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Abstract

This paper presents MPAX (Mathematical Programming in JAX), a versatile and ef-
ficient toolbox for integrating linear programming (LP) and quadratic programming
(QP) into machine learning workflows. MPAX implements the state-of-the-art
first-order methods, restarted average primal-dual hybrid gradient and reflected
restarted Halpern primal-dual hybrid gradient, to solve LPs and QPs in JAX. This
provides native support for hardware acceleration along with features such as
batch solving, auto-differentiation, and device parallelism. Extensive numerical
experiments demonstrate the advantages of MPAX over existing solvers.

1 Introduction

Linear programming and quadratic programming have long served as foundations across numerous
fields, such as operations research, economics, and engineering, providing powerful robust tools for
optimization and decision-making. Recently, these techniques have also found significant applications
in machine learning. Notable examples include data-driven decision making [9, 20], learning with
physical constraints [7, 10], learning to rank [6], end-to-end planning and control [2], among many
others. The efficiency and effectiveness of these machine-learning approaches depend largely on the
rapid processing of large-scale datasets, facilitated by parallel hardware accelerators such as graphics
processing units (GPUs).

In contrast, traditional approaches to linear programming are not well suited for machine learning
tasks. Broadly, there are two major paradigms for integrating mathematical programming with
machine learning. The first approach involves migrating data from the GPU to the CPU, using
commercial solvers like Gurobi on the CPU to solve the optimization problem, and then transferring
the solution back to the GPU [9, 20, 23]. While these solvers are robust and reliable, frequent transfers
of large-scale data between the CPU and GPU introduce significant overhead, often negating the
efficiency gains achieved by using mature solvers. To address this limitation, recent efforts have
focused on implementing optimization solvers natively on hardware accelerators. Examples include
qpth [3] and qpax [24] that use interior-point methods (IPMs), and osqpth [22, 21], which employs
the alternating direction method of multipliers (ADMM). While these methods reduce the need for
multiple rounds of CPU-GPU communication, their primary bottleneck is the linear system solving
step, which tends to be inefficient for large-scale problems and is not fully suitable for parallel
accelerators.

To address the aforementioned limitations, we introduce MPAX (Mathematical Programming in
JAX), a versatile and efficient toolbox for integrating linear programming into machine learning
workflows. MPAX is built on two key pillars: recent advancements in first-order methods for solving
classical linear programming problems, and the rapid progress of modern programming languages on
contemporary computational platforms. From an algorithmic perspective, MPAX employs matrix-
free first-order methods (FOMs) whose primary computational bottleneck is merely matrix-vector
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multiplication. Although FOMs have traditionally been considered less performant than IPM-based
solvers, recent works such as cuPDLP [13, 16, 12] and PDQP [14] demonstrate that FOMs can
achieve competitive numerical performance on GPUs, making them potentially suitable for general-
purpose solvers. This efficiency is largely driven by the massive parallelization capabilities of GPUs
for matrix-vector multiplications. Additionally, MPAX is implemented in JAX, offering a unified
framework with several valuable features, including native support for CPUs, GPUs, and TPUs,
batched solving of multiple instances, auto-differentiation, and efficient device parallelism. The use
of JAX simplifies downstream applications and ensures seamless integration into machine learning
pipelines, enhancing both flexibility and performance.

2 MPAX: Math Programming in JAX

MPAX is a hardware-accelerated, batchable, and differentiable solver built entirely in JAX, designed
to address classic optimization problems encountered in data science and machine learning. MPAX
supports general linear programs (LPs) and quadratic programs (QPs) formulated in the following
form

min
l≤x≤u

c⊤x

s.t. Ax = b, Gx ≥ h
(LP)

min
l≤x≤u

1
2x

⊤Qx+ c⊤x

s.t. Ax = b, Gx ≥ h
(QP)

where G ∈ Rm1×n, A ∈ Rm2×n, Q ∈ Rn×n, c ∈ Rn, h ∈ Rm1 , b ∈ Rm2 , l ∈ (R ∪ {−∞})n,
u ∈ (R ∪ {∞})n. As its core, MPAX has implemented the restarted average Primal-Dual Hybrid
Gradient (raPDHG) algorithm for LPs and QPs, and the reflected restarted Halpern Primal-Dual
Hybrid Gradient (r2HPDHG) algorithm for LPs. Both algorithms build upon the vanilla PDHG
framework and incorporate several enhancements to improve performance, including preconditioning,
adaptive restart, adaptive step-size, primal weight update, infeasibility detection, and feasibility
polishing. Full algorithm details of raPDHG and r2HPDHG are provided in Appendix A. For further
background on raPDHG and r2HPDHG, we refer the readers to prior works [13, 15, 14].

The overall design of MPAX is illustrated in Figure 1. The process begins with preconditioning
to improve the condition number of the input LP or QP instance. By default, MPAX applies two
diagonal preconditioners: Ruiz scaling [19] and Pock and Chambolle’s diagonal scaling method [17].
After preconditioning, raPDHG iterations or r2HPDHG iterations begin on the scaled LP or QP, with a
heuristic line search to determine an appropriate step size. During the iterations, three key conditions
are periodically evaluated (by default, every 64 iterations): termination, restart, and infeasibility
detection. For the restart condition, MPAX relies on the KKT error for raPDHG and the fixed-point
residual for r2HPDHG. When a restart occurs, the primal weight is updated to better harmonize the
primal and dual spaces. Iterations terminate when the relative KKT error, including duality gap,
primal feasibility, and dual feasibility, satisfies the specified termination tolerance. As a final step,
feasibility polishing is applied after the PDHG iterations to further enhance the feasibility of the
solution. This ensures the final output meets the feasibility requirements of real-world applications.
The rest of this section introduces the advanced features of MPAX, most of which are not supported by
previous Julia implementations [13, 15] and play an important role in machine learning applications.

2.1 Matrix Format

A key feature of MPAX is its support of both dense and sparse formats for the constraint matrix,
providing flexibility to handle a wide range of LP and QP structures efficiently. The computational
bottleneck of both raPDHG and r2HPDHG algorithms lies in matrix-vector multiplication, which has
been fully optimized in JAX for both sparse and dense matrices to maximize performance. However,
mismatches between the matrix format and the actual data structure, such as storing a dense matrix
in a sparse format or vice versa, can significantly impact computational efficiency. To address this,
MPAX automatically follows the input matrix format to ensure that computations align with the
structure of the given instance, thereby maintaining optimal efficiency and performance. In addition
to natively accepting explicit vector and matrix inputs, MPAX also supports higher-level modeling
via CVXPY [8] and integrates with the differentiable-optimization packages cvxpylayers [1] and
PyEPO [23] for end-to-end training.

2



Preconditioning

raPDHG / r2HPDHG

Infeasibility Detection

Progress Metric Evaluation

Feasibility Polishing

LP/QP instances

MPAX

Solutions

Figure 1: Design of MPAX

2.2 Just-in-time complication

Just-in-time (JIT) compilation is a critical feature of JAX, enabled by its XLA compiler, which
translates high-level Python functions into highly optimized, hardware-specific executable code. This
process combines operation fusion, parallel execution, and hardware-level optimization, significantly
improving computational performance. In MPAX, the implementations of raPDHG and r2HPDHG
are designed to fully utilize JAX’s JIT capabilities. By employing the control flow operators in JAX,
MPAX ensures efficient computation graph optimization and execution. While the first JIT invocation
incurs compilation overhead, subsequent iterations benefit from precompiled code, significantly
improving the overall performance of raPDHG and r2HPDHG.

2.3 Batched solving

MPAX supports efficient batch-solving of instances with identical shapes on a single accelerator,
such as a GPU or TPU, through automatic vectorization. Specifically, it transforms each primitive
operation into its batched equivalent using predefined batching rules. For example, a vector-vector
multiplication can be transformed into a matrix-vector multiplication, allowing multiple operations to
be executed in parallel within a single batched computation. This abstraction eliminates the need for
explicit for-loops, reducing computational overhead and fully utilizing modern hardware’s parallel
processing capabilities. By solving multiple instances simultaneously, MPAX aligns with the batched
computation paradigm commonly used in neural network training, where batch processing enhances
both efficiency and scalability. This makes MPAX particularly effective for applications requiring the
simultaneous solution of numerous similar optimization problems.

2.4 Auto-differentiation

Automatic differentiation is a key feature of MPAX. In JAX, explicit differentiation can be easily
achieved by unrolling algorithms using the automatic differentiation system, which works for QPs.
However, in the context of LP, the inherent discontinuity of LP solutions presents challenges for
gradient computation. To address this, surrogate loss functions, such as the SPO+ loss and the PFYL
loss, are used to approximate decision errors and their gradients. These surrogate losses can be
seamlessly integrated into the chain rule by leveraging JAX’s custom derivative rules. These loss
functions typically require a forward pass to compute optimal solutions or decision losses and a
backward pass to calculate gradients. The resulting gradient allows machine learning models to learn
from decision errors or their approximations.

2.5 Device Parallelism

MPAX supports automatic device parallelism by combining just-in-time compilation with data-
sharding techniques. Since GPUs/TPUs typically have less memory than CPUs, solving large-scale
LP and QP problems might require distributing data across multiple devices. For these problems, the
constraint and objective matrices are usually the most memory-intensive components, making them
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the primary candidates for sharding. The device parallelism process begins by defining a mesh of
devices with named axes, which organize and align the data for parallel computation. The matrix
is then split into smaller shards, each sized to fit within a single device’s memory. Once the data is
sharded, it is passed to the JIT-compiled solve function and the JAX compiler automatically manages
data partitions and inter-device communication, ensuring efficient memory usage and synchronization.

2.6 Warm start

By default, MPAX initializes with all-zero vectors as the starting point. However, it also supports a
warm start with user-provided solutions, which may include a primal solution, a dual solution, or a
pair of both. In many machine learning applications, solvers are frequently used to solve a series of
similar problem instances where the input data undergoes only minor changes. Although the choice
of warm-start strategy is typically problem-dependent, providing a well-suited warm start for both
raPDHG and r2HPDHG can significantly accelerate their convergence.

3 Experiments

In this section, we present the empirical results for the Warcraft shortest path problem and multi-
dimensional knapsack problem that highlight the efficiency of MPAX. Although both problems are
typically formulated as integer linear programming (ILP) problems, prior research [23] indicates that
the performance difference between solving the ILP and its LP relaxation is negligible. Therefore,
we use the LP relaxation of these two problems for our experiments.

We evaluate the computational efficiency of MPAX by comparing it with state-of-the-art commercial
and open-source solvers, including Gurobi, OSQP, and SCS. Specifically, we access OSQP and SCS
through the CvxpyQP wrapper in JAXOpt [5]. We use FLAX to construct neural networks and
employ MPAX and JAXOpt to solve the resulting LP problems. For Gurobi, we rely on the PyEPO
package, which uses PyTorch to build neural networks and Gurobi to solve LP problems. To measure
performance, we use the SPO+ loss [9] in the training process and normalized regret as the evaluation
metric, defined in Eq. (2).

∑ntest

i=1 c⊤(x∗(ĉi)− x∗(ci))∑ntest

i=1 |x∗(ci)|
(2)

For the raPDHG and r2HPDHG algorithm, we set the restart frequency to 64 iterations and set
termination tolerance to ϵ. When warm start is enabled, the average solution from the last iteration
is used as the initial starting point. Otherwise, all-zero vectors are used as the initial starting points.
Feasibility polishing is disabled during the training process. Since double precision is standard in LP
optimization algorithms, we evaluate the performance of raPDHG and r2HPDHG exclusively in the
double-precision setting to ensure consistency with common LP solver practices.

In PyEPO, we set processes to 16 to enable parallel computing for the forward and backward
passes. By default, Gurobi chooses one from the primal simplex, dual simplex, or barrier methods to
solve an LP when limited to a single thread. For OSQP and SCS, we use their default settings and
run 16 parallel threads to solve LPs.

Computing environment. We use NVIDIA A100-PCIe-80GB GPU, with CUDA 12.4, for running
MPAX, FLAX and PyTorch, and use Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz with 256GB
RAM and 16 threads for running Gurobi 11.0.3, OSQP 0.6.7 and SCS 3.2.7.

3.1 Warcraft Shortest Path

We use the dataset introduced by [18] for the Warcraft shortest path problem. An example of the
Warcraft terrain map, vertex cost and shortest path in the dataset is provided in Figure 3 in Appendix
B.1. In this task, the objective is to determine the shortest path between the top left and bottom right
vertices on a Warcraft terrain map represented as a k × k 2D grid. The traversal cost of each vertex is
unknown and dependent on the terrain type in the map image. The dataset includes Warcraft terrain
maps of four different sizes, where k ∈ {12, 18, 24, 30}. For each size, the training set contains
10,000 RGB images and the test set includes 1,000 RGB images. In line with [18], we use the first five
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layers of ResNet [11], followed by a max-pooling operation, to extract the latent costs for the vertices.
The LP formulation of the 2D grid shortest path problem is formulated as Eq.(7) in Appendix B.2
and we use the sparse matrix format when using MPAX. The model is trained over 10 epochs to
minimize the SPO+ loss using the Adam optimizer with a learning rate of 10−4 and batch size of 70.

The loss and normalized regret are presented in Figure 4 in Appendix B.3. The raPDHG and
r2HPDHG algorithms in MPAX achieve performance comparable to Gurobi’s default and barrier
methods when the optimality tolerance (ϵ) ranges from 10−3 to 10−6. Specifically, both the loss
and normalized regret curves of r2HPDHG closely align with those of Gurobi across this range. A
looser tolerance of ϵ = 10−2 results in slightly higher regret, indicating that ϵ = 10−3 offers the best
trade-off between accuracy and computational cost for this problem.

The results for training time per epoch are presented in Table 1. Notably, OSQP fails to complete
the training process for all problem sizes, so its results are omitted. Overall, the r2HPDHG imple-
mentation with warm starts in MPAX demonstrates the best performance among all tested methods.
Notably, the advantage of FLAX+MPAX over FLAX+JAXOpt and PyEPO+Gurobi becomes more
pronounced as the problem size increases. For instance, when k = 30, FLAX+MPAX requires only
half the training time compared to PyEPO+Gurobi. Consistent with the findings in [15], r2HPDHG
needs fewer iterations to converge than raPDHG. Furthermore, for both algorithms, employing a
warm start accelerates convergence, reducing the number of iterations by approximately 30% and
cutting training time by about 25%. This trend is supported by the iteration count distributions shown
in Figure 2. Although some instances require more iterations to converge, MPAX remains robust
across different problem sizes and optimality tolerances. Despite this variability, the warm start
strategy effectively reduces both the average and maximum number of iterations. This alleviates
bottlenecks in batch solving and enhances overall efficiency and scalability.

Table 1: Comparison of the training time per epoch for raPDHG and r2HPDHG to converge.

Framework Algorithm ϵ
Training time per epoch

k=12 k=18 k=24 k=30

FLAX + MPAX raPDHG

10−2 35.1 64.6 110.0 187.5
10−3 38.4 72.5 127.3 211.3
10−4 41.8 83.8 148.6 243.1
10−6 44.7 92.5 163.4 269.3

FLAX + MPAX raPDHG
(warmstart)

10−2 20.5 44.2 71.0 98.7
10−3 26.9 54.1 92.2 143.8
10−4 30.7 64.7 111.3 177.1
10−6 33.1 70.1 123.7 194.7

FLAX + MPAX r2HPDHG

10−2 28 53.9 85 138
10−3 35.1 70.8 111 178.2
10−4 39.9 78.3 124.8 202.7
10−6 42 84 131.1 215

FLAX + MPAX r2HPDHG
(warmstart)

10−2 18.7 33.3 55.8 93.5
10−3 25.8 47.3 79.3 129.2
10−4 29.6 53.6 88.7 144.9
10−6 32.2 59.5 94.6 154.8

FLAX + JAXOpt SCS 10−4 389.4 1024.4 2512.7 5614.6

PyEPO + Gurobi Default 10−6 25.9 70.7 157.8 313.8

3.2 Multi-dimensional Knapsack

We consider a multi-dimensional knapsack problem with unknown item values, as described in
[23, 9]. This problem involves two main tasks: a prediction task to estimate the values of items and an
optimization task to maximize the total value of items selected for the knapsack within the capacity
limit. The synthetic dataset of item values is generated using the same polynomial function as in
[23, 9] with noise half-width changes between 0 and 0.5. The item weights are randomly sampled
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Figure 2: Distribution of the number of iterations for raPDHG and r2HPDHG on the Warcraft shortest
path problem.

from 3 to 8 and remain fixed throughout the dataset. To evaluate the robustness of MPAX, we tested
the multi-dimensional knapsack problem across various sizes, using instances with 10,000 and 20,000
items. The capacity is set to 500 and the dimension of resources is varied among 10, 20, 50, and 100.

For the prediction model, we employ a four-layer MLP with hidden layers consisting of 32, 128,
512, and 2048 units, respectively. ReLU is used as the activation function for all hidden layers and
the output layer. The model is trained using the Adam optimizer with a learning rate of 0.001 for
10 epochs, minimizing the SPO+ loss. Training is performed on a dataset of 4,000 samples and
the model’s performance was evaluated on a separate test set of 1,000 samples. We set a time limit
of 2 hours per epoch for training. The formulation of the LP relaxation for the multi-dimensional
knapsack problem is presented in Appendix C.1. In contrast to the Warcraft shortest path problem,
the knapsack problem’s constraint matrix is fully dense, requiring us to use the dense matrix format
when testing MPAX.

The results of training time per epoch for MPAX and Gurobi are presented in Table 3.2 and the
normalized regret calculated on the test set is presented in Table 3 in Appendix C.2. Notably, both
OSQP and SCS fail to complete one training epoch within the 2-hour time limit, so their results are
omitted. These results together demonstrate that MPAX outperforms PyEPO+Gurobi, JAXOpt+SCS,
and JAXOpt+OSQP by achieving comparable normalized regret in less training time. In particular,
compared to PyEPO+Gurobi, MPAX reduces training time by half for large instances. Moreover,
both raPDHG and r2HPDHG in MPAX exhibit robust performance across different problem settings,
including variations in the number of items, dimensionality, and noise levels.

Table 2: Training time per epoch for the multi-dimensional knapsack problem. d represents the
number of dimensions in the knapsack problem.

Noise
half-width Framework Algorithm # of items =10000 # of items =20000

d=10 d=20 d=50 d=100 d=10 d=20 d=50 d=100

0
FLAX+MPAX raPDHG 12.7 21.2 46.7 88.0 21.7 38.3 86.0 186.9
FLAX+MPAX r2HPDHG 11.9 24.1 38.7 70.9 20.9 44.1 71.9 146.1
PyEPO+Gurobi Default 18.0 23.8 89.9 163.1 31.2 42.8 151.8 300.6

0.5
FLAX+MPAX raPDHG 12.4 18.7 32.8 58.9 20.4 33.0 64.2 119.2
FLAX+MPAX r2HPDHG 12.2 21.6 29.6 51.5 20.6 40.7 58.7 105.2
PyEPO+Gurobi Default 18.9 25.6 94.6 119.2 33.2 51.7 159.4 225.5

4 Conclusion

In this paper, we present MPAX, a hardware-accelerated, differentiable, batchable and distributable
solver for linear programming in JAX. It is designed to address optimization problems encountered
in machine learning workflows and our experiments highlight its superior performance compared to
traditional solvers, particularly for large-scale applications. While MPAX currently supports linear
programming and quadratic programming, future work will extend its capability to more general
mathematical programming problems and specialized modules for common machine-learning tasks.
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A Algorithms

Both raPDHG and r2HPDHG solve (LP) and (QP) problems by addressing their primal-dual form:

min
x∈X

max
y∈Y

L(x, y) := c⊤x− y⊤Kx+ q⊤y , (3)

min
x∈X

max
y∈Y

L(x, y) :=
1

2
x⊤Qx+ c⊤x− y⊤Kx+ q⊤y , (4)

where K⊤ =
(
G⊤, A⊤) and q⊤ :=

(
h⊤, b⊤

)
, X := {x ∈ Rn : l ≤ x ≤ u}, and Y := {y ∈

Rm1+m2 : y1:m1
≥ 0}.

A.1 raPDHG

Let z = (x, y) represent the primal-dual pair, and let zk+1 = PDHG(zk) denote a single PDHG
iteration, defined by the following update rule:

xk+1 ← projX(xk − τ(c−K⊤yk))

yk+1 ← projY (y
k + σ(q −K(2xk+1 − xk))) ,

(5)

However, the performance of the vanilla PDHG method for solving LPs is insufficient for general-
purpose solvers [4]. To address this, several algorithmic enhancements have been proposed, including
an averaging and restart scheme, adaptive step sizes, primal weighting, and preconditioning [4]. The
PDHG method augmented with the averaging and restart scheme is referred to as raPDHG.

A.2 r2HPDHG

The update rule for Halpern PDHG with reflection is given by:

zk+1 :=
k + 1

k + 2
(2 · PDHG(zk)− zk) +

1

k + 2
z0 , (6)

In this formulation, the next iterate is a weighted average of a reflected PDHG step (2·PDHG(zk)−zk)
and the initial solution z0. The restarted version of Halpern PDHG with reflection, denoted as
r2HPDHG, offers strong theoretical guarantees and achieves significant speedups over raPDHG [15].
The detailed steps of r2HPDHG is presented in Algorithm 2.
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Algorithm 1: Restarted average PDHG (raPDHG)

Input: Initial point z0,0; outer counter n← 0; total iterations k ← 0; primal weight
ω0 ← INITIALIZEPRIMALWEIGHT(c, q)

1 repeat
2 t← 0;
3 repeat
4 zn,t+1 ← ADAPTIVESTEPPDHG(zn,t, ωn);
5 z̄n,t+1 ← WEIGHTEDAVERAGE(zn,0, ..., zn,t+1);
6 zn,t+1

c ← GETRESTARTCANDIDATE(zn,t+1, z̄n,t+1);
7 t← t+ 1;
8 k ← k + 1;
9 until restart or termination criterion holds;

10 zn+1,0 ← zn,tc ;
11 n← n+ 1;
12 ωn ← PRIMALWEIGHTUPDATE(zn,0, zn−1,0, ωn−1);
13 until termination criterion holds;

Algorithm 2: Reflected restarted Halpern PDHG (r2HPDHG)

Input :Initial point z0,0, outer loop counter n← 0, inner loop counter k ← 0.
1 repeat
2 initialize the inner loop counter k ← 0;
3 repeat
4 zn,k+1 ← reflected-H-PDHG(zn,k; zn,0);
5 k ← k + 1;
6 until restart condition holds;
7 initialize the initial solution zn+1,0 ← PDHG(zn,k);
8 n← n+ 1;
9 until zn+1,0 convergence;

B Warcraft Shortest Path Problem

B.1 An example of the Warcraft terrain map, vertex cost and shortest path
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Figure 3: Warcraft shortest path dataset: Warcraft terrain map (left), vertex traversal cost (middle)
and shortest path (right)
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B.2 LP relaxation of the Warcraft shortest path problem

The LP relaxation of the Warcraft shortest path problem is formulated as follows.

min
∑

(i,j)∈E

ci,jxi,j

s.t.
∑

j:(s,j)∈E

xs,j −
∑

i:(i,s)∈E

xi,s = 1

∑
j:(t,j)∈E

xt,j −
∑

i:(i,t)∈E

xi,t = −1

∑
j:(v,j)∈E

xv,j −
∑

i:(i,v)∈E

xi,v = 0, ∀v ∈ V \ {s, t}

0 ≤ xi,j ≤ 1, ∀(i, j) ∈ E.

(7)

where V is the set of nodes, s is the source node, t is the sink node, E is the set of edges, ci,j is the
cost associated with travelling along edge (i, j), and x is the flow along edge (i, j).

B.3 The loss and normalized regret curve of the Warcraft shortest path problem
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Figure 4: The loss and normalized regret curve of the Warcraft shortest path problem

C Multi-dimensional knapsack problem

C.1 LP relaxation of the multi-dimensional knapsack problem

The formulation of the LP relaxation for the multi-dimensional knapsack problem is presented as Eq.
(8).

max

N∑
i=1

cixi

s.t.
N∑
i=1

wi,jxi ≤ hj , ∀j = 1, . . . , d, 0 ≤ xi ≤ 1, ∀i = 1, . . . , N.

(8)

where xi is the decision variable denoting whether to include the item, ci is the value of each item,
wi,j is the weight of each item, hj is the capacity of the knapsack, N is the number of items and d is
the number of dimensions.
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C.2 Normalized regret for the multi-dimensional knapsack problem on the test set

Table 3: Normalized regret for the multi-dimensional knapsack problem on the test set. d represents
the number of dimensions in the knapsack problem.

Noise
half-width Framework Algorithm # of items =10000 # of items =20000

d=10 d=20 d=50 d=100 d=10 d=20 d=50 d=100

0
FLAX+MPAX raPDHG 1.2% 0.7% 0.8% 0.5% 0.9% 0.8% 0.7% 0.6%
FLAX+MPAX r2HPDHG 1.1% 0.7% 0.8% 0.5% 0.9% 0.8% 0.7% 0.6%
PyEPO+Gurobi Default 0.9% 1.2% 0.7% 0.8% 1.0% 0.8% 0.8% 1.0%

0.5
FLAX+MPAX raPDHG 22.4% 23.0% 24.6% 26.1% 23.3% 25.9% 27.5% 26.9%
FLAX+MPAX r2HPDHG 22.4% 23.0% 24.6% 26.3% 23.5% 26.3% 27.3% 27.3%
PyEPO+Gurobi Default 21.9% 23.4% 24.6% 25.3% 24.0% 25.6% 27.0% 27.9%
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