λ decreases, the regularization
terms dominate, making the game less interactive (similar to the weakly coupled regime). When λ
increases, reducing interaction, Decoupled GDA achieves a much lower gradient norm with the same
number of communication rounds. This demonstrates that Decoupled GDA efficiently solves non-
convex problems in settings analogous to the weakly coupled regime by leveraging local updates to
reduce communication. This experiment highlights the method’s capabilities beyond SCSC games.
The trajectory of Decoupled GDA iterations for this non-convex minimax problem can be found in
Appendix H.1.
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Figure 3: Lowest gradient norm reached after a fixed number of communication rounds, for varying 1{λ
in (toyGAN). Left: Effect of K. Right: different optimization methods, GDA, Decoupled GDA, Optimistic
GDA (Popov, 1980), ALT–alternating GDA and Extragradient (Korpelevich, 1976). See § 5 for discussion.

Decoupled SGDA with gradient approximation Herein, we compare Decoupled SGDA with
Federated Minimax, aka (local-SGDA). We focus on environments with gradient oracles with un-
balanced noise. Each player has access to a gradient oracle that provides low-variance noise for
their own gradients but high-variance noise for the remaining players. This reflects real-world chal-
lenges where shared information can be unreliable. In such cases, it is more effective to wait for
synchronization for accurate updates, and between these periods, players should update only their
own parameters. In particular, we focus on a modified quadratic game (QG) we used earlier, with
each oracle adding zero-mean Gaussian noise to the full gradient. The variance of noise differs
between gradients related to a player’s own strategy (diagonal variance) and those related to other
players’ strategies (off-diagonal variance). Refer to Assumption 8 for a more rigorous definition.
In both experiments, diagonal variance was fixed at 0.1, while off-diagonal variance was linearly
increased from 1 to 10 in the second experiment.

Figure 4 illustrates the performances of Decoupled SGDA and Local SGDA, the latter being the
most commonly used method for federated minimax problems (Deng & Mahdavi, 2021). It depicts
the smallest gradient norm each algorithm achieves within a fixed number of communication rounds
across different scenarios. The left plot demonstrates how both methods perform in games with vary-
ing levels of interaction. When the interaction is weaker, Decoupled SGDA achieves significantly
lower gradient norms with the same number of communication rounds. The right plot highlights the
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effect of noise variance, showing that while high noise negatively impacts Local SGDA, it has min-
imal to no effect on Decoupled SGDA. In the presence of imbalanced noise, the results suggest that
switching from local SGDA to Decoupled SGDA is beneficial, even for highly interactive games.
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Figure 4: Lowest gradient norm achieved by Decoupled SGDA and Local SGDA under a fixed number
of communication rounds with unbalanced noisy gradient oracles. Left: Comparison of Decoupled SGDA
and Federated Minimax across varying values of }C}. Right: Comparison of Decoupled SGDA and Local
SGDA under different levels of off-diagonal variance noise. Refer to Section H.2 for detailed figures.

Communication Efficiency in GAN Training Figure 5 compares Decoupled SGDA with base-
line methods in terms of FID score reduction over several communication rounds. The plots show
that Decoupled SGDA converges more quickly and requires fewer communication rounds com-
pared to standard GDA and its variants. This is especially noticeable in the CIFAR-10 and SVHN
datasets, where increasing the number of local steps (K) results in lower FID scores, demonstrating
the efficiency of our approach in reducing communication while maintaining strong performance in
complex, non-convex tasks like GAN training.
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Figure 5: y-axis: FID scores (log scale; lower is better) during GAN training, versus x-axis communica-
tion rounds. Left: results on the CIFAR-10 (Krizhevsky, 2009) dataset. Right: results on the SVHN (Netzer
et al., 2011) dataset.

6 CONCLUSION

We proposed Decoupled SGDA as an effective optimization method for games with intermittent
strategy communication, particularly in scenarios where interaction between players is weak, or
noise levels are high. Through extensive theoretical and empirical analysis, we demonstrate that
Decoupled SGDA not only outperforms traditional methods like Local SGDA in terms of communi-
cation efficiency and robustness in weakly coupled games but also extends its benefits beyond SCSC
games to non-convex settings. The method’s ability to handle varying levels of interaction and noise
makes it highly adaptable, providing a valuable tool for federated and decentralized optimization
problems.

Several future directions are possible. One can consider varying K per player, extensions of other
game optimization methods, such as extragradient, for classes beyond players having strongly con-
vex utilities, among others. In addition, the proposed approach has the potential to address privacy-
sensitive scenarios, as players can update their parameters independently without needing direct
access to others’ parameters, minimizing privacy risks posed by gradient sharing (see Zhu et al.,
2019; Zhao et al., 2020; Wei et al., 2020, and references therein). Future work could further ex-
plore this potential in privacy-preserving applications, making Decoupled SGDA a valuable tool for
decentralized optimization under privacy constraints.
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A SUMMARY OF PARAMETERS

Table 2: Definitions of L and µ Terms for Two-Player Games

Symbol Definition Mathematical Definition

L Smoothness parameter for operator F pxq ∥F pxq ´ F px1q∥˚ ď L ∥x ´ x1∥

Lu Smoothness parameter with respect to u ∥∇ufpu,vq ´ ∇ufpu1,vq∥u,˚ ď Lu ∥u ´ u1∥u
Lv Smoothness parameter with respect to v ∥∇vfpu,vq ´ ∇vfpu,v1q∥v,˚ ď Lv ∥v ´ v1∥v
Lc Interaction smoothness parameter ∥∇ufpu,vq ´ ∇ufpu,v1q∥u,˚ ď Lc ∥v ´ v1∥v
Lc Interaction smoothness parameter ∥∇vfpu,vq ´ ∇vfpu1,vq∥v,˚ ď Lc ∥u ´ u1∥u
µu Strong convexity parameter for u fpu1,vq ě fpu,vq ` x∇ufpu,vq,u1 ´ uy `

µu

2 ∥u1 ´ u∥2u
µv Strong concavity parameter for v fpu,v1q ď fpu,vq ` x∇vfpu,vq,v1 ´ vy ´

µv

2 ∥v1 ´ v∥2v
µ0 Strong monotonicity parameter for F pxq xF0pxq ´ F0px1q,x ´ x1y ě µ0 ∥x ´ x1∥2

µ Strong monotonicity parameter for F pxq xF pxq ´ F px1q,x ´ x1y ě µ ∥x ´ x1∥2

Table 3: Definitions of L and µ Terms for N -Player Games

Symbol Definition Mathematical Definition

L̂i Upper bound for diagonal elements Lii Lii ď L̂i, refer to Matrix(16)

L̄i Upper bound for off-diagonal elements Lij for i ‰ j Lij ď L̄i, refer to Matrix(16)

L Smoothness parameter for operator F pxq ∥F pxq ´ F px1q∥˚ ď L ∥x ´ x1∥

µmin Minimum strong convexity/concavity parameter µmin :“ min1ďiďNt
µi

αi
u

µ Strong monotonicity parameter for F pxq xF pxq ´ F px1q,x ´ x1y ě µ ∥x ´ x1∥2

B MISSING PROOFS FOR SECTION 4

Lemma 6. The operator F0 defined in (decoupled-SGDA) is µ0-strongly monotone where µ0 can
be expressed as:

µ0 “ min
!µu

α
,
µv

β

)

. (7)

Proof. Recall that the function f is µu strongly convex in u and µv strongly concave in v meaning
that:

fpu1,vq ě fpu,vq ` x∇ufpu,vq,u1 ´ uy `
µu

2

∥∥u1 ´ u
∥∥2
u

fpu,v1q ď fpu,vq ` x∇vfpu,vq,v1 ´ vy ´
µv

2

∥∥v1 ´ v
∥∥2
v

Next we have:

xF0pxq ´ F0px1q,x ´ x1y

“ x∇ufpu,v0q ´ ∇ufpu1,v0q,u ´ u1y ` x∇vfpu0,vq ´ ∇vfpu0,v
1q,v1 ´ vy

ě µu∥u ´ u1∥2u ` µv∥v ´ v1∥2v “
µu

α
α∥u ´ u1∥2u `

µv

β
β∥v ´ v1∥2v

ě min
!µu

α
,
µv

β

)

∥x ´ x1∥2.

Lemma 7 (two-player). For each x P X and δ :“ Lc?
αβ

, we have

∥F pxq ´ F0pxq∥˚ ď δ ∥x0 ´ x∥ .
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Proof. Indeed,

∥F pxq ´ F0pxq∥2˚ “
1

α
∥∇ufpu,vq ´ ∇ufpu,v0q∥2u,˚ `

1

β
∥∇vfpu,vq ´ ∇vfpu,v0q∥2v,˚

ď
Lc

2

α
∥v ´ v0∥2v `

Lc
2

β
∥u ´ u0∥2u

“
Lc

2

βα
β ∥v ´ v0∥2v `

Lc
2

αβ
α ∥u ´ u0∥2u

ď max

"

Lc
2

βα
,
Lc

2

αβ

*

“

β ∥v ´ v0∥2v ` α ∥u ´ u0∥2u
‰

“ δ2 ∥x0 ´ x∥2 .

Lemma 8 (two-player). Let x1,x‹ P X be such that F0px1q “ 0 and F px‹q “ 0. Then,

∥x1 ´ x‹∥ ď θ ∥x0 ´ x‹∥ . (8)

Proof. Recall that the function f is µu strongly convex in u and µv strongly concave in v meaning
that:

fpu1,vq ě fpu,vq ` x∇ufpu,vq,u1 ´ uy `
µu

2

∥∥u1 ´ u
∥∥2
u

fpu,v1q ď fpu,vq ` x∇vfpu,vq,v1 ´ vy ´
µv

2

∥∥v1 ´ v
∥∥2
v

Next we have:

∥x1 ´ x‹∥2 “ α
∥∥u1 ´ u‹

∥∥2
u

` β
∥∥v1 ´ v‹

∥∥2
v

ď
α

µ2
u

∥∥∇ufpu1,v0q ´ ∇ufpu‹,v0q
∥∥2
u,˚

`
β

µ2
v

∥∥∇vfpu0,v
1q ´ ∇vfpu0,v

‹q
∥∥2
v,˚

“
α

µ2
u

∥∇ufpu‹,v‹q ´ ∇ufpu‹,v0q∥2u,˚ `
β

µ2
v

∥∇vfpu‹,v‹q ´ ∇vfpu0,v
‹q∥2v,˚

ď
αLc

2

µ2
u

∥v0 ´ v‹∥2v `
βLc

2

µ2
v

∥u0 ´ u‹∥2u

“
αLc

2

βµ2
u

β ∥v0 ´ v‹∥2v `
βLc

2

αµ2
v

α ∥u0 ´ u‹∥2u

“
L2
c

βα
µ2
u

α2

β ∥v0 ´ v‹∥2v `
L2
c

αβ
µ2
v

β2

α ∥u0 ´ u‹∥2u

ď
L2
c

αβµ2
0

β ∥v0 ´ v‹∥2v `
L2
c

αβµ2
0

α ∥u0 ´ u‹∥2u

ď
1

αβ

L2
c

µ2
0

“

β ∥v0 ´ v‹∥2v ` α ∥u0 ´ u‹∥2u
‰

“ θ2 ∥x0 ´ x‹∥2 .

where we used the fact that µ0 ď
µu

α and µ0 ď
µv

β from Lemma 6.

B.1 PROOF OF THEOREM 1

We start with some auxiliary lemmas.

Lemma 9 (Consensus error). After running Decoupled SGDA for K local steps at some round r
with a step-size of γ ď

µ
32δLK , the consensus error can be upper bounded as follows:

E ∥xt`1 ´ x0∥2 ď

t
ÿ

i“t`1´K

µ2

64Kδ2
E ∥xi ´ x‹∥2 ` 4Kγ2σ2 (9)
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Proof.

E ∥xt`1 ´ x0∥2

“ E
∥∥xt ´ γB´1G0pxt, ξq ´ x0

∥∥2
ď E

∥∥xt ´ γB´1F0pxtq ´ x0

∥∥2 ` γ2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 2Kγ2 E ∥F0pxtq∥2˚ ` γ2σ2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 2Kγ2 E ∥F0pxtq ´ F pxtq ` F pxtq∥2˚ ` γ2σ2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 4Kγ2 E ∥F0pxtq ´ F pxtq∥ ` 4Kγ2 E ∥F pxtq∥2˚ ` γ2σ2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 ` 4Kδ2γ2 E ∥xt ´ x0∥2 ` 4KL2γ2 E ∥xt ´ x‹∥2 ` γ2σ2

With the choice of γ ď
µ

32KδL where δ :“ Lc?
αβ

, we get:

E ∥xt`1 ´ x0∥2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 `
µ2

256KL2
E ∥xt ´ x0∥2 `

µ2

256Kδ2
E ∥xt ´ x‹∥2 ` γ2σ2

ď

ˆ

1 `
1

K

˙

E ∥xt ´ x0∥2 `
1

256K
E ∥xt ´ x0∥2 `

µ2

256Kδ2
E ∥xt ´ x‹∥2 ` γ2σ2

ď

ˆ

1 `
1

K
`

1

256K

˙

E ∥xt ´ x0∥2 `
µ2

256Kδ2
E ∥xt ´ x‹∥2 ` γ2σ2

By unrolling the recursion for the last K steps and considering the fact that
`

1 ` 1
K ` 1

256K

˘K
ď 4

we get:

E ∥xt`1 ´ x0∥2 ď

t
ÿ

i“t`1´K

µ2

64Kδ2
E ∥xi ´ x‹∥2 ` 4Kγ2σ2

Lemma 10. Let x1 “ pu1,v1q where u1 “ argmin
u

fpu,v0q and v1 “ argmax
v

fpu0,vq. Starting

from pu0,v0q, we upper bound the distance to x1 after K local steps as follows:∥∥xt`1 ´ x1
∥∥2 ď p1 ´ γµ0qK E

∥∥x0 ´ x1
∥∥2 `

γσ2

µ0
(10)

Proof.∥∥xt`1 ´ x1
∥∥2

“
∥∥xt ´ γB´1G0pxt, ξtq ´ x1

∥∥2
“

∥∥xt ´ x1
∥∥2 ` γ2 ∥G0pxt, ξq∥2˚ ´ 2γxG0pxt, ξtq,xt ´ x1y

“
∥∥xt ´ x1

∥∥2 ` γ2 ∥G0pxt, ξq ´ F0pxtq ` F0pxtq∥2˚ ´ 2γxG0pxt, ξq ´ F0pxtq ` F0pxtq,xt ´ x1y

By taking the conditional expectation on previous iterates we have:

Eξt

∥∥xt`1 ´ x1
∥∥2

ď
∥∥xt ´ x1

∥∥2 ` γ2
∥∥F0pxtq ´ F0px1q

∥∥2
˚

´ 2γxF0pxtq ´ F0px1q,xt ´ x1y ` σ2

ď p1 ` γ2L2 ´ 2γµ0q
∥∥xt ´ x1

∥∥2 ` γ2σ2
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With the choice of γ ď
µ0

L2 and taking the unconditional expectation we have:

E
∥∥xt`1 ´ x1

∥∥2 ď p1 ´ γµ0qE
∥∥xt ´ x1

∥∥2 ` γ2σ2

After unrolling the recursion for K steps we have:

E
∥∥xt`1 ´ x1

∥∥2 ď p1 ´ γµ0qK E
∥∥x0 ´ x1

∥∥2 `

K
ÿ

i“0

p1 ´ γµ0qiγ2σ2

ď p1 ´ γµ0qK E
∥∥x0 ´ x1

∥∥2 `
γσ2

µ0

Lemma 11. Let trtutě0 be a non-negative sequence of numbers that satisfy

rt`1 ď p1 ´ aγqrt `
b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

for constants a ą 0, b, c ě 0 and integer K ě 1 and a parameter γ ě 0, such that aγ ď 1
K . If

b ď a
4 , then it holds

rt ď

´

1 ´
a

2
γ
¯t

r0 `
2c

a
γ . (11)

Proof. By assumption on rt:

rt`1 ď

´

1 ´
aγ

2

¯

rt ´
aγ

2
rt `

b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

and by unrolling the recursion:

rt`1 ď

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

cγ2

ď

´

1 ´
aγ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `
2c

a
γ

“

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯i´j

ri

fi

fl `
2c

a
γ

where we used
řt

i“0p1 ´
aγ
2 qi ď 2

aγ (for p
aγ
2 q ă 1) for the second inequality.

By estimating

´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

p1 ´
aγ

2
qi´jri ď ´

aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` bγri

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` 2bγri ď 0 ,

with and p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K , and the assumption b ď a
4 (and ri ě 0).

The validity of the inequality, p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K can be shown in the following way:
´

1 ´
aγ

2

¯1´K

ď

´

1 ´
aγ

2

¯´K

ď e
aγK

2
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For the last inequality above we used the approximation p1 ´ xq´n ď enx for x ě 0 and n ě 0:

Given that aγ ď 1
K , we have:

e
aγK

2 ď e
1
2 .

Thus, we have
´

1 ´
aγ

2

¯1´K

ď 2

Going back to the main proof, we conclude

rt`1 ď

´

1 ´
aγ

2

¯t

r0 `
2c

a
γ .

as claimed.

Now we are ready to prove the following theorem.

Theorem (Decoupled SGDA for two-player Games). For any R,K ě Ω
´

1
γµ log

`

4
θ

˘

¯

, after run-

ning Decoupled SGDA for a total of T “ KR iterations on a function f , with the stepsize γ ď
µ0

L2

if the game is weakly coupled with c “ 4 (4θ ď 1) or γ ď min
␣

µ
L2 ,

µ
KLδ ,

µ
Kδ2

(

otherwise, we get a
rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´max
!

p1 ´ 4θqR,
γµ

2
KR

)¯

`
σ2γ

µ
min

! 8θ

1 ´ 4θ
, 2
)

,

where δ :“ Lc?
αβ

, σ2 :“ σ2
uu ` σ2

vv , and D “ ∥x0 ´ x‹∥.

Proof. The proof consists of two parts. First we provide a convergence proof for our method when
the game is not weakly coupled and we show a rate that almost matches the baseline GDA. Next, we
assume that the game is weakly coupled and provide a proof which shows acceleration compared to
GDA. The final rate would be the minimum between these two rates.

Part 1. In this part we, assume that the game is not weakly coupled. We start by upper
bounding the iterate x at time step t ` 1 from the equilibrium.

E ∥xt`1 ´ x‹∥2

ď E
∥∥xt ´ γB´1G0pxt, ξq ´ x‹

∥∥2 ` γ2σ2

ď E
∥∥xt ´ γB´1F0pxtq ´ x‹

∥∥2 ` γ2σ2

“ E
∥∥xt ´ γB´1F pxtq ´ x‹ ` γB´1F pxtq ´ γB´1F0pxtq

∥∥2 ` γ2σ2

ď

´

1 `
γµ

2

¯ ”

E
∥∥xt ´ γB´1F pxtq ´ x‹

∥∥2ı ` γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ2

“

´

1 `
γµ

2

¯ ”

E ∥xt ´ x‹∥2 ` γ2 E ∥F pxtq ´ F px‹q∥2˚ ´ 2γxF pxtq ´ F px‹q,xt ´ x‹y

ı

`

γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ2

“

´

1 `
γµ

2

¯ ”

p1 ` γ2L2 ´ 2γµqE ∥xt ´ x‹∥2
ı

` γ

ˆ

γ `
2

µ

˙

E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ2

ď

´

1 `
γµ

2

¯ ”

p1 ´ γµqE ∥xt ´ x‹∥2
ı

`
3γ

µ
E ∥F pxtq ´ F0pxtq∥2˚ ` γ2σ2

ď

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
3γδ2

µ
E ∥xt ´ x0∥2 ` γ2σ2
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Where we assumed that γ ď
µ
L2 . Now by using the upper bound on consensus error from Lemma

17 we get:

E ∥xt`1 ´ x‹∥2

“

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
γµ

16K

t
ÿ

i“maxt0,t´Ku

E ∥xi ´ x‹∥2 `

ˆ

1 `
12Kγδ2

µ

˙

γ2σ2

With the choice of γ ď
µ

12Kδ2 where δ :“ Lc?
αβ

we have:

E ∥xt`1 ´ x‹∥2

´

1 ´
γµ

2

¯

E ∥xt ´ x‹∥2 `
γµ

16K

t
ÿ

i“maxt0,t´Ku

E ∥xi ´ x‹∥2 ` 2
γσ2

µ

By unrolling the recursion using Lemma 11 we get:

E
∥∥xR

K ´ x‹
∥∥2 ď D2 exp

ˆ

´
µ2

L2
R

˙

` 2
γ2

µ
σ2

Part 2. Here we write the proof based on the assumption that the game is weakly coupled. We start
by upper bounding the following term:

∥xt`1 ´ x‹∥2 ď 2
∥∥xt`1 ´ x1

∥∥2 ` 2
∥∥x1 ´ x‹

∥∥2 (12)

where x1 “ pu1,v1q and u1 “ argmin
u

fpu,v0q and v1 “ argmax
v

fpu0,vq. For the first term we

use Lemma 10 and we get:∥∥xt`1 ´ x1
∥∥2 ď p1 ´ γµ0qK E

∥∥x0 ´ x1
∥∥2 `

γσ2

µ0

Putting this back in (12) gives us:

E ∥xt`1 ´ x‹∥2

ď 2p1 ´ γµ0qK E
∥∥x0 ´ x1

∥∥2 ` 2θE ∥x0 ´ x‹∥2 `
2γσ2

µ0

ď 4p1 ´ γµ0qK E ∥x0 ´ x‹∥2 ` 4p1 ´ γµ0qK E
∥∥x1 ´ x‹

∥∥2 ` 2θE ∥x0 ´ x‹∥2 `
2γσ2

µ0

ď 4p1 ´ γµ0qK E ∥x0 ´ x‹∥2 `
`

4p1 ´ γµ0qKθ ` 2θ
˘

E ∥x0 ´ x‹∥2 `
2γσ2

µ0

ď
`

4p1 ´ γµ0qK ` 4p1 ´ γµ0qKθ ` 2θ
˘

E ∥x0 ´ x‹∥2 `
2γσ2

µ0

ď p4 exp p´γµ0Kq ` 4 exp p´γµ0Kq θ ` 2θqE ∥x0 ´ x‹∥2 `
2γσ2

µ0

Now we need to make sure that 4 exp p´γµ0Kq ď θ ď 1 which implies that K ě Ω
´

1
γµ0

ln
`

4
θ

˘

¯

.
Next we have:

E ∥xt`1 ´ x‹∥2 ď 4θE ∥x0 ´ x‹∥2 `
2γσ2

µ0

The above recursion can be re-written in terms of two consecutive rounds:

E
∥∥xr`1 ´ x‹

∥∥2 ď 4θE ∥xr ´ x‹∥2 `
2γσ2

µ0

After unrolling the recursion for R rounds we have:

E
∥∥xR ´ x‹

∥∥2 ď p4θq
R E ∥x0 ´ x‹∥2 `

2γσ2

µ0

R
ÿ

i“1

p4θq
i
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Note that we assumed the game is weakly coupled with parameter c “ 4 which implies that 4θ ď 1.
Finally we have:

E
∥∥xR ´ x‹

∥∥2 ď p4θq
R E ∥x0 ´ x‹∥2 `

2γσ2

µ0

R
ÿ

i“1

p4θq
i

ď D2 p4θq
R

`
8γσ2

µ0
¨

θ

1 ´ 4θ

C DECOUPLED SGD FOR N -PLAYER GAMES

In this section, we generalize all previous results on two-player games to N -player games. We first
introduce the notation that is needed to define N -player games and will be used to establish our
convergence guarantees.

Notation. We consider unconstrained N -player games where each player xi belongs to the space
Xi “ Rdi . The vector x “ px1, . . . ,xN q P Rd is defined in the space X “ X1 ˆ . . . ˆ XN “

Rd with d “
řN

i“1 di. The space Xi for all i P rN s is equipped with certain Euclidean norms,
∥xi∥i :“ xBix

i,xiy1{2 where Bi is a positive definite matrix. The norm in the space X is then
defined by ∥x∥ “ p

řN
i“1 αi∥xi∥2i q1{2 where αi ą 0; thus, ∥x∥ “ xBx,xy1{2, where B is the block-

diagonal matrix with blocks αiBi. The dual norms are defined as: ∥gi∥i,˚ :“ max}xi}i“1xgi,x
iy “

xgi,B
´1
i giy

1{2 (gi P Xdi
) and ∥g∥˚ :“ max}x}“1xg,xy “ p

řN
i“1

1
αi

}gi}
2
i,˚q1{2 “ xg,B´1gy1{2

(g ” pg1, . . . ,gN q P X ).

Similar to the work Nesterov (2012), we define the following partitioning of the identity matrix:

Id “ pU1,U2, . . . ,UN q P Rdˆd, d “

N
ÿ

i“1

di, Ui P Rdˆdi

Now we can represent the vector x as follows:

x “

N
ÿ

i“1

Uix
i P Rd.

We can extract the parameters of one player as follows:

xi “ UJ
i x P Rdi

Problem Formulation. An N -player games is defined as:
ˆ

min
x1

f1pxq, . . . ,min
xN

fN pxq

˙

(N -player)

Where fn : Xdn
Ñ R.

The goal is to find the Nash Equilibrium in x‹ “ px‹1, . . . ,x‹N q like in the work Bravo et al. (2018),
which has the property that if one player changes their strategy, their payoff function will increase.
In other words, there is no incentive to change one strategy alone: for all hn P Xn, it holds that

fnpx‹q ď fnpx‹ ` Unhnq. (13)

Moreover, we define the operator F : X Ñ X which denotes the stack of gradients with respect to
each player’s parameters as follows:

F pxq :“ p∇1f1pxq, . . . ,∇NfN pxqq

For the equilibrium, it holds that F px‹q “ 0. We can extract the partial gradient with respect to one
player as follows:

∇nfnpxq “ UJ
nF pxq.

We now present the assumptions required for the convergence of our method.
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Assumption 5 (Lipschitz gradients). Operator F : X Ñ X is L-Lipschitz if for all x,x1 P X , the
following inequality holds:

∥F pxq ´ F px1q∥˚ ď L∥x ´ x1∥ (14)

Assumption 6 (Lipschitz partial gradients). For each n P rN s, there exist constants L̂n, L̄n ě 0
such that, for any x P Rd, any h1 P Rd1 , . . . ,hN P RdN and any n P rN s, it holds that

∥∇nfnpxq ´ ∇nfnpx ` Unhnq∥n,˚ ď L̂n∥hn∥n,
∥∇nfnpxq ´ ∇nfnpx `

ř

i‰nUihiq∥n,˚ ď L̄n∥
ř

i‰nUihi∥.
(15)

For the N -player games, we can define the following matrix for the better understanding of the
smoothness parameters:

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

L̂1

L̂2 L̄n

. . .

L̄n
L̂N´1

L̂N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(16)

In the above matrix, the row number corresponds to the player with respect to whom we are taking
the derivative, while the column number corresponds to the player that is fixed, with all other pa-
rameters changing. All the elements Lii on the main diagonal of the matrix measure the strength
of each individual player, while the off-diagonal elements Lij for i ‰ j measure the interaction
between players i and j. We assume that all the diagonal elements are upper bounded by L̂n and
all off-diagonal elements are upper bounded by L̄n. Here n is the player which is being fixed. The
parameter L̄n measures the interaction of the nth player with all other players.
Assumption 7 (Strong monotonicity). The operator F : X Ñ X is said to be strongly monotone
with parameter µ ą 0 if for all x,x1 P X , the following inequality holds:

xF pxq ´ F px1q,x ´ x1y ě µ∥x ´ x1∥2. (17)

Also we define the more refined strong monotonicity constants µn ą 0 for a player n P rN s by the
following inequality:

x∇nfnpxq ´ ∇nfpx ` UJ
ndnq,xn ´ x1ny ě µn∥x1n ´ xn∥2n, (18)

where dn :“ x1n ´ xn.
Assumption 8. There exists finite constant σ̄2 such that for all x P X :

E
∥∥“pGipx, ξq ´ F pxqq

‰

i

∥∥2
i,˚

ď σ2
ii

Here, we use the operator r¨si do denote the coordinates corresponding to player i P t1, . . . , Nu.
For convenience, we define σ̄2 “ max1ďiďN σ2

ii.

Note that we only require that the noise of self-gradients is bounded, i.e. σ2
ii. However, we do not

make any assumption on the noise for the estimates of the gradients of the other player. Concretely,

the variances σ2
ij :“ E

”
∥∥∥“pGipx, ξq ´ F pxqq

‰

j

∥∥∥ı2
i,˚

, i ‰ j can be arbitrarily large, possibly un-

bounded. This is is contrast to other works on stochastic min-max optimization, that require the
variance σij to be bounded.

We can also define the noise matrix as follows:

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

σ̄2

σ̄2

σ̂2

. . .

σ̂2 σ̄2

σ̄2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(19)
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We assume that each player has access to a separate noisy gradient oracle, which provides the gra-
dient with respect to all other parameters. More specifically, σ2

ij corresponds to the noise oracle of
player i that computes the gradient with respect to the parameters of player j. We assume that all
the elements on the main diagonal are upper bounded by σ̂2 and all off-diagonal elements are upper
bounded by σ̂2. Note that, in general, we expect that maxtσiiu ! maxtσij for i ‰ ju, especially
in a distributed setting with multiple players. This is because, due to privacy concerns, it may be
challenging to compute the gradient with respect to the parameters of other players. As a result, the
gradient estimation between different players can be noisy and inaccurate, leading to larger values of
σij for i ‰ j. On the other hand, computing the gradient with respect to a player’s own parameters
is generally easier, and it is reasonable to assume that maxtσiiu is relatively small. In some cases,
we might even assume that σii “ 0 for all i, while maxtσij for i ‰ ju remains significantly large.

C.1 METHOD

We are considering a setting where the N players may not have access to their opponent’s strategies
or gradients, and only assume that the private components of the gradients have bounded variance,
see Assumption 8. For this setting, we therefore propose that each player should only use the reliable
information, that is rGipx, ξqsi for player i P rN s. We can write our proposed method compactly
as:

xr
t`1 “ xr

t ´ γB´1Gxr
0
pxr

t , ξtq, (20)
where

Gx0
px, ξq ”

`

∇ifpx0 ` UiU
J
i px ´ x0qq; ξq

˘

1ďiďN
.

wHere, the index t denotes the local update step in the current local update phase on player i, and
the superscript r indexes the local phases. One communication round is needed for exchanging the
updated parameters xr

K when passing to the next round. Note that xr,i
t P Xi and xr

t P X .
Assumption 9 (Strong monotonicity). The operator F : X Ñ X is said to be strongly monotone
with parameter µ ą 0 if for all x,x1 P X , the following inequality holds:

xF pxq ´ F px1q,x ´ x1y ě µ∥x ´ x1∥2. (21)

Algorithm 2 Decoupled SGD for N -player games

1: Input: step size γ, initialization x0 “ px1
0, . . . ,x

N
0 q, R,K

2: for r P t1, . . . , Ru do
3: for t P t1, . . . ,Ku do
4: for n P t1, . . . , Nu in parallel do
5: Update local model xn,r

t`1 Ð xn,r
t ´ γB´1Gx0

pxr
t q

6: end for
7: end for
8: Communicate

”

x1,r
K , . . . ,xN,r

K

ıJ

to all players
9: end for

10: Output: xR
K “ px1,R

K , . . . ,xN,R
K q

C.2 CONVERGENCE GUARANTEE

Now we out to a change in the definition of weakly coupled games in N -player setting.
Definition 2 (Weakly Coupled and Fully Decoupled Games). Given an N -player game in the form
of N -player. We define the coupling degree parameter θ for this game as follows:

θ :“ max
1ďiďN

p
ÿ

j‰i

αiL̄
2
i

µ2
i

q1{2 (22)

This variable measures the level of interaction in the game. A smaller value of θ indicates less
interaction. We say the game is Weakly Coupled if the following inequality holds:

θ

c
ď 1 (23)
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where c ą 1 is an absolute constant and will be specified based on the setting. We say the game
is Fully Decoupled if we have θ “ 0 which implies each player is minimizing their own pay-off
function independently.

Theorem 12. For any R,K ě Ω
´

1
γµ ln

`

4
θ

˘

¯

, after running Decoupled SGDA for a total of T “

KR iterations on a an N -player game defined in 2, with a stepsize of γ ď
µmin

L2 if the game is weakly
coupled with c “ 4 (4θ ď 1) or γ ď min

␣

µ
L2 ,

µ
KLδ ,

µ
Kδ2

(

otherwise, we get a rate of:

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´max
!

p1 ´ 4θqR,
γµ

2
KR

)¯

`
σ̄2γ

µ
min

! 8θ

1 ´ 4θ
, 2
)

,

where δ :“ max1ďiďN

`
ř

j‰i

L̄2
j

αj

˘1{2
, µmin “ min1ďiďNt

µi

αi
u, and D “ ∥x0 ´ x‹∥.

Corollary 13. With the choice of γ “
µmin

RL2 if the game is weakly coupled and γ “

min
␣

µ
32NKL2 ,

1
µKR lnpmaxt2, µ2D2

σ̄2 KRuq
(

otherwise, we get

E
“

∥xR
K ´ x‹∥2

‰

ď D2 exp
´

´max
!

p1 ´ 4θqR,
µ2

2L2
R
)¯

` σ̄2 min

"

8θ

RL2p1 ´ 4θq
,

1

µ2KR

*

.

C.3 MISSING PROOFS FOR SECTION C.2

Before establishing the convergence results, we first need a couple of auxiliary lemmas for N -player
games.

Lemma 14. The operator F0 defined in (20) is strongly monotone: for each x,x1 P X , we have

xF0pxq ´ F0px1q,x ´ x1y ě min
1ďiďN

!µi

αi

)

∥x ´ x1∥2. (24)

Proof. Indeed,

xF0pxq ´ F0px1q,x ´ x1y

“

N
ÿ

i“1

x∇ifpxq ´ ∇ifpx ` UJ
i diq,x

i ´ x1iy

ě

N
ÿ

i“1

µi∥x ´ x1∥2i “

N
ÿ

i“1

µi

αi
αi∥x ´ x1i∥2i

ě min
1ďiďN

!µi

αi

)

∥x ´ x1∥2.

where di :“ x1i ´ xi.

Lemma 15 (N -player). For the points x1,x‹ P X that satisfy F0px1q “ 0 and F px‹q “ 0, we have
that: ∥∥x1 ´ x‹

∥∥ ď θ ∥x0 ´ x‹∥ (25)

Where we defined θ :“ max1ďiďN p
ř

j‰i
αiL̄

2
i

µ2
i

q1{2.

Proof. Let’s define hi :“ xi
0´xi, di :“ x1i´xi, ri :“ x‹i´xi, si :“ xi

0´x‹i. We first introduce
the point x1 P Rd as follows:

x1 “ px11, . . . ,x1N q, x1i “ argmin
xiPRdi

fipx `
ÿ

j‰i

Ujhjq
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∥∥x1 ´ x‹
∥∥2

“

N
ÿ

i“1

αi

∥∥x1i ´ x‹
∥∥2
i

ď

N
ÿ

i“1

αi

µ2
i

∥∥∥∥∥∇ifi

˜

x ` Uidi `
ÿ

j‰i

Ujhj

¸

´ ∇ifi

˜

x ` Uiri `
ÿ

j‰i

Ujhj

¸
∥∥∥∥∥
2

i,˚

“

N
ÿ

i“1

αi

µ2
i

∥∥∥∥∥∇ifipx
‹q ´ ∇ifi

˜

x ` Uiri `
ÿ

j‰i

Ujhj

¸
∥∥∥∥∥
2

i,˚

ď

N
ÿ

i“1

αiL̄
2
i

µ2
i

∥∥∥∥∥ÿ
j‰i

Ujsj

∥∥∥∥∥
2

ď

N
ÿ

i“1

αiL̄
2
i

µ2
i

ÿ

j‰i

αj ∥sj∥2j ď

N
ÿ

i“1

βiαi ∥si∥2i ď θ2 ∥s∥2

Where βi “
ř

j‰i
αiL̄

2
i

µ2
i

and θ :“ max1ďiďN

?
βi.

Lemma 16 (N -player). For the operators F and F0 and δ :“ max1ďiďN

`
ř

j‰i

L̄2
j

αj

˘1{2
, we have

∥F pxq ´ F0pxq∥˚ ď δ ∥x ´ x0∥ . (26)

Proof. We first define hi :“ xi
0 ´ xi and v :“

ř

j‰i Ujhj . Next we have:

∥F0pxq ´ F pxq∥2˚ “

N
ÿ

i“1

1

αi
∥∇ifpxq ´ ∇ifpx ` vq∥2i,˚ ď

N
ÿ

i“1

L̄2
i

αi
∥v∥2

“

N
ÿ

i“1

L̄2
i

αi

ÿ

j‰i

αj ∥hj∥2j “

N
ÿ

i“1

βiαi ∥hi∥2i ,

where βi “
ř

j‰i

L̄2
j

αj
. Defining now δ2 “ max1ďiďN βi, we get

řN
i“1 βiαi ∥hi∥2i ď δ2}h}2.

Lemma 17 (Consensus error). After running Decoupled SGD for K local steps at some round r
with a step-size of γ ď

µ
32δLK , the consensus error can be upper bounded as follows:

E ∥xt`1 ´ x0∥2 ď

t
ÿ

i“t`1´K

µ2

64Kδ2
E ∥xi ´ x‹∥2 ` 4Kγ2σ̄2 (27)

Proof. The proof is almost identical to the two-player case with two differences. Firstly, the vari-
ance of the stochastic noise is upper bounded by σ̄2. Secondly, the upper bound on the term
∥F pxq ´ F0pxq∥˚ should be obtained from Lemma 16.

With the use of these Lemmas, one can easily extend the proof of two player game to the general
N -player games.

D DECOUPLED GDA FOR QUADRATIC GAMES

To provide an extra insight for the results we showed so far and support them with a separate analysis,
we additionally consider quadratic functions in this section which are a sub-class of SCSC functions.
A general quadratic game can be defined as:

fpu,vq “
1

2
xu,Auy ´

1

2
xv,Bvy ` xu,Cvy , (QG)

where A P Sdu
`` and B P Sdv

`` and C P Rduˆdv . The matrix C can be seen as the interaction
between two players as it’s the only term which involves both u and v.
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Definition 3. Consider a function f : Rdu ˆ Rdv Ñ R in the form of (QG) for some u P Rdu ,v P

Rdv . The Lipschitzness parameters can be defined as:

Lu :“ λmaxpAq, Lv :“ λmaxpBq, Luv :“ Lvu “ ∥C∥

and the strong convexity/concavity parameters can be define as:

µu :“ λminpAq, µv :“ λminpBq

and the condition numbers can be defined as:

κu :“
Lu

µu
, κv :“

Lv

µv

Recall that we defined a general two player game as fpu,vq “ gpuq ´ hpvq ` rpu,vq. For
the class of quadratic games, we can be more specific as functions gp¨q and hp¨q are quadratic
functions and rp¨q is just a linear term. Moreover, we can be more accurate about the smooth-
ness and strong convexity parameters as they are correspond to the maximum and minimum sin-
gular values of the matrices A,B and C. So the class of quadratic games can be written as
F pλminpAq, λminpBq, λmaxpAq, λmaxpBq, ∥C∥q.

Lemma 18. Given a two-player quadratic game fpu,vq P Fpµ, µu, µv, L, Lu, Lv, Luv, Lvuq in
the form of (QG). At some round r after K local steps with a stepsize of γ ď maxt 1

Lu
, 1
Lv

u on each
player, the exact iterate generated by Decoupled GDA is given as follows:

xr
K “

“

QK ` E
‰

xr
0

Q :“

¨

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‚

, E :“

¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

Eu :“
“

I ´ pI ´ γAqK
‰

A´1C, Ev :“
“

I ´ pI ´ γBqK
‰

B´1CJ

(28)

After taking the norm of both sides we have:

∥xr
K∥ ď max

␣

p1 ´ γλminpAqqK , p1 ´ γλminpBqqK
(

` ∥C∥ ¨ max tδpAq, δpBqu
1{2

δpAq :“
p1 ´ p1 ´ γλmaxpAqqKq2

λ2
minpAq

, δpBq :“
p1 ´ p1 ´ γλmaxpBqqKq2

λ2
minpBq

(29)

Remark 19. For a quadratic game in the form of (QG), the saddle point is x‹ “ p0, 0q. We expect
our method to shrink the norm of xr

t in each round by a factor less than 1 so that we converge to the
saddle point.

Lemma 18 shows the dynamics of Decoupled GDA for quadratic functions. We can decompose the
exact iterates and write it as the sum of two matrices Q and E. As Q is a diagonal matrix to the
power of K and we have that γ ď maxt 1

Lu
, 1
Lv

u, we know that when K Ñ 8 then Q Ñ 0. The
second matrix E can be seen as an error matrix which is caused by the interactive part of the game.
It is clear that if the game is fully decoupled which implies C “ 0, we get the trivial result that
we converge only with local steps without the need for communicating. However, for the case that
we have this interactive term and the game is weakly coupled we have to upper bound the norm of
this error matrix to derive the convergence rate. The next Theorem shows the convergence rate of
decoupled GDA on quadratic games.

Theorem 20. For any R and K “ Ω
´

Lmax
µmin

log
´

µmin´Luv

µmin

¯¯

with a stepsize of γ ď 1
Lmax

which

ensures
´

1 ´
µmin
Lmax

¯K

`
Lxy

µ ď 1 and max
␣

1 ´ p1 ´ γλmaxpAqqK , 1 ´ p1 ´ γλmaxpBqqK
(

ď 1,

after running Decoupled GDA for a total of T “ KR iterations on a quadratic game fpu,vq P
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Fpµ, µu, µv, L, Lu, Lv, Luv, Lvuq in the form of (QG) assuming the game is weakly coupled with
c “ 1, we get a rate of: ∥∥xR ´ x‹

∥∥ ď D

ˆ

exp

ˆ

´
µmin

Lmax
K

˙

`
Luv

µmin

˙R

(30)

Where Lmax :“ maxtLu, Lvu and µmin :“ mintµu, µvu.

Theorem 20 clearly shows the effect of local steps and communication rounds which gives more
insights about our method compared to the SCSC case. We can see that the first term in the rate goes
to zero with taking more local steps while there is another term that is not affected by local steps.
It’s indeed intuitive as we don’t expect our method to converge with only local steps in general. The
remaining error is do to the interactive part. Moreover, in this Theorem we get a better constant
factor c “ 1 compared to c “ 4 in the SCSC case. All the previous results discussed for SCSC case
can be applied to the quadratic setting as well.

D.1 MISSING PROOFS FROM SECTION D

We first introduce some auxiliary lemmas that are needed for proofs.
Lemma 21. Let A be a positive definite matrix and γ ě 0. Then matrices A´1 and pI ´ γAq are
commutative meaning that:

A´1pI ´ γAq “ pI ´ γAqA´1 (31)

Proof.

A´1pI ´ γAq

“ A´1 ´ γI

“ pI ´ γAqA´1

Lemma 22. Let A be a positive definite matrix and γ ě 0. Then matrices A´1 and pI´ γAqK are
commutative meaning that:

A´1pI ´ γAqK “ pI ´ γAqKA´1 (32)

Proof. By induction we assume that this statement holds for K which means A´1pI ´ γAqK “

pI ´ γAqKA´1. Now we show that this statement holds for K ` 1.

A´1pI ´ γAqK`1

“ A´1pI ´ γAqpI ´ γAqK

“ pI ´ γAqA´1pI ´ γAqK

“ pI ´ γAqpI ´ γAqKA´1

“ pI ´ γAqK`1A´1

For the case of K “ 1 we use the previous Lemma.

Lemma 23. Let A be a positive definite matrix and γ ě 0. Then we have that:

A´1
`

pI ´ γAqK ´ I
˘

“
`

pI ´ γAqK ´ I
˘

A´1 (33)

Proof.

A´1
`

pI ´ γAqK ´ I
˘

“ A´1pI ´ γAqK ´ A´1

“ pI ´ γAqKA´1 ´ A´1

“
`

pI ´ γAqK ´ I
˘

A´1

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D.2 EXPLICIT ITERATES GENERATED BY DECOUPLED GDA

Lemma 24. Given a general quadratic game in the following form:

fpu,vq “
1

2
uJAu ´

1

2
vJBv ` uJCv

After k steps of Decoupled GDA at some round r we can compute the explicit form of iterates as
follows:

ur
k “ ´A´1Cvr

0 ` A´1 pI ´ γAq
k

pAur
0 ` Cvr

0q

vr
k “ B´1CJur

0 ` B´1 pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

Proof. We use induction for the proof of this section. By using the update rule of Local GDA we
would have,

ur
k`1 “ uk ´ γ∇ufpur

k,v
r
0q

“ uk ´ γ pAur
k ` Cvr

0q

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q

´ γ
´

A
”

´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cv0q

ı

` Cvr
0

¯

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q

´ γ
´

´Cvr
0 ` pI ´ γAq

k
pAur

0 ` Cvr
0q ` Cvr

0

¯

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k
pAur

0 ` Cvr
0q ´ γ pI ´ γAq

k
pAur

0 ` Cvr
0q

“ ´A´1Cvr
0 `

`

A´1 ´ γI
˘

”

pI ´ γAq
k

pAur
0 ` Cvr

0q

ı

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

”

pI ´ γAq
k

pAur
0 ` Cvr

0q

ı

“ ´A´1Cvr
0 ` A´1 pI ´ γAq

k`1
pAur

0 ` Cvr
0q

Now we only need to show that our claim also works for k “ 0,

ur
0 “ ´A´1Cvr

0 ` A´1 pI ´ γAq
0

pAur
0 ` Cvr

0q

“ ´A´1Cvr
0 ` ur

0 ` A´1Cvr
0

“ ur
0

Also, we do the computation with respect to v:

vr
k “ B´1CJur

0 ` B´1 pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘
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By using the update rule of Decoupled GDA we get:

vr
k`1 “ vk ´ γ∇vfpur

0,u
r
kq

“ vk ` γ
`

´Bvr
k ` CJur

0

˘

“ vk ´ γ
`

Bvr
k ´ CJur

0

˘

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ
´

B
”

B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJur
0

˘

ı

´ CJur
0

¯

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ
´

CJur
0 ` pI ´ γBq

k `
Bvr

0 ´ CJur
0

˘

´ CJur
0

¯

“ B´1CJur
0 ` B´1 pI ´ γBq

k `
Bvr

0 ´ CJu0

˘

´ γ pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

“ B´1CJur
0 `

`

B´1 ´ γI
˘

”

pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

ı

“ B´1CJur
0 ` B´1 pI ´ γBq

”

pI ´ γBq
k `

Bvr
0 ´ CJur

0

˘

ı

“ B´1CJur
0 ` B´1 pI ´ γBq

k`1 `
Bvr

0 ´ CJur
0

˘

Now we only need to show this our claim also works for k “ 0,

vr
0 “ B´1CJur

0 ` B´1 pI ´ γBq
0 `

Bvr
0 ´ CJur

0

˘

“ B´1CJur
0 ` vr

0 ´ B´1CJur
0

“ vr
0

D.3 PROOF OF LEMMA 18

Given a two-player quadratic game fpu,vq P Fpµ, µu, µv, L, Lu, Lv, Luv, Lvuq in the form of
(QG). At some round r after k local steps with a stepsize of γ ď maxt 1

Lu
, 1
Lv

u on each player, the
exact iterate generated by Decoupled GDA is given as follows:

xr
k “

“

Qk ` E
‰

xr
0

Q :“

¨

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‚

, E :“

¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

Eu :“
“

I ´ pI ´ γAqk
‰

A´1C, Ev :“
“

I ´ pI ´ γBqk
‰

B´1CJ

(34)

After taking the norm of both sides we have:

∥xr
k∥ ď max

␣

p1 ´ γλminpAqqk, p1 ´ γλminpBqqk
(

` ∥C∥2 ¨ max tδpAq, δpBqu

δpAq :“
p1 ´ p1 ´ γλmaxpAqqkq2

λ2
minpAq

, δpBq :“
p1 ´ p1 ´ γλmaxpBqqkq2

λ2
minpBq

(35)
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Proof. From Lemma 24 we can write the explicit iterates for the variable x:

∥xr
k∥ “

∥∥∥∥∥∥∥∥
¨

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‚

k

`

¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

∥∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď

∥∥∥∥∥∥∥∥
¨

˚

˝

pI ´ γAq 0

0 pI ´ γBq

˛

‹

‚

k
∥∥∥∥∥∥∥∥ `

∥∥∥∥∥∥∥
¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď max
␣

p1 ´ γλminpAqqk, p1 ´ γλminpBqqk
(

¨ ∥xr
0∥ `

∥∥∥∥∥∥∥
¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

∥∥∥∥∥∥∥ ¨ ∥xr
0∥

For computing the norm of the error matrix we need to compute
a

λmaxpEJEq. We first form EJE:

EJE “

¨

˚

˝

EJ
v Ev 0

0 EJ
uEu

˛

‹

‚

So we have:

λmaxpEJEq “ max
␣

λmaxpEJ
uEuq, λmaxpEJ

v Evq
(

For computing the λmaxpEJ
uEuq we have:

λmax
`

EJ
uEu

˘

“ λmax

´

CJA´J
“

I ´ pI ´ γAqk
‰J “

I ´ pI ´ γAqk
‰

A´1C
¯

ď ∥C∥2 λmax

´

A´J
“

I ´ pI ´ γAqk
‰J “

I ´ pI ´ γAqk
‰

A´1
¯

ď ∥C∥2 λmax
`

A´J
˘

λmax

´

“

I ´ pI ´ γAqk
‰J
¯

λmax
`“

I ´ pI ´ γAqk
‰˘

λmax
`

A´1
˘

ď ∥C∥2 p1 ´ p1 ´ γλmaxpAqqkq2

λ2
minpAq

ď
∥C∥2

λ2
minpAq

We have the same computation with respect to player v as well which gives us:

λmax
`

EJ
v Ev

˘

“ ∥C∥2 p1 ´ p1 ´ γλmaxpBqqkq2

λ2
minpBq

ď
∥C∥2

λ2
minpBq

D.4 PROOF OF THEOREM 20

For any R and K “ Ω
´

Lmax
µmin

log
´

µmin´Luv

µmin

¯¯

with a stepsize of γ ď 1
Lmax

which ensures
´

1 ´
µmin
Lmax

¯K

`
Lxy

µ ď 1 and max
␣

1 ´ p1 ´ γλmaxpAqqk, 1 ´ p1 ´ γλmaxpBqqk
(

ď 1, after
running Decoupled GDA for a total of T “ KR iterations on a quadratic game fpu,vq P

Fpµ, µu, µv, L, Lu, Lv, Luv, Lvuq in the form of (QG) assuming the game is weakly coupled with
c “ 1, we get a rate of: ∥∥xR ´ x‹

∥∥ ď B

ˆ

exp

ˆ

´
µmin

Lmax
K

˙

`
Luv

µmin

˙R

(36)

Where Lmax :“ maxtLu, Lvu and µmin :“ mintµu, µvu.
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Proof. Using previous Lemmas we have:

∥xr
k∥

ď max
␣

p1 ´ γλminpAqqK , p1 ´ γλminpBqqK
(

¨ ∥xr
0∥ `

∥∥∥∥∥∥∥
¨

˚

˝

0 ´Eu

Ev 0

˛

‹

‚

∥∥∥∥∥∥∥ ¨ ∥xr
0∥

ď max
␣

p1 ´ γλminpAqqK , p1 ´ γλminpBqqK
(

¨ ∥xr
0∥ ` ∥C∥max

"

1

λminpAq
,

1

λminpBq

*

¨ ∥xr
0∥

ď

ˆ

p1 ´ γµminqK `
∥C∥
µmin

˙

¨ ∥xr
0∥

After unrolling the above recursion for R rounds we get:

∥xr
k∥ ď B

ˆ

p1 ´ γµminqK `
∥C∥
µmin

˙R

E ADDITIONAL RELATED WORKS & DISCUSSION

E.1 DECENTRALIZED OPTIMIZATION

The key difference between decentralized and distributed minimax approaches is the presence of a
central server. In the former, there is no central server, and nodes communicate directly with their
neighbors, whereas in the latter, a central server aggregates the parameters. Our method belongs
to the category of distributed methods. However, we will discuss later on that our approach is
completely different from the general idea of distributed / federated optimization.

Decentralized optimization is widely studied for the case of minimization (Xiao & Boyd, 2004;
Tsitsiklis, 1984) with the goal of not relying on a central node or server. This idea is also applied
to the case of minimax optimization problems. The paper Liu et al. (2020) is the first who studied
non-convex-non-concave decentralized minimax. They also used the idea of optimistic gradient
descent and achieved a rate of Opϵ´12q. In Xian et al. (2021), authors proposed an algorithm called
DM-HSGD for non-convex decentralized minimax by utilizing variance reduction and achieved a
rate of Opκ3ϵ´3q. Recently, authors in Liu et al. (2023) proposed an algorithm named Precision for
the non-convex-strongly-concave objectives which has a two-stage local updates and gives a rate of
Op 1

T q.

E.2 COMPARISON BETWEEN DECOUPLED SGDA AND FEDERATED MINIMAX (LOCAL
SGDA)

In this section, we aim to highlight the key differences between our method and existing distributed
or decentralized methods in the literature. As mentioned earlier, our method can be classified as
distributed, though it has a major difference from others. In fact, this difference lies in the problem
formulation.

Decentralized / Distributed minimax formulation. In these settings, we aim to solve the follow-
ing finite-sum optimization problem over M clients:

fpu,vq “
1

M

M
ÿ

m“1

fmpu,vq (37)

In the above formulation, it is assumed that each client has a different data distribution Dm and
tries to solve the game based on this data. It means that each client keeps updating both u and v
at the same time for several steps. Then the server aggregates the parameters and sends them back
to clients. The ultimate goal is to find the saddle point x‹ “ pu‹,v‹q of the global function f , as
if the entire dataset D “ D1 Y ¨ ¨ ¨ Y DM were on a single machine running GDA on it. In this
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setting, each client is allowed to update both players meaning that it has access to the gradient of
fm with respect to u and v. However in our approach, instead of splitting the data over clients, we
split the parameter space. It means one machine is responsible for only updating u and another for
v. Our method also allows to have several machines for u and several machines for v. We discuss
this setting in Section ??. An important point to consider is that the notions of client and player
should not be intermixed. When the number of players is fixed, the distributed minimax approach
essentially runs several instances pfmq of the main game pfq in parallel to ultimately find the saddle
point of f . In contrast, our method directly finds the saddle point of f by splitting the parameter
space across different machines. Figure 7 illustrates the difference between these two methods. s

"

ur
k`1 “ ur

k ´ γ∇ufpur
k,v

r
0q

vr
k`1 “ vr

k ` γ∇vfpur
0,v

r
kq

Decoupled GDA

"

uk`1 “ uk ´ γ∇ufpuk,vkq

vk`1 “ vk ` γ∇vfpuk,vkq

GDA
"

ur,m
k`1 “ ur,m

k ´ γ∇ufmpur,m
k ,vr,m

k q

vr,m
k`1 “ vr,m

k ` γ∇vfmpur,m
k ,vr,m

k q

Federated Minimax

Figure 6: Comparison of different gradient descent ascent (GDA) approaches: Decoupled GDA, standard GDA,
and Federated Minimax. The top box represents Decoupled GDA, where u and v gradients are separated, while
the bottom left and right boxes represent the standard GDA and Federated Minimax approaches, respectively.

Figure 7: Comparison of our method with the federated minimax formulation: Our method splits the parameter
space, while the federated formulation splits the data. Moreover, our method only allows each player to access
the gradient with respect to their own parameters, whereas in federated minimax, each player can compute the
gradient with respect to both their own parameters and the other player’s parameters.
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F FEDERATED DECOUPLED SGDA

F.1 COMPARING DECOUPLED SGDA WITH FEDERATED LEARNING FOR MINIMAX
OPTIMIZATION

Federated learning (FL) builds on the foundational work in distributed minimization, exploring var-
ious settings. In the context of minimax optimization, methods like Local SGD have been extended
to achieve convergence rates for different classes of functions in both heterogeneous and homoge-
neous regimes. FL methods for games differ from the setting considered in this work. In FL, multiple
copies of all strategies (parameters) are trained locally on different machines and datasets and pe-
riodically aggregated. FL is suited for scenarios where a single local machine runs a multi-player
algorithm and has access to all players’ loss functions, with ”collaboration” built into the design.
In contrast, our method suits competitive distributed players (local machines) where each player
has noisy or outdated strategies of the remaining players. For further discussion, see Appendix E.
Additionally, federated learning assumes balanced noise across players, which is not required in our
setting; revisited in § 2 and § 5. Finally, in § 4, we identify a class of games where our approach
leads to faster convergence, even if fully centralized training is possible, which class similarly arises
in non-convex settings–§ 5.In the rest of this section, we study Federated Decoupled SGDA, which
is a combination of Federated Minimax and Decoupled SGDA algorithms, and can benefit from the
advantages of both approaches. In the next section we propose this method with details.

F.2 FEDERATED DECOUPLED SGDA METHOD

In this section, we study an extension of our algorithm for distributed setting. For simplicity and in
order to be aligned with other works Deng & Mahdavi (2021); Sharma et al. (2022), we consider
two-player zero-sum minimax games. Our results for the distributed setting can be extended to the
N -player case.

Notation and Problem Definition In distributed minimax optimization, we aim to solve the fol-
lowing problem:

min
uPRdu

max
vPRdv

«

fpu,vq “
1

M

M
ÿ

m“1

fmpu,vq “
1

M

M
ÿ

m“1

Eξm„Dm
fmpu,v, ξmq

ff

(38)

In this setting, we assume that each player’s data is distributed across M clients/processors. So
each processor has access to a function fmpx,yq on which it can perform stochastic gradient steps.
The variance of the stochastic noise is uniformly bounded by σ2. We denote um,r

k and vm,r
k as

the parameters of players u and v on client m in some round r after k local steps. We also use
the notation ūr

k “ 1
M

řM
m“1 u

m,r
k and v̄r

k “ 1
M

řM
m“1 v

m,r
k to denote the average of parameters

over clients at some round r after k local steps. Data distribution across processors can be either
homogeneous or heterogeneous. In the heterogeneous regime, which is the case of study in this
paper, each processor holds a different payoff function. To measure the heterogeneity of the problem,
it’s common to use the following assumption:

Assumption 10. There exists a constant ζ‹ ą 0 satisfying the following inequality in distributed
minimax games:

max

"

sup
m

∥∇ufmpx‹q∥2 , sup
m

∥∇vfmpx‹q∥2
*

ď ζ2‹ (39)

Assumption 10 is very common in federated learning and it has been used in many works Koloskova
et al. (2020); Deng & Mahdavi (2021); Khaled et al. (2020). Another common assumption in the
literature Woodworth et al. (2020b); Patel et al. (2024) is gradient similarity ζ for every point x P Rd

which is a stronger assumption and cannot be satisfied for quadratic functions. In this work, we use
Assumption 10 to provide our convergence guarantee for our method.
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We also define operators F 0pxq, F 0
mpxq are defined as follows:

F 0
mpxm,r

k q :“

¨

˚

˝

∇ufmpum,r
k ,vm,r

0 q

´∇vfmpum,r
0 ,vm,r

k q

˛

‹

‚

, F 0px̄r
kq :“

¨

˚

˝

1
M

řM
m“1 ∇ufmpūr

k, v̄
r
0q

´ 1
M

řM
m“1 ∇vfmpūr

0, v̄
r
kq

˛

‹

‚

(40)

In this work, we assume that the operator F 0 is µ-strongly monotone.
Remark 25. Note that in general F 0

mpx‹q ‰ 0 and F 0px‹q ‰ 0. However, if we had the common
operator with the most recent parameters, we could have said Fmpx‹q ‰ 0 and F px‹q “ 0.

Algorithm 3 Decoupled SGDA for two-player federated minimax games

1: Input: step size γ, initialization u0,v0

2: Initialize: @m P rM s ,ur,0
0 Ð u0, yr,0

0 Ð v0

3: for r P t1, . . . , Ru do
4: @m P rM s ,um,r

0 Ð ūr
0, ym,r

0 Ð v̄r
0

5: for k P t0, . . . ,K ´ 1u do
6: for m P t1, . . . ,Mu in parallel do
7: Update local model um,r

k`1 Ð um,r
k ´ γ∇fpum,r

k ,vm,r
0 q

8: Update local model vm,r
k`1 Ð vm,r

k ` γ∇fpum,r
0 ,vm,r

k q

9: end for
10: end for
11: ūr`1

0 Ð 1
M

řM
m“1 u

m,r
K , v̄r`1

0 Ð 1
M

řM
m“1 v

m,r
K

12: Communicate ūr
K to all processors with v player and v̄r

K to all processors with u player
13: end for
14: Output: ūR

K , v̄R
K

In Algorithm 3, we discuss the distributed version of our method, where two players u and v have
their data distributed across M processors each. At every round, each set of processors update their
local models while having access to an outdated version of the other opponent parameters which
was received at the beginning of the round. By the end of the round, both set of u and v processors
send the their parameters to a central server which will compute the average of the parameters and
send them back to all processors.
Theorem 26. For any K,R,L ą 0, µ ą 0 after running Decoupled SGDA for a total of T “ KR
iterations on the problems in the form of (38) in a distributed setting with 2M clients using a stepsize
of γ ď

µ
32L2K , assuming that ∥x0 ´ x‹∥2 ď D2, we have the following convergence rate:

E
”∥∥x̄R

K ´ x‹
∥∥2ı ď B2 exp

ˆ

´
γµKR

2

˙

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ
(41)

Corollary 27. After choosing a stepsize of γ “ min
!

µ
32NKL2 ,

lnpmaxt2,µ2B2KR{σ2
uq

µKR

)

, we get a
rate of:

E
”∥∥x̄R

K ´ x‹
∥∥2ı “ Õ

ˆ

B2 exp

ˆ

´
µ2

L2
R

˙

`
L2ζ2‹
µ4R2

`
L2σ2

µ4KR2
`

σ2

µ2MKR

˙

(42)

Method Heterogeneous Homogeneous

Local SGDA O
ˆ

L6

µ6R3 ` σ2

µ2MKR
`

L2ζ2‹
µ3MKR

` L2σ2

µ3MKR

˙

Õ
´

1
K2R2 ` σ2

µ2nKR
` L2σ2

µ4MKR
` L2σ2

µ4MK2R2

¯

Local SGD O
ˆ

LB2 exp
`

´
µ
LR

˘

` σ2

µMKR `
Lζ2‹
µ2R2 ` Lσ2

µ2KR2

˙

O
´

LB2 exp
`

´
µ
LKR

˘

` σ2

µKMR `
Q2σ4

µ5K2R4

¯

Ours Õ
ˆ

B2 exp
´

´
µ2

L2 R
¯

`
L2ζ2‹
µ4R2 ` L2σ2

µ4KR2 ` σ2

µ2MKR

˙

-

Table 4: Comparison of Methods in Heterogeneous and Homogeneous Settings

Table 4 compares state-of-art rates for Local SGD, Local SGDA with Federated Decoupled SGDA.
It’s clear that our rate matches the tightest known upper bound for Local SGD in heterogeneous
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regime with ζ‹ assumption. Note that the condition number κ2 in the first term of our rate matches
the GDA conditioning. Local SGD achieves a better conditioning of κ due to the fact that the prob-
lem is minimization (not minimax). Moreover, our conditioning is much better that Deng & Mahdavi
(2021) with the conditioning κ6. In addition, it seems that in the rate of Deng & Mahdavi (2021),
the term that captures heterogeneity ζ‹ decreases with taking local steps. However, it contracts some
lower bounds on Local SGD proposed in Patel et al. (2024).

F.3 MISSING PROOFS FOR SECTION F

Lemma 28 (Consensus Error). After running Decoupled Local SGDA for k local steps at some
round r with a step-size of γ ď

µ
32L2K , the error Ψpxm,r

k q ` Φpx̄r
kq can be upper bounded as

follows:

ErΨpxm,r
k q ` Φpx̄r

kqs ď

K
ÿ

i“1

µ2

8KL2
∥x̄r

i ´ x‹∥2 ` 32K2γ2ζ2‹ `
2Kγ2σ2

M
` 2Kγ2σ2 (43)

In this setting, we have two different errors related to the use of outdated gradients and deviation
from the average iterates. Total error is the sum of both errors. We define the consensus error in this
setting as follows:

Ψpum,r
k q :“

1

M

M
ÿ

m“1

∥um,r
k ´ ūr

k∥
2
, Ψpvm,r

k q :“
1

M

M
ÿ

m“1

∥vm,r
k ´ v̄r

k∥
2

Φpūr
kq :“ ∥ūr

0 ´ ūr
k∥

2
, Φpv̄r

kq :“ ∥v̄r
0 ´ v̄r

k∥
2

Ψpxm,r
k q “ Ψpum,r

k q ` Ψpvm,r
k q, Φpx̄r

kq “ Φpūr
kq ` Φpv̄r

kq

The total consensus error can be computed by summing both errors with respect to u and v:

Consensus error :“
Ψpukq ` Ψpvkq

error caused by
deviation from average

`

Φpukq ` Φpvkq

error caused by
outdated gradients

In the following, the upper bound for consensus error in different settings will be discussed. Note
that in the case of multi client, we get different upper bounds based on the assumption on data
heterogeneity.
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Proof.

ErΨpum,r
k`1q ` Φpūr

k`1qs

“
1

M

M
ÿ

m“1

E

∥∥∥∥∥um,r
k ´ γ∇ufmpum,r

k ,vm,r
0 ; ξmq ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq

∥∥∥∥∥
2

`

E

∥∥∥∥∥ūr
0 ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq

∥∥∥∥∥
2

“
1

M

M
ÿ

m“1

E

∥∥∥∥∥um,r
k ´ γ∇ufmpum,r

k ,vm,r
0 q ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`

E

∥∥∥∥∥ūr
0 ´ ūr

k `
γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
2Kγ2

M

M
ÿ

m“1

E

∥∥∥∥∥∇ufmpum,r
k ,vm,r

0 q ´
1

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q

∥∥∥∥∥
2

`

2Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q∥2 `
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
4Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q∥2 `
γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs`

4Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q ´ ∇ufmpūr
k, v̄

r
kq ` ∇ufmpūr

k, v̄
r
kq∥2 `

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs `
8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpum,r
k ,vm,r

0 q ´ ∇ufmpūr
k, v̄

r
kq∥2 `

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq∥2 `

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k qs ` 8KL2γ2 ErΦpv̄r

kqs`

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq∥2 `

γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

8Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpu‹,v‹q ` ∇ufmpu‹,v‹q∥2 `

γ2σ2

M
` γ2σ2

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

16Kγ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpu‹,v‹q∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2
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we continue:

ErΨpum,r
k`1q ` Φpūr

k`1qs ď

ˆ

1 `
1

K

˙

ErΨpum,r
k q ` Φpūr

kqs ` 8KL2γ2 ErΨpum,r
k q ` Φpv̄r

kqs`

16KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2

After doing the same computation with respect to v we get:

ErΨpvm,r
k`1q ` Φpv̄r

k`1qs

ď

ˆ

1 `
1

K

˙

ErΨpvm,r
k q ` Φpv̄r

kqs ` 8KL2γ2 ErΨpvm,r
k q ` Φpūr

kqs`

16KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2

Now we sum up both inequalities and we get:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k q ` Φpx̄r

kqs`

32KL2γ2 E ∥x̄r
k ´ x‹∥2 ` 32Kγ2ζ2‹ `

2γ2σ2

M
` 2γ2σ2

With the choice of γ ď
µ

32L2K we simplify the above inequality as:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs

ď

ˆ

1 `
1

K
`

1

128K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs `
µ2

32KL2
E ∥x̄r

k ´ x‹∥2 ` 32Kγ2ζ2‹ `
2γ2σ2

M
` 2γ2σ2

After unrolling the recursion for the last K steps and considering the fact that
`

1 ` 1
K ` 1

128K

˘K
ď

4 we have:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs ď

K
ÿ

i“1

µ2

8KL2
E ∥x̄r

i ´ x‹∥2 ` 32K2γ2ζ2‹ `
2Kγ2σ2

M
` 2Kγ2σ2

F.4 PROOF OF THEOREM 26

For any K,R,L ą 0, µ ą 0 after running Decoupled SGDA for a total of T “ KR iterations on the
problems in the form of (38) in a distributed setting with 2M clients using a stepsize of γ ď

µ
32L2K ,

assuming that ∥x0 ´ x‹∥2 ď B2, we have the following convergence rate:

E
∥∥x̄R

K ´ x‹
∥∥2 ď B2 exp

ˆ

´
γµKR

2

˙

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ
(44)
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Proof. We start by upper bounding the distance between the average iterate ūr
k`1 and the saddle

point.

E
∥∥ūr

k`1 ´ u‹
∥∥2

“ E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 ; ξmq ´ u‹

∥∥∥∥∥
2

ď E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q ´ u‹

∥∥∥∥∥
2

`
γ2σ2

M

“ E

∥∥∥∥∥ūr
k `

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´

γ

M

M
ÿ

m“1

∇ufmpum,r
k ,vm,r

0 q ´
γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

`
γ2σ2

M

ď

´

1 `
γµ

2

¯

E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpum,r

k ,vm,r
0 q∥2 `

γ2σ2

M

For the first term in the above inequality we have:

´

1 `
γµ

2

¯

E

∥∥∥∥∥ūr
k ´

γ

M

M
ÿ

m“1

∇ufmpūr
k, v̄

r
kq ´ u‹

∥∥∥∥∥
2

“

´

1 `
γµ

2

¯

E ∥ūr
k ´ γ∇ufpūr

k, v̄
r
kq ´ u‹∥2

“

´

1 `
γµ

2

¯

E
”

∥ūr
k ´ u‹∥2 ` γ2 ∥∇ufpūr

k, v̄
r
kq∥2 ´ 2γxūr

k ´ u‹,∇ufpūr
k, v̄

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥ūr
k ´ u‹∥2 ´ 2γxūr

k ´ u‹,∇ufpūr
k, v̄

r
kqy

ı

For the second term we also have:

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇ufmpūr
k, v̄

r
kq ´ ∇ufmpum,r

k ,vm,r
0 q∥2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥ūr
k ´ um,r

k ∥2 `

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥v̄r
k ´ v̄r

0∥
2

“

ˆ

1 `
2

γµ

˙

L2γ2 E rΨpum,r
k qs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpv̄r
kqs
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Where in the last line, we used the fact that vm,r
0 “ v̄r

0. We then repeat the same computation with
respect to v.

E
∥∥v̄r

k`1 ´ v‹
∥∥2 “

“ E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k ; ξmq ´ v‹

∥∥∥∥∥
2

ď E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k q ´ v‹

∥∥∥∥∥
2

`
γσ2

M

“ E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpum,r
0 ,vm,r

k q ´
γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

`
γσ2

M

ď

´

1 `
γµ

2

¯

E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇vfmpūr
k, v̄

r
kq ´ ∇vfmpum,r

0 ,vm,r
k q∥2 `

γσ2

M

For the first term in the above inequality we have:
´

1 `
γµ

2

¯

E

∥∥∥∥∥v̄r
k `

γ

M

M
ÿ

m“1

∇vfmpūr
k, v̄

r
kq ´ v‹

∥∥∥∥∥
2

“

´

1 `
γµ

2

¯

E ∥v̄r
k ` γ∇vfpūr

k, v̄
r
kq ´ v‹∥2

“

´

1 `
γµ

2

¯

E
”

∥v̄r
k ´ v‹∥2 ` γ2 ∥∇vfpūr

k, v̄
r
kq∥2 ´ 2γxv‹ ´ v̄r

k,∇vfpūr
k, v̄

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥v̄r
k ´ v‹∥2 ´ 2γxv‹ ´ v̄r

k,∇vfpūr
k, v̄

r
kqy

ı

For the second term we also have:
ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E ∥∇vfmpūr
k, v̄

r
kq ´ ∇vfmpum,r

0 ,vm,r
k q∥2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥ūr
k ´ ūr

0∥
2

`

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E ∥v̄r
k ´ vm,r

k ∥2

“

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpūr
kqs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΨpvm,r
k qs

Summing up the results from the inequalities with respect to u and v gives us:

E
∥∥x̄r

k`1 ´ x‹
∥∥2

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥x̄r
k ´ x‹∥2 ´ 2γxx̄r

k ´ x‹, F px̄r
kqy

ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q ∥x̄r
k ´ x‹∥2 ´ 2γµ ∥x̄r

k ´ x‹∥2
ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M

“

´

1 `
γµ

2

¯

E
”

p1 ´ 2γµ ` γ2L2q ∥x̄r
k ´ x‹∥2

ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpx̄r
kq ` Ψpxm,r

k qs `
γ2σ2

M

With the choice of γ ď
µ

16L2 we have:

E
∥∥x̄r

k`1 ´ x‹
∥∥2

ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄r
k ´ x‹∥2 `

33γL2

16µ
E rΦpx̄r

kq ` Ψpxm,r
k qs `

γ2σ2

M

ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄r
k ´ x‹∥2 `

33γµ

128K

K
ÿ

i“1

∥x̄r
i ´ x‹∥2 `

96K2L2γ3ζ2‹
µ

`
7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M
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We change the current notation for simplicity in proof by substituting r and k with t. t varies from
0 to T “ KR, iterating over all rounds and local steps:

E ∥x̄t`1 ´ x‹∥2 ď

ˆ

1 ´
23γµ

16

˙

E ∥x̄t ´ x‹∥2 `
33γµ

128K

t
ÿ

i“maxt0,t´K`1u

∥x̄i ´ x‹∥2

`
96K2L2γ3ζ2‹

µ
`

7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M

Here we use the Lemma 11 with the following parameters,

st “ E ∥x̄t ´ x‹∥2 , a “
23µ

16
, b “

33µ

128
, c “

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

The final inequality is:

E ∥x̄t ´ x‹∥2 ď

ˆ

1 ´
23γµ

32

˙t

E ∥x0 ´ x‹∥2 `
32

23µ

ˆ

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

˙

γ

ď

´

1 ´
γµ

2

¯t

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

7KL2γ2σ2

µ2M
`

6KL2γ2σ2

µ2
`

γσ2

Mµ

Recall that we assumed γ “
µ

32KL2 so we have:

E ∥x̄T ´ x‹∥2 ď

´

1 ´
γµ

2

¯KR

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

By setting t “ T “ RK, we get:

E ∥x̄T ´ x‹∥2 ď

´

1 ´
γµ

2

¯KR

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

ď exp
´

´
γµ

2
KR

¯

E ∥x0 ´ x‹∥2 `
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

We can see that with this inequality we can only guarantee convergence to a neighborhood of x‹.
To obtain a convergence the final, as discussed in Stich (2019), we need to choose the step size
carefully. If µ

32KL2 ě
lnpmaxt2,µ4∥x0´x‹∥2T 2

{σ2
uq

µT then we choose γ “
lnpmaxt2,µ4∥x0´x‹∥2T 2

{σ2
uq

µT ,

otherwise if µ
32KL2 ă

lnpmaxt2,µ4∥x0´x‹∥2T 2
{σ2

uq

µT then we choose γ “
µ

32KL2

we can see that with these choices, we would have:

E ∥x̄T ´ x‹∥2 “ Õ
ˆ

exp

ˆ

´
µ2

64L2
R

˙

∥x0 ´ x‹∥2 `
K2L2ζ2‹
µ4T 2

`
KL2σ2

µ4T 2
`

2σ2

Mµ2T

˙

G DECOUPLED SGDA WITH GHOST SEQUENCE

In this section, we introduce a new extension to the Decoupled SGDA algorithm called Ghost Se-
quence. The base Decoupled SGDA algorithm, explained earlier, is designed to take advantage
of problems with a dominant separable component. It minimizes communication complexity by
reusing outdated strategies, which has already been analyzed theoretically in the prevous sections.

However, we can push this idea further by not just reusing old strategies but also predicting the
opponent’s next move. This smarter approach opens up a new line of research, where more advanced
methods can be explored for estimating the opponent’s strategy, offering directions for future work.

To demonstrate the potential of this approach, we propose Decoupled SGDA with Ghost Sequence.
The main idea is for each player to predict (or approximate) the next move of the opponent based
on their previous actions and behaviour. This is achieved by computing the difference between
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successive strategies during synchronization. Using this information, each player can update both
their own and their opponent’s parameters, leading to improved performance. As shown in Figure
8, Decoupled SGDA with Ghost Sequence can greatly improve the algorithm’s performance. It also
achieves faster communication, even in highly interactive games, and does not require the problem
to be weakly coupled.

For more details, refer to Algorithm 4.

Algorithm 4 Decoupled SGDA with Ghost Sequence

1: Input: Step size γ, initial strategies x0 “ pu0,v0q, total rounds R, local updates K
2: for r P t1, . . . , Ru do
3: Calculate guess ∆r

u Ð 1
K pur

0 ´ ur´1
K q

4: Calculate guess ∆r
v Ð 1

K pvr
0 ´ vr´1

K q

5: for t P t0, . . . ,K ´ 1u do
6: Update ghost sequence ṽr

t`1 Ð ṽr
t`1 ` ∆r

v
7: Update local strategy ur

t`1 Ð ur
t ´ γ∇ufpur

t , ṽ
r
t`1; ξ

r
t q

8: Update ghost sequence ũr
t`1 Ð ũr

t`1 ` ∆r
u

9: Update local strategy vr
t`1 Ð vr

t ` γ∇vfpũr
t`1,v

r
t ; ξ

r
t q

10: end for
11: Communicate pur

K ,vr
Kq to other players

12: end for
13: Output: Final strategies xR

K “ puR
K ,vR

Kq
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Figure 8: Trajectories and convergence comparison of GDA,Decoupled SGDA and Decoupled SGDA with
Ghost Sequence with different values of C “ CI (interaction strength). The top row shows the trajectories
of the different algorithms for K “ t1, 5u over varying values of C P t25, 15, 5, 0.1u. As C decreases, tra-
jectories become more stable, with the Decoupled SGDA with Ghost Sequence (blue) showing more efficient
convergence compared to GDA (black) and Decoupled SGDA (red). The bottom row presents the synchroniza-
tion rounds versus distance to equilibrium for each configuration, highlighting faster convergence of Decoupled
SGDA with Ghost Sequence under larger C values, while Decoupled SGDA with Ghost Sequence and Decou-
pled SGDA converge similarly for small C.

H ADDITIONAL EXPERIMENTS

H.1 FINDING THE STATIONARY POINT DECOUPLED SGDA FOR NON-CONVEX FUNCTIONS

Here, we add one more figure for the toy GAN problem to provide further insight into the behavior
of Decoupled SGDA.
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Figure 9: Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row)
of GDA (K “ 1) and Decoupled SGDA with K “ t2, 5u on the (toyGAN) problem (d “ 2). C in
(QG) is a constant here—the larger, the stronger the interactive term. Left-to-right: decreasing the constant
c P t10, 3.5, 2, 7, 0u.

H.2 MORE FIGURES DECOUPLED SGDA WITH GRADIENT APPROXIMATION

In this experiment (Figure 10), Decoupled SGDA achieves lower gradient norms in fewer communi-
cation rounds compared to Local SGDA, especially as interaction noise increases (larger c). Decou-
pled SGDA shows much more stability in high-noise environments, highlighting its effectiveness in
dealing with noisy gradients when compared to federated minimax settings.
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Figure 10: Comparison of Decoupled SGDA and Local SGDA under different noise settings. Each plot
shows the smallest gradient norm achieved by both algorithms over 100 communication rounds, with varying
interaction levels and noise variances. Top Row: Different settings of noise variances in off-diagonal entries
(interaction noise). Left to Right: Increasing values of the constant c controlling the interactive term’s strength
in the game. Decoupled SGDA consistently outperforms Local SGDA in scenarios where off-diagonal noise is
significant, achieving lower gradient norms with fewer communication rounds.
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I EXPERIMENTAL SETUP

I.1 FINDING THE SADDLE POINT OF QUADRATIC GAMES

In the first experiment , we conducted tests with a dimensionality of D “ 2 over R “ 31 synchro-
nization rounds. The values of K tested were 1, 2, and 5, alongside parameter combinations pa, b, cq
set as p1, 10, 10q, p1, 10, 3.5q, p1, 10, 2.7q, and p1, 10, 0q. For each combination, we explored gamma
values uniformly spaced in the interval r0.0001, 0.1s. The algorithm initializes x and y at 1 and ´1
respectively and updates these variables based on the gradients gx and gy computed using the defined
parameters.

For the second experiment, in the left figure, eigenvalues were sampled logarithmically between
10´1.5 and 101.5, with random symmetric positive definite matrices generated for each. We tested
agent counts K as r1, 2, 5, 10, 50s and learning rates γ from 10´10 to 1. The algorithm ran for R “

105 rounds, adjusted based on eigenvalue size, to measure the average distance from equilibrium
until it fell below ϵ “ 10´6. Results were plotted to illustrate the relationship between λmaxpCq

and the number of rounds required for convergence.

For the left figure, we generated random symmetric positive definite matrices as oracles, varying
the maximum eigenvalue of the matrix C using logarithmic spacing between 10´1.5 and 101.5. The
accuracy threshold is set to ϵ “ 10´4. We evaluated five algorithms: GDA, Decoupled GDA, Op-
timistic, Alternating Gradient Descent, and Extragradient, with K fixed at 50. Each algorithm was
executed for R “ 105 rounds, determined based on the maximum eigenvalue, and their performance
was assessed by the number of rounds required to achieve ϵ accuracy.

I.2 DECOUPLED SGDA WITH GRADIENT APPROXIMATION

In this experiment, we analyze the performance of Decoupled and Local Stochastic Gradient De-
scent (SGDA) algorithms under varying conditions. We define oracles based on random symmetric
positive definite matrices, with a fixed number of rounds R “ 100 and K “ 40. The maximum
eigenvalues of matrices C are sampled logarithmically between 10´0.25 and 101, while off-diagonal
variances range linearly from 1 to 10. For each maximum eigenvalue, we generate correspond-
ing matrices and evaluate the algorithms across five trials to determine the lowest gradient norm
achieved. Results are aggregated and visualized in two plots: one depicting the relationship between
the maximum eigenvalue of C and the minimum gradient norm, and the other illustrating the effect
of varying off-diagonal variance on algorithm performance.

I.3 COMMUNICATION EFFICIENCY OF DECOUPLED SGDA FOR NON-CONVEX FUNCTIONS

In this experiment, we investigate the performance of Decoupled Single Oracle GDA under various
settings of λ and K. We evaluate the gradient norm achieved over R “ 100 communication rounds.
The λ values are sampled logarithmically between 10´4.5 and 103, while K values range from 1
to 5. For each combination of λ and K, we compute the lowest gradient norm over 5 independent
trials. The gradient norms are averaged and plotted, with vertical lines marking the transition to
the weakly coupled regime at λ “ 50. The final results show the relationship between λ and the
minimum gradient norm for different values of K, highlighting the weakly coupled regime.

I.4 COMMUNICATION EFFICIENCY OF DECOUPLED SGDA IN GAN TRAINING

In this experiment, a Generative Adversarial Network (GAN) was trained using the CIFAR-10 and
SVHN datasets, both resized to 32ˆ32 pixels. The GAN was trained with a learning rate of 1ˆ10´4,
a batch size of 256, and 50,000 rounds of updates. The hidden dimension size for the generator was
128. For evaluation, 256 samples were used to compute the Fréchet Inception Distance (FID) every
200 iterations. Both the generator and discriminator were optimized using the Adam optimizer, with
a learning rate scheduler that decayed by a factor of 0.95 every 1000 steps. Additionally, a gradient
penalty term was applied to stabilize training. The generator’s latent space dimension was set to
100, and its Exponential Moving Average (EMA) was maintained with a decay factor of 0.999 for
evaluation purposes. Training was conducted using CUDA on an NVIDIA L4 GPU.
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The Generator uses a series of transposed convolutions, starting from a 100-dimensional latent vec-
tor, to generate a 32 ˆ 32 ˆ 3 image, with BatchNorm and ReLU, ending with a Tanh activation.
The Discriminator applies four convolutional layers to downsample the input, using LeakyReLU
and BatchNorm, and outputs a real/fake probability through a Sigmoid activation.
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