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ABSTRACT

We focus on reducing communication overhead in multiplayer games, where fre-
quently exchanging strategies between players is not feasible and players have
noisy or outdated strategies of the other players. We propose Decoupled SGDA, an
extension of Stochastic Gradient Descent Ascent (SGDA), where players perform
independent updates using outdated strategies of opponents, with periodic strat-
egy synchronization. For Strongly-Convex-Strongly-Concave (SCSC) games, we
demonstrate that Decoupled SGDA achieves near-optimal communication com-
plexity comparable to the best-known GDA rates. For weakly coupled games
where the interaction between players is lower relative to non-interactive part of
the game, Decoupled SGDA significantly reduces communication costs compared
to standard SGDA. Our findings extend to multi-player games. To provide insights
into the effect of communication frequency and convergence, we extensively study
the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in
settings where the noise over the players is imbalanced, Decoupled SGDA signif-
icantly outperforms federated minimax methods.

1 INTRODUCTION

Several real-world problems in diverse areas, such as economics and computer science, can fre-
quently be described as N-player differentiable games (Von Neumann & Morgenstern, 2007). While
players may have competing objectives, the aim is to identify an equilibrium, a strategy where no
player benefits from deviating unilaterally. Examples of such games in machine learning include
Generative Adversarial Networks (GANs, Goodfellow et al., 2014), adversarial robustness (Madry
et al., 2017; Shafahi et al., 2019; Robey et al., 2023) and multi-agent reinforcement learning (e.g.,
Lowe et al., 2017; Li et al., 2019).

Minimax optimization problems are a special case of N-player games, where the aim is to find a
saddle point of an objective f(u, v) that minimizes f(u, -) over u and maximizes f(-,v) over v.

Several gradient-based methods have been proposed for solving the above problem (Korpelevich,
1976; Popov, 1980; Balduzzi et al., 2018; Nouiehed et al., 2019; Chavdarova et al., 2020; Kovalev
& Gasnikov, 2022). One of the most widely used is the gradient descent method. In the context of
zero-sum minimax games, this approach is referred to as Gradient Descent Ascent (GDA), where
the minimizing player takes descent steps and the maximizing player takes ascent steps.

In some situations, however, players may not have direct access to their opponents’ exact strate-
gies. The u—player might only have a noisy estimate of v when updating its parameters, and vice
versa. In extreme cases, players might operate with outdated strategies from their opponents, with
limited opportunities to synchronize. We refer to this scenario as games with intermittent strategy
communication (ISC-games). Here are a few illustrative examples:

* Corporate competitors. Companies frequently adjust their strategies based on individual objec-
tives and the strategies of their competitors. For instance, Netflix may need to lower its prices if
a competitor like Max reduces its subscription rates (Jagadeesan et al., 2022). Corporations may
occasionally release (noisy) general information about their strategies, giving each company an
imperfect understanding of its competitor’s actions. Alternatively, companies might hire experts
to estimate competitor strategies using publicly available data, although this process is expensive
and infrequent.
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» N-agents with restricted communication. In control theory, applications involving drones or
robots are modeled with N-player games (see Spica et al., 2020; Laine et al., 2021; Zhou et al.,
2021, and references therein). However, due to factors like long distances or limited battery life
caused by weight constraints, communication between agents regarding learned strategies is costly
and can only occur intermittently.

In summary, this paper focuses on the following questions.

* Can players learn “locally” when relying on noisy or outdated strategies from their opponents in
ISC-games?

* How do the convergence rate and communication costs of the proposed optimization method com-
pare to the baseline? Is acceleration achievable?

To address the former, we propose a simple extension of the gradient descent method where agents
perform local updates while using outdated strategies from their opponents. For minimax prob-
lems, we refer to this method as Decoupled SGDA, and for N-player games Decoupled SGD. The
second question is explored in detail by analyzing the convergence rate of Decoupled SGD(A) and
identifying the problem class where acceleration is achieved, which we refer to as Weakly Coupled
Games.

Contributions. Our contributions include:

* We introduce Decoupled SGD(A) for games with intermittent strategy communication, where
each player performs K updates based on outdated strategies from the other players, followed by
a synchronization step to exchange the updated strategies of all players.

* We analyze its convergence in both the strongly-convex strongly-concave (SCSC) setting and in
N-player games where each player’s utility is strongly convex. Additionally, we identify a specific
regime, termed Weakly Coupled Games, where Decoupled SGD(A) demonstrates communication
acceleration compared to the baseline GD(A), by removing the dependency on player condition-
ing. Moreover, under an additional assumption on the interactive part of the game, our method can
outperform the optimal first-order method in terms of communication rounds for solving SCSC
games.

* We study the convergence of Decoupled SGDA for quadratic minimax games with bilinear cou-
pling between the players, providing in-depth insights into the algorithm’s convergence behavior.
We provide a convergence guarantee for Federated Minimax games in the context of our method,
matching the state-of-the-art results of Local SGDA.

* Through numerical experiments, we demonstrate the efficacy of Decoupled SGDA (i) in minimax
optimization and non-convex GAN settings in weakly coupled games, and (ii) over federated
learning in settings where opponents have gradients with imbalanced noise.

* We also propose a heuristic to accelerate the convergence of decoupled SGDA in Appendix G and
present numerical evidence demonstrating its practical effectiveness.

To simplify the exposition, the main body of the paper focuses on the minimax setting, while the
extension to /V-player games is presented in Appendix C.

1.1 RELATED WORKS

Our work draws from multiple lines of work, and herein, we review these and discuss the difference
with federated learning. Appendix E gives additional discussion and lists works on decentralized
optimization. The latter are further from our work in that there is no centralized communication,
and nodes communicate with neighbors.

Game optimization. Nemirovski (2004); Nesterov (2007) achieve a rate of (’)(%) for convex-
concave minimax problems. For strongly-convex-strongly-concave games, (i) Thekumparampil
et al. (2019) combine Nestrov’s Accelerated Gradient and mirror-prox and achieve (’)(%) rate of
convergence, (ii) Wang & Li (2020) explore ideas from accelerated proximal point and achieve a
linear rate, and (iii) Kovalev & Gasnikov (2022) propose a method with O(/kyky log %) rate of
convergence which matches the lower bounds (Zhang et al., 2022b; Ibrahim et al., 2020). Sev-
eral works focus on accelerating the convergence of GDA (Lee et al., 2024; Zhang et al., 2022a).
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Quadratic games with bilinear coupling are studied in (Zhang et al., 2021). Nouiehed et al. (2019)
propose a method that performs multiple first-order steps on only one of the parameters to solve min-
imax problems. Tsaknakis et al. (2021) study a generalized minimax problem with linear constraints
coupling the decision variables. Tseng & Yun (2009) study coordinate gradient descent method for
minimizing the sum of a smooth and separable convex function. Jain et al. (2018) shows that accel-
erated stochastic gradient descent can outperform traditional stochastic gradient descent in minimax
optimal statistical risk for least squares regression. Yoon & Ryu (2021) present algorithms with
accelerated O(1/k?) last-iterate rates for smooth minimax optimization—outperforming existing
methods—and establish the optimality of this rate through a matching lower bound.

Federated learning. Building on the foundational work of McMahan et al. (2017), numerous works
have explored distributed minimization, or federated learning, across various settings (e.g., Stich,
2018; Koloskova et al., 2020; Karimireddy et al., 2020; Woodworth et al., 2020a;b). In the context
of minimax optimization, Deng & Mahdavi (2021); Sharma et al. (2022) extended the so-called
Local SGD to the minimax setting, achieving convergence rates for different classes of functions
in both heterogeneous and homogeneous regimes. Although both Federated Minimax and Decou-
pled SGDA are designed to solve minimax optimization problems in a distributed fashion, their
approaches to achieving this are fundamentally different. Refer to Section F.1 for more details.

2 SETTING AND PRELIMINARIES

We consider the following saddle-point problem over X = X, x X,, with X,, = R% X, = R%:

i SP

in %iff(u’v)’ (SP)

where f: X — R is a differentiable function. Its solution is defined as a point x* = (u*,v*) e X

satisfying the following variational principle: f(u*,v) < f(u*,v*) < f(u,v*) for all (u,v) € X.
We define the following operator F': X — X:

F(x) = (Vuf(x), -V f(x)), xedX. (1)
An important property of this operator is that F'(x*) = 0.

Notation. We use bold lower-case letters for vectors and bold capital letters for matrices. We
consider unconstrained two-player games where the decision vectors of the players (typically de-
noted by u and v) live in the spaces X, = R% and X, = R%, respectively. The corresponding
product space X = X, x &, = R? (with d = d,, + d,) consists of vectors x = (u,v) € R,
where u € X, and v € X,,. For a differentiable function f: X — R, we denote partial gradients
at a point x = (u,v) € X w.r.t. the corresponding variables by V,, f(x) and V,, f(x), respectively,
so that Vf(x) = (V. f(x),V,f(x)). We use (-, -) to denote the standard inner product, keeping
the same notation for each of the vector spaces we consider. We assume that the spaces X, and
X, are equipped with Euclidean norms, denoted by ||u||,, ||v]|,. The norm in the space X is then
defined by ||x|| = (a|[ul|2 + B||v||?)*/? where a, B > 0. We use the notation ||gy||u.» || ||« and

lglls = (Elgull? « + 5lgu]? )" to denote the corresponding dual norms.

Stochastic Oracles with Noise Imbalance. Following standard conventions, we assume that both
players—the minimization player u, and the maximization player v—have access unbiased stochas-
tic oracles G (x, &), G, (x, §), with the property E[G,(x,&)] = F(x), E[G,(x,§)] = F(x). We
make the following assumption on the variance:
2

uu’

E|[(Gu(x,€) = FE)]II% , <02, E[[(Gu(x,&) = D], |I2, < o2,

Here, we use the operator [-]; to denote the coordinates corresponding to player i € {u,v}. For
convenience, we define 0* := 02, + 02,.

Assumption 1. There exists finite constants o2,,, 02, such that for all x € X :

Note that we only require that the noise of self-gradients is bounded, i.e. 02, and 02,. How-
ever, we do not make any assumption on the noise for the estimates of the gradients of the

other player. Concretely, the variances o2, = E||[(Gu(x,&) — F(X))]UH?)* and 02, :=

uv
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E H [(Gu(x,86) — F (x))]u ||i ,, can be arbitrarily large, possibly unbounded. This is is contrast to

other works on stochastic min-max optimization, that require the variance of both G,, and G, to be
bounded.

Monotonicity and Smoothness. We outline the necessary assumptions for establishing the con-
vergence of our method.

Assumption 2 (Strong monotonicity). Operator F' from (1) is strongly monotone with parameter
u>0, iLe., forall x,x' € X, the following inequality holds:

(F(x) = P(x'),x = x') > pllx — x'|[%

Assumption 3 (Lipschitz smoothness). Operator F from (1) is L-Lipschitz, i.e., for all x,x’ € X,
the following inequality holds:

1F() = FX)ls < Lllx = x| - 2

In the sequel, we will also need to use more refined smoothness constant L. which is defined by the
following inequalities holding for all x = (u,v),x’ = (u/,v’) € X:

||Vuf(u,v) - Vuf(uvv/)”u,*
||va(u,v) - va(u,>v)||v,*

We will show in Section 4 that this constant plays an important role in communication acceleration
as it captures how interactive the game is. In this work, we assume that there exists one constant L,
which can be used for both inequalities.

< Le|lv—v/|lv, 3
< Leflu—1'f], -

For the reader’s convenience, Tables 2 and 3 in the appendix summarize our notations.

3 DECOUPLED SGDA FOR TWO-PLAYER GAMES
In this section we introduce decoupled SGDA and explain its motivation.

General Idea: Communication Efficient Strategy Exchange. A standard way for solving (SP)
is as follows:

Xee1 = X; — 7Gx, €) with G(x,€) = (_Vv"f JEE‘U"V%) . (SGDA)

However, in a distributed setting, the players need one round of communication to exchange their
parameters (u;, v) in every step of the method.

To alleviate this communication issue, earlier works proposed so-called local update methods that
reduce the amount of communication by performing local parameter updates for each player sepa-
rately. For instance, both player could perform K > 1 updates on a local copy of the parameters.
After every communication round, local variables are initialized as x} = x}’ = x;, and updated as:

K-1 K-1

Xi Kk =X =7 Z Gu(xiyi §evi),  Xipx =X{ — 7 Z Go(xi1i, &ri).  (local-SGDA)
i=0 i=0

The local variables are then synchronized in a communication round, x4 g = (X 5 + XV, ;).
This is a standard approach in distributed optimization. However, this method does not apply to our
setting, as we would need to assume that the stochastic noise of the oracles GG,, and G, is bounded.

We are considering a setting where the two players may not have access to their opponent’s strategies
or gradients, and only assume that the private components of the gradients have bounded variance,
see Assumption 1. For this setting, we therefore propose that each player should only use the
reliable information, that is [G, (%, €)],, for player u, and [G,(x,&)], for player v. We can write
our proposed method compactly as:

5 Y f(uf, Vi €)
X =X(— 7 Z Go(x},&) with  Go(x},€) = (—V:f(utg’, v%% 6 ) (decoupled-SGDA)
t=0
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Our operator has the property that E[G(x, £)] = Fy(x) with bounded variance o? where Fy(x) =
(Vuf(u,vg),—V,f(ug,v)). Here, the index ¢ denotes the local update step in the current local
update phase, and the superscript  indexes the local phases. We also use xo = (ug, V) to denote the
parameters of the players at the beginning of some round . One communication round is needed for
exchanging the updated parameters (u’, v’ ) when passing to the next round. Next, we introduce
one more assumption on operator Fj.

Assumption 4 (Strong monotonicity). Operator Fy is strongly monotone with parameter g > 0,
i.e., forall x,x' € X, the following inequality holds:

(Fo(x) = Fo(x'),x = x') = pollx — x|

Note that one can show o = min{Z=, %} where f is ji,-strongly convex in u and p,,-strongly-
concave in v (see Lemma 6).

Intuition. To provide some intuition on why decoupled SGDA might work, consider that the ob-
jective of minimax games (SP) can be written as:

f(u,v) = g(u) = h(v) +r(u,v) )

where g(u) and h(v) represent the independent contributions of each player, and r(u, v) captures
the interaction between them.

In the special case when r(u,v) = 0, i.e., there is no interaction, the problem does not require any
communication: the optimal solution can be found by minimizing g and h separately. A method
like SGDA is, therefore, not a good choice in this setting, as it requires communication in every
step of the method, although this is unnecessary. If the contrast, when the coupling r(u,Vv) is
significant, then optimizing g and h separately might not be a good strategy. Decoupled SGDA aims
to find a balance between the two extremes. In the following, we will characterize some settings,
where Decoupled SGDA provably uses significantly less communication rounds than SGDA, or
other baselines (see also Table 1).

Method. We begin this section by providing details of our method. Decoupled SGDA has a round-
wise update scheme allowing each player to share his parameters only once in a while. At the
beginning of each round r, each player receives the most recent parameters of the other player. Then
all players start taking K local steps and updating only their own parameters using the information
they received at the beginning of the round from other players. Note that our method is a general
framework and one can use any first-order method to take local steps. As a baseline in this work, we
consider simple GD updates. We formalize our method in Algorithm 1. For simplicity in notation,
we now consider a two-player minimax game to motivate our method and highlight its differences
from existing paradigms. The constants «, 3 are determined by the vector norm that we specify.

Algorithm 1 Decoupled SGDA for two-player games

1: Input: step size ~, initialization xo = (ug, vo), R, K
2: forre{l,...,R} do
3: forte{l,...,K} do

4: Update local model uf,; « uj — y(a)~ 'V, f(uf, vj; )
5: Update local model v}, ; < vi +~v(3) 7'V, f(uf, vi; &)
6: end for

7 Communicate (u7;, v} ) to each player

8: end for

9: Output: x = (uft,vi)

Extensions of Decoupled SGDA. It is clear that our method is a general framework, providing
flexibility for various modifications and adaptations. For instance, our method allows for any first-
order update rule to be applied for the local steps like GDA, Extra Gradient (EG), and Optimistic
Gradient Descent Ascent (OGDA). Note that in this work, we focused on GDA updates, leaving the
analysis of other methods for future work. Moreover, in Section G, we present Decoupled SGDA
with Ghost Sequence, where each player aims to estimate the other player’s parameters using the
so-called Ghost Sequence, which leads to further acceleration in terms of the number of rounds.
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4 CONVERGENCE GUARANTEES

We first need to introduce the notion of Weakly Coupled Games / Regime and next we provide the
convergence guarantee for our method.

Definition 1 (Weakly Coupled and Fully Decoupled Games'). Given a SCSC zero-sum minimax
game f(u,v). We define the coupling degree parameter 6 for this game as follows:

L.

0 .= —.
Ho

o)

This variable measures the level of interaction in the game. A smaller value of 0 indicates less
interaction. For any f(u,v), we say the game is Weakly Coupled if the following inequality holds:
0

-<1 (6)
C

where ¢ > 1 is an absolute constant and will be specified based on the setting. We say the game is
Fully Decoupled if we have 8 = 0 which implies r(u,v) = 0 (see Equation (4)).

It’s clear that fully decoupled games are the extreme case of weakly coupled games. In weakly
coupled games, interaction between the two players is relatively minor compared to their individual
self-interactions. This regime suggests that the influence of the u player on v (and vice versa) is suf-
ficiently small, allowing the players’ dynamics to be driven mainly by their own quadratic behavior,
with minimal influence from interaction. In the fully decoupled games, the problem of finding the
saddle point reduces to solving two independent minimization and maximization problems which is
usually much easier and has been well-studied.

Theorem 1. Forany R, K > (ﬁ log (%)), after running Decoupled SGDA for a total of T =

KR iterations on a function f, with the stepsize v < %% if the game is weakly coupled with ¢ = 4
(40 < 1) or v < min {45, 75, 75 } otherwise, we get a rate of:
2 86
E[|xE —x*|?] < D? exp(— max{(l —40)R, %KR}) + % min{m, 2},

\/LQL, o:=0%, +02,and D = ||xo — x*|.

Corollary 2. Decoupled GDA with a stepsize of v = %4 converges to the saddle point without any
communication on fully decoupled games (6 = 0) if K — 0.

where § :=

The above result is an obvious case in which our method beats any first-order method that does not

make use of local steps. For the sake of comparison, we define the condition numbers?: r,, = £«

P’
L, — — _Lc _ L
Ky = and Kyy = Kyy = N Also we use kK = e The most recent rate proposed for

GDA Lee et al. (2024) needs O ((ky + ky)log(2)) rounds of communication when the game is
fully decoupled. A major drawback of GDA in this setting is that poor conditioning in one of the
players (large ., k,) increases the number of rounds significantly while our method overcomes this
problem by utilizing local steps.

Corollary 3. With the choice of v = iz if the game is weakly coupled and v =
“112)2 KR})} otherwise, we get

min{%, ﬁ In(max{2,

2
. u , 80 1
E[Hxﬁ — X ||2] < D? exp(— max{(l —40)R, ﬁR}) + 02 mln{RL2(1 —16)’ MQKR} .

Consequently, to reach E[||xE — x*|?)] < ¢ it suffices to perform R =

max{felog(g), #9—40)6} rounds with K = ML—:Olog(%) if the game is weakly cou-

pled, or R = % log(%Q) with K = ﬁ otherwise.

L_ . Le i the general

'w.L.o.g. and for clarity, we assumed ov = 3 = 1. One can easily verify that  := o7 e

form (see Lemma 8).
IVaf(u,v) = Vuf (0, )| < Luflu — ' and ||V f(u,v) = Vo f(u,V')]| < Lo [[v = v/||
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Communication Complexity Communication Complexity
Method (Fully Decoupled) (General Bound) Speed Up
GDA (Ku + ko) log % (Ku + Ko + ni,u) log % Ke < % (weakly coupled)

Lee et al. (2024)

EG/OGDA 1 1 1
K + Ko) log L Ku + £iv) log L ke < \/1—7
Mokhtari et al. (2020) (e v)log ¢ (Ku v) log ¢ c max{rigrio]}

=

APPA 31 31 1 1
Kuky log® = VFEuky log® = Ke < 34/1 — —
Lin et al. (2020) VEuRy € wivy € c 2 VEukuv
FOAM Fuky log 1 VRufy log 1 e < L./1— ﬁ

Kovalev & Gasnikov (2022)

Decoupled SGDA (ours) 0 min {ﬁ log 1, k?log %} —

Table 1: Comparison of communication complexity (rounds complexity—ours, vs. iteration complexity—other
methods’) and the acceleration condition. Speed up lists the conditions under which Decoupled SGDA achieves
acceleration relative to the respective method.

Linear convergence. Our rate benefits from an exponential convergence in terms of the number of
rounds. The main feature of Theorem 1 is the absence of x,,, ,, or x in the weakly coupled regime.
This is particularly interesting because the condition number for each player can be extremely large,
which would typically comes with a high communication overhead. However, in the weakly coupled
regime, our rate depends on the coupling degree 6 which can be very small or even zero.

Noise term. Another important aspect of our rate is its dependency on ¢ in the noise term. As
discussed in Assumption 1, one can assume that each player has access to a very accurate gradient
oracle with respect to its own parameters, while a very noisy oracle is used to access the gradient
with respect to the other player’s parameters. Our method has no dependency on o, or gy, which

can be much larger than o. In addition, the noise term is multiplied by the factor fpéw, which goes
to zero when 6 = 0. Note that in this case, based on the lower bound (% In (%)), we know that

K — oo, which is expected as we also have a linear speed-up in terms of the number of local steps
in the non-weakly coupled regime. Now, we state the communication complexity of our method:

Corollary 4. For any K > () (% In (%)), after running Decoupled SGDA on a weakly coupled

game with ¢ = 4, we have the following communication complexity in order to achieve € accuracy
in the noiseless setting:

Decoupled GDA GDA

R— 0( log %) vs. |R= (’)((Fau + Ko +miv)log%)

1
1—46

Moreover, Decoupled SGDA in weakly coupled regime has always a better communication complex-
1

ity compared to the baseline GDA. In another word, =45 < Ky + iy + K2,

Table 1 compares our method with other first-order methods in terms of communication complexity
in both the fully decoupled and weakly coupled regimes. It is clear that in the fully decoupled regime,
our method outperforms all other methods. Furthermore, it is expected to compare our method
with GDA by considering it as the baseline because our method uses GD local updates (and not
updates using EG or momentum). In Corollary 4, we stated that we always have a better complexity
compared to GDA in the weakly coupled regime. However, we can show that under a slightly
stronger assumption, our method achieves better communication complexity than the optimal first-
order method for solving SCSC games.

1
VEuky’
our method achieves a better communication complexity than FOAM which is the optimal first-
order method for solving SCSC games. In another word, if ﬁ & A/Ryky, our method achieves
significant communication acceleration compared to FOAM.

.. . . 1
Corollary 5. For any SCSC zero-sum minimax game with coupling degree § < 5,/1 —
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Corollary 5 shows our method can outperform the optimal first-order method in terms of the number
of communication rounds. The assumption 6 < %, /1 — \/;71) is stronger than the weakly coupled

assumption. One can verify that in the limiting case when max{r,,, K, } — 00, which means either
one or both players have very poor conditioning, this assumption reduces to 6 < %, which is the
definition of a weakly coupled game with ¢ = 2. The main drawback of all existing methods is
that they do not utilize the fact that the interactive part of the game might have a minor effect.
For instance, the communication complexity of two popular methods, EG and OGDA, is given as
O (klog (1)), as proposed in Mokhtari et al. (2020), where  depends on max{Ly, L, L.}, which
is too pessimistic when the interaction between players is low. Even the method proposed by Lin
etal. (2020), with complexity O (y/ky ko log® (1)), which is near-optimal, and Kovalev & Gasnikov
(2022), with complexity O (y/kqyky, log (1)), which is the optimal method, match the lower bound
of Q (\/Kuky log (1)) proposed by Zhang et al. (2022b), have dependencies on £, and k, that can
be significantly large. However, our rate depends on the quantity 8, which can be very small or even
zero when the interaction between players is low.

5 EXPERIMENTS

In this section, we evaluate the empirical performance of Decoupled SGDA. For all experiments
described herein, we provide additional implementation details (and hyperparameters) in Section I.

Quadratic Games Herein, we consider the following problem class:
1 1
min max §<u, Au) — §<v, Bv) + (u,Cv), (QG)
u v

where u,v € R%, and A B, C are ‘2i X g positive definite matrices. We will use varying C to
control the players’ interaction.

Figure 1 illustrates the performances of Decoupled-SGDA on the (QG) for varying numbers of
local steps K and different intensities of the interactive term of (QG). The results show that as
the interactive term weakens, Decoupled SGDA converges more quickly than the GDA baseline
(K = 1). Additionally, with a stronger interactive term, increasing the number of local steps K
leads to faster convergence for the same number of synchronization rounds. Figure 2 depicts the
performances over a spectrum of payoff functions controlled by the constant matrix C in (QG).
In the Weakly Coupled Game regime, highlighted by shading, Decoupled SGDA outperforms the
baseline GDA. In Figure 2 (right), we compare it with other optimization methods, demonstrating
that Decoupled SGDA achieves similar results with significantly fewer communication rounds in
the weakly coupled regime.

Trajectories for C=10 Trajectories for C=3.5 Trajectories for C=2.7 Trajectories for C=0

Coordinate
%
di

us‘" "-;.-C- .

u Coordinate u Coordinate u Coordinate u Coordinate

ZEme SN cERRRSS B ERss s

Synchronization Rounds : Synchronization Rounds Synchronization Rounds Synchronization Rounds

Ixe=x"1
1

N

Figure 1: Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row) of
GDA (K = 1) and Decoupled SGDA with K = {2, 5} on the (QG) problem (d = 2). C in (QG) is a constant
here—the larger, the stronger the interactive term. Left-to-right: decreasing the constant ¢ € {10, 3.5, 2,7, 0}.
The markers denote the local steps and star the solution. See § 5 for discussion.

Communication Efficiency For Non-convex Functions While our theoretical focus was on
SCSC games, in this section, we explore if our insights extend to broader problem instances. We



Under review as a conference paper at ICLR 2025

Number of Rounds to Reach Epsilon Accuracy vs. Apax(C) Number of Rounds to Reach Epsilon Accuracy vs. Apax(C)

—— GDA
491 —=— Decoupled GDA
—— OGDA

( Weakly Coupled Regime )

2 —e— Decoupled GDA K=1 (GDA)
—+— Decoupled GDA k=2
—+— Decoupled GDA K=5

. —+— Decoupled GDA k=10

Log of Number of Rounds

Log of Number

—+— Decoupled GDA K=50

o s T T ED Er EX W
Log (Amax(C)) Log( Amax(C))

Figure 2: Number of rounds (log-scale; lower is better) to reach epsilon accuracy for varying Amax(C)
in (QG). Left: Decoupled GDA with different K -values and GDA (K = 1). Right: comparison between
GDA, Decoupled GDA, Optimistic GDA (Popov, 1980), ALT-alternating GDA and Extragradient (Korpele-
vich, 1976).

focus on a Toy GAN non-convex game as follows:
min max{Eq (0.5 [67 V6] — Egnon[(6) v(ud)] + Miful® = hal[v|?},  (toyGAN)

where u € R, v e Ré,

Figure 3 shows the smallest gradient norm (lower is better) each algorithm can achieve for a fixed
number of communication rounds, with varying values of 1/X. As X decreases, the regularization
terms dominate, making the game less interactive (similar to the weakly coupled regime). When A
increases, reducing interaction, Decoupled GDA achieves a much lower gradient norm with the same
number of communication rounds. This demonstrates that Decoupled GDA efficiently solves non-
convex problems in settings analogous to the weakly coupled regime by leveraging local updates to
reduce communication. This experiment highlights the method’s capabilities beyond SCSC games.
The trajectory of Decoupled GDA iterations for this non-convex minimax problem can be found in
Appendix H.1.

Tog (miniwAx )

led GDA K=1 (GDA)
led GDA k=2

( Weakly Coupled Regime )

Decoupled GDA K=5

m ) h : ) m

Figure 3: Lowest gradient norm reached after a fixed number of communication rounds, for varying 1/\
in (toyGAN). Left: Effect of K. Right: different optimization methods, GDA, Decoupled GDA, Optimistic
GDA (Popov, 1980), ALT-alternating GDA and Extragradient (Korpelevich, 1976). See § 5 for discussion.

Decoupled SGDA with gradient approximation Herein, we compare Decoupled SGDA with
Federated Minimax, aka (local-SGDA). We focus on environments with gradient oracles with un-
balanced noise. Each player has access to a gradient oracle that provides low-variance noise for
their own gradients but high-variance noise for the remaining players. This reflects real-world chal-
lenges where shared information can be unreliable. In such cases, it is more effective to wait for
synchronization for accurate updates, and between these periods, players should update only their
own parameters. In particular, we focus on a modified quadratic game (QG) we used earlier, with
each oracle adding zero-mean Gaussian noise to the full gradient. The variance of noise differs
between gradients related to a player’s own strategy (diagonal variance) and those related to other
players’ strategies (off-diagonal variance). Refer to Assumption 8 for a more rigorous definition.
In both experiments, diagonal variance was fixed at 0.1, while off-diagonal variance was linearly
increased from 1 to 10 in the second experiment.

Figure 4 illustrates the performances of Decoupled SGDA and Local SGDA, the latter being the
most commonly used method for federated minimax problems (Deng & Mahdavi, 2021). It depicts
the smallest gradient norm each algorithm achieves within a fixed number of communication rounds
across different scenarios. The left plot demonstrates how both methods perform in games with vary-
ing levels of interaction. When the interaction is weaker, Decoupled SGDA achieves significantly
lower gradient norms with the same number of communication rounds. The right plot highlights the
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effect of noise variance, showing that while high noise negatively impacts Local SGDA, it has min-
imal to no effect on Decoupled SGDA. In the presence of imbalanced noise, the results suggest that
switching from local SGDA to Decoupled SGDA is beneficial, even for highly interactive games.

Lowest gradient norm reached in R communication rounds Lowest gradient norm reached in R communication rounds

107" —e— Decoupled SGDA —e— Decoupled SGDA
051~ —e— Local SGDA —e— Local SGDA

loa(min(1uAl)

02 oo

o4 o6 6
Max Eigenvalue of C (log scale) Offdiagonal Variance

Figure 4: Lowest gradient norm achieved by Decoupled SGDA and Local SGDA under a fixed number
of communication rounds with unbalanced noisy gradient oracles. Left: Comparison of Decoupled SGDA
and Federated Minimax across varying values of |C|. Right: Comparison of Decoupled SGDA and Local
SGDA under different levels of off-diagonal variance noise. Refer to Section H.2 for detailed figures.

Communication Efficiency in GAN Training Figure 5 compares Decoupled SGDA with base-
line methods in terms of FID score reduction over several communication rounds. The plots show
that Decoupled SGDA converges more quickly and requires fewer communication rounds com-
pared to standard GDA and its variants. This is especially noticeable in the CIFAR-10 and SVHN
datasets, where increasing the number of local steps (K) results in lower FID scores, demonstrating
the efficiency of our approach in reducing communication while maintaining strong performance in
complex, non-convex tasks like GAN training.

Comparison of FID vs C Rounds (Dataset: cifar10) Comparison of FID vs C Rounds (Dataset: svhn)

— K=1(GDA) 32 — K=1(GDA)
K=2
— k=3

FID (log scale)
FID (log scale)

Communication Rounds

Figure 5: y-axis: FID scores (log scale; lower is better) during GAN training, versus z-axis communica-
tion rounds. Left: results on the CIFAR-10 (Krizhevsky, 2009) dataset. Right: results on the SVHN (Netzer
etal., 2011) dataset.

6 CONCLUSION

We proposed Decoupled SGDA as an effective optimization method for games with intermittent
strategy communication, particularly in scenarios where interaction between players is weak, or
noise levels are high. Through extensive theoretical and empirical analysis, we demonstrate that
Decoupled SGDA not only outperforms traditional methods like Local SGDA in terms of communi-
cation efficiency and robustness in weakly coupled games but also extends its benefits beyond SCSC
games to non-convex settings. The method’s ability to handle varying levels of interaction and noise
makes it highly adaptable, providing a valuable tool for federated and decentralized optimization
problems.

Several future directions are possible. One can consider varying K per player, extensions of other
game optimization methods, such as extragradient, for classes beyond players having strongly con-
vex utilities, among others. In addition, the proposed approach has the potential to address privacy-
sensitive scenarios, as players can update their parameters independently without needing direct
access to others’ parameters, minimizing privacy risks posed by gradient sharing (see Zhu et al.,
2019; Zhao et al., 2020; Wei et al., 2020, and references therein). Future work could further ex-
plore this potential in privacy-preserving applications, making Decoupled SGDA a valuable tool for
decentralized optimization under privacy constraints.

10
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A SUMMARY OF PARAMETERS

Table 2: Definitions of L and p Terms for Two-Player Games

Symbol Definition Mathematical Definition
L Smoothness parameter for operator F(x) |F(x) — F(x)|, < L|x—x'|
Ly, Smoothness parameter with respect to u IVuf(u,v) = Vo f(W, V)|, < Luflu—1|,
L, Smoothness parameter with respect to v IVof(u,v) =V f(a, V)|, . < Lo [[v =V,
L. Interaction smoothness parameter IVuf(u,v) = Vo f(u,v)|, , < Lellv -V,
L. Interaction smoothness parameter IVof(a,v) =V, f(, V)|, , < Lelu—u'],
I Strong convexity parameter for u f',v) = f(u,v) +(Vyf(u,v),u’ —uy+ 5 [ju’ — uH
Ly Strong concavity parameter for v Ju,v) < f(u,v) +{V,f(u,v), v —v) = & ||v/ — VH,,
110 Strong monotonicity parameter for F'(x) (Fy(x) — Fo(x'), x — x> = po ||x — x'||?
I Strong monotonicity parameter for F'(x) (F(x) - F(x'),x—x) = pn|x—x|?

Table 3: Definitions of L and y Terms for N-Player Games

Symbol Definition Mathematical Definition
ﬁi Upper bound for diagonal elements L;; L < I:,,;, refer to Matrix(16)
L; Upper bound for off-diagonal elements L;; for i # j Li; < L;, refer to Matrix(16)
Smoothness parameter for operator F'(x) |F(x) — F(x')||, < L|x—x'|
min Minimum strong convexity/concavity parameter Pmin 1= mini<;<n {55}
u Strong monotonicity parameter for F'(x) (F(x) = F(x'),x = x') = p|Jx — x'||?

B MISSING PROOFS FOR SECTION 4

Lemma 6. The operator Fy defined in (decoupled-SGDA) is pg-strongly monotone where Ly can
be expressed as:

Lo = mln{ 'Lj: 'l;; } (7)

Proof. Recall that the function f is j,, strongly convex in u and p, strongly concave in v meaning
that:

fd,v) = f(u,v) + (Vo f(u,v),u’ —uy+ =— M H —uHi
f(u,v') < f(u,v) +(V, f(u,v),v —v>— ? Hv —vHi

Next we have:

(Fo(x) = Fo(x'),x —x')
= <vuf(u7 VO) - Vuf(u’,vo), u-— u/> + <vvf(u07 ) - vvf(u()avl)vvl - V>

> pralla =+ v =V = el = S =
> mln{ﬂu MU}H —x'||. O
Lemma 7 (two-player). For each x € X and 6 := , we have
1F(x) = Fo(x)]l,, ||Xo —x||.

17
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Proof. Indeed,

1FG) = Fol) 2 = 2 [V.uf(1,v) = V(. v0) 2, + 5 1V (0, 9) = D uvo)l2,

L2 s L2 2
< T v = Vol + 7 ol

L2 , L2 )
= GBIy = vollt + L5 — ol

L2 L2 2 2 2 2
< max [B1v = voll; +alu—ul,] = 6*[x0 — x|

Ba’ ap
Lemma 8 (two-player). Let X', x* € X be such that Fy(x') = 0 and F(x*) = 0. Then,

!

1" = x| < O fxo — x|

O

®)

Proof. Recall that the function f is u,, strongly convex in u and i, strongly concave in v meaning

that:
PO V) = Flu,v) + (Vaf (u,v) = w o+ 2 o = ]
JuV) < J(0,9) + (V0 f (09), ¥ = v) = BV = v

Next we have:

%" —x*||* = « Hu’ — u*||i + BV —v

v

. 2 B
< HV f(',vo) = Vyf(u ,VO)H%* + 2 [V f(ug, v') = Vo f (uo,
v
* * * 2 /8 * *
= /72 [Vuf(a®,v*) = Vo f(a®, vo)ll, 4 + 2 [Vof(u,v*) = Vo f(uo,
v
aL,? BL.?
< —v*| + g — u*|f?
I 2
al? BL |2
= Biéﬂ”"o— I+ 02 allug —u’|,
v
L2 2 * (12
= 5 Bllvo = v*[l; + — zalluo —u*|;
Baaz 5@
< Lo v e a g w
2 v a M(2) u
1 L2 VI .12 |2
< — 0B 1 [5||V0 I + e flug —u*[5] = 6% [|]x0 — x*||

where we used the fact that 1o < £ and pp < % from Lemma 6.

B.1 PROOF OF THEOREM 1

We start with some auxiliary lemmas.

2
VOl

2
Vs

Lemma 9 (Consensus error). After running Decoupled SGDA for K local steps at some round r

with a step-size of ¥ < 35g17z, the consensus error can be upper bounded as follows:

t 2
2 * 2
E||Xt+1 _XOH < Z 64K52 ]EHX’L || +4K7202
i=t+1-K

18
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Proof.
B [[x+1 — xol|”
=FE th — B 'Go(x¢,&) — X()H2
<E th — B 1 Fy(x;) — x0||2 + 42

(1 + K> E||x; — xo||” + 2K+*E HFO(Xt)”i + 4202
(1 + K> E||x; — Xo|| + 2K~* B || Fo(x¢) — F(x¢) + F(Xt)Hi 4202
1
(1+ )Ext_XOH +4K'Y E”F()(Xt) (Xt)” +4K72EHF(X7§)”1 +720_2

1
< (1 + K> E|x: — x0||2 +4K5%*2E [Ix¢ — X()H2 +4KL*y?E [Ix¢ — X*H2 + ~202

With the choice of v < 55557 where d := \Lﬁ, we get:

E [|x¢11 — Xo|?

2 2
2, 2 K *||2 2 2
(l " K) Bl 0l + g5 g B e — 0l + g Ellxe = 4+ 4%

1 2 1 ,uQ *2 2 9
<(1+=)E|x — E|lx, — E|x, —
( +K> e =oll* + 5 Blxe = xol* + goess Ellxe =x*[* + 9%
1 1 2 p
<(1+=+—)E|x, —
( TrT ) e = xoll” + 5re a2

E|lx; — x*H2 + 7202

By unrolling the recursion for the last K steps and considering the fact that (1 + % + 25% = ) K <4
we get:

t 2
2 * 2
Elxis -l < Y] Es Bl - x|+ 4Ky%0°
i=t+1-K

O
Lemma 10. Ler x' = (u/,v’) where u' = argminf(u,vy) and v/ = argmaxf(ug, v). Starting
u

v
from (ug, Vo), we upper bound the distance to X' after K local steps as follows:

2
||xt+1 - X || (1 —~ypo) IEI||X0—X'||2+’LLO (10)

Proof.

-7

= ||x¢ =B 7' Gol(x¢, &) — x'H2

=[xt = x| + 27 Gl (xs, I3 = 29G4, &), %0 = ')

= th - X/H2 + 72 Go(xt, €) — Fo(xe) + FO(Xt)H — 29 Go(x¢, &) — Fo(x¢) + Fo(xt), x4 — x')

By taking the conditional expectation on previous iterates we have:
Ee, [[xesr ||
< th—x'H2 +7% || Fo(xe) — Fo(x H = 29(Fo(x¢) — Fo(x'), % — ') + o
< (14 °L% = 2yp0) ||xe — X'H +~%0?
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With the choice of v < £4 and taking the unconditional expectation we have:

E [[xie1 = %'|* < (1= yp0) E |0 = ¥/||” + 420

After unrolling the recursion for K steps we have:

K
2 .
E s — x| < (1= 710) 5 E [0 = x'||* + 331 = yp0)'720
i=0
2
2 o
< (1 — "}/,uo)K]E HXO — X/H + —
Ho
O
Lemma 11. Ler {r;};>0 be a non-negative sequence of numbers that satisfy
b t
rep1 < (1 —ay)re + s Z i +cy?,
i=max{0,t—K+1}
for constants a > 0, b,c = 0 and integer K > 1 and a parameter v = 0, such that ay < 7. If
b < §, then it holds
a \? 2c
re< (1-57) ro+ =, (1
2 a

Proof. By assumption on 7:

t

¥ avy b
THl\(l_?)Tt_?rt—'—?’y. 2 Ti"‘C’YQ,
i=max{0,t—K+1}

and by unrolling the recursion:

av t—i a b t avy t—i
T < (1—a)r0+2(1— ;) —%m+?’y Z T +Z(1—§) c'y2

t , i
ay\? ay\t—t avy b 2c
<(1-3) T0+ZZ=O (1-3) St D R

1

i

t , o

B Y\t ay\t—t avy b ary\ 7 2c

=(1mey) o+ N (-F) | X (-%) n|v
=0 j=max{0,i—K—1}

where we used >/ _ (1 — L)< % (for (%) < 1) for the second inequality.

By estimating

a b . ay . ;_; a b . a
—gfﬁ'?’f Z (1—77)1 Jrig_%Ti""?’Y. Z (1—77) T
j=max{0,i—K—1} j=max{0,i—K—1}
1-K
< —%ri + byrs (1 - %) T
< —%ri +2byr; <0,
with and (1 — %)% < 2 for ay < +, and the assumption b < 4 (and r; > 0).

The validity of the inequality, (1 — %X)' =% < 2 for ay < -+ can be shown in the following way:
1-K
( @) (1 _ l) <
2 2
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For the last inequality above we used the approximation (1 — z)™" < e™ forz > 0 and n > 0:

Given that ay < 3, we have:
Thus, we have

Going back to the main proof, we conclude

t 2c
’l"t+1< (1_7) 7"0+*’}/.
2 a

as claimed. O

Now we are ready to prove the following theorem.

Theorem (Decoupled SGDA for two-player Games). For any R, K > () (# log (%)) after run-
ning Decoupled SGDA for a total of T = K R iterations on a function f, with the stepsize v < 5

if the game is weakly coupled with ¢ = 4 (40 < 1) ory < min {43, 55, 7
rate of:

E[|xf — x*|?] < D? exp(— max{(l —40)R, —KR}) Tmin{&ﬂ},

where 6 1= \/Léﬂ, 0% :=02,+ 02, and D = ||xg — x*||.

(63

Proof. The proof consists of two parts. First we provide a convergence proof for our method when
the game is not weakly coupled and we show a rate that almost matches the baseline GDA. Next, we
assume that the game is weakly coupled and provide a proof which shows acceleration compared to
GDA. The final rate would be the minimum between these two rates.

Part 1. In this part we, assume that the game is not weakly coupled. We start by upper
bounding the iterate x at time step ¢ + 1 from the equilibrium.

E [x¢1 — x|
<E|x; —yB'Go(x¢,§) — X*H2 + %0
<E ||xt — B Fy(x;) |7 + ~2o?
=E|x; —yB'F(x;) —x* + B ' F(x;) — 'nylFo(xt)H2 +7%0?
(2
< (L4 ) [l =B E ) ] oy (3 2) BLFO) — Bl + 2207

(1 + 2 ) []E||x I 4 A2 E | F(x1) — P — 29(F(x0) — F(x*), % _x*>] .

y (,y + 2) BN - Rl + 07
) (422 = 2B s = x 1] 49 (34 2 ) EIPG) — Folx) I + %2

3y
[1—w Bl = x'[*] + L EIIFGa) — Foa)ls + 707
3 52
E|x 270~

E [|x; — xo|* +~20?

/\
w\é w\é w\
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Where we assumed that v < ;. Now by using the upper bound on consensus error from Lemma
17 we get:

E [xp41 — x|

t
12K~6°2
:(1—E)E||xt—x*||2+ﬂ Z E|jx; — x*||* + 14+ 10 72o?
2 16K o
i=max{0,t—K}
: H . _Lc .
With the choice of ¥ < 13&5= Where § := Jag We have:
E |xi41 — x|
t 2
TH *112 TH *112 o
(1—7)E||Xt—XH +167 Z E”Xi—XH +27

i=max{0,t—K}

By unrolling the recursion using Lemma 11 we get:
E ||x§ - X*H2 < D%exp (uR) +27 52

Part 2. Here we write the proof based on the assumption that the game is weakly coupled. We start
by upper bounding the following term:

Ixeer =X < 2 i = x|+ 2% = x| (12)
where X’ = (u/,v’) and v’ = argminf(u, vp) and v/ = arg maxf(ug, v). For the first term we
u v

use Lemma 10 and we get:
2
o
2, 70

s —* < (1= 7020) B [1x0 — |
Ho

Putting this back in (12) gives us:

E ;1 — x"||”

2 2
<2(1- 'y,uo)KIE on - X/H2 +20FE ||xo — X*H2 + ZJ
0
2 2
<4(1 - 'yuo)K E ||xo — X*||2 +4(1 - ’)//l,o)KE HX’ - X*H2 +20FE ||xo — x*||2 + 7:7
0
<4 K *2 K * 112 2702
<A1 = yp0)" Eflxo = x*||7 + (4(1 = yp0) "0 + 20) E [ xg — x*[|” + ——
K K *112 2702
< (41 = ypo)™ +4(1 —yp0) "0 + 20) E ||xo — x*||” + ——
9 2vo?

< (dexp (—yuoK) + dexp (—ypoK) 0 + 20) E [[xo — x| +

Ho

Now we need to make sure that 4 exp (—yuoK) < 6 < 1 which implies that K > 2 (7,11’0 In (%))

Next we have:
2vo?
E xe1 - x*[° <40E xo — x*[|* + 2

The above recursion can be re-written in terms of two consecutive rounds:

2 2
E|jx ! —x*||” < 40 [x" —x*|? + 2=
Ho
After unrolling the recursion for R rounds we have:
R * (12 R * (12 2702 i i
E||x® —x*||” < (40)" E ||xo — x*[|” + . 2(49)
0o O
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Note that we assumed the game is weakly coupled with parameter ¢ = 4 which implies that 40 < 1.
Finally we have:

2 R

> (40)’

i=1

2vo

E [x7 —x*||" < (46)" E|lxo — x*||* +

8yo? 0

o 1—46

< D?(40)" +

C DECOUPLED SGD FOR N-PLAYER GAMES

In this section, we generalize all previous results on two-player games to [N-player games. We first
introduce the notation that is needed to define N-player games and will be used to establish our
convergence guarantees.

Notation. We consider unconstrained N-player games where each player x’ belongs to the space
X; = R%. The vector x = (x',...,x") € R? is defined in the space X = X} x ... x Xn =

R? with d = Zfil d;. The space X; for all i € [N] is equipped with certain Euclidean norms,
[x|l; := (B;x*,x*)'/? where B, is a positive definite matrix. The norm in the space X’ is then
defined by ||x|| = (Zf;l ;i ||x*[|2)"/? where o; > 0; thus, ||x|| = (Bx,x)!/2, where B is the block-
diagonal matrix with blocks «;B;. The dual norms are defined as: ||g;||; « := max|yi|,—1(gi, X') =
(gi, B; 'gi)'/? (gi € Xg,) and ||g||s := maxy_1{(g,x) = (S, ,% gil7.)"? = (g, B )"/
(g =(g1,-.-,8n) €X).

Similar to the work Nesterov (2012), we define the following partitioning of the identity matrix:

N
I; = (U, Uy,..., Uy) e R d = ) d;, U; e RO
i=1

Now we can represent the vector x as follows:

N

X = Z Ux'e R

i=1

We can extract the parameters of one player as follows:

x! = U/xeR%
Problem Formulation. An N-player games is defined as:

(milnfl (%), min f (x)) (N-player)

Where f,,: Xg, — R.

The goal is to find the Nash Equilibrium in x* = (x*!, ..., x*"V) like in the work Bravo et al. (2018),
which has the property that if one player changes their strategy, their payoff function will increase.
In other words, there is no incentive to change one strategy alone: for all h,, € &,,, it holds that

fo(x*) < fu(x* + Uyhy,). (13)

Moreover, we define the operator F' : X — X which denotes the stack of gradients with respect to
each player’s parameters as follows:

F(x) = (Vifi(x),..., VN fn(x))

For the equilibrium, it holds that F'(x*) = 0. We can extract the partial gradient with respect to one
player as follows:

ann(x) = U;’LFF(X)

We now present the assumptions required for the convergence of our method.
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Assumption 5 (Lipschitz gradients). Operator F' : X — X is L-Lipschitz if for all x,x' € X, the
following inequality holds:

[1F(x) = F(x) ][« < Lllx — x| (14)

Assumption 6 (Lipschitz partial gradients). For each n € [N], there exist constants Ly,Ly, =0
such that, for any x € R%, any h; e R% ... 'hy € R and any n € [N], it holds that

IV f (%) = Voo fu(x + U], o < Lol[Bn
IV fn(®) = Vi fu(% + 2 Uihi) s < Ll 25, Ui

For the N-player games, we can define the following matrix for the better understanding of the
smoothness parameters:

5)

L

- ®

L= (16)

®

Ly

In the above matrix, the row number corresponds to the player with respect to whom we are taking
the derivative, while the column number corresponds to the player that is fixed, with all other pa-
rameters changing. All the elements L;; on the main diagonal of the matrix measure the strength
of each individual player, while the off-diagonal elements L;; for i # j measure the interaction
between players ¢ and j. We assume that all the diagonal elements are upper bounded by L, and
all off-diagonal elements are upper bounded by L,,. Here n is the player which is being fixed. The
parameter L,, measures the interaction of the nth player with all other players.

Assumption 7 (Strong monotonicity). The operator F' : X — X is said to be strongly monotone
with parameter . > 0 if for all x,x" € X, the following inequality holds:

(F(x) = F(x'),x = x') = pllx = x||%. (17)
Also we define the more refined strong monotonicity constants p,, > 0 for a player n € [N] by the
following inequality:
(Vi fn(x) = Vo f(x+ Uldn)v x" — Xm> > pun|[ X" — X"Hiv (18)
where d,, := x'" — x"™.
Assumption 8. There exists finite constant &2 such that for all x € X :

E||[(Gix.&) = Fe)L[17, <2

Here, we use the operator [-]; do denote the coordinates corresponding to player i € {1,...,N}.
2

For convenience, we define 0 = maxi<;<N O'izi.
Note that we only require that the noise of self-gradients is bounded, i.e. 02. However, we do not
make any assumption on the noise for the estimates of the gradients of the other player. Concretely,

2
. . . 17* . . . . . .
bounded. This is is contrast to other works on stochastic min-max optimization, that require the
variance o;; to be bounded.

the variances 07; := E [H [(Gi(x,§) — F(x))L H] , i # j can be arbitrarily large, possibly un-

We can also define the noise matrix as follows:

M = 19)
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We assume that each player has access to a separate noisy gradient oracle, which provides the gra-
dient with respect to all other parameters. More specifically, Ufj corresponds to the noise oracle of
player 7 that computes the gradient with respect to the parameters of player 7. We assume that all
the elements on the main diagonal are upper bounded by 62 and all off-diagonal elements are upper
bounded by 62. Note that, in general, we expect that max{c;;} « max{c;; fori # j}, especially
in a distributed setting with multiple players. This is because, due to privacy concerns, it may be
challenging to compute the gradient with respect to the parameters of other players. As a result, the
gradient estimation between different players can be noisy and inaccurate, leading to larger values of
0;; for i # j. On the other hand, computing the gradient with respect to a player’s own parameters
is generally easier, and it is reasonable to assume that max{c;;} is relatively small. In some cases,
we might even assume that o;; = 0 for all 4, while max{o;; for i # j} remains significantly large.

C.1 METHOD

We are considering a setting where the /N players may not have access to their opponent’s strategies
or gradients, and only assume that the private components of the gradients have bounded variance,
see Assumption 8. For this setting, we therefore propose that each player should only use the reliable
information, that is [G;(x, £)]; for player ¢ € [N]. We can write our proposed method compactly
as:

Xjy1 = x; — /BT Gy (x], &), (20)
where

Gxo (X7 E) = (vlf(xo + UlU;r(X - XO)); 5))1<1<N'

wHere, the index t denotes the local update step in the current local update phase on player ¢, and
the superscript r indexes the local phases. One communication round is needed for exchanging the
updated parameters X7 when passing to the next round. Note that x:’i € X, and x] € X.
Assumption 9 (Strong monotonicity). The operator F : X — X is said to be strongly monotone
with parameter 1 > 0 if for all x,x" € X, the following inequality holds:

(F(x) — F(x'),x —x') = plx - x|* (21)

Algorithm 2 Decoupled SGD for N-player games

1: Input: step size v, initialization xg = (x3,...,x}'), R, K
2: forre{l,...,R} do

3: forte {1,...,K}do
4: forn € {1,..., N} in parallel do
5: Update local model x;} « x;"" — yB™ Gy, (x})
6 end for
7 end for
.
8:  Communicate [X}gr, e ,X%’T] to all players
9: end for
10: Output: x% = (xp%, ... x}™)

C.2 CONVERGENCE GUARANTEE

Now we out to a change in the definition of weakly coupled games in N-player setting.

Definition 2 (Weakly Coupled and Fully Decoupled Games). Given an N-player game in the form
of N-player. We define the coupling degree parameter 0 for this game as follows:

a;L?
= E Zitiyy2
0: 12‘1}5\7(#1, u? ) (22)

This variable measures the level of interaction in the game. A smaller value of 0 indicates less
interaction. We say the game is Weakly Coupled if the following inequality holds:

L (23)
C
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where ¢ > 1 is an absolute constant and will be specified based on the setting. We say the game
is Fully Decoupled if we have 6 = 0 which implies each player is minimizing their own pay-off
function independently.

Theorem 12. For any R, K > () (# In (%)) after running Decoupled SGDA for a total of T =

K R iterations on a an N-player game defined in 2, with a stepsize of v < 5* if the game is weakly

coupled with ¢ = 4 (40 < 1) or v < min {%, 25 KL(SQ} otherwise, we get a rate of:

E[Hxﬁ - x*||2] < D? exp(— max{(l —40)R, %KR}) 4 (_fi’ymin{ 860 2},

1—40°
) L3\1/2 . Wi *
where 0 := maxj<;<N (Z#_i a—J) s Mmin = mlnlgigN{a—i}, and D = ||xg — x*||.
Corollary 13. With the choice of v = 2% if the game is weakly coupled and ~ =
2D2

min{ 5t7, ﬁ In(max{2, =5~ K R})} otherwise, we get

2
R _ *2] < D2 _ _ R 52 mi 80 L
Bl 7] < D?exp(—max{(1— 40)R L)) + ot {

C.3 MISSING PROOFS FOR SECTION C.2

Before establishing the convergence results, we first need a couple of auxiliary lemmas for [V-player
games.

Lemma 14. The operator Fy defined in (20) is strongly monotone: for each x,x’ € X, we have

(Fy(x) — Fyp(x'),x —x') > min {%}HX—X/HQ. (24)

1<i<N

Proof. Indeed,

(Fo(x) = Fo(x'),x = x)

(Vif(x) = Vif(x+ U/ d;),x" — x"

I
=

=1
N N i _
> illx = %7 = Y allx — x"f?
i=1 i=1 "
- . i 2
> min { — t]lx —x'||*. O
1<i<N Loy,

where d; := x"* — x".

Lemma 15 (N-player). For the points X', x* € X that satisfy Fy(x') = 0 and F(x*) = 0, we have
that:

|x" = x*|| < 6x0 — x*| (25)

;L2
Where we defined 0 := maxlgigN(Zj# “;—?1)1/2.

Proof. Let’s define h; := xé—xi, d; ;== x"—x", r; ;== x"—x%, 5, 1= Xé—X*i. We first introduce
the point x’ € R? as follows:
x' = (x1,...,xV), %" =argmin fi(x + Z Ujh;)

xieR%i i
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’ 2

I

al 2
= 2 oif[x =

- x|

2

i=1
N
< Z 7; HVZfZ <X + U,;d; + Z Ujhj) — szl (X + U;r; + Z Ujhj)
im1 M J#i J#i i,
N 2 N =
= 2 —; VZfZ(X*) — Vlfz (X + U;r; + 2 Ujhj) 2 2 Z U, §Sj
im1 M j#i i -1 M i
N N
2 2
<X LE S o sl < 3 B Isil? < 62 s
i=1 Hi J#i i=1
a; L?
Where 3; = Zj# mE Bi. O
T2
Lemma 16 (/N-player). For the operators F and Fyy and § := maxi<;<n (Z#i %)1/2, we have
[ F(x) — Fo(x)[[,, < d]x —xoll. (26)
Proof. We first define h; := x{, —x" and v := 3, , U;h;. Next we have:
N N 79

|Fo(x) — F(x)|2 = Z o IV o) = Vif e+ V7, < Z f7 v

N L2 N
Z OT’Z% by |5 = > Bicvi b7,
v i=1

i=1 J#i

L?
where 8; = 3., o

Lemma 17 (Consensus error). After running Decoupled SGD for K local steps at some round r

Defining now 62 = max<;<n i, we get Zf\;l Bioy ||hz||f <& nf2. O

with a step-size of 7 < 325%, the consensus error can be upper bounded as follows:
t 2
E [|x¢41 — %o|® < E|lx; — x*||* + 4K~%5> 27
e —xlf <3 Bl x4k @)

Proof. The proof is almost identical to the two-player case with two differences. Firstly, the vari-

ance of the stochastic noise is upper bounded by 2. Secondly, the upper bound on the term

| F(x) — Fo(x)||,, should be obtained from Lemma 16. O

With the use of these Lemmas, one can easily extend the proof of two player game to the general
N-player games.

D DECOUPLED GDA FOR QUADRATIC GAMES

To provide an extra insight for the results we showed so far and support them with a separate analysis,
we additionally consider quadratic functions in this section which are a sub-class of SCSC functions.
A general quadratic game can be defined as:
1 1
flu,v) = §<u, Au)— §<v, Bv)+{(u,Cv), (QG)

where A € S%, and B € S%, and C € R%*% . The matrix C can be seen as the interaction
between two players as it’s the only term which involves both u and v.
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Definition 3. Consider a function f: R%* x R% — R in the form of (QG) for some u € R* v €
R% . The Lipschitzness parameters can be defined as:

Lu = )\max(A)7 Lv = )\max(B)a Luv = Lvu = ||C||
and the strong convexity/concavity parameters can be define as:
Mo = )\min(A)a My = Amin(B)

and the condition numbers can be defined as:

Recall that we defined a general two player game as f(u,v) = g(u) — h(v) + r(u,v). For
the class of quadratic games, we can be more specific as functions g(-) and h(-) are quadratic
functions and r(-) is just a linear term. Moreover, we can be more accurate about the smooth-
ness and strong convexity parameters as they are correspond to the maximum and minimum sin-
gular values of the matrices A, B and C. So the class of quadratic games can be written as
F ()\min(A)a Amin(B)7 Amax(iA)v Amax(B)7 ||C||)

Lemma 18. Given a two-player quadratic game f(u,v) € F (b, foo, fovs Ly Luyy Ly Ly L) in

the form of (QG). At some round r after K local steps with a stepsize of v < rnauX{L—u7 L%} on each
player, the exact iterate generated by Decoupled GDA is given as follows:
Xi = [QF + E]x;
(I—~A) 0 0 -E,
Q= , E:= (28)
0 (I-~B) E, O

E,:=[I-I-~7A)f]A7'C, E,:=[I-(1-49B)X|B'C’
After taking the norm of both sides we have:

e | < max {(1 = Y Apin(A)', (1 = YApin(B)) <} + | C|| - max {5(A), 6(B)} "/

—(1- K2 1 K\2 (29)
s(a) = 11 AZA(’X")(A)) S smy - U0 A;Ag)(B)) )

Remark 19. For a quadratic game in the form of (QG), the saddle point is x* = (0,0). We expect
our method to shrink the norm of xi in each round by a factor less than 1 so that we converge to the
saddle point.

Lemma 18 shows the dynamics of Decoupled GDA for quadratic functions. We can decompose the
exact iterates and write it as the sum of two matrices Q and E. As Q is a diagonal matrix to the
power of K and we have that v < max{z-, 7-}, we know that when K — oo then Q — 0. The
second matrix E can be seen as an error matrix which is caused by the interactive part of the game.
It is clear that if the game is fully decoupled which implies C = 0, we get the trivial result that
we converge only with local steps without the need for communicating. However, for the case that
we have this interactive term and the game is weakly coupled we have to upper bound the norm of
this error matrix to derive the convergence rate. The next Theorem shows the convergence rate of
decoupled GDA on quadratic games.

Theorem 20. For any R and K = ) (% log (%)) with a stepsize of v < % which

K
ensures (1 - gf) + Lo < 1 and max {1 — (1= Y Aua(A), 1~ (1= PAua(B) K} < 1,

max

after running Decoupled GDA for a total of T = KR iterations on a quadratic game f(u,v) €
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F (s fgy ooy Ly Loy, Loy Loy, L) in the form of (QG) assuming the game is weakly coupled with

c = 1, we get a rate of:
R
xB—x*| <D (exp|— Homin_ g + Luy (30)
I

Lmax Homin
Where Ly, := max{L,, L,} and iy, := min{fi,, i, }.

Theorem 20 clearly shows the effect of local steps and communication rounds which gives more
insights about our method compared to the SCSC case. We can see that the first term in the rate goes
to zero with taking more local steps while there is another term that is not affected by local steps.
It’s indeed intuitive as we don’t expect our method to converge with only local steps in general. The
remaining error is do to the interactive part. Moreover, in this Theorem we get a better constant
factor ¢ = 1 compared to ¢ = 4 in the SCSC case. All the previous results discussed for SCSC case
can be applied to the quadratic setting as well.

D.1 MISSING PROOFS FROM SECTION D

We first introduce some auxiliary lemmas that are needed for proofs.

Lemma 21. Let A be a positive definite matrix and v > 0. Then matrices A=* and (I — vA) are
commutative meaning that:

AT(I-7A) = (I-7A)A™! 31
Proof.
A Y I-~A)
=A' I
=(I-~7A)A™!
O

Lemma 22. Let A be a positive definite matrix and ~y > 0. Then matrices A=" and (I —yA)X are
commutative meaning that:

AT I—7A)K = (I —7A)FAT! (32)

Proof. By induction we assume that this statement holds for K which means A~}(I — yA)X =
(I —vA)XA~—1. Now we show that this statement holds for K + 1.

AHI - yA)KH
= AT (I-7A)I-7A)"
= (I-7A) AT (I -yA)"
= (I-7A)I-~A)FA™!
= (I—~yA)K+IA
For the case of K = 1 we use the previous Lemma. O

Lemma 23. Let A be a positive definite matrix and vy = 0. Then we have that:
A7 (I-7A)K -TI) = (I-7A)F =) A! (33)

Proof.

A7 (I—~A)K -T)
=AY I-yA)F — A1
= (I—~rA)KAL_A!
= (I-7A)F -T)A!
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D.2 EXPLICIT ITERATES GENERATED BY DECOUPLED GDA

Lemma 24. Given a general quadratic game in the following form:

1 1
flu,v) = iuTAu - ivTBv +u'Cv

After k steps of Decoupled GDA at some round r we can compute the explicit form of iterates as

follows:
up = —A'Cv + A (I—~7A)" (A + Cv})

vi =B71CTuy + B~} (I-4B)" (Bvj — CTu})

Proof. We use induction for the proof of this section. By using the update rule of Local GDA we
would have,

Uy = up — YV f(ug, vp)
=u, — v (Auj, + Cvy)

= —A'CV + A (I —~A)" (Au) + Cv})
—y (A [—A’lcv{) + AT I — A (AU + CVO)] + Cv3>

= —A'CV+ A (I —~A)" (Au) + Cv})
- (—CVS +(I—~A)" (Au) + Cv)) + CVS)

= —A'CV i+ AT (I —~7A) (Au) + Cv)) — v (I —~A)" (Auj + Cv))
—ATICVE+ (AT = AD) [(I YA (Auj +Cv0)]

——AlOVI AL (I-HA [(I —~A)* (Au] + Cvg)]

)
= —ATICV+ AT (T —~7A) T (Auf + Cv))
Now we only need to show that our claim also works for k£ = 0,
u, = —A7ICV) + AT (I —~vA)’ (Auj + Cv))
= —A7'CV{ +uj + A'Cv},
= u}
Also, we do the computation with respect to v:

vi =B7!CTup + B~} (I-4B)" (Bvj — C'u})
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By using the update rule of Decoupled GDA we get:

Vig1 = Vi — 7V f(ug, ug)
=vi+7(-Bvj + CTug)
= v — 7 (Bvj — C'uf)
=B~!C'uj + B (I-4B)" (Bv) — C'uy)
— (B [B’lCTuS +B 1 (I-+B)" (Bv] — cTug)] - CTug)

=B7!CTuj + B~ (I-+B)" (Bvj — CTuy)
— (CTuS + (I —~B)" (Bvj —C'uj) — CTug)

—~B~'CTu} + B! (I—4B)" (Bvy—Clug) — v (I- vB)" (Bvj — C'uy)
—B!CTuj + (B~ — 1) [(1-+B)* (Bvj — CTug)]
=B !CTu}+B ! (I-4B) [(I —4B)* (Bvj — cTug)]

)

B !CTuy + B (I-4B)""" (Bvj — C'u})

Now we only need to show this our claim also works for £ = 0,

vy =B7'CTu} + B~ (I-+B)’ (Bvj — C'up)
=B 'C'uj +vj-B'C'uj

T

D.3 PROOF OF LEMMA 18
Given a two-player quadratic game f(u,v) € F(u, fhu, tho, L, Lo, Lv, Luv, L,,) in the form of

(QG). At some round r after k local steps with a stepsize of 7 < max{-- 11, L1 on each player, the
exact iterate generated by Decoupled GDA is given as follows:

x; = [Q" + E] x{

I—-~A 0 0 -E,
Q:= ( ) , E:= (34)
0 (I-~B) E, O
E,:=[I-(I-~7A)]A"'C, E,:=[I-(I-+B)f|B"'C’
After taking the norm of both sides we have:
i, || < max {(1 = yAmin (A))*, (1 = YAnin(B))*} + |C||* - max {3(A), 5(B)}
(33)

(1—-(1 'V)‘maX(A))k)Q L (1—-(1 'Y/\maX(B))k)Q
A2 (A) OB = Ain(B)

min min

I(A) =
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Proof. From Lemma 24 we can write the explicit iterates for the variable x:

k
. (I—-~A) 0 0 -E, .
l[xk Il = + {5l
0 (I-+B) E, 0
k
I-~4A) 0 0 -E, )
< + [Ix5]|
0 (I-+B) E, 0

0 -E,
< max {(1 — Y Amin(A))", (1 — Y Amin(B)"} - [Ix5| + ol
E, 0

For computing the norm of the error matrix we need to compute A/ Apax (ETE). We first form E"E:

E'E, 0
E'E=]| "
0 EE,
So we have:
)\max (ETE) = max {)\max (EIE'IL)7 )\max(EIEv)}

For computing the )\max(EI E,) we have:
Amax (BTEL) = Amax (CTA—T [T— (T—~7A)F] [T— (T—~A)"] A—lc)

< 1CI1% Amax (A*T [T— (T—~7A)F] [T— (T—~A)"] A*l)

<1117 A (A7) A ([T~ X =7A) ") A ([T (1= 7A4)"]) A (A7)
(1-(1- VAmaX(A))k)Z

<llc|?
)\IQnm(A)
_ e
=2
)‘min(A)

We have the same computation with respect to player v as well which gives us:

(1-(1- WAmaX(B))k)z
Anin(B)

min

Amax (EIEU) = ||C||2

[Ke]§
h Ar2nm(B)

D.4 PROOF OF THEOREM 20

For any R and K = (Lﬁ log (“‘“LL'“’)) with a stepsize of v < % which ensures

Hmin Hmin

K
(1— “—) +lm < 1 and max {1 — (1 -7 Ama(A)5,1 = (1= YAuan(B))F} < 1, after

max

running Decoupled GDA for a total of ' = KR iterations on a quadratic game f(u,v) €
F (b foayy oy Ly Lgy Loy Logyyy Liyy,) i the form of (QG) assuming the game is weakly coupled with

c = 1, we get a rate of:
R
|x" —x*|| < B (exp <— Hmin K> + Lm}) (36)

Lmax Mmin

Where Ly := max{Ly, L,} and pmin := min{ e, t, }.
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Proof. Using previous Lemmas we have:

1%l

0 -E,
< max {(1 — Y Amin(A)%, (1 = YAain(B)* } - [Ix5 | + I “[Ixg
E, O

T 1 ]' T
< max { (1 — YAmin(A), (1 = YAmin(B)E} - x5 + ||C max{ } ~IIxall

)\min(A)’ /\min(B)
C ‘s
< ((1 ~ )+ L ”) e

min

After unrolling the above recursion for R rounds we get:

. c|\*
x| < B ((1 — i) ¥+ M”)

E ADDITIONAL RELATED WORKS & DISCUSSION

E.1 DECENTRALIZED OPTIMIZATION

The key difference between decentralized and distributed minimax approaches is the presence of a
central server. In the former, there is no central server, and nodes communicate directly with their
neighbors, whereas in the latter, a central server aggregates the parameters. Our method belongs
to the category of distributed methods. However, we will discuss later on that our approach is
completely different from the general idea of distributed / federated optimization.

Decentralized optimization is widely studied for the case of minimization (Xiao & Boyd, 2004;
Tsitsiklis, 1984) with the goal of not relying on a central node or server. This idea is also applied
to the case of minimax optimization problems. The paper Liu et al. (2020) is the first who studied
non-convex-non-concave decentralized minimax. They also used the idea of optimistic gradient
descent and achieved a rate of O(e~!2). In Xian et al. (2021), authors proposed an algorithm called
DM-HSGD for non-convex decentralized minimax by utilizing variance reduction and achieved a
rate of O(k3¢~3). Recently, authors in Liu et al. (2023) proposed an algorithm named Precision for
the non-convex-strongly-concave objectives which has a two-stage local updates and gives a rate of

O(1).

E.2 COMPARISON BETWEEN DECOUPLED SGDA AND FEDERATED MINIMAX (LOCAL
SGDA)

In this section, we aim to highlight the key differences between our method and existing distributed
or decentralized methods in the literature. As mentioned earlier, our method can be classified as
distributed, though it has a major difference from others. In fact, this difference lies in the problem
formulation.

Decentralized / Distributed minimax formulation. In these settings, we aim to solve the follow-
ing finite-sum optimization problem over M clients:

flu,v) = -

=57 2 fn(wv) (37)

1

=

m

In the above formulation, it is assumed that each client has a different data distribution D,,, and
tries to solve the game based on this data. It means that each client keeps updating both u and v
at the same time for several steps. Then the server aggregates the parameters and sends them back
to clients. The ultimate goal is to find the saddle point x* = (u*,v*) of the global function f, as
if the entire dataset D = D; U --- U Dy were on a single machine running GDA on it. In this
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setting, each client is allowed to update both players meaning that it has access to the gradient of
fm with respect to u and v. However in our approach, instead of splitting the data over clients, we
split the parameter space. It means one machine is responsible for only updating u and another for
v. Our method also allows to have several machines for u and several machines for v. We discuss
this setting in Section ??. An important point to consider is that the notions of client and player
should not be intermixed. When the number of players is fixed, the distributed minimax approach
essentially runs several instances ( f,,) of the main game (f) in parallel to ultimately find the saddle
point of f. In contrast, our method directly finds the saddle point of f by splitting the parameter
space across different machines. Figure 7 illustrates the difference between these two methods. s

Decoupled GDA

{u};+1 =y, — V. f(ug,vp)
Vit = Vi 7V f(ug, vi)

GD Fede d Minimax
{uk+l =uy, — YV f(ug, vi) {UZ’E =u," =YV fm (™, vi'™)
Vi+1 = Vi + Vvvf(uky Vk) V?ﬂ = V;m + ’Yvufm (uz’mv V;,m)

Figure 6: Comparison of different gradient descent ascent (GDA) approaches: Decoupled GDA, standard GDA,
and Federated Minimax. The top box represents Decoupled GDA, where u and v gradients are separated, while
the bottom left and right boxes represent the standard GDA and Federated Minimax approaches, respectively.

Decoupled SGD Distributed / Decentralized Minimax

Processor |  Processor 2

Processor 2

Figure 7: Comparison of our method with the federated minimax formulation: Our method splits the parameter
space, while the federated formulation splits the data. Moreover, our method only allows each player to access
the gradient with respect to their own parameters, whereas in federated minimax, each player can compute the
gradient with respect to both their own parameters and the other player’s parameters.
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F FEDERATED DECOUPLED SGDA

F.1 COMPARING DECOUPLED SGDA WITH FEDERATED LEARNING FOR MINIMAX
OPTIMIZATION

Federated learning (FL) builds on the foundational work in distributed minimization, exploring var-
ious settings. In the context of minimax optimization, methods like Local SGD have been extended
to achieve convergence rates for different classes of functions in both heterogeneous and homoge-
neous regimes. FL methods for games differ from the setting considered in this work. In FL, multiple
copies of all strategies (parameters) are trained locally on different machines and datasets and pe-
riodically aggregated. FL is suited for scenarios where a single local machine runs a multi-player
algorithm and has access to all players’ loss functions, with “collaboration” built into the design.
In contrast, our method suits competitive distributed players (local machines) where each player
has noisy or outdated strategies of the remaining players. For further discussion, see Appendix E.
Additionally, federated learning assumes balanced noise across players, which is not required in our
setting; revisited in § 2 and § 5. Finally, in § 4, we identify a class of games where our approach
leads to faster convergence, even if fully centralized training is possible, which class similarly arises
in non-convex settings—§ 5.In the rest of this section, we study Federated Decoupled SGDA, which
is a combination of Federated Minimax and Decoupled SGDA algorithms, and can benefit from the
advantages of both approaches. In the next section we propose this method with details.

F.2 FEDERATED DECOUPLED SGDA METHOD

In this section, we study an extension of our algorithm for distributed setting. For simplicity and in
order to be aligned with other works Deng & Mahdavi (2021); Sharma et al. (2022), we consider
two-player zero-sum minimax games. Our results for the distributed setting can be extended to the
N-player case.

Notation and Problem Definition In distributed minimax optimization, we aim to solve the fol-
lowing problem:

ueR4u veRv

1 4 1 4
min max | f(u,v) = i Z fm(a,v) = i Z Ee, ~D,, fm(1,v,&n) (33)
m=1 m=1

In this setting, we assume that each player’s data is distributed across M clients/processors. So
each processor has access to a function f,,,(x,y) on which it can perform stochastic gradient steps.
The variance of the stochastic noise is uniformly bounded by 0. We denote u;"" and v,"" as
the parameters of players u and v on client m in some round r after k local steps. We also use
the notation a1}, = 47 anf:l u"" and Vi, = 5 anf:l v,"" to denote the average of parameters
over clients at some round r after k local steps. Data distribution across processors can be either
homogeneous or heterogeneous. In the heterogeneous regime, which is the case of study in this
paper, each processor holds a different payoff function. To measure the heterogeneity of the problem,
it’s common to use the following assumption:

Assumption 10. There exists a constant (, > 0 satisfying the following inequality in distributed
minimax games:

max {sup 1V o )2 sup ||vvfm<x*>||2} < 39)

Assumption 10 is very common in federated learning and it has been used in many works Koloskova
et al. (2020); Deng & Mahdavi (2021); Khaled et al. (2020). Another common assumption in the
literature Woodworth et al. (2020b); Patel et al. (2024) is gradient similarity ¢ for every point x € R?
which is a stronger assumption and cannot be satisfied for quadratic functions. In this work, we use
Assumption 10 to provide our convergence guarantee for our method.
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We also define operators F°(x), F (x) are defined as follows:

Volfom m,r _m,r 1 Vol 7
FT(?Jl(XZL,r) — f ( » Vo ) ’ FO()_(};) = MZm 1 f (uk VO) (40)

M o
_vvfm(uglvravzl’r) _ﬁ Zm=1 vam(UEaVZ)

In this work, we assume that the operator F° is y-strongly monotone.

Remark 25. Note that in general F° (x*) # 0 and F°(x*) # 0. However, if we had the common
operator with the most recent parameters, we could have said F,,,(x*) # 0 and F(x*) = 0.

Algorithm 3 Decoupled SGDA for two-player federated minimax games

1: Input: step size -, initialization ug, vy

2: Initialize: Ym e [M],ul" — g, y5° — v
3: forre{l,...,R} do

4 Vme [M],uy"" < uj, y,"" < Vj

5: for ke {0,...,K — 1} do

6: for m € {1,..., M} in parallel do

7 Update local model u"}, < u,"" —yV f(u,"",vy"")
8

,T

Update local model v;"}" < v;"" + 4V f(ug"",v;"")

9: end for
10 end for
Srtl ortl
1 aptt e Ly 1uK , vt LM v .
12: Commumcate u’ to all processors w1th v player and v, to all processors with u player
13: end for

14: Output: aft, v

In Algorithm 3, we discuss the distributed version of our method, where two players u and v have
their data distributed across M processors each. At every round, each set of processors update their
local models while having access to an outdated version of the other opponent parameters which
was received at the beginning of the round. By the end of the round, both set of u and v processors
send the their parameters to a central server which will compute the average of the parameters and
send them back to all processors.

Theorem 26. For any K, R, L > 0, u > 0 after running Decoupled SGDA for a total of T = KR
iterations on the problems in the form of (38) in a distributed setting with 2M clients using a stepsize
of v < sgtage, assuming that ||xo — x*||2 < D?, we have the following convergence rate:

KR 96K2L%~y%(2  6KL*y%0? 2vo?
E[Hiﬁ —X*H2] < B?exp (—7M ) + s + I 20 (41)

2 I p? Mu
. . . In(max{2,u?B2K R/c?
Corollary 27. After choosing a stepsize of v = min { 32N‘}<L2, { KR [o"}) , we get a
rate of:
2 2,2 2.2 2
_ 2 ~ w L=(; Loo o
E|[xf - x| =0 (B2exp (~15R) + + + 42)
|| K H p 12 4 R2 K R2 2MKR (
Method Heterogeneous Homogeneous
6 ~ L2¢2 2,2 ~ 2 2,2 2,2
Local SGDA o <p4é/R3 + w2MKR + w3MKR 3LMKR) o (K21R2 + 12nKR + ;L‘f]vIKR u4Z€1K2R2)

2 02 L(* 2 2 (72 2 _4
Local SGD O (LB oxp (— 4 R) + mim + mrir + 72”{2) o (LB oxp (— 4 KR) + iy + —chrr )

~ [ 2 w2 L2¢? L252 o2
Ours O(B exp( LzR)"’ iRzt oigaz T 2MKR>

Table 4: Comparison of Methods in Heterogeneous and Homogeneous Settings

Table 4 compares state-of-art rates for Local SGD, Local SGDA with Federated Decoupled SGDA.
It’s clear that our rate matches the tightest known upper bound for Local SGD in heterogeneous
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regime with ¢, assumption. Note that the condition number x? in the first term of our rate matches
the GDA conditioning. Local SGD achieves a better conditioning of x due to the fact that the prob-
lem is minimization (not minimax). Moreover, our conditioning is much better that Deng & Mahdavi
(2021) with the conditioning x°. In addition, it seems that in the rate of Deng & Mahdavi (2021),
the term that captures heterogeneity (, decreases with taking local steps. However, it contracts some
lower bounds on Local SGD proposed in Patel et al. (2024).

F.3 MISSING PROOFS FOR SECTION F

Lemma 28 (Consensus Error). After running Decoupled Local SGDA for k local steps at some
round v with a step-size of ¥ < szt the error U(x,"") + ®(X],) can be upper bounded as
follows:

S s 2 2 2.0  2Ky0°
m,r —r § ST o*
B[00 ) + O()] < ) ghirs %7 = x| + 32K32¢2 + =27

i=1

+2K~%0%  (43)

In this setting, we have two different errors related to the use of outdated gradients and deviation
from the average iterates. Total error is the sum of both errors. We define the consensus error in this
setting as follows:

m,r 1 g m,r —r 2 m,r 1 g m,r —r 2
W) = D w2 e - v
m=1 m=1

T =7 o7

.y _ 2 2
Q(uy) = |lug —ugl|”, @(vy):=||vg — vl

The total consensus error can be computed by summing both errors with respect to u and v:

W(ug) + ¥(vi) ®(ug) + P(vi)
Consensus error := error caused by + error caused by
deviation from average outdated gradients

In the following, the upper bound for consensus error in different settings will be discussed. Note
that in the case of multi client, we get different upper bounds based on the assumption on data
heterogeneity.
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M M
1 m,T T =T "Y T m,r
M Z E uk7 _'Yvufm(u ’ 7§M) —u + M Z Vufm(uk7 Vo ;fm)
m=1 m=1
M 2
—r —7 ’Y m.,r m,r
E Uy — Uug + M Z Vufm(uk s VO ?gm)
m=1
| M v M 2
M Z E u;cn,r - 'Yvufnz(uzlr7 g”””) - ﬁ; + M Z V“fm(u;ch7V6n’T) +
m=1 m=1
~y M 2 72 2
B I I A
1 - 2K~? M 1<
< (14 = ) E[w(upn) + o(ap)] + E || Vafm (" Vi) = — 3
K m=1 M m=1
2K’)’2 g m,r . m,ry 2 720—2
M n;l]E”vufm(uk aVO’ )” + M +Py o
1 m,r _r 4K’y m.,ry |12 ’720—2
< (14 5 ) Bl + aap] + Z E [Vu (Vg )P+ LT 4 4202
1
1+ ) B ) + o(u)]

4K7

ZEnvufm( PV) = Vafm (85, 95) + Vaf (85, 95| +

7202

M
1 m,r — 8K72 ul m,T m,T _ _ 2
< <1 + K) E[¥(u,"") + ®(u})] + 2 E ||V fon (W™, V) — ¥ fon (5, V)2 +
SK~? o2
; m21E||v A )+ LT 4 50
< <1+[1() E[W(u"") + ®(ay)] + 8K Ly E[¥(u;"")] + 8K L** E[®(v})]+
8K’y 7202
Z ]E”V fm( )” + — i +720'2
= <1 + Il(') E[\II( m, r) +o(a )] +8KL272E[\IJ( m, r) O )]
2 & 2,52
SKFY Z E ”vu.fm( ) Vufm(u*,v*) + vufm<u*,v*)H2 + FYM + 720,2
) E[¥(u)"") + ®(u})] + 8K L*Y*E[¥(u)"") + ®(v})]
2 M
16K7 Z E |V fm (U, vi) — Vufm(u*,v*)H2 + 16K~%¢2 + Too, 252
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we continue:

B + o)) < (14 5 ) B + 0] + SKL B (u™) + o]+

) 7202
6K L2 B |I%}, — x*||* + 16K7°C2 + —— + 770
After doing the same computation with respect to v we get:
E[W(viy)) + @(Viga)]
1 o B
< (1 + K) E[U(v)"") + ®(v})] + 8K L*Y?E[¥(v"") + ®(u)]+

) V202
6K L*y* B[ — x*|I° + 16K + 7 + %0
Now we sum up both inequalities and we get:

E[W(x;)) + ®(Xi11)]

< (1 i 11{) E[W(x"") + B(x})] + S8KL*7* E[¥(x]"") + D(x})] +

2 2

222
200 L 2,

32K L} E||x, — x*||° + 32K~%¢2 +

With the choice of 7 < 35f53 we simplify the above inequality as:

2

32KL2

E|[x; — x| + 32K77¢] +

After unrolling the recursion for the last K steps and considering the fact that (1 + 4 #) K <
4 we have:

=
[N~}
DN
]

L
8KL2

i=1

E[P(x}") + ®(Xf41)] —x*||? + 32K29%¢C2 +

F.4 PROOF OF THEOREM 26
Forany K, R, L > 0, i > 0 after running Decoupled SGDA for a total of 7' = K R iterations on the

problems in the form of (38) in a distributed setting with 2/ clients using a stepsize of v < 55fo7,
assuming that ||xo — x* ||2 < B?, we have the following convergence rate:

*

E|xf —x (44)

KR\ 96K2L27%(2 6KL*y%02  2yo2
2<32exp(—w )+ RSN Ml

2 p? I My
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Prgof. We start by upper bounding the distance between the average iterate u;, ; and the saddle
point.

M M M 9 9
=T v =T ST B m, m, Y =T ST * o
=Eju + 57 Z Vufm (0, Vi) — i Z Vo fm (", vg"") — M Z Vi (W, vi) =l + M
m=1 m=1 m=1
TH g & ’
< (1+7)E 72*77;1vufm(ﬁka‘7;)7u’( +

Q

2\ 72 & s 202
L =) LN B[V fn (], 95) — Vo f (0, v +

m=1

=

For the first term in the above inequality we have:

(1+ %) E a2 f Vo fm (85, V7)) — u*
m=1
= (14 ) Ellag - 1 Vus @ vp) - u)?
= (1 ) E [lg — I + 2 IVus (@5, ) I = 2905 — ', Vi (G5, 970))
< (14 Z) B | +9222) [a; — w' P - 29¢8; — u*, Vuf (85, 5) |

For the second term we also have:

M
2 Y —r =7 m,r m,ry 2
(1 + 2 ) = E E\Vufm (@), Vi) — Vo fm(u," v )|l

1242 Y 2 ( 2)L272 A 2
+ Ela, —w """+ (1+— E|v, -V
)5 X el o) LB

L E[W(u)] + (1 " fu) L2y E[8(¥])]
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Where in the last line, we used the fact that v(;"" = v{,. We then repeat the same computation with
respect to v.

_r |2
E [V — V" =
M 2
=E|v} + % Z Vo fm(ug™ vy &m) — v*
m=1
y M 2 ~o?
<E V£+Mm:1vvfm(u0 T, kmr)*v* +ﬁ
y M v M 5 M 2 o?
=E|\Vh+ 57 2 Velm(g" Vi) = 5 31 Vo Fn(Wh, Vi) + 50 Y Vafm(@ Vi) = v+ s
m=1 m=1 m=1
M 2
’yl’l/ =T ’y —7r =T *
<<1+7)E vk+Mn;1VUfm(uk7vk)—v +
2 ’72 < —r = r o m,ry 2 70-2
1 — | 3s E vv m ) k Vv m ’ a5
(1 20) 37 20 BTt ¥ — Vo I+ T
For the first term in the above inequality we have:
M 2
’}/,U/ —r Y =7 o7 *
(1 + 7) E||lvy + U mzzll Vofm(Qg,vE) — v

= (14 2 E 95 + 990 (a5, 95) = v
TH ST * =T oT * ST =T ST
= (1 BV E (195 = VI + A2 Vo (85, V5 P = 2000 = V5, Vo f (85, 97)

TH o7 * (|2 * ST =T ST
< (1+ D) B[+ 2L 195 = v I = 29V = 9, V£ (5], 7))
For the second term we also have:

2 ’}/2 M _ _ 2
1+7 L E vv mur’vr _vv mum,r7vm,r
(14 2) 27 30 BITuhn (G, 0) = Vb 7]

m=1

2\ L2y2 Y& ) 2\ L2y2 ¥ 5
< 1+> E |laj — ug||” + (1+> E (v — v
( ) M mz=:1 e ) M mz=:1 e

2 2
=(1+ ) L*E[®(u})] + (1 + > L E[U (v
(1+2) oo+ (1+ 2) e mfuep
Summing up the results from the inequalities with respect to u and v gives us:
o w12
E||%51 — x|

[ o * ST * ST 2L2 ST m,r 720—2
< (1+ B E [0 +9212) 1%, — x| = 29(%5 — ", F&)| +9 (W * M) E[(%}) + U (x")] +

M
<(1+%)E

2712 ST * (12 ST * (12 2 2L2 ST m,r 720—2
(L+7L7) 1% —x*[|" = 2yp % — x| + v (7L e E[®(xE) + 0"+ 7

ﬁY I =T * 2L2 =T m,r 720—2
- (1+ TV E[a -2y + 7)) % — x ||2]+7(7L2+u)E[@(xW@(xk 1+
With the choice of v < 147z we have:
_r %12
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We change the current notation for simplicity in proof by substituting r and k with ¢. ¢ varies from
0toT = KR, iterating over all rounds and local steps:

— * (12 237# — * (12 337:“’ : — * (12
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i=max{0,t—K+1}
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Here we use the Lemma 11 with the following parameters,
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The final inequality is:
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Recall that we assumed v = 3557 so we have:
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By settingt = T' = RK, we get:
KR 96K2L%y2%(2 6KL*y%0? 2y0?
’)//j,) E”XO 7X*H2 + Y C* + Vo + Yo

Eflxr —x*|* < (1-

2 u? u? Mp
96K2L2~2(2  6KL27%0%  2y0?
< exp (f%KR>E||x0—X*H2+ /FWC + M:” + ]\Z

We can see that with this inequality we can only guarantee convergence to a neighborhood of x*.
To obtain a convergence the final, as discussed in Stich (2019), we need to choose the step size
Carefully If & > In(max{2,u*||x0—x*||2T?/0?}) In(max{2,u*||x0—x*||2T?/0?})

then we choose v =

32K L? w uT
.. 1 1n(max{2,u4HXO*X*”2T2/02}) = M __
otherwise if 55/7= < T then we choose v = 5547»

we can see that with these choices, we would have:
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G DECOUPLED SGDA WITH GHOST SEQUENCE

In this section, we introduce a new extension to the Decoupled SGDA algorithm called Ghost Se-
quence. The base Decoupled SGDA algorithm, explained earlier, is designed to take advantage
of problems with a dominant separable component. It minimizes communication complexity by
reusing outdated strategies, which has already been analyzed theoretically in the prevous sections.

However, we can push this idea further by not just reusing old strategies but also predicting the
opponent’s next move. This smarter approach opens up a new line of research, where more advanced
methods can be explored for estimating the opponent’s strategy, offering directions for future work.

To demonstrate the potential of this approach, we propose Decoupled SGDA with Ghost Sequence.
The main idea is for each player to predict (or approximate) the next move of the opponent based
on their previous actions and behaviour. This is achieved by computing the difference between
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successive strategies during synchronization. Using this information, each player can update both
their own and their opponent’s parameters, leading to improved performance. As shown in Figure
8, Decoupled SGDA with Ghost Sequence can greatly improve the algorithm’s performance. It also
achieves faster communication, even in highly interactive games, and does not require the problem
to be weakly coupled.

For more details, refer to Algorithm 4.

Algorithm 4 Decoupled SGDA with Ghost Sequence

1: Input: Step size v, initial strategies xo = (ug, vg), total rounds R, local updates K
2: forre{l,...,R} do

3:  Calculate guess AL, — +(uf —uj ')

4: Calculate guess AT, «— & (v — v )

5: fort€{0,...,K —1} do

6: Update ghost sequence Vi, < Vi ; + Aj

7 Update local strategy uj, ; < uj — vV, f(uj,vj ;&)
8: Update ghost sequence ;| < 0y, ; + A}

9: Update local strategy vi, , < vi + vV, f(aj ,v};&)
10: end for
11: Communicate (u’, v’ ) to other players
12: end for

13: Output: Final strategies x2 = (0, vE)

Trajectories for C=25 R Trajectories for C=15 X Trajectories for C=5 K Trajectories for C=0.1
s GDA

= Ghost Decoupled SGDA
¢ Decoupled SGDA

Coordinat

Figure 8: Trajectories and convergence comparison of GDA,Decoupled SGDA and Decoupled SGDA with
Ghost Sequence with different values of C = CT (interaction strength). The top row shows the trajectories
of the different algorithms for K = {1, 5} over varying values of C' € {25,15,5,0.1}. As C decreases, tra-
jectories become more stable, with the Decoupled SGDA with Ghost Sequence (blue) showing more efficient
convergence compared to GDA (black) and Decoupled SGDA (red). The bottom row presents the synchroniza-
tion rounds versus distance to equilibrium for each configuration, highlighting faster convergence of Decoupled
SGDA with Ghost Sequence under larger C values, while Decoupled SGDA with Ghost Sequence and Decou-
pled SGDA converge similarly for small C.

H ADDITIONAL EXPERIMENTS

H.1 FINDING THE STATIONARY POINT DECOUPLED SGDA FOR NON-CONVEX FUNCTIONS

Here, we add one more figure for the toy GAN problem to provide further insight into the behavior
of Decoupled SGDA.
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Figure 9: Trajectories (top row) and distance to equilibrium over synchronization rounds (bottom row)
of GDA (K = 1) and Decoupled SGDA with K = {2,5} on the (toyGAN) problem (d = 2). C in
(QG) is a constant here—the larger, the stronger the interactive term. Left-to-right: decreasing the constant
c € {10,3.5,2,7,0}.

H.2 MORE FIGURES DECOUPLED SGDA WITH GRADIENT APPROXIMATION

In this experiment (Figure 10), Decoupled SGDA achieves lower gradient norms in fewer communi-
cation rounds compared to Local SGDA, especially as interaction noise increases (larger ¢). Decou-
pled SGDA shows much more stability in high-noise environments, highlighting its effectiveness in

dealing with noisy gradients when compared to federated minimax settings.
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Figure 10: Comparison of Decoupled SGDA and Local SGDA under different noise settings. Each plot
shows the smallest gradient norm achieved by both algorithms over 100 communication rounds, with varying
interaction levels and noise variances. Top Row: Different settings of noise variances in off-diagonal entries
(interaction noise). Left to Right: Increasing values of the constant c controlling the interactive term’s strength
in the game. Decoupled SGDA consistently outperforms Local SGDA in scenarios where off-diagonal noise is
significant, achieving lower gradient norms with fewer communication rounds.
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I EXPERIMENTAL SETUP

I.1 FINDING THE SADDLE POINT OF QUADRATIC GAMES

In the first experiment , we conducted tests with a dimensionality of D = 2 over R = 31 synchro-
nization rounds. The values of K tested were 1, 2, and 5, alongside parameter combinations (a, b, ¢)
setas (1,10,10), (1, 10,3.5),(1,10,2.7), and (1, 10, 0). For each combination, we explored gamma
values uniformly spaced in the interval [0.0001, 0.1]. The algorithm initializes « and y at 1 and —1
respectively and updates these variables based on the gradients g, and g, computed using the defined
parameters.

For the second experiment, in the left figure, eigenvalues were sampled logarithmically between
10~15 and 105, with random symmetric positive definite matrices generated for each. We tested
agent counts K as [1,2, 5,10, 50] and learning rates y from 10719 to 1. The algorithm ran for R =
10° rounds, adjusted based on eigenvalue size, to measure the average distance from equilibrium
until it fell below ¢ = 10~%. Results were plotted to illustrate the relationship between A,q.(C)
and the number of rounds required for convergence.

For the left figure, we generated random symmetric positive definite matrices as oracles, varying
the maximum eigenvalue of the matrix C' using logarithmic spacing between 10~1® and 10'->. The
accuracy threshold is set to e = 10~*. We evaluated five algorithms: GDA, Decoupled GDA, Op-
timistic, Alternating Gradient Descent, and Extragradient, with K fixed at 50. Each algorithm was
executed for R = 10° rounds, determined based on the maximum eigenvalue, and their performance
was assessed by the number of rounds required to achieve € accuracy.

1.2 DECOUPLED SGDA WITH GRADIENT APPROXIMATION

In this experiment, we analyze the performance of Decoupled and Local Stochastic Gradient De-
scent (SGDA) algorithms under varying conditions. We define oracles based on random symmetric
positive definite matrices, with a fixed number of rounds R = 100 and K = 40. The maximum
eigenvalues of matrices C' are sampled logarithmically between 10~-25 and 10!, while off-diagonal
variances range linearly from 1 to 10. For each maximum eigenvalue, we generate correspond-
ing matrices and evaluate the algorithms across five trials to determine the lowest gradient norm
achieved. Results are aggregated and visualized in two plots: one depicting the relationship between
the maximum eigenvalue of C' and the minimum gradient norm, and the other illustrating the effect
of varying off-diagonal variance on algorithm performance.

1.3 COMMUNICATION EFFICIENCY OF DECOUPLED SGDA FOR NON-CONVEX FUNCTIONS

In this experiment, we investigate the performance of Decoupled Single Oracle GDA under various
settings of A and K. We evaluate the gradient norm achieved over R = 100 communication rounds.
The X values are sampled logarithmically between 104 and 103, while K values range from 1
to 5. For each combination of A and K, we compute the lowest gradient norm over 5 independent
trials. The gradient norms are averaged and plotted, with vertical lines marking the transition to
the weakly coupled regime at A = 50. The final results show the relationship between A and the
minimum gradient norm for different values of K, highlighting the weakly coupled regime.

1.4 COMMUNICATION EFFICIENCY OF DECOUPLED SGDA IN GAN TRAINING

In this experiment, a Generative Adversarial Network (GAN) was trained using the CIFAR-10 and
SVHN datasets, both resized to 32 x 32 pixels. The GAN was trained with a learning rate of 1 x 1074,
a batch size of 256, and 50,000 rounds of updates. The hidden dimension size for the generator was
128. For evaluation, 256 samples were used to compute the Fréchet Inception Distance (FID) every
200 iterations. Both the generator and discriminator were optimized using the Adam optimizer, with
a learning rate scheduler that decayed by a factor of 0.95 every 1000 steps. Additionally, a gradient
penalty term was applied to stabilize training. The generator’s latent space dimension was set to
100, and its Exponential Moving Average (EMA) was maintained with a decay factor of 0.999 for
evaluation purposes. Training was conducted using CUDA on an NVIDIA L4 GPU.
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The Generator uses a series of transposed convolutions, starting from a 100-dimensional latent vec-
tor, to generate a 32 x 32 x 3 image, with BatchNorm and ReLU, ending with a Tanh activation.
The Discriminator applies four convolutional layers to downsample the input, using LeakyReLU
and BatchNorm, and outputs a real/fake probability through a Sigmoid activation.
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