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Abstract

We study distributed adaptive algorithms with local updates (intermittent commu-
nication). Despite the great empirical success of adaptive methods in distributed
training of modern machine learning models, the theoretical benefits of local up-
dates within adaptive methods, particularly in terms of reducing communication
complexity, have not been fully understood yet. In this paper, we prove that Lo-
cal SGD with momentum (Local SGDM) and Local Adam can outperform their
minibatch counterparts in convex and weakly convex settings, respectively. Our
analysis relies on a novel technique to prove contraction during local iterations,
which is a crucial yet challenging step to show the advantages of local updates,
under generalized smoothness assumption and gradient clipping strategy.

1 Introduction

Leveraging parallelism is crucial in accelerating the training of modern machine learning models
for large scale optimization problems. In distributed environments such as large data-centers or in
the federated learning setting, where the devices working together are spread apart, communication
between the distributed workers is a key bottleneck. In this work, we consider solving

min f(z) := Eeup[F(z;8)]. (1.1)
TzERA

in a distributed setting with M workers. Each worker has access to f via the stochastic gradient

oracle VF'(x;€), where ¢ is independently drawn from the distribution D. In federated learning, this

is known as the homogeneous setting, since all workers draw from the same data distribution.

Perhaps the simplest algorithm for distributed optimization is distributed minibatch stochastic gradient
descent (SGD), in which at each iteration, each worker computes a minibatch of gradients, and a
gradient step is taken by averaging the gradient computed among the M workers. However, such an
algorithm requires communicating at each gradient step, which may be expensive. Thus numerous
works have proposed distributed algorithms with less frequent communication. A popular and well-
studied algorithm is Local SGD, also known as FedAvg [McMahan et al., 2017], where each worker
runs SGD independently and periodically synchronizes with others by averaging the iterates.

Despite the success of Local SGD in federated learning [McMabhan et al., 2017], it may not exhibit
good performance when training Transformer-based large language models (LLMs). Many empirical
studies suggest that adaptive methods (e.g., Adam [Kingma and Ba, 2014]) are much better suited for
natural language processing than vanilla SGD [Goodfellow et al., 2016, Zhang et al., 2020, Kunstner
et al., 2023, Pan and Li, 2023]. Furthermore, as shown in Zhang et al. [2019, 2020], language models
tend to have unbounded global smoothness and heavy-tailed noise, which may also contribute to
the worse performance of SGD. Parallelizing adaptive methods requires an even more expensive
communication cost since additional terms, such as the momentum or the Adam denominator, need
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to be synchronized. Previous works on distributed adaptive optimization have utilized compression
and quantization techniques to address this issue [Bernstein et al., 2018, Wangni et al., 2018, Wang
et al., 2023]. While Douillard et al. [2023] has shown the great empirical success of Local Adam, to
the best of our knowledge, there are no theoretical results trying to improve training efficiency or
adaptive methods from the perspective of intermittent communication.

In this paper, we investigate distributed adaptive optimization algorithms in the homogeneous
regime, in order to establish theoretical guarantees for the benefits of local iterations in reducing
communication complexity. We focus on the convex or weakly convex setting, because in the
non-convex setting, without non-standard strong smoothness assumptions, we are not aware of any
theoretical-proven advantages of local iterations, even for non-adaptive methods'. Further, in the case
of Adam, we consider the weakly convex setting (as opposed to the standard convex setting), since
we are not aware of any results on the convergence rate of Adam which take advantage of convexity.
To handle unbounded global smoothness and heavy-tailed noise, we use the coordinate-wise gradient
clipping mechanism.

We propose a distributed version of Adam, namely, Local Adam, with gradient clipping. Our
algorithm also reduces to Local SGD with momentum (Local SGDM), with some specific hyper-
parameter choices.

* In Theorem 2, we establish the first convergence guarantee for Local SGDM in the convex
setting, which outperforms the convergence rate of Minibatch SGDM. The rate we obtain is
in line with the rate of Local SGD [Woodworth et al., 2020a] .

* In Theorem 3, we establish a convergence rate for Local Adam in the weakly convex setting.
We show that Local Adam can provably improve communication efficiency compared to its
minibatch baseline.

For the first time, we are able to show the benefits of local iterations for the two commonly used
algorithms, SGDM and Adam. This suggests that we may be able to improve the training efficiency
of LLMs by using intermittent communication.

Additionally, our results hold under generalized smoothness and heavy-tailed noise. Our result is the
first high probability bound for distributed optimization algorithms with local updates, to the best of
our knowledge. The conventional in-expectation rate seems fail to capture some important properties
like heavy/light tailed noise distribution. The high probability convergence guarantee can sometimes
be more informative and useful in practice [Gorbunov et al., 2020].

As for technical contribution, we use a novel technique to prove contraction for adaptive methods,
which bounds the consensus error between the iterates at different workers. This is a key step in
proving benefits of local updates. Different from Local SGD, our update direction involves momentum
or even distorted momentum due to the denominator in Local Adam, making it challenging to
disentangle these accumulated stochastic gradients. To address this issue, we define and analyze an
auxiliary sequence which is conditionally independent of the latest stochastic gradient and thus can
construct a martingale. We will introduce the technique in more details in Section 4.

Notation Let || - || be the standard Euclidean norm of a vector or the spectral norm of a matrix. For
any z,y € RY, the expressions = + y, ¢ ® y, = stand for coordinate-wise sum, product and division,

respectively. And x < y means each coordinate of x — y is no greater than 0. Furthermore, we use

22, \/z,|z| to denote the coordinate-wise square, square root and absolute value. We use E,,,[X,]
M

1
to denote the average i Z X,n. The coordinate-wise clipping operator clip(-, p) : R — R? is

defined as [clip(X, p)]; = sg_n([X]i) -min{|X;|, p}. We use [N] to denote the set {1,2,..., N}. For
a subset g C RY, let conv(-) denote the convex hull of 2 and B, () denote the neighborhood

'Under the stronger assumptions of 3rd-order smoothness [Glasgow et al., 2022] and mean smoothness
[Patel et al., 2022], there are demonstrated advantages of local iterations in the non-convex setting. While our
theoretical results are for the convex or weakly convex setting, it is likely that local iterations are advantageous
in practice for non-convex objectives, just in the same way Local SGD has been shown to be advantageous in
practice for non-convex objectives [McMahan et al., 2017].
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of Qg with radius Ry. Finally, we use standard O(-), €(-), ©(-) to omit constant factors and O(-) to
omit logarithmic factors.

2  Problem Setup

Consider the distributed optimization problem
min f(x) = Eewp[F(z:€)). @.1)
z€ER?

Here D is the data distribution and f is the population loss function. We consider a setting with M
parallel workers, and a budget of R total communication rounds, and 7" total gradient computations at
each worker. We will describe the implementation of the local and minibatch versions of a centralized
algorithm A, which uses a single stochastic gradient in each iteration, as illustrated in Figure 1.

Minibatch A IMII
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Figure 1: Minibatch A v.s. Local A in one communication round. Minibatch version computes
the average of all K M gradients and then executes one step of A, while local version runs A
independently for K steps at each worker.

In the local version of algorithm A, in each round r of the R total communication rounds, each
worker m independently executes K = T'/ R steps of local updates (according to the algorithm .A).
For a worker m, we denote the kth gradient computed in round r by g, . Then the M workers
synchronize the iterates and related momentum state. We use Minibatch A to denote a distributed
implementation of A run for R rounds, where K M stochastic gradients are computed and averaged
at each step. This is a fair baseline to compare the local update algorithms to, since the number of
gradient calls and communication rounds are the same.

Local Adam is shown in Algorithm 1, which is a natural extension of centralized Adam [Kingma and
Ba, 2014]. The stochastic gradient is clipped by an coordinate-wise clipping operator with threshold
p. After K steps of local updates, all the workers average their current iterates x;", their first order
momentum ", and their second order momentum v;". These averaged quantities become the values
used at the beginning of the next local round. Note that there are two slight differences from original
Adam. First, we do not involve bias correction here, i.e., uj" and v;" are not divided by 1 — /J’f or
1 — /3%, respectively. Second, ) in the denominator is in the square root, while it is outside of the
denominator in original Adam. These modifications do not harm the spirit of Adam and are made for
the convenience of analysis.

2.1 Assumptions

Throughout this work, we will use the following assumptions.
Assumption 1 (Lower-boundedness). f is closed, twice continuously differentiable and inf f(x) =
R

f(@e) = fi > —o0. "~
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Algorithm 1 Local Adam

Require: initial model x, learning rate 7, momentum 31, 82 € [0,1)
Set zg'y = w0, up 1 = 0, vo = 0 for each worker m € [M]
forr=0,--- ,R—1do

for each worker m € [M] in parallel do
fork=0,--- ,K—1do

9 = VE(@: 60), 9 = clip(g;7%, p) > Compute clipped stochastic gradient
uyy, = Brugy_q + (1= B1) 9% > Update 1st-order momentum
0% = By + (1—f9) 9% © 97 > Update 2nd-order momentum
T = Tyl — +2 © Uy, > Update model
Urk +A
end for
end for
m _ m m _ m m _ I m
Tri10 = Em[‘rr,K]a Uptpy1,—1 = Emn [ur,Kfl]v Urt1,-1 = Ury1l = Epm, ['UT,Kfl]
> Communicate and average
end for

Assumption 2 (Smoothness). There exists some set @ C R% and L > 0, such that for any x,y € Q,

IVf(x) = VIl < Lilz—yl, (22)
IV f(@)|* < 2L(f(z) — f2). 2.3)

Similar to Sadiev et al. [2023], we only requires some properties of f on a subset  of RY, since we
can prove that all the iterates will not leave this subset with high probability. In contrast, the typical
smoothness assumption requires (2.2) on the entire domain.

There are many works [Zhang et al., 2019, Crawshaw et al., 2022, Faw et al., 2023, Wang et al.,
2022, Li et al., 2024b] that make weaker smoothness assumptions (typically called “generalized
smoothness”), most of which are in the form of (L, L1 )-smoothness:

IV?f(2)|| < Lo + L1||V f(2)]|, Vo € R (2.4)

Li et al. [2024a] considers an extension called /-smoothness, which replaces the linear function of
IV f]] in the right hand side of (2.4) with a sub-quadratic function #(-). As pointed out in Li et al.
[2024a, Corollary 3.6], all of these will induce Assumption 2 if €2 is some level-set of the objective
function’. Therefore, we directly use this more general assumption to get cleaner results.

Assumption 3 (Bounded a-moment noise). There exists some set ) C Rd, « > 4 and constant
vector o = 0 such that for any x € <),

Eep|VE(z;€) — Vf(z)|* 2 0. 2.5)
Let 0o = ||0||oc = max{o;}, 0 := |lo|| = (0] + -~ —&-03)1/2.

Remark 1. To get a high probability bound under generalized smoothness, the assumption on
stochastic noise is crucial. Light-tailed noise with bounded exponential moment (e.g., bounded,
sub-exponential, sub-gaussian) are considered in Harvey et al. [2019], Li and Orabona [2020], Li
etal. [2024b]. There are also attempts for heavy-tailed noise with finite c-moment [Gorbunov et al.,
2020, Cutkosky and Mehta, 2021, Faw et al., 2023]. In the most literature studying heavy-tailed
noise, they restrict to the case where 1 < o < 2. However, in the matter of getting a logarithmic
dependence on 1/6, where ¢ is the confidence level, the essence lies in whether we assume bounded
exponential moment or just polynomial moment (see Appendix E for detailed discussions). For
technical convenience, we only consider o > 4 in this paper, but our analysis methods can be easily
extended to the case where o < 4.

*e.g.,ifQ C {z : f(z)—f. < A}, then (Lo, L;)-smoothness would imply Assumption 2 for L =< Lo+L3A.
Note that we may not obtain the optimal dependence on Lo, L in this way though.
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Remark 2 (Noise of minibatch). It follows from Petrov [1992] that if the gradient is estimated by a
batch of i.i.d samples with batch size N, the a-moment of noise has upper bound of:

1 < o a
E{&}WDW;VF(QE;@) —Vi@)|" 2 c(a)(a/VN)*, (2.6)

where () is a problem-independent constant. It is easy to see that this bound is tight when the noise

is Gaussian. Therefore, to get the rate for batch size N, we can just simply replace o with o /v N
(up to a constant depending on «) in the original convergence guarantee for batch size 1.

3 Main Results

In this section, we provide our main results for Local Adam and its simplified version: Local SGDM.
For the first time, we will be able to show the benefits of local iterations for the two algorithms,
compared with their minibatch baselines in certain regime of M, K, R.

3.1 Local SGDM

Before getting into Local Adam, we start with a simpler yet also important algorithm: Local SGD
with momentum. Note that when 85 = 1, A = 1, Algorithm 1 will reduce to Local SGDM. We restate
the complete version of Local SGDM in Algorithm 2 in Appendix C.

Assumption 4 (Convexity). There exists some set Q@ C R? and constant ;. > 0 such that f is
u-strongly convex on §), i.e., for any x,y € €,

(Vf(x) =V ),z —y) > pllz -yl 3.1)
W
fy) = f@) + (Vf(2),y = 2) + o =yl (32)
Let Dy := ||zp — x.||. Now we state the results for Local SGDM below. Notably, our results are the

first convergence guarantee for distributed SGDM with local updates in (strongly) convex setting.
Theorem 1 (Strongly convex, full version see Theorem C.4). Let Assumption 1, 2, 3, 4 hold for

MK
Q:= {||z — z.|| < V3Do} and j1 > 0. Further assume that K > log R, 1— /1 =9Q1) and
H0'||2ad%7i = O(o). Then with probability no less than 1 — §, Local SGDM yields

2(a—1)

) pKR o2 Lo* o*( Lt \ °©
e B S e . (3.
f(z) f*_exp< @(L ))-i-@ uMKR+M2KR2+ n \ p2KR G-

Theorem 2 (Convex, full version see Theorem C.5). Let Assumption 1, 2, 3, 4 hold for 2 =
R

{l|lz — x.|| < V3Do} and = 0. Further assume that K > log , 1 =061 = Q1) and

Ha'||2aal%_i = O(o). Then with probability no less than 1 — §, Local SGDM yields

4 2(a—1)
~ (LD oD,  L3iciD? (LDg)zos=1 | >
- f. <O 0 —— 0 4+ Dy —L— . 3.4
f(@) = fu < KR+ %MKR—F I RE + Do KR 34
1
Remark 3 (Confidence level 8). d does not appear in the bound since we have log 5 dependence.
o
Our method can also be applied to Minibath SGDM (by substituting M, K with 1 and o with ;
PP ©y . VATE
see Remark 2), whose convergence guarantee is
R ~ 2
exp<—6<H)>+(9< ? >, if >0,
N o< L UMKR 35
f(@)—fe < 2 (3.5)
~ (LDg oDy )
O + ], otherwise.
R MKR
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This rate matches the well-known in-expectation lower bound on the convergence rate of Minibatch
SGD (up to logarithmic factors). In fact, our analysis improves the state-of-the-art rate for strongly-
2
convex SGDM (given in Liu et al. [2020b]), which has a stochastic term as @) (2LJ> . In the
wWMKR
convex setting, our rate is consistent with the state-of-the-art centralized in-expectation bound of
SGDM in Sebbouh et al. [2021]. Further notice that the last term in both (3. 3) and (3.4) is due to the

R? o R?
bias of gradient clipping and would be negligible as long as K2 > a 7 or K7 2 ZT In
this case, our guarantee for Local SGDM is aligned with the rate of Local SGD in Woodworth et al.
[2020a], Khaled et al. [2020] up to logarithmic factor. Therefore, we can see the benefits of local

iterations in the large M and large K regime compared to minibatch baseline.

We defer the detailed proof to Appendix C.

3.2 Local Adam

The convergence of Adam is much more difficult to prove. Reddi et al. [2019] pointed out that the
original proof in Kingma and Ba [2014] in centralized convex setting was incorrect. Therefore, the
convergence of Adam in for convex function is of independent interest and beyond our scope. Instead,
we turn to consider Adam in the weakly convex setting.
Assumption 5 (Weak convexity). There exists constant T > 0 such that f is T-weakly convex, i.e.,
forany x,y € RY,

(VI@) =V, —y) = -]z -yl (3.6)

) 2 J(@) + (Vf(@)y =) = gllo =yl VI (@) = ~7La. (3.7

Note that L-smoothness implies that Assumption 5 always holds with 7 = L. Also note that here we

assume the weak convexity holds in R for technical simplicity. Let H, = diag(\/v, + A2) = Ay
and A := f(zg) — f«. Furthermore, inspired by Liu et al. [2020b], define an auxiliary sequence

{z;”k} as:

o f @ B /(1 B) kAR, s
mkAL T (27 — P1Tek) /(1 — B1)  otherwise. ‘

Let Z.; := Epn[2,;]. Now we state the main result of Local Adam below (see Theorem D.2 for
more general results on Moreau envelope).

Theorem 3 (Full version see Theorem D.3). Ler Assumption 1, 2, 3, 5 hold for Q2 = conv(Bgr, (€)),
where Qo = {f(x) — fu < 4A} and Ry = \/A/(80L). Further assume K = log(MKR/?6),

1— 61 =9Q(1), aHgad%_ﬁ = O(0) and 1 — By = O(K~3/2R™/2). Then with probability no
less than 1 — 6, Local Adam yields

R-1K-1

r=0 k=0

@<7A+E+ LAg?  (LAg)i  (LAc= *>
R "KR'VMKR KiR3 '

TA
The RHS of (3.9) consists of four parts. The first part is — +

which is the optimization term
R T KR’ P

Ao?

and determined by the upper bound of learning rate n. The second term is
the standard statistical lower bound from M K R stochastic gradients [Arjevani et al., 2023]. The third

, corresponding to

LAo)3
component is (170); which is sourced from the discrepancy overhead of doing local iterations.
3
a—1 2(2:1)
And the last one, (L) 7% is induced by the bias of clipped stochastic gradient and can be
dominated when K *= > 0*R/(LA).
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Our analysis method can also be applied to Minibatch Adam (by substituting M, K with 1 and o
with L; see Remark 2), and the convergence rate is

VMK

) (% LAq? ) (3.10)

© R + MKR
aligned with (up to logarithmic factor) the state-of-the-art convergence guarantees for smooth weakly

convex functions [Davis and Drusvyatskiy, 2019, Deng and Gao, 2021]. Suppose K et pe
0?R/(LA) and hence the last term in (3.9) would be dominated and negligible. Now we can
observe the benefits of local iterations. Note that both (3.9) and (3.10) have the statistical lower bound

1/v M K R. Hence when the statistical term dominates, both algorithms have similar worst-case rate.
Once we leave the noise-dominated regime, then Local Adam converges faster than Minibatch Adam
whenever K > 0> R/(LA). And the gap will increase as K grows until K =< L/7.

Therefore, we conclude that in the large M and small 7 regime, Local Adam would outperform
Minibatch Adam. Since f is close to convex function when 7 is small, this is consistent with
Woodworth et al. [2020a]. Please see Appendix D.5 for more comparisons about Moreau envelop.

We defer further discussions on the choices of other important hyper-parameters including 51, 82, A
to Appendix D.5. The complete proof is in Appendix D.

4 Proof Sketch

In this section, we show high-level ideas in our proofs. We only demonstrate the Local Adam here
since Local SGDM is a special case of Local Adam (83 = 1) and has similar patterns.

As a common practice in the study of weakly convex function [Davis and Drusvyatskiy, 2019, Mai
and Johansson, 2020], the norm of the gradient of the Moreau envelope can serve as a proxy for
near-stationarity. Here we use a generalized Moreau envelope for adaptive algorithms, proposed by
Alacaoglu et al. [2020]. For any positive definite matrix H and y > 0 such that v~ *H > 71, define
the Moreau envelope of f as

Hioy ol o Lo e
[y (@) -—;relg;f(szvHx yllz- .0

With some abuse of notation, we define f,i‘(x) = f,i‘Id () = fy/a(x). The common convergence

metric for weakly-convex function is correspondingly ||V ff ()|l g~1, which can bound ||V f(-)|| g1,
as shown in the following lemma.

1
Lemma 4 (Full version see Lemma D.4). Let z € Qy and y := argmin f(z) + 2—||x — 2|3 for
@ Y

some H = Ny and L)\ >~ > 27/\. Then
Vi) =Viw) =HE-y)/v IV a-r <29LIVE ) lu-1 /X (42)

In the rest of this section, we provide the proof sketch for general Moreau envelop.

For any integer 0 < ¢t < T'—1, we define r(¢), k(¢t) € Nsuchthatt = r(¢) K +k(t) and k(t) < K —1.
We will omit the dependence on ¢ and let » = r(t), k = k(¢) if not causing confusion. Further define

xy =y, 9y = gfk,gﬁ\” = @, u" = uyy, v = oy, Hi' o= diag(y/ot + M%) (4.3)
Then Algorithm 1 is equivalent to the following update rule:

o o —n(H™) "l if tmod K # —1, @.4)
t+1 Ty — B [(H™) " tul]  otherwise. '

s ——
Define an auxiliary sequence {z;"} as:

m (xfy — Praf")/(1 = py) if tmod K # —1, @.5)
LT (2, — A1Te) /(1 — B1)  otherwise. .

|
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. 1 .
Let y; 1= arg min fly) + 2*||?J - ZH%IW). Define filtration 7y = 0, F; := o({g,% }m U Fe—1)
and conditional expectation E,[-] = E[-|F].

As standard practice in distributed optimization, our proof mainly contains two parts: contraction
and descent. Here contraction involves showing that the iterates of local training at different workers
will not diverge to different points. And decent involves showing that the objective value decreases at
each iteration.

Our strategy is to inductively prove that some probabilistic event E; € F;_; holds with high
probability, which are designed to ensure contraction and descent. And event Er can directly imply
the upper bound in Theorem 3. In fact, event E; has the form of

E, ={A;;holds forall j <t —1,i€{1,2,3,4}}, (4.6)

where A; ; € F; (defined later) is also some probabilistic event. As the components of E}, each A; ;
is designed to ensure either contraction or descent. We will prove the high probability bound of these
components in sequence.

4.1 Bounding the trajectory with high probability

Similar to Sadiev et al. [2023], we only make assumptions on f and noise in certain subset Q C R<.
This is because we are able to show that all the iterates will not leave {2 with high probability.
Specifically, if it holds for all iterates before time ¢, using standard techniques for weakly convex
optimization, we can upper bound the function value and Moreau envelope at Z; 1 by

HTt " /’n\’L
POz < (o) an C@ + 00 ZHE (VF@) = g7l

stochastic noise

On)ZHVf@) [V (@]

discrepancy

n)i<2j - T(J vf(zj) Yj EnlE; [g] '] - g/;\n]>

=0

martingale
+ higher order terms.
“@.7
To see that the last term is a martingale, note that H,.; is mdependent of g since the stochastic

gradient g’” is drawn during round r. Further note that E;[g m} — gj is almost surely bounded

thanks to clipping. Now (4.7) allows us to inductively bound f; e (%;) and thus bound ||Z; —

, (J)V f(Z;) — y;||. After these preliminaries, we are able to apply Berstein’s inequality [Bennett,
1962 Freedman, 1975] to control this martingale. Hence the Moreau envelope at Z;; can be bounded
by a constant with high probability. Combining this with contraction results below, we can show that
all the iterates stay in {2 with high probability.

4.2 Contraction

Next, we aim to show contraction, i.e., ||z;* — x| will not diverge during local iterations with
high probability. This property is crucial for showing the benefits of local updates in distributed
optimization. However, different from Woodworth et al. [2020a], Khaled et al. [2020], the update of
2 in Algorithm 1 is in the direction of (H;™)~'w}", which distorts the gradient by both exponential
moving average (EMA) and coordinate-wise product. Thus, the weak monotonicity (3.6) can not be

directly applied as in standard analysis of gradient descent. This will further impede contraction.

Our solution has two steps. Firstly, we try to diminish the negative effects of different denominators
used in local iterations. Then we turn to deal with the EMA of past gradient in first order momentum.
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Lemma 5 (Informal). Define probabilistic events

Ay e { K2 0 gV <1 4 (1 — B2)B and forallm € [M]}, (4.8)

r(t)
Apg = {||H.y (H) ™" = (H) ™| < (1 = B2) By forall m,n € [M]}, 4.9)

where B, By are some constants. Define Ey1 = E; N A1, Er9 = By N Ao For B =

O(K), By = O(K), it holds that P(E; 1) > P(E;) — §/(4T), P(E;2) > P(E;.1) — 6/(4T).

Event A; ; implies the denominator of each worker during local iterations tends to be stagnant
and close to the averaged one after communication. Event 4, » suggests the denominator at each
worker is close to each other. Note that when there is no noise, all the workers will be exactly
the same and then event A, » will always hold. Therefore, although A, 5 seems to be implied by
A:.1, we will be able to take B; < B as long as ¢ < 1 by handling them separately. The key
idea to prove Lemma 5 is to control the magnitude of the EMA of squared stochastic gradients, i.e.,

(1-062) Z B g7 + ,Bk(t)Jr Ur(+)- Since all the iterates stay in conv(Bg, (£2)), the
j=r(t)K
squared true gradient V f (x m)2 can be bounded. Besides, we can again apply Berstein’s inequality

—~2 —~2
to handle the martingale induced by gm — E;[gj* ]. The remaining term E;[g7* | — V f (:c;")2 is
controlled by the property of clipping operator.

Now that the denominator is relatively stagnant, the update of z" is approximately preconditioned
by H,.( for all m. Hence we can turn to handle the first order momentum. A vanilla idea is to do the
following expansion:

oy — 2o lFr, = o — 2P, — 20 (2" = o uf = uf) + O (). (4.10)

By the definition of u;"*, however, it would be influenced by noises from past stochastic gradients. In
this way, u;" — u;’ is not independent of ] — z}" and thus it is difficult to construct a martingale
and apply Berstein’s inequality. This is the reason why we introduce the auxiliary sequence {z;"}
defined in (4.5). Fortunately, noticing that 2" — 3" € conv({2]" — z]'}; <), it suffices to show that
|23 — =¢*]] will not get too large with high probability.

Lemma 6 (Informal). Define probabilistic event

( —B)? 0222 forallm,n € [M]},

=5

A3 = {||z;11 - Z?+1||%IT > )\
j=rK
4.11)

where A is some constant. Define E; 3 = FE; o N A3, For A = @(1) and n =
O(min {1/(K7),1/L}), it holds that P(E, 3) > P(E2) — 6/(4T).

Event A, 3 is the desired contraction property and can further imply that ||z}, — 2}, |7 <
202
A

. In fact, for {2;"}, we can do the following expansion:

223y = 2l ~ 1" = 27, — 200" — 2 g7 = g7') + OP?). 4.12)

Informally speaking, I, [g7 —gI'] is roughly \%i (xt )=V f(z}), whichis close to V f(z") =V f(2})
since || 2" — 21" ||2 = O(||=}" — 2" 1 ||*) = O(5?). In this way, the middle term O(n) of RHS above
can be turned to —2n (23" — zi', V f(2;") — Vf(2{')), where the weak convexity can be applied. The
remaining part is to control the martingale induced by <z{” -z, ﬁ — g/]fﬁ —E, [g;;”\"” — Z}?D through
Berstein’s inequality.

4.3 Descent

Finally, we are ready to prove the descent lemma, which is the last component of ;1. Define

t
At4 _ {f r(t+1)(z +1 %Z ||vf 7‘(]) ||2 _1 < QA} (413)
7=0
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We proceed with (4.7) and control the stochastic noise term by subtracting its expectation to construct
a martingale and apply Berstein’s inequality. Its expectation can be bounded by properties of
clipping operator and variance bound. As for the discrepancy overhead, we apply the upper bound of
2" — =7 2, which is induced by event E; and utilize the O(n*) bound on ||Z; — 7, ||*. Therefore,
thanks to all the foundations beforehand, we are able to bound each of these terms.

Lemma 7 (Informal). For sufficiently small n, it holds that P(Ey 1) > P(E; 3) — 6 /(4T).

Therefore, we prove that P(F;;1) > P(E;) — §/T. And by induction rule, P(E7) > 1 — 4. After
carefully choosing the learning rate 7, we complete the proof of Theorem 3.

5 Conclusion

In this paper, we prove the benefits of local updates within distributed adaptive methods to reduce
communication complexity compared to their minibatch counterparts. We study Local SGDM
and Local Adam under convex and weakly convex setting, respectively. We consider generalized
smoothness assumption and gradient clipping, and develop a novel technique to show contraction
during local updates. Future works may include improved analysis of Local Adam, benefits of local
adaptive algorithms in non-convex setting, advantages over non-adaptive methods, etc.
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A Related Work

Theoretical benefits of local updates in distributed optimization. Algorithms with local updates
have been used among practitioners for a long time to reduce communication complexity [McMahan
et al., 2017]. In the homogeneous and convex setting, Local SGD and its variants have been shown to
outperform the minibatch baseline, for a fixed amount of gradient computations and communication
rounds. Woodworth et al. [2020a] is the first to show that Local SGD can provably outperform
Minibatch SGD. Yuan and Ma [2020] develops FedAC to further accelerate Local SGD. In the
heterogeneous case, Woodworth et al. [2020b] demonstrates the advantages of Local SGD when
heterogeneity is very low. Algorithms with local updates have also been studied in the non-convex
setting [Karimireddy et al., 2020b, Yang et al., 2021, Glasgow et al., 2022], including momentum-
based and adaptive methods [Reddi et al., 2020, Karimireddy et al., 2020a], though no advantage of
local iterations over minibatch has been shown, without non-standard assumptions such as 3rd-order
smoothness. Notably, Liu et al. [2022] is one closely related work to ours, which considers Local
SGD with gradient clipping in homogeneous and non-convex setting and claims that the convergence
guarantee is better than naive parallel of centralized clipped-SGD. However, it still cannot outperform
minibatch baseline (with batch size K for each worker in each round) and thus fails to demonstrate
the benefits of local iterations.

Convergence of centralized Adam. Adam was first proposed by Kingma and Ba [2014] with
convergence guarantee in online convex optimization. However, Reddi et al. [2019] found a gap
in the original analysis of Adam and constructed a counter example to show its divergence. Since
then, many works have developed convergence analyses of Adam with various assumptions and
hyper-parameter settings. Guo et al. [2021] assumed the denominator is bounded from below and
above by two constants, which typically requires a bounded gradient assumption or the AdaBound
variant [Luo et al., 2019]. Défossez et al. [2020] assumed a bounded gradient and their convergence
guarantee depends on poly(d). Zhang et al. [2022b], Wang et al. [2022] considered a finite sum
setting and showed that Adam converges to the neighborhood of stationary points. One closely related
work to ours is Li et al. [2024b], which established a high probability bound without a bounded
gradient assumption. However they assumed that noise is bounded almost surely. Another recent

1
work [Wang et al., 2024] provided a guarantee of O (4> with dependence on poly(d). Beyond the
€
guarantees on gradient norm given by non-convex analyses, no stronger bounds (e.g., on function
error) are known for Adam in the convex case.

Convergence of distributed adaptive algorithms. In the federated learning literature, Reddi et al.
[2020] introduced a framework, FedOPT, to leverage both worker optimizer and server optimizer.
Many works explored adaptive server optimizer while fixing worker side as vanilla SGD. The
theoretical results of local adaptive algorithms are much fewer. Some works have studied Local
Adam and Local AMSGrad with fixed momentum state during local iterations [Karimireddy et al.,
2020a, Chen et al., 2020, Zhao et al., 2022]. They also needed stringent assumptions such as a
huge batch size depending on the inverse of target error, bounded stochastic gradients, vanishing
difference between denominator, etc., which are not standard. Wang et al. [2021] explored adaptive
worker optimizer based on centralized algorithm, where the state of worker optimizer changes in local
updates. However, their analysis relied on an explicit assumptions [Wang et al., 2021, Assumption 1]
on the contraction property of worker optimizer. To the best of our knowledge, there is no end-to-end
convergence guarantee for distributed adaptive algorithms with local iterations.

Gradient clipping. Pascanu et al. [2013] first proposed gradient clipping technique to address the
issue of exploding gradient problem of deep neural networks. Since then, it has become standard
practice in the training of language models [Gehring et al., 2017, Merity et al., 2017, Zhang et al.,
2022a, Liu et al., 2023]. Furthermore, from theoretical perspective, gradient clipping is also used
for multiple purposes, including differential privacy [Abadi et al., 2016], distributed optimization
[Karimireddy et al., 2021, Liu et al., 2022], heavy-tailed noise [Zhang et al., 2020].

Generalized smoothness. The generalized smoothness condition was initially proposed by [Zhang
etal., 2019] to justify gradient clipping, and was called (L, L1)-smoothness. The empirical evidence
therein illustrated that the norm of Hessian matrix of language models depends linearly on the
magnitude of gradient, contradicting the standard L-smoothness. A recent work [Li et al., 2024a]
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further generalized this condition to ¢-smoothness and proved convergence of classical SGD in this
setting. Apart from bounding the Hessian through gradient, Sadiev et al. [2023] proposed to assume
that the norm of Hessian is uniformly bounded in certain subset of whole space, in order to get
high probability bounds for (accelerated) clipped-SGD. Gorbunov et al. [2023] further extended this
setting to composite and distributed optimization without local updates. Here we follow the setting of
[Sadiev et al., 2023] since (L, L1)-smoothness would reduce to it in most cases. See Section 2.1 for
details.

B Technical Lemmas

Lemma B.1 ([Bennett, 1962, Freedman, 1975]). Let the sequence of random variables {X;};>1
form a martingale difference sequence, i.e. E[X;|X;_1,---,X1] = 0 forall i > 1. Assume that

.. . de R
conditional variances o = E[XZ?X;_1,--- , X1] exist and are bounded and assume also that there
exists deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all i > 1. Then for all
b>0,V>0andn > 1,

i=1 i=1

Lemma B.2. Let X be a random variable in R and X := ¢lip(X, p), Then | X — EX|| < 2p.
Moreover, if for some o > 0 and o > 2,

EX]=z€eR, E|X —z|* < o9, (B.2)
and |z| < g, p > 30, then
- 20)% - - -
E[X] - a] < . ")1 . EX-z[*<o®  E|X-E[X]]* < (20)°. (B.3)
p()é—

Proof. The first claim is from [Sadiev et al., 2023] and we show the proof here for completeness. To
start the proof, we introduce two indicator random variables. Let

1, if|X -z > L2,

1, if | X| >P7’ 7;:]I{X:‘X_w‘>%} :{ 2. (B4

X {X:X[>p} {07 otherwise 0, otherwise

Moreover, since | X | < |z| + | X — x| < g +|X — x|, we have y < . Using that

S . p P
Xmln{l,}XxX+(1x)X, (B.5)
| X | X
we obtain

|E[X}—x:|E[X+x(|)p(—1)X}—x

()

Since 1 — x| € (0,1) when x # 0, we derive

IE[X] —

a1 B.7)
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By Markov’s inequality,

E 1] P{|an > gz}

@

< %E [1X — 2]°] (B.8)

&)

Thus, in combination with the previous chain of inequalities, we finally have

. 20\ * 71 20\ 2%0°
E[X] -z <oZ T el B (B.9)
a—1
p 2\p p

For the second part, since
X — 2| = |dip(X, p) — clip(z, p)| < |X — 2], (B.10)
hence IE|)~( —z|* < E|X — z|* < 0“. By Jensen’s inequality, we have for any ¢ € (0, 1),

E|X — E[X]|* < ¢" °E|X — 2|* + (1 — )" *|E[X] — 2|

20)2\ ¢ (B.11)
< ql—aa_a + (1 _ q>1—a (( :7)1 ) )
Choose the optimal ¢ = O(’QO‘)“ and we can conclude that
o+ oo T
- - 20)2\ ¢
B - B < (o+ B00) < B.12)
pa
This completes the proof. O
Lemma B.3. For M independent random vectors Xy, --- , Xy € R? such that EX,,) = 0,
E[|| X ||*] < o, the following holds
2 4ot
E[|Em Xnl’]” < 15 (B.13)
Proof. We prove by direct calculation as follows:
2
972 1 9 2
E[[EnXnl?]” <E WZ [ X + Vel (Xm, Xn)
m m<n
1 ’ 2 ’
M? Em: Mz n; (B.14)
0'4 4 2
< e + WE Z <XmaXn>
m<n
40t
=
O
Lemma Bd4. For any set Q@ € R and r > 0, define B.(Q) =
{z e RY: 3y e Q,st., |z —y|| < r}. Then
B, (conv(2)) = conv(B,(2)). (B.15)
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580

581
582

583

584

Proof. For any z € B,.(conv(f)),there exist y1,- - ,yn € Qand (\1,---,Ay) € AV for some N,
such that

N
lz =yl <7 =Y Ay (B.16)
n=1
N N
Thenz =y + (z —y) = Z An(yn +2 —y) = Z AnZn, Where
n=1 n=1

Hence x € conv(B,(12)).

On the other hand, for any r € COI]V(BT(Q)), there exist L1, "IN € BT(Q)7 Yi, YN € Q and
(A1, An) € AN, such that

N
T = Z ATy, Hxn - ynH <r. (B.18)
n=1
N N
Lety := Y Anyn € conv(Q). Then ||z — y[| < > Anllzn — ynl| < r and thus z € B,.(conv(R)).
n=1 n=1
O

C Proof of Local SGDM

We restate the Local SGDM algorithm here.

Algorithm 2 Local SGDM

Require: initial model z, learning rate 1, momentum /3; € [0,1)
Set 2’y = o, ug—; = 0 for each worker m € [M]
forr=0,--- ,R—1do

for each worker m € [M] in parallel do
fork=0,---, K —1do

9% = VE(@ 87, 9 = clip(g,’, p) > Compute clipped stochastic gradient
u:?k = ﬂlugk_1 + (1 — 51)9:% > Update momentum
x?k+1 = x??k — Uy, > Update model
end for
end for
10 = B2k ] vy —1 = Efuge 4] > Communicate and average
end for

C.1 Overview and Main Theorem

For any integer 0 < ¢ < T'—1, we define r(t), k(¢) € Nsuchthatt = r(¢) K +k(t) and k(t) < K—1.
We omit the dependence on ¢ and let r = r(¢), k = k(t) through out the proof if not causing confusion.

Define =" = z,"%, 9" = g,%, 91" = gy Ut" = U,y Then Algorithm 2 is equivalent to the
following update rule:
o | By + (1= Br)g if t mod K #0, .
t Bit—1 + (1 — B1)g*  otherwise,
m ) xf—nui if tmod K # —1,

Tiy1 = { Ty — Ny otherwise. (€.2)

Define an auxiliary sequence {z;"} as:

1

2, = o 2 (C.3)

T; otherwise.
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Define probabilistic events (see (C.12) for definition of some parameters)

Ay o= {20 — 2| < nPo’KAforallm,n € [M]}, (C4H
t
= I3 2 - 100 = Bz - w? < 20- ByHpE e ()
=0
Besides, let
E; :={A;;holds forall j <t —1,i € {1,2}}, By = E: 0 Asy. (C.6)

Now we present two of our major lemmas, the first of which is to show contraction and the second is
a descent lemma.

Lemma C.1. Let A =
. 2
min{(1 B Do

210924 2 MT 4. MT 12K||20‘H
max{ o2 log 5 ,2% log 5 ,2 2 2o 1)} If n <

} and p > max{30,2G  }, then the following holds:

2L T 4oVKA
)
P(E;1) > P(E;) — —. .
(Ei1) = P(EY) 5T (C.7)
Lemma C.2. Foranye > 0, let
1
28 2 2a0\ 2(a—1)
max{(o-”%) 73Uo<,,2C¥OO}, if u>0,
e
- P Dyl205, )\
max { <W) .30 00, QGM} ., otherwise. C8)
2 4uD?
el IOg K 07 lf,u > 07
o uT €
U 2
4D§ herwi
o otherwise.
If
1-B1)2 M L2 KA\ '?
min ( ﬁl)a €T7( d ) 7i ) lf,U/>O,
< L o2 log 5 £ p\/& log % (C 9)
- min (1- 51)2 Me (LUQKA) o A otherwise |
L o2logl’ 3 7p\/g10g% ’ ’
where A is defined in Lemma C.1, then the following holds
)
P(Ei41) > P(E 1) — 3T (C.10)

The following is our main result, from which we will parse the implications in Theorems 1 and 2.

Theorem C.3. Let Assumption 1, 2, 3, 4 hold for Q := {||z — z.|| < V/3Dy}. Further assume that
V(@) |loo < Goo. Then with probability > 1—6, Local SGDM yields f(Z)— f« < ¢

if
uD? L o? T Lo2KA pJd. T ,
log + log — + ——log—|, ifu>0,
T > e |[(I=p1)Pn  pMe 70 uzsf VHE T
D3 L o? T Lo*KA pvd T
L —— — 4+ —log=+4/ - therwise.
- [(1—61)2+M5 og6+ - Dy g(s , otherwise
(C.11)
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606

607

608

609
610

611

612

613

Here

1
28 2 20\ 2(a—1)
max{(o-”%‘) ,3000,2G00}, if p >0,

pe
" 2Dy 2o, )
<0”1) ) 30-00a 2Goc 5 Otherwise,
e
210 2d MT MT KIll2 2a (C12)
A = max P log2 ,2%log (912 12055
Ko? ) 5 o2p2(a—1)
2 44 D?
_ log M7 l:f//[/ > 07
= uT 5
n: 9
4Dg

otherwise.
Te’

to
Proof. We prove by induction that P(F;) > 1 — T fort =0,---,7T.

When ¢ = 0, this is trivial. Assume that the statement is true for some ¢t < T — 1. We aim to prove

that P(Ey, ) > 1— L 19

(C.12) hold. Hence we have

. It is easy to verify the conditions in Lemma C.1, C.2 once (C.11) and

) (t+1)6
P(FE >PE)—2-—>1— . .1
(Ety1) > P(EY) o7 = T (C.13)
Therefore by induction rule, P(E7) > 1 — 4 and this implies by event Ar o that
T—1 "
Zﬁ(f(?j)—f*) (1—%) <2(1—@) D2. (C.14)
— 2 2 2
7=0
T—1 i
T — T
Let 2 := s ijlf (( T WZN))T) L. By convexity, we have
2(1 — )T}
P — fo< o2/ 70 1
f(@) = fe < 1—(1- @7 (C.15)
(1) Case pt > 0.
. 2(1 — )" uDg 2 /2,
f(x)_f*ﬁm 4(1—7) uDg < 4e” ¢ / —g, (C.16)
(2) Case = 0.
21— B)TuD3 4D}
f@) = fi < 2 = = (C.17)
1-Q=")" T
O

We now state and prove the implications of Theorem C.3 which yield the results stated in the main
body of our paper.

Theorem C.4 (Complete version of Theorem 1). Under the conditions of Theorem C.3 and p > 0,

5a MT wd 7%
assume 1 — B = Q(1), (”0-”2& loll2ad2"2
JE é o

Then with probability no less than 1 — §, Local SGDM with optimal n), p yields (&) — f. < e, if

D¢ |L 2 T Lo?K log M- MT 30\ @D
Tzlogu 42 log — + 7 og ‘UH )
€ o pMe 0

(C.18)

2a
a—2

(a—1)
) 2 Goo V 000, and K 2 log

20



614 And equivalently, let k ;== L/,

f@)—ﬂqswp(—@(“iR))+””“*MKR>1 KR

UMEKR %%

- 20 (C.19)
Lo2log(KR) MER | lo]3(nd) = <10g M§R> -

1
2KRZ 8T 0 KR

615 Proof. Plug the definition of A in (C.11),

D2 | L 2 T Lo?K log MT d T
TZJlogu -+ g log — + R8s +p\[10g—
e |p puMe ) e IE 1

D? |LK 2d MT K202
2 14 log2 n I 0'||2a

Flog = e\ B 18 5 T e
(C.20)
uD? | L o? T LGQKlog%
=1 — log — _—
o8 ,u,+uM5 Og6+ e
uDo P MT | K20l
5 p(a=1)
616 Hence the optimal p is given by
1/a 1
K o)
=max 4 ||Ol2a | =7 = , 000y Goo ¢ - (€21
p nm<%myg> (1

2(0¢ 1)
617 Note that (l oll5 > 2 G V 0 and this implies

D |L 2 T Lo2K log ML
T?Jlog;—'u 0 ——&-—U log — + R8s
e |p  uMe 1) e

1-2 2a 1_
D3 | L[ a0 o MTY'E |wn @, MT
+].Og E ||0'||2QKD< dl 6 —+ dlog T
1
uD? | L L02K10g MT Ha'||2" 2@-D
=log—— | — 1
°8 € + uMs og 5

(C.22)

|orllzad? =2

MT e
618 In the last equation we use K 2 log 5 ( | ) . This completes the proof. O

g

619 Theorem C.5 (Complete version of Theorem 2). Under the conditions of Theorem C.3 and i1 = 0,

MT Gdz e
620 assume 1 — 31 = Q(1), ( o2
€ 4] o

621 Then with probability no less than 1 — §, Local SGDM with optimal 0, p yields (&) — f. < eif

20
a-2
Dollor |5,

1
a1
) 2 Goo V 00, and K 2 log

2 2 T Lo?K1 L D
Lo*Klog 4L [dr ﬂﬂm) )

D o
T>=2|L+—log=~
P R v

21



622 And equivalently,

LD3 oDy 1 KR
)= fo S — + ———=log?
A ST T A
4 a1 2(a—1)
Lio3iD¢ . 1 MKR 3a—1 log MER\ et
log? “TILD Dy | —=2— .
TR % s ('U 0) O( KR
(C.24)
623 Proof. Plug the definition of A in (C.11),
D? o? T Lo?2Klog ML s\/d T
T> 2L+ ——log~ +1/ 9 log =
~ e +M€Og6+ € +DQ Og5
LK 2d 2MT K202
+ 2((x 1)
D o? T LUQKlog /LK 2d 2 MT K|20|3%
= — |L+ —log —
€ —|—M€og5+ +p(a1)
(C.25)
624 Hence the optimal p is given by
K\ (Dollols T
o o o a—1
p = max ||0'||2a (fl A{T) ’(52> 1000, Goo ¢ - (C.26)

1
Dollo||5, | *~* o
625 Note that (0||2(’> 2 G V 0 and this implies
€

D2 T Lo2K log MT
€ Me 1) €

e

1
_ gg L+U—210gz+ LUQKlog [dL ( Dol \0'||2a a1 MT
€ Me 0

2a

DL MT\" %  /Dylollg,\ =T MT
+ =2 — la”%aKi (dlog2 . > + (Olfz‘)‘) dlog? 5 (C.27)

MT [ ||o||2ad? 2=
5

1 a—2
626 In the last equation we use K 2 log : ) . Solve ¢ and we get the upper

g
627 bound of f(&) — f. This completes the proof. O

628 C.2 Preliminaries

620 In this subsection, we show that event E; implies all the iterates remain in certain area, so that we
630 can apply all kinds of properties of f afterwards.

63t Lemma C.6. I[fnovVKA < (\/3 - \/i)Do, Event E; implies that for all j < t,m € [M], we have
2 a7, Tj, 2", Z; € Q. And |2} — || < noV KA forall m,n.
633 Proof. Event E; implies that for all 7 < ¢,

1Z; — @]l < V2D, ||z}

— 2| < noVKA < (V3 —v2)Dy. (C.28)
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638
639
640
641
642
643
644

645

646

647

648

649

Hence zJ € Q2" =zl < V3Dy and z;" € Q. Also, notice that 7; € conv{Z;};<; and

i —a} € conv{z — zi'}i<;. We have

|Z; — .|| < V2Dg, |Jaf — a?|| < noVKA, |27 — T < novVKA < (V3 — V2)Dy. (C.29)

Therefore 27", 7; € 2. This completes the proof. [

C.3 Proof of Contraction Lemma C.1

In this subsection, we aim to show contraction, i.e., ||z;* — z}'|| won’t be too large during local
iterations with high probability. This property is crucial for showing the benefits of local updates in
distributed optimization. However, different from [Woodworth et al., 2020a, Khaled et al., 2020],
the update of z}" is in the direction of momentum wu;", which incorporates information from all past
gradient. Therefore, we cannot directly apply (z}* — a3, E¢[u;* — u}']) > 0. Fortunately, noticing
that 7} — xy" € conv({z]" — 27} ;<¢), it suffices to show that ||z — z;"|| won’t get too large with
high probability. Besides, the update rule of z;" is much easier to handle.

Proof. First note that by the upper bound of 1, Lemma C.6 holds. Since 2/} = 2" — ng/{\”,

oty = 2 ll? = Nl = 2202 = 20 (2 = 2 g = g7 )+ nPllgf — g1
<l = 22 = 20 (e = 2, V@) = V@) + 202V @) = V@)

20 (= = 2, V(@) = V(@P) = 7 + g7 ) + 2PV F @) = V) - g + P

(C.30)
Event E; implies z;", z;* € Q and thus by Vz,y € Q,(z —y,Vf(z) — Vf(y)) > %HVf(x) —
Vil

(2" = 2", Vf(af") = Vf(ap)) = (@ — 2, V(") = V(@) + (" — 2 = (@ —ap), V(@) -

2 (o — i, V(") = Vf(x}))
1
Ll = 2 = (@ = a)|I” + IV @) = V()]

IIVf(xt ) = VI@)? = Lz — 2 — (" —ap)|1%.
(C.31)

- 4L
Therefore, for the second and third term in the RHS of (C.30),

2 (5" — 2, V(@) = V(@) + 2P|V £ @) = V)P
< —LIVF@}) = VHEDI? + 2Lz = =5 = @) = o)

By the update rule,

2
np1
o = = Gl = aI = (5 5) N
— M1

IN
7N
[
|d
™
FH
N———
o
ey
|
P
Qﬁ
u

I /\

”B 1 Z Gl 1[lVf(xT>—Vf(x?)ll2+IIg’?—g] Vi
=rK
" (C.33)
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t
eso  Let Sy := Z B§7j||Vf(x§”) - Vf(x;?)HQ. We further get
j=rKk

anL
LHS of (C.32) < — (S, = A1) + ”15"? Si1+ Z B gy — g7 — V@) + V@)
j=rK

= — (5~ St1) + 4”“761 Zﬁ“lllgz-”—g] Vi) + Vi)

j=rK
(C.34)
651 Then plug in (C.30),
m n m n 77
Hzt+1 - Zt+1||2 < =" — 2 H2 - E(St — St-1)
477L 776 = n
+ Z B g — g7 = V) + VE@)|]
j=rK

+ 2 <zz“ — V@) = V@) g+ g7 ) + 2% g - gF — V(@) + V@)

(C.35)

652 Notice that this recursive bound holds for any 7K < i < ¢. Unroll it and recalculate the coefficients
esa using nL < (1 — B1)?/2,

t

23 = 2P + 15 < pIE n (= =2, V@) = Vi) = g7 +97)

+ Z M|V (@) =V f(@)) = g7 + g7 )

j=rK

t
<> 2 <Z}7"‘ — 2 Eylg — g7 — [g7" — g?]>

j=rK

®: martingale

+ 3 (g - 5 V) - VIE)) - Bl - g]))

@: clipping bias

+ > an? [IVF @) = Vi) - g + g~ Byl S ) — V@) - g7 — g7l

j=rK
@: martingale
+ 4°K - 202
(C.36)
654 For @, define
o {2 (s = Byl — )~ (7 — ). if event I holds 37
! 0, otherwise.
ess  Then since event £; implies [|2]" — z}'[| < noV KA,
| < 20 o VE A - 2pv/d = dnPopVdKA < ¢, (C.38)
656
Var; (") < 4n? - n°0’ KA - 20% = 8y'c* K A. (C.39)
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664

665

666

667

668

669

670

671

t
1
Letb = ZUQJQKA, V =83p*c*K?A. By Lemma B.1, | Z ¢;""| < b with probability no less than

=0
e (o Voo 0 (C.40)
P\avtaa/3) = 4T '
For @,
H2o-||ga 1459
@ <2nK -novKA-2 D) < R KA. (C.41)
For ®, define
o — { 4n? [HW(%}”) —Vf(a?) = g + gl I? = E[IVf (=) = V() = g — g7lIIP]|
0,
(C.42)
Then,
07| < 4 - ap?d = 160°0%0 < o, (C43)
Var; (07") < 160" - E[||Vf(2]") — VF(@]) — [g7 — g7]*]* < 64n*o™. (C.44)

t
1
Letb = znzaQKA, V = 64Kn'c*. By Lemma B.1, | Z 07" | < b with probability no less than

§=0
2 1)
1-2 — | >1 - ——. C.45
P (2V . 2cb/3> =T 4MeT (C45)
0
Combine @, @, ®and thus we can conclude that with probability no less than P(F;) — 2 - T event
E¢ holds and ||, — 21 ||* < n*0> K A for all m, n. This completes the proof. O

C.4 Proof of Descent Lemma C.2

Now we are ready to state the main descent lemma of Local SGDM.

Proof. Again, note that by the upper bound of 7, Lemma C.6 holds. Under event E},
[Zees = 2l = 10 = 2l = 20 (72 — 20, Bon 7)) + 7P | Eon [577] 2
<17 =l — 20 (20— 0 B VS ) = 20 (e — 20, Bl — V5 )
+ 202 B9 = VF (@)]I1* + 202 B[V f ()]
(C.46)

Since x}*, Ty, Z; € €2, for the second term,

(Zt — 24, Eq [V (z(")]) = (Tt — 2, En [V f(2}")]) + (Z0 — T, B [V £ (2")])
=Ep, (& — 2", V(@) + (@ — 2., VI(2]"))] (C.47)
+(Z — T, V(@) + (Z — T, En[Vf(@]") = V(T1)]) -

By smoothness,
Enm [T — 27", Vf(2}"))] > —LEmlllz" — T[], (C.48)

£ < £ + {20~ 7, VIED) + 217 - 7l 49

By p-strong convexity,

Epn [(@}" = 20, V7)) > Bnlf @) = fo+ Sl — 2.]?)
B uo , (C.50)
> f@) — fu+ G 7 — 2]

25
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672 Therefore,
(Z — 2, En [V (@)]) = @ — 2, En[V(@")]) + (Z2 = 20, En [V (@7)])
(C.48),(C.50) o ) e
F@o) = fo+ SlTe = 2ull” = LEm([[l27" —T¢||"]
+ (Ze = Tt, V(@) + (Zt — T, Enu [V f(2]") = V(7))

(C.49), AMGM o , L. o
> F@E) = fot SlEe = 2ull” = Sz = 2" = LEn 27" —Z¢]7]

L, _ m —
=5 (7 =Z* + En[ll2}” —7]?)

AM-GM W 3L A
2 f@E) = fot glze - N 5 (17— To||* + En[lle}” — 7% -
(C.51)
673 For the last term in (C.46),
202 ||E [V £ (@)1 < 607 [L2 |2 — T||* + L2 T — Z]* + V£ (z0)]1?]
(C.52)

m_ = = = 1 =
< 00? | L2la ~ il + L2 - 7P + 5 () - £

1
674 Combine all these inequalities plugging in (C.46) and notice that 7 < 6L
- Ny~ _ - m
Ze1 — @] < (1 7)“% — zu|® = 0(f(Z) = fo) + L (170 — Te|)* + B [l2]" — T2 ])?]]

=2 (%0 = @, Blg? = VS )]} + 202 B 97" = V()]

(C.53)

t—1 3
675 Define A; = ZamH@ — T % where a,j = BTNt — 5 + 1—131)- By Lemma C.7,

j=0

. . . o o 22(L)*B7
676 we plug (C.85) in the above inequality and compute (C.53) + W x (C.84). Now let
— b1
98 ()3 32
677 By = |7 — x.||® + MAtl' Hence we obtain
— b1

Q1 < (1- *)‘Dt n(f(ze) — fo) +4nL — 5

Enllle — 7| }+64( b ) ||Vf<zt>||2]

+32nL <1’75151> [(1 ) tz_iﬁi—i—l [QLQ]Em[Hm;" — 7| + ||Em[g/f _ Vf(xgn)]||2:|]

§=0
=2 (%0 = 20 Bnlg = V@)Y + 202 [Enlg — VF (@]

< (L= )% = () = ) + 4nLEn 2] — 7|

t—1

e "5}3) lu =80 Y BT [L2Enlla] 31+ [Enlg] - wumﬂ]
j=0

=2 (3 - a0, Bl — VI@)]) + 207 [Bulgl® = V(@)

<(1- *)‘I)t - §(f(ft) — fo) +16nL - n°0’KA

+32nL<1"_ﬂlﬂl> { - B1) Zﬁt T Elgl — V£ (2 >]||2]

20z — 2, B[} — Vf<x;“>1> + 207 |Enlg = Vf ]I

(C.54)
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679

680

681

682

683

684

Here in the second inequality we use ||V f(Z;)||? < 2L(f (%) —

contraction results implied by event E ;.

Unroll this recursive bound and re-calculate the coefficients,

>0

j=0

N?\J

ne
)1 - =
F) 2

Simplify &, term,

For the last term,

47]2 Z

we finally get

>0

j=0

NJ\S

(1) Case p > 0.

”HE 97"

(-

T

2

)+ @y < (1 - )00 +

- 2772(1
+4n22

ST A Fe P < (1 - -

t
—2) (1
j=0

32n°Lo’K A

) INEmlgy — V(

f+)- In the last inequality, we apply

)|I?

(C.55)

N 32n°Lo*K A
By gy — g, 24 PO RA

(%5 — 2, Bnlg] — B[}

t
—27) (1
§=0

®: martingale

- <§j — x*7]Em[Ej [57;?1] — Vf<x;n)]>

@: clipping bias

+4n22 ”HE g7 = VF@M)|*.
(C.56)
||2<8n22 )" J[HE 97 = ;g7 1% = ;| Emlg — E;[g]]II?)
©: manngale
+8n22 ) IS (B g7 — B g7 ]]II°)
Lemma 8.2
+8n22 ) B B [T — VI,
& clippmg bias
(C.57)

) 1
P+ e -l < (1 ByDg 432 LA+ g | 1

27
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685

686

687

688

689

690

691

692

693

694

695

696

697

For @, define

MH N\t — m m ;
(= a0y <z] — 20, Enlgl — Ej[g ]]>, if event ; holds, .
0, otherwise.
Then since event E; implies ||Z; — z.|| < V2(1 — %)j/QDO,
Gl < 20 V20 = T5)"2Dy - 20V = 4(1 = ) Pnpv2dD e, (C60)
27922
N 2(t—j) Nyin2 0 Nt \oe— 51" Doo
Var; (¢;) < 4n?(1 — 22)20-0) .91 — 18yip2. 2 = g(1 — 18)2t—5 1 207 C.61
arj () < (1= B0 o1 = yipg. T — s - Wy AT con
1 — W)+ p2 D :
Lerpo L22)T D0y 16(1 — 1100 | < b with probability
5 2 uM =
no less than
2 5
1-2 —_— | > 1 - —. C.62
P <2V + 2cb/3) =TT (€62)
For @, since by Lemma B.2,
2 o H20||§2
event F; implies that
Uy 120|54
@] < 2772 1— 5y /201 - ?)J/QDO - pa_f
< 4\/5(1 _ @)t/z Dy||2054 (C.64)
— 2 ‘Ll,pa71
_a=myipg
- 5

Here we use the definition of 7 and conditions of p in (C.12).
For ®, define

UL o o o
o = | 872 =2y [[Enlgl — B[ - B [|Ewlg] —
j 0 2

Then

0;] < 8n* - 4p°d = 32n*p*d = f .

Lemma B.3

Var, (6;) < 64n*(1— )20, g PP s

E;[|Enlg]" —E;|

64n* (1 —

Leth— (1— %)HJD% 9133 ;4 t
= , -
5 uM =
1—-2 ’ >1 0
—2exp [ =———— - —.
Plavioa/3) =~ ar
For @, by Lemma B.2,
@) < 160 2ol (0= %)~D;
L pz(aq) = :

28

j[gjn]m?}] . if event B holds,

otherwise.
(C.65)

(C.66)

T y2(0-3) 4(20)*
2 M2
(C.67)

. By Lemma B.1, | Z 6] < b with probability no less than

(C.68)

(C.69)
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712

5
Combine the above claims, with probability no less than P(Ey ;) —2- a7 Ve have |©+@+0@+®@| <

4

5(1 — %)“ADS. By (C.58), these implies
t
77 NE\t—5 | 1= 2 NH 41 2 1
= )1 - =) —x" < (1 — — D§+32 |nLKA+ —
> GUE) - 1= ¢ e~ < 0= ) DR A+ ]
4 NN t1 2
21— Eyp
+ 5( 9 ) 0
<2(1- %)Hlpg.
0
Therefore, we conclude that P(Ey11) > P(Ey 1) — 5T
(2) Case = 0.
In this case, (C.58) reduces to
: 1
22 —f)HZer1—x]|* < D2+16 {nLKA—k M] 2t+1)+D+@+0+®.
j=0
For @, define

—2n < — ., En[g — E; [g’;?l]]> . if event E; holds,
G = .
0, otherwise.

Then since event F; implies ||Z; — z.|| < V2D,

16| < 20+ V2Dq - 2pVd = dnpy/2dDy < ¢,

0.2 87’]2D2 2
Var] (C]) < 4772 2D0 M T

t
. By Lemma B.1, | Z ;| < b with probability no less than
7=0

D? 8n2D2oT
Leth=—2 vV =_—"—"0" "
T M

1—2e il >1 0
—2exp | =——— - —.
Plaviaa/3) =~ ar

For @, since by Lemma B.2,

s _ l20]32
5167~ VFIP < oty

event £y implies that

2 D}
@] < 2n(t+1)-V2Dy - ” (Z”f;’ <=
Here we again use definitions and conditions in (C.12).
For ®, define
o, _ {87 IEnlg] — B[N — B [IEwmlg} — E5[g7NI%)] . if event £ holds,
! 0, otherwise.
Then
o def
16;| < 8% - 4p?d = 320 p*d =
Lemma B.3 4(20-)4

Var;(0;) < 64n* - Ej[|[Enm g7 — E;[g7]]]7)? < 64n* - SR

29
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1
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t

D
Letb = ?0, V= ]\74] o . By Lemma B.1, | Z 6;] < b with probability no less than
7=0
2 ]
1-2 —_ | > 11— —. C.81
P <2V+2cb/3) =TT (8D

For @, by Lemma B.2,

@ < 8i°(t+1)-

p2(o¢71) =5

2 2« D2

)
Combine the above claims, with probability no less than P(E; 1) —2- —, we have [D+@+®+®@| <

4
—DZ. By (C.58), these implies

4T

)
N < 1 4
= § — .|| <D +16 [nLKA *0*(t+ 1)+ -Dj
2; F) e =l < DR 16 [aLKA+ 7 | wfo* (e + 1)+ 5DF
< 2D2.
0
Therefore, we conclude that P(Ey11) > P(E: 1) — T
O
t—1 8
Lemma C.7. Let A; := Zawﬂxj —Tj 41| where a; j = B} TN —j+ - ). Under the
-5
7=0
conditions in Lemma C.2, then the following holds:
1—-51)? 32n?
as (1= P A+ e s
-1 (C.84)
+ 2y g [QLzEmmx;“ — T5[12) + [Emlg — VI -
J=0
= =2 np ’ 2 =12
IZ7e =zell” < | 5 ) [16L%A—1 + 32[|V f(Z0)]%]
775 )2 Lt
1 m —_ /7?1, m
P ' 2L%Enllle — 7%+ Enlg] — VA
(C.85)
3 2
Proof. By definition, ||Z; — Z;||* = (1 lﬁ ) |Z — Z¢_1]|* and
-5
[ e 1
2
t—1 ' .
=0 ||(1= 1)) 817 Enle]
3=0
2
<29* |||(1 = p) Zﬁt T EL VM| + |1 - B) Zﬁt T B9l — V(

<dn?||(1 - pr) Zﬁt IV ()

t—1

+ 22 (1= B1) Y B (2Bl — 32 + Emlg] — VAP

=0
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740
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745
746

Note that

2 2
t—1

(1-51) Zﬁt TV E@E)|| <2||(1-80)Y BTTVI@E) - V@) +2V @)

7=0

2(1-p1) Zﬂt TPy —m? 2V (@)1

t—1
2(1—B) Zﬂt L2 (=) ) lE = T P+ 20V f (@) P
i=j

t—1

<207 ani|1T5 — T P + AV EIP + AL | -z
=0
t—2 4L2
<22 T -zl +4IVE) P + WH@
=0
(C.87)

Here a;; = A1 77" (t —j +

t—1

). For j <t —2, wehave a; ; < ($1(2 — B1)as—1,;. Since

b1
1- 581

Ay = Z at ;| Z; — j41]|%, we can conclude that

Jj=0

1T — Zi1 ||* < 1607 L2A—1 + 3207V f ()]
t—1

+ 4 (1= 1) Y B 2L Elle} — 712+ [Emlg] — V)]
§=0

(C.88)
which implies (C.85). We complete the proof by plugging the above inequality in
1
A <B1(2—Bi)A1 + —— 5 |7 — Te—1 ). (C.89)
O

C.5 Further Discussion

Coordinate-wise clipping and global clipping. Lemma B.2 can be easily extended to R<, similar
to Sadiev et al. [2023, Lemma 5.1]. Therefore, our results can be easily generalized to global
clipping operator clip, (X, py) := min {1 ||§§|‘ } X with threshold p, := pVd. We omit the
details in this paper. Readers may also wonder why our Theorem C.4 and Theorem C.5 depend on
poly(d). However, if we assume ||o-||2ad%_i = O(o), both of which are of order (’)(d%), then
our convergence guarantee will not depend on poly(d) explicitly. Zhang et al. [2020, Corollary
7] claims that coordinate-wise clipping has better dependence on dimension d. But they simply
upper bound E¢.p||VF(z,€)||* by d*/*Eep||VF (2, €)||2, which is too pessimistic. In fact, if we

assume Eep||VF(z,8)||* = Od* ' Eep||VF(z,€)||2), both of which are of order O(d?),
then there is still no difference between coordinate-wise clipping and global clipping in their setting.

Prior works on distributed SGDM with local updates. There are many works on Local SGDM in
distributed setting. Liu et al. [2020a] studies Local SGDM in convex setting and rely on some strong
assumptions to show convergence. Xu et al. [2021] analyze Local SGDM with bounded gradient
assumption and the use a global momentum parameter during local iterations. Yu et al. [2019]

considers non-convex Local SGDM but is only able to prove linear speedup. Wang et al. [2019],

Cheng et al. [2023] also study non-convex problem and use momentum to handle heterogeneity in
federated learning. All these works fail to show the benefits of local iterations compared to minibatch
baseline.
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7 D Proof of Local Adam

748 D.1 Overview and Main Theorem

749 Forany integer 0 < ¢ < T'—1, we define r(t), k(t) € Nsuchthatt = r(¢t) K +k(t) and k(t) < K—1.
750 We omit the dependence on ¢ and let r = r(¢), k = k(¢) through out the proof if not causing confusion.

751 Define 23" := x,%, 9" == g%, g/g\” = g/, ui" = u,. Then Algorithm 2 is equivalent to the
752 following update rule:
g [ Bty + (L= Br)gi i tmod K 0, .
! Bitui—1 + (1 — B1)g™  otherwise,

753
m /7,\12 .
o = 52?_1 +(1- ﬁg)g/t\2 if tmo.d K #0, 02
BaUs—1 + (1 — B2)g™  otherwise,

754

mo [ el = n(H) ey if tmod K # —1,
T = { Ty — B [(H™) " 'ul]  otherwise. (D.3)

755 Define an auxiliary sequence {z;"} as:

1
m b 2™ if tmod K # —1,

[E— ==
1 _161 i 1- 61 (D.4)
m

2, = )
— g, P
-6 " 15

z; otherwise.

756 Let
m /8 m m — m
€ = (Ia — H{"(H™ ;) )utfl' (D.5)
1—-p
757 Then the definition of {z;"} implies
LMo am _n(Htm)_ 7761( ) ut 1
t+1 t 1 o ﬁl 1 _ ﬁl
np1 s — m oA—11 m s — D.6
= )™ () i — ) O

=t —n(H{") " g7 + ef").
1
758 Finally, let y; := argmin f(y) + — ||y — Z¢||% -
Y 2y r®

759 Define probabilistic events (see (D.15) for definition of some parameters)

Apy = { 22 < H L HP <1+ (1~ B2)B and forall m € [M]} (D.7)
760
Apo = {||H.y (H) ™' = (H) ™| < (1 = B2)By forallm,n € [M]}, (D.8)
761
Aia = et — iy, < TE kA 30 11 < S BPTA o e
. t+ t+1llH, = >\ = 3= 912(1 — B,)2 B2 ’ ’
762 D.9)
t
r(t . 17 I
Ava = £ (Zeg1) — min [ + o Z:(j) IV £ (z) i <240, (D.10)

763 Here A := fi‘ (z9) — min fi‘. Besides, let
E, = {A;,; holds forall j < t — 1,i € {1,2,3,4}}, (D.11)

764
En=ENA1,EBio=E1NAo, E3:=FEoN A 3. (D.12)
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770
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772
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774

775

776

777

Theorem D.1. For L/\ > > 27/, let Assumption 1, 2, 3, 5 hold for Q = conv(Bg,(Q)),

A
where Qg := {f?(m) — min f? <2A}L A= f?(mo) — min f§\ and Ry = ﬁ Further assume
that for any x € Q, |V f(2)|| < G, ||V f(2)]|co < Goo, and

J1=p (1=B)ovVA n 1-p 1
A< - 1
1 52len{K1/2B1 Kl/gBlG 7VB’K1/QB7K . (Dl3)
24\A . . |
i = T then with probability no less than 1 — 6, Local Adam yields
A R-1K-1 ¢
KR IV S5 Gl Gs S €if
r=0 k=0
AAg? T A L202K A LA KrA \/LAp2dlog
T2 ot 57\ e + = 2. (D.14)
Me? 0 e \min{e, 02 /G} (1 - /1)2%¢ - V- B)e
Here

1
26 2 2a\ 2(a—-1)
p>max{<||€a-|2oz) 7300072(;’00}7

2 2
B max{ﬁK(Goo+aoo) 1677 o AMT

A2 T2 57 A2 0
16K02, 16p? dMT K(Goo 00)000 dMT
By := max T o0 , P log ZG\F( +0x)o lo gl/Qi ,
A2 A2 ) A2 0
220p%d . MT o, o MT 2°K|2035
A= max{ Kol log 5 2" log 5 oZpra) } .

(D.15)

to
Proof. We prove by induction that P(E}) > 1 — T fort=0,---,T

When t = 0, this is trivial. Assume that the statement is true for some t < 7' — 1. We aim to prove

t+1)0
that P(Ey 1) > 1 — % By Lemma D.8, D.9, D.10, D.11, we have
0 t+1)0
P(Ei1) 2 P(Ey) —4- = >1- 1) . (D.16)
4T T
Therefore by induction rule, P(E7) > 1 — 6 and this implies
24AN
r(t) 2 _
z Z IV £ @I < T = © (D.17)
Now we verify the conditions in all the lemmas. In Lemma D.7,
n A~y o
- T2 —-VLAKA. D.18
AV 2K A ~e D.18)
In Lemma D.9,
2 A L? 2KA
DNe I o p>2. |27 (D.19)
A GoLoVKA e \ o2 /G
In Lemma D.10,
noo 1 (1-p1)2 LA KtA
N ——=T2Z . D.20
ANmm{KT’ L gt e (D:20)



A 2 2c 2(&171)
=¢,(D.113) is equivalent to p 2> (”UH2(X> and
€

In Lemma D.11, by noticing that
Ui
< min (1 — 61) Mne <L2 QKA) i \4 T5 V - /81)
~ L )\O_QIOgl/QT e 0—210g7 >\p2d10g 5 Lpflogl/QT )
D.21)
which can be ensured as long as
T A LQUQKA y/LAdelogg
5T

778

>3

779

2
LA Mo (D.22)

(1 —B1)2%e’ yMe?

Nl

log*

(VB2 — Br)e

T Z max ,
€ 5

A
Here we use the fact that v > I Therefore we can conclude that all the lemmas hold if

2,2 \/LAp2dlog £
L?02KA LA +KTA - 6. (D.23)

T > Ao lo %eré + +
~oMe %% 5 T minde, 02 JGoo} | (1- )% e

780

Finally, we verify the upper bound of 1 — 35 in Lemma D.9, D.10 and D.11 as:

781

f1=p A=B)ovA n 1-p 1
_ B3, < A il
1 52Nmm{K1/2B1 K2BG "B KPR K [ (D.24)
782 O
783 Theorem D.2. Under the conditions of Theorem D.1, assume 1 — [ (1) and
! o)™ 2
B =O llollza ) *77 5 < T
1 52_O<K3/2R1/2> ( - ) NGOOVUOOVENGOO’
MT pra. 2o (D.25)
e
) o

784 Then with probability no less than 1 — §, Local Adam with optimal n,p yields

R-1K-1
785 RZZHVfH ZTkH 1§€if
r=0 k=0
1
Mo? 1T LA MT (L+K7)A LA [|o]22\7=0 | MT
logz — 2K 1 2 ds 1 .
V=R T B T S +g%< e > ?log —
(D.26)
786 And equivalently,
R-1K-1
A " TA LA Mo? 1 KR
A (%, B TA logk
LAlog

(D.27)

34

(LAc): . 1+ MKR 11\ 3% MLR
log 3 ( od Q)

2(a—1)
3a—2




787 Proof. Plug the definition of A in (D.14),

AAg? T A [L202K log 4T L+ KnA  +/LAp2dlog -
Tz%log%——k— ik ey +< - K7) + ’
yMe 6 € € € €

A [I2K |dlog® ML
TV \/ K ——p? + Kl|o[35 - p20 =)

(D.28)
Ao? T A L%0 2Klog MT (L + K7)A
~ ng P P +
yMe? (5 3
[I2K |dlog?
\/ 52 4 Klo3a - p20-e,
788 Hence the optimal p is given by
1/a 1
K o)
< max{ ||o|2a | —=——= | —= 1000, Goo p - D.29
p=max o]l (m)g%T) (1! (0,29
‘ 0.H2a 2(a1—1)
7e0  Note that< :“) 2 G V 0 and this implies
2 252 MT
T> Ao logéz—l—é- L202 K log =5 +(L—|—K7')A
Me? 0 e € €
1
LA 1_ 1 1 1 MT 2o\ 2a-1) MT
1 B o g i E 10gt =% ML (olza) 7 gy MT
£2 (5 9 0
1
AMo? T LA MT (L+K7)A LA [|o]3a\>=D . MT
= ——log? — . 2K 1 O d? log ——.
'yMz-:QOg 5+g% M + € +g% € 875
(D.30)
MT Gd3—aw |\ ° 72
790 In the last equation we use K 2> log 5 (”‘7”2 - ) . Solve € and we get the upper
g
R—1K-1
791 bound of— DD IV G-
r=0 k=0

792 Further note that A = O(1), B = O(K), By = O(K),n = O(1/VT) and we can get the upper

793 bound of 1 — 35 as:
~ 1
1=B,=0 <K3/2Rl/2> . (D.31)

794 This completes the proof. O

795 Theorem D.3 (Complete version of Theorem 3). Under the conditions of Theorem D.2, let v = —
796 and thus Qo C {z : f(x) — fu« <4(f(x0) — f*)} A = f(xo) — f«. Then with probability no less

R-1K-1
797 than 1 — b, Local Adam with optimal ), pylelds — Z Z \VfZrk ||H 1 Zeif
r=0 k=0
1
LAo? 1T LA MT (L+Kr)A LA HUHQO‘ 2= MT
T2z log? — 1/02K 1 — (2% dz log ——
Me2 08 5+5% 7 Og5+ € +5% € %85
(D.32)
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798 And equivalently,

r=0 k=0
) 2(a—1)
LAc)S | 1+ MK 225 [ LAlog MR\ o
( T 0)23 log3 R + <||0'||2ad%7i) T La%08 T )
K3Rs d KR
(D.33)
G2 +o 2
799 Further, if 1 — B3 < ﬁ, where p is definded in (D.29), then with probability no less than
goo 1 — 26,
R-1K 2
1 Go+0x ) |TA LA LAc? 1+ KR (LAo)s 1 MKR
—_— <lH1+— ) | =+ = log* log3
KR ZO;OIIVka)IN(+ A ) R KR VMER® 5 T gigi °

2(a—1)

5223 [ LAlog MR *7
+ (lolladt =) 2<;§R6

(D.34)

8ot Proof. By LemmaD.6, we have Qp C {x: f(z)—f. < 4(f(zo)—fi)}, A < f(xo)— fi. By Lemma
sz D.4, we have ||V f(Z k)l -1 < 2||fo”(zr’k)||HT_1. Therefore, the bound for T" in Theorem D.2
R—1K—1

sos  will reduce to (D.32). Solve € and we get the upper bound of — Z Z IV fEr )2 Hot
r=0 k=0

sos Now we turn to bound ||H,||. Note that H,. 1 = diag(\/v,+1 + A?) and

rK—1
[orgali = (1= B2) Y By 7 B[]}
j=0
r-;( 1 - e e
(= 8) 3 A" (B [l - BT + BB ) D35

rK—1

< (=) 30 TR (1671 — Ey[g]712] + 0% + 362,

gos where the last inequality is due to Lemma B.2. Define

rK—j—1 — — .
10,]; = (1-Bo)Bs 77 R, {[gj ]Z2 — Ej[gj ﬂ , if event E; holds, (D.36)
0, otherwise.
sos Further note that
de
16,0 < (1 - B2)0* < e, (D.37)
807
(1 o 62)262(TK7j71) — — 2
Var; (6):) < 2 EnE; 9712 - Eslg] ]
1-8 252(7"[(—]'—1) - er
OB g (12 - 1956508 ©39)
1— 2 p2(rK—j—1)
< ( B2) fj (2U§o + 80306%0).
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825

2(1 — Ba)o2, (02, +4G2) G% + o2

Letb = G2 + 302,V = i 1 -6 S ﬁ’ then by Lemma
rK—1
B.1, we have | Z ]| < b with probability no less than
7=0
1-2e v 510 (D.39)
—2exp| —=———= - — .
P\Tovi2a/3) = ar
which implies [H,]; ; < A+ 2G o + 20. Therefore, we have
P{Er and |H;|| < A+ 2Gw + 20 forall r < R} > 1 — 26. (D.40)
And thus
R-1K-1 2
1 Goo + 000\ | TA LA LAc? 1T (LAU)3 1 MKR
— Vf(z, 1+—— | —+— 1 1
KRTIM:OHfZ’“ ~(+ X\ ) R TKR VMER ®' 5T Kigz 5
2(a—1)
5225 [ LAlog MER\ 5o=2
R il e
+ (lollzad? = -
(D.41)
O

D.2 Preliminaries

We start with theoretical properties of weakly convex function and Moreau envelop, which are
repeatedly used in our proof.

1
Lemma D.4. Let z € R and y = y(z) := argmin f(zx) + 2—||ac — z||% for some H = N, and
z Y
L/A>~"'>27/\ Then

H(z —
V() = Vi) = TEZY, (D.42)
If further assume ff(z) — min f,;\ <2A,0<n< % then z,y € g, and
2vL
IVF @l < S2NVE Ol (D.43)
|H(z —y) —nVf(z )IIH—1 <AV -1 (D.44)
IV L) 51 < (fH( ) — min f3). (D.45)
Proof. Since y is the minimizer,
1 H(y —
0=, [0+ 5l =l | = 0+ L=, (D46)
Y vy
and note that . "
VA = V. 10 + g lote) ~ 1| = T (D.47)
If £7(z) — min f3 < 2A, then f(2) < f(z) and
) < £ y) < fly) < f1(2) < f(2), (D.48)
which implies y, z € Q.
By mean value theorem, there exists a symmetric matrix —71q = Hy = LI, such that
V(z) = Vfy) = Hy(z —y) = yHH 'V f(y). (D.49)
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Hence,

_ L
IVF(2) =V iWlla— <ANH V)l a0, < %vaf(z)”H—l' (D.50)
L 2vL
195Gl < 1+ IDIT @l < 21952 @)l (D51)
Also,
H(z—y) —nVf(2) = (Wla —n(Ia + yHyH )V f(y) = yAV £ (y). (D.52)
By noticing that
Iy = HYV2AHY? = Iy — oy~ —H YV2H,HY? < 1, (D.53)
we have ||[H(z —y) = V) ||lg-1 <AIVFW)|lg-1-
Last,

. 1 v
min f3 < f(y) < f(y) = f3/(2) = gl\y =2l = 1) - IV Gl D54
This completes the proof. O
Lemma D.5. [fx,y € €, then

— (& =y, V(@)= VIy) + %HVf(a:) = VIWIP < 27z =yl (D.55)

Proof. By mean value theorem, there exists a symmetric matrix —71y < H <X LIy, such that
Vi) -Vf(y) = H(z —y). (D.56)

Therefore,
2

(o=, V@) = VW) + 719 @) - V@I = (=) (~H + ) )

2 (D.57)
< (r+ e -yl

< 27|z — g%

f(2)

)\  J*
Lemma D.6. If v = —, then for z € Qq, it holds that Tf < fin(z) = fo < f(2) = fu

L
Proof. By definition of Moreau envelop, the second inequality is trivial. Let y = argmin f(z) +

L L
§Hx — z||%. Note that z — f(x) + §||x — 2||? is 2L-smooth. Then we have

L
F) < @)+ Slly =21 + Llly = 2% = fi/e(2) + Llly = 211 (D.58)
Furthermore, by Lemma D.4
L 1
Sly =217 = 57 IV < fv) = fo. (D.59)
Therefore, f(2) — fu < fij1(2) = fu + Llly — 21> < 2(f1/L(2) = f2). O

Next, we show that event F; implies all the iterates remain in certain area.

A
Lemma D.7. If%VKA < ﬁ then event Ey implies that for all j < t,m € [M], we have

Z; € Yo, 2", Ty, 27" € QU And |2} — 2} || < %VKAforall m,n.
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Proof. Event E, implies that for all j < ¢,
Ay
A= A n
f3(Z5) —min f3 <2A, 2" — 2| < —\/ Te0x" (D.60)

Hence z; € Qo,||z]" — Z;|| < UTUVKA and 27" € Bg,(€0) C €. Also, notice that 7; €

conv{Zz; };<; C conv({)) C Qand 2" — 2} € eonv{z;]" — 2;'},<;. We have

o
log - a3l < VA, o — 7l < VRA < |/ 2L (D.61)
Therefore by Lemma B.4, 27" € Bg, (conv({)) = Q. O

The following lemma shows that the second order momentum v;"* does not change too much from
vy(¢) during local training with high probability, which is also repeatedly used in our proof.
6K (G2, +02) 16p° log dMT VE(Goo + 000) 000 o

22 N2 5 22 S
If p > max{30., 2G }, then the following holds

LemmaD.8. Let B := max

)
P(F, P(F, D.62
(Etq) = P(E) — T (D.62)
Proof. Lett = rK + k. By the update rule of local Adam, we have
o' = By o + (1 - Ba) Z By gl @ gl = Biuy, (D.63)
j=rK
and hence K K
H™ = diag(\/v]" + 22) = BXdiag(\/v, + \2) = BE/*H,. (D.64)
For the upper bound, for any index i € [d], by Lemma B.2,
E;lg7)? < of + [E;[g))i])? < 0% + 3G2.. (D.65)
Therefore,
t
o) < ool + (1= B)K (0% +3GL) + (1= 82) Y [l - Bl 2] (D66)
j=rK
Define — —
m1 _ J 1g7']i —Ejlg]i, if event Ej holds,
167"): = { O,J ! otherwise. D.67)
Event E; implies [07"]; = [9/;7\1]12 —E; [g/;\”]f Further note that |[0]"];| < p° .,
m “m12 m\12 2
Var; (07"]:) < B (19712 - [V £ ()]
“m m 27 m m 2
= [[7') = (VA [0 = (V7@ + 209 £ )]
(D.68)
AM-GM
<" 28, (1670 - VS @]+ 8K [l - (V@)L 195 @)
Lemma B.2
< 20t 4802 G2
¢
Letb = BA\?/2,V = 2Ko2 (02 +4G2). Applying Lemma B.1, we have | Z Ji] < bwith
j=rK
probability no less than
2 0
1-2 - | 21— — D.69
eXp( 2V+20b/3) =7 dMT (D.69)
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)
ss1  which implies with probability no less than 1 — 1T for any m € [M],

v < v+ (1= Ba) K (02 +3G2) + (1 — B2)BA?*/2 < v, + (1 — B2) BA%. (D.70)

se2 and thus
H™ <\/1+ (1 - B2)BH,. (D.71)

863 O

sea D.3  Proof of Contraction

ses In this subsection, we aim to show contraction, i.e., ||z — z} H will not get too large during local
ge6 iterations with high probability. However, since the update of ;" involves the coupling of both first
867 order momentum and second order momentum, it is much harder than showing the contraction of
gs8  Local SGDM. Our solution below is in two folds.

gss  We begin with showing contraction of the second order momentum in some sense.

16K02, 16p? tog 21T 26\F (Gos +000)000 1172 dMT}

s7o Lemma D.9. Let By := max{ 2 e 5 2 5

1 L
g7t and 1 — B < K If p > max{30,2G}, nTUVKAGDO < 2050, then the following holds:

1)
P(Et2) > P(Ey1) — YA (D.72)

g7z Proof. Event F; 1 implies for all j < ¢, 27", 27 € 2 and for any index i € [d],

J

'1—/32 Zﬁ [A,—@]?H

[vi" — vyl
< |<1 ~ B2) _Z 8570 1712 - 9902 — B (7 — 1712 '

+ ‘(1 - B2) Z 8570 (B (19712 = (9712] = [V @l - [V £ ()] \
; \(1 ~52) Y 87 (VG - (V)]

< '(1 )Y A (15712 - 707 — & (197717 - (7] |

j=rK

+ (1= Bo)K -40% + (1 — B2)K - QGOO”LT"\/KA

< |<1 o) 3 A [ - G - [ - )] |+8<1 - B)K - %

j=rK
(D.73)
873 Here in the second inequality we apply Lemma B.2 and contraction results implied by E} ;.
g74 Define
gy, = {87 (7R~ 6 B [l ~ [9R]] . ifevent By holas, o
/ O, otherwise.
875 Then we have
=™ <202 Y e, (D.75)
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876

877

878

879

880

881

882

883

884

885

886

887

888
889

) ) (D.76)
< 48, [[g7")s — [V f ()] -[[m—me;")h} +4[Vf<m;">]?]

< 4oi + 1602 G%.
t
Letb = B1\*/2,V = 4Ko?2 (02, +4G2)) and by Lemma B.1, we have | Y~ [E7""];| < b with

j=rK
probability no less than
1-2e v >1 0 (D.77)
—2exp | =———7= — . .
P\oviaa/3) ="~ aaneT
This implies with probability no less than 1 — LT
o =l = (1= B2)B1A?/2 4 8(1 — Bo)K - 02, < (1 — B2)B1)\2. (D.78)

Combine this inequality and event E; 1,

‘Hr _He| Vur + X2 |op — o]
H* HP L o+ X0+ R(o + X+ /o +2)
VU, + A2 (D.79)
= (1—p2)B1
(Vo + X2 + /o +22)
=< (1 - p2)Bs.

1
The last inequality is due to event F ; and 1 — 35 < e We can conclude that under event E} 1,

)
with probability no less than 1 — T the inequality above holds for any m,n € [M], which implies

P(Ei2) >P(E1) — —. O
(Ei2) = P(Eiy) —
Now we are ready to prove contraction of z;".
2290%d . MT _,,, MT 28K|]20]3
Lemma D.10. Let A := max ol log 5 2" log 5 o) } If n <
A 1—61)2A
min { COKT ( 64/811/) } p > max{30.,2G}, and
(1 =B1) (1=p1)o 1-5
1—Ba)K'Y? < ( A D.80
(1= B) K77 < min =5 = S G VASIE | (D-80)
then the following holds:
0
P(Ei3) > P(Eio) — —. D.81
(Er3) > P(E;2) T (D.81)
Proof. If t mod K = —1, then 2/} ; = z{',; for all m,n and the claim is trivial. Below we assume
that £ mod K # —1. The update rules implies
(R Zt+1||%lr =" |l — 2 ||%{T —2n <Zt -z, (H{") 1(gtm +e)") — (Hy') l(gtn tef )>
—~ _— 2
| G e = (T G e
@
(D.82)
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890 Note that the first order term is

(e =2 (HM) G + ) = (H) T G +e)))
(o' = 2, VI (@]") = VI (a])

(2 =2 g7 — g — V@) + V()

+ (o (H) T — (HY) T )y 0.83)

r

@
(= (e ()™ = Lgi = (e (H) ™ = LT )

®

g1 And for the first term above,

(2" = 20, V(") = V(@) = (2" =2, V(") = Vf(2}))
+ (& -z = (" = 2)), V(") = V(ay))
> (" — 2, V(") = V(i)

L m n m n >\ m n
— NG =) = @ =), — g V@) = V) [
(D.84)
so2 By definition of {2;"} and event E, o,
1B 2
m n m ny (|12 my—1, m n\—1, n
I = 52— e =), = (7225 ) D = (),
2
7’5 m\ — ny\— m 2 ny\— m n
<o () [y i, + 1
Ap1,A 2
t,1,A¢,2 776 m m n
({2 ) [0 - BB+ Al - ]
(D.85)
893 Besides,
|12
®© < 4|(r) e — (Hp) e 4| T = T - (D = gt
+4llgf — gF = V@) + V@I + AV ) = VD3,
894 (D.86)
1
@) < gl = 27, + 20K - (). (D.87)
895 1
©] < g laf® = 27 I, + 20K - (o). (D.88)
896 77
(D.5) 51 2 1 1 1 1 2
() = (1_ ﬂ1> (120 e 02 i Il R (02 I O N i 4 9
ﬂl ? my—1 m \—1 ny—1 n —1 m||2
<20 ) ™ = )™ = ™+ E)

I = () g = ) ]
A1,AL 2 51
2y (1 .

s (PO (g o 5 -l

2
) A0 B By 410 BB = )

(D.89)
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897

112
(o) < 2yt = ey [+ ot - @ - |
Ar1, A SR
<2 [[(1= BB NG s + (L= B2) BP9 = 97112 |
21— B2)? [ BEIGP1%, - + 2B2 (97" — g = V(@) + VI @2 + V@) = VI @)% )]

(D.90)
sos Here we repeatedly apply ||H,.(H)™' — I|| < (1 — B2)B and | H,((H™)™' — (H") Y| <
89 (1 — B2)By by event E 5. Plug in (D.82),

(D.83) — m na\ (P-84) m o m
2ty = 2l < 2t = 20, — 20 (e = 2 gl = gF = V@) + V@) = 2l — o, V(@) - Vf

(k)

(D-84) L m n m n A m n
o [0 -0 - @ = oDl + 4y 196D - VI

(D80) )
— n-(@+®)+n"-O@

n m n >\ m n
< = By + (e 20 |5 0T = 38) = (ol = o, + 5 IVFT) = VIl

1 L, (D7)
w2 | et = a2, F 20 (9 4 208 - (1)

(D-86) 2 “m - m ny |12 m ny |12
A0 [0+ (o) + g7 = g = VI @) + V@ + IV @) = V@]

<@+ 2K>uzt = 2Pl )+ TG - ) = @ - ),
n n cmo_om
G4 209 (a) — A+ [T — G~ )+ VG

€]

sl = 20, =20 @) — o, Vf(2]") = Vf(})) + %IIVf(IT) ~ Vi)l

()
=2y (=" = 2 g7 — G — V@) + V) + 80 ()
(D.85) 477L< 11

2
) [0 BB+l = ]

A \1-5

0 satac (PP i ] K- BRI
< (U g = 27, + () + 80 - (1)

— 2 (2 = 2 g — oF — Edlg} — > 2 (4" = 2 Balg} — gF) = V(") + V(7))
e+ 0507 (PP g e s BRGS,

(#41)
< (1 e = o, + () + 80 - () — 20 (=" — =0, 67 — 5F — Eala?* — 571)
) SWiK . L')gg”%‘aj.

(D.91)
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L
o0 In the second to last inequality we apply 8K (1 — 32)2B2 < (1 — ;)2 and "= < (1 — ;)2 Also

A
901 mnotice that by definition of {u}"},
t
=(1=p1) Y B7gn + 8 (D.92)
j=rK
902 which implies
t
13- < (1= 51) D B2 Mg 1= + B w3, (D.93)
j=rK

903

t
g — 2 < (1= B) S B — g2

j*rK

20— 3 4 IV 5@ = V@I + 67— 6 = V@) = V@]
e (D.94)
904 And thus

t t
Sl —ulE o <2 3 [IVA@)) = V@I + g - gf = (VI = V@] -
=rK i=rK
’ ’ (D.95)

1
905 Unroll the recursive bound (D.91) and note that (1 + E)K <3,

t

1., . - DU
2y — 2allf, < = > 21+ g)t ! <Z§" —27,97 — g7 — Ejlg}" *gﬁ>
i=rK

®: martingale

£ Y ) [l — 2 VAR - VI + LIV - V)]

j—rK
t
+24 Z Wllgg = g7 = VI@]) + VG- + 7207 Y (] =]l
j=rK j*rK
Bo Bz 24772K2 20|54
105 BB e s B I Pl
(1—p1)? A S P
(D.95) 1 j 277
Lot Y (0 [l - Vs - V) + 2w s -l
j=rK
¢
— 1 — B2)* B}
1Y P - — VG + VI e+ 19K S D
j=rK
Ba ~ 24n2K2 20|32
vasic (1202) 3 g o 2K Ll
B1 e P
(D.96)
906 Note that by definition, u, = (1—ﬁ1)2ﬂ{_1Emg;’}< J+/31 u,—1. By Cauchy-Schwarz inequality,
j=1
K K _
leell < B Nl + | D [ Bmgfi 12 >0 = B1)287V Y. (D.97)
j=1 j=1
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907 Therefore, event F; 5 implies

(1—p51)%0%A 1-5 < (1—p51)%0%A

2 o
Uy . D.98
1ol = 3= GyE T aF = a0 - PR (D
o8 By LemmaD.5, and ||V f(z7")[| <G,
m Lemma D.5 7)20'2
2y = 2talll, <@+ 6Tk - KA
t
28877 n
> lgft = VAP + ) - V@]
j=rK
ﬁ t
2 m m
00K ( ) BES (1 - v+ c?)
—h A j=rK
(D.98) 202 KA 24n°K?  ||203%
LT W W (D.99)
2 2 10,2
no LemmaB.2 92 n
SO+ 60K -3 Ko?
10,2 t R ) N )
Py (165 = V5 @I ~E;llg; V()]

@: martingale

n2o? 2 2 2
272 Ba i 24 o"KA  24n°K ) 120 |35
+ 96n° K (1 —51) 3 —G Tox + \ a—1)"

909 Define

1 - —~ — .
cmn = { —2n(1+ ?)H <z;” — 27,97 — g} — Ej [g}" — g;l]> , if event E; holds,

0, otherwise.
910 (D.100)
o = { g:% ~Vfp)? - J[Hg/;\n — V), ioftlelz:]fvlzltisij holds, (D.101)
10,,2 t
o1 Then (D.99) implies |2/}, — 2", ||7 2)\ KA + Z G 5 52{;})4{} | 0;. Note that
912 by Lemma B.2, m -
N o7 < 4p2d < c. (D.102)
Var; (07) < E;[llg7 — Vf(=)[*] < o™ (D.103)
t
914 Letb= 022%14, V = 0 K. Then by
j=rK
2 )
1—2exp (2V+20b/3> > 1_8]\47T' (D.104)
915 This implies with probability no less than 1 — 3T
‘ d’KA
1> o< —1z VM € [M]. (D.105)
j=rK
916  Also note that
1G] < 6 %\/ﬂ ApVd = w\/ﬂ = (D.106)
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917

918

919

920

921

922

923

924

925

926
927

928

929

72ntct

o KA (D.107)

2
Var;(¢;"") < (617~ 77TU\/KA) 20 =

n?o? 7277 ot
Letb = —/\KA, V= K?A. Then by Lemma B.1, | Z ¢;""| < b with probability no
j=rK
less than
1—-2e v >1 0 (D.108)
—2exp | =———= - — .
P\aviaa/3) =" saer
This implies with probability no less than 1 — 37
t n 0_2
| .Z ¢ < 5 KA,Ym,n € [M]. (D.109)
j=rK
t —
We now turn to deal with Z g%,
j=rK
Z g |* < 2 Z gy = Vf @) I1” + IV £ (@])17)

j=rK j=rK

t
<2 3 (17 - Vi ~Bllg — Vi) +2 3 B - VA + 2K 6
j=rK j=rK
t

23 I = VAP~ Bslllg) = VI )2 + 2K (0 + G2).

Lemma B.2

j=rK

(D.110)

b t
Then »  [lg7[I> <2 > 67" +2K(0® + G*) under event E;. Therefore, by (D.105),
j=rK j=rK
t 2.2
2 <« 2 KA 2 (1-p1)%0"A
i 2K G —_— D.111
j:ZTleng I* < =5 +2K(0* + &) < s poaper (D.111)

In conclusion, combining (D.105), (D.109), (D.111), we have
t
m n 2 77 0o?KA 2 < ( ﬂl) 0?A d
P Eioand ||z — 2|7, < — jzr:K g mH < oni- 5B for all m,n p > ]P’(Et,z)—ﬁ.

(D.112)
O

D.4 Proof of Descent Lemma

After laying all the groundwork above, we are now in the position of showing the main descent
lemma.

Lemma D.11. Assume that p > max{30.,2G } and

nL 3 T
17 10s L < npvd (7) logs _ 1A
VYAt (1=5) WA (1= B1) (VB2 — B1) ~ pd’ (D.113)
(77[’) 2KA < % n-o A 77 ||20'||2oc < A
by

and
(D.114)



930 Then the following holds:

1)
P(Eiy1) > P(Er3) — —

. D.11
T (D.115)

1
91 Proof. For any x € R%, since V2f(-) = —7lyand H, = Mg, y — f(y) + 2—||:v —yl%
~ ,
1
932 is (— — %)—convex with respect to || - ||r,. Note that under event E;, Z; € Qq. Let y; :=
Y

1
933 argmin f(y) + 2—||Et —y||% and by Lemma D.4, 35, € Q. Then
Y y "

1.1
fye) + *Hyt < f(Zer1) + *||zt+1 - ZtHHr - 5(; - *)||Zt+1 - ytHHr (D.116)
934 Recall that the definition of {z]"} implies
LMo am _n(Htm)i 7]61( ) ut 1
an 1—-5 1-5
nb i — m 11 m m D.117
e R ) I R R
= —n(H") " (gl + e]").
m ﬂ m m — m
935 Heree}" = (Ig — HM(H™ )" Hui™ .
T1-5
1 d
936 Also, since ||Zi11 — Z¢|| < ( (Jlr fl%?g))\\f < 60N = Ry, we have Zy 1 € Q and
_ _ .\ _ L _ _ 2
fGip1) = fly) < f(Z) + (V). 2o —Z1) + §||Zt+1 —Z||” = f(r)
T L
<(Vf(Z),Ze41 —ye) + §H§t —uel* + §||ft+1 -7 (D.118)
N - T = 2 L. = 112
<AVf(Z),Zev1 — ye) + ﬁHzt =yl + 5”2&1 = Zt||5, -
937 Combine this with (D.116),
1,1 7 11,7 1,1 _ L
Tty X TR TR A
%”Zﬂrl —ullf, — 2 ; 1z — well i, + 2 ; IZe1 =z,
H,.(Z4 1 —Z
< <Zt+1 -y, V(Z) + 7( tzl t)>
= (0= B (") (@7 + )] = w1 VF (20) = BB () 7 (97 + "))
= <E —nH, 'V f(Z) =y, VI(Z) = H B[ (H) " (g + el”)]> (D.119)

+ IV F () = HEnl(H) 7 (G + e
< (0= nH; 'z =y, V() — HEn(H?) ™ (67 + )]
+ )|V I ()~ Bl VS @1+ A0 EnlV £ @) = g7

112
+ 4y |[En [(H () = LgP] |+ 4Bl e, -
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938

939

940

941

942

943

By Lemma D.4, we have

(Z0 = nH 'V (Z) = o, VF(Z) = HE[(H) " g7'])
= (Z = nH 'V (Z) =y, VI(Z) = EnlVf(2iM)])

+ (3= nH7 V() = 90 Bl VS (@) = 977

+ (20— nH; V() = o, Bl — Ho(H) )T )

(D44 2 — m\1(2 my—1 “m
< LIVI@IE - + 891V () — Enl VS @120 + 87 |[Enl(H () — L)gP|

+ (5= nH V() =y Enl VS @) — 7).

2

(D.120)
Also,

— —_ — m\ — m 7 m\ — m 2
(Zo = nH, 'V f(Z) = yo, —HE[(H) 7 e"]) < 161V F @050 + Ay [[Ba[(H) 7 e[,

(D.121)
Further noticing that np < % and by AM-GM inequality, we conclude that

LHS of (D.119)

< LIV F @I + 991V I (Z0) ~ BV S GIE  + 97 [ Bl ()~ 17|

Hy

1

H!
m “m 2 my— m 2
+ 4y [EnlV i @) = o), + 5V Bl e,
+ (70— nH 'V () = EnlV (@) — 6] -
(D.122)
If t mod K = —1, then r(t + 1) = r(t) + 1 = r + 1 and event E; ; implies
Hi'Hyp <14 (1= 82)B <1+ L, (D.123)
Y
Hri1 (% L 2
[ (Zer) < flye) + %Hzt+1 = el s
(D.124)
L+n/4y,
< 70+ D sl
Y
On the other hand, if t mod K # —1,thenr(t + 1) = r(t) = r,
H'r(t+1) — 1 = 2
Ir (Ze1) < flye) + §||2t+1 — il 7, - (D.125)
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944 Hence the following always holds:

Hp(i41) (o - 1. 14+n/4vy,_
£ F) < 120 31) = 5= wlfy, + 5 s — il
(D.122) 7771
<) - -
! 8y(n=t +71) o

(U 1/49) [HIT 501, + 919 £(30) ~ En[TA 0 + 9 B
+

H ()™ — mgT"JH;l}

4yt =7/A
— 1|12 2
(14 n/47) [4n [Bwlv s =], + 50 ||Em[<Hzn>1em||H,]
Yty =7/A)
(L4 n/49) (20 = nH Y F () =y En [V £ 27) = 977
+
YTty = T/A)

+

(D.42)

10 . . 2
IV ) = BV @ + 100 [Enl(H (1)~ 1)gP)||
1+n/4y - e e A
— }{ _ my _ -m
,y(nfl ¥ ,_y,l — 7_/)\) <Zt N, Vf(Zt) ytaEﬂ"L[vf(xt ) Gt ]>
(D.126)
945 Sum over ¢ and we get
t t
Hogern) (=
B E) < (o) = § IV I )1 %Z ~ I+ oY [
=0 =0 j=0

107" S V1)~ EnlVAG I+ 1003 [Bul(Hi ()~ 1) ]H;
=0 =

r(5)

IS (3 ) Bl - ).

(D.127)
a6 By AM-GM inequality and notice that 7y, Z; € €2,

IV f(Ze) = En[Vf (i)
< 2|V (=) = VI@)|? + 20V F (@) — En[VF (2] (D.128)
< 2Lz — m|* + 2|V f(@e) — B[V f ()]

947 Under event E} 3,

—~ 12 —
|Bwlci ) = 10gP)| < (= 2B [I97 5] . ©.129)
948
1— 2
[ () e[, < 4 (W) B?Er, {Hu;ilnil;l} : (D.130)

949 By the definition of u;" ;, we have

t—1
B [l ] < -80St B 7
- (D.131)

(1- g
< ;{/2 Z(:) B/ B2) T Em ||l 9] ”:;{:G) :
j

49

2
< P ) = DIV @01 + DBV @) — G + 6 [Enl(H) e
8 Ay

s,

2

e
Hy(j)

el




950

951

952

953

955

Plug these inequalities above in (D.127),

t

Hy(t41

B ) < (o) = 2NV I )1
7=0

By AM-GM inequality and Lemma D .4,

(D129) (D.131) (

7=0

4833

(1= B1)(VB2— B

t
51
5T

T”Z (L2112 = %1 + V£ @,) — Enl VS IP]

B (197122 ] < 4B (197" = VA + VS @) = VI @I
HIV£@) = VIG5 + IV FEI ]

<

Therefore, we achieve that

H _
Iy rey (Zt41

) <

t 52
g;)wm] 12, 1+%Z

t

7=0

— g7

4 — . — -
S [Enllg? = V@I + LBz - Zl?) + L2]7: - %% +

B[V f(2]") =

t
P ONGER AR A
=0

t

. 22
16077(1 82)?B Z{ T -

A1 = B1)(vB2 = B1)

j=0

By (D.160), (D.164) in Lemma D.12, under event E; 3,

5 =2 <
Zz; — 7" < 1

Hence

t 6 2
S -3l < (+25) [

A

3677

+

Additionally by Lemma D.12,

j_

/\2 (1-61) Z 6{—1‘—1 [77

2
e B G

1

i=r(G)K

50

L2
A2

)\2

t
) + 10) (1-2)°B*) En, [H@Hir(g] + (%)
=0 !

(D.132)

WOLE 15 e 2,2,

(D.133)

g7l

VEEPIP + L2En[ll] =511 | + (5).
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956 Therefore, by noticing that A; > 0 and — NS TR
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957 For the third term of RHS of (D.130),

51° 1072 — —y o
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i L e e |

7=0
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A,—Y p2(a71) M
(D.139)
958 For the () term of RHS of (D.130),
1+ n/dy L —
j Y GELIV(2T) — g
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— H R my _ R [g™
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1+n/4y e 1 =
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~(n~t +,Y1T/>\)jzo< J ) I( g) Yj [ [gj} 9; ]> (D.140)
@: martingale
AM.GM ¢
n 120135
S i Ve G ) VN 30y | 4

J=

D) § 60T [|2
< 612||Vf Wipms + 3 2913, o

by p(a 1)

959 Here we remark that @ is a martingale because H, r(j) only depends on stochastic gradients drawn
se0 strictly before round 7(j) and thus independent of g7, which is drawn during round r ().
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st Plug (D.138),(D.139), (D.140) in (D.130),
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L
o2 where in the third inequality, we apply (1 — f2)B < ’77
963 For @, define
107] — 112 — IE: .
0, = Bl — Bl || — By ||Emlgl —Eslg7 || || if event E; holas,
07 otherwise.
(D.142)
¢
964 Then event I; implies @ = Z 6; and notice that
7=0
10n? 40n*p3d de
10,] < 1 4p2d = —L L2 (D.143)
Ay Ay
965 9 )
10?’]2 — 2 2 Lemma B.3 7720-2
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971 Letb=A/4,V = A . Then by Lemma B.1, &l < b with
/ < X T-BWB—p)) M 128
972 probability no less than
1-2 D.14
P ( 2V + 2cb/3) (D.149)

973 For @, define

1+n/4y - _ ~ .
G = 7(n‘1+v/—7/k)< nHT(;)Vf(zj)—yj,Em[E [g]'] g]m}>, if event E; holds,

0, otherwise.
(D.150)
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974 Then event F, implies @ = Z ¢; and notice that by Lemma D .4,
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_ _ 2
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VIV EOZ (D.151)
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Note that by Lemma D.4 and event E,

2 . . 4A
1975y < (70 ) = min £) < == (D.155)
t t
dno? 24N 4A
Var: (¢;) < v . (—F—) < V. D.156
jz::Oarg(Cy)f ;}'nyHH)*/\M (77 ’Y)i ( )

)
Therefore, combining @, @, @, with probability no less than P(E; 3) — 3 - o7 event E; 3 holds
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In the last inequality, we apply
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990 Here a; ; := Bt i= 1(t -7+ ). For j <t —2, wehave a; ; < $1(2 — B1)as—1,;. Since
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091 Ay = Zat,jﬂfj — T;41/|%, we conclude that
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_ _ 2 2 L t—j—1 n L U m m\ |2
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992 and 1
A < B2 BN 1+ —— e Z: — Te_1]? (D.165)
993 This completes the proof. O

994 D.5 Further Discussion

995 Compared to other results under centralized weakly convex setting. Theorem D.2 can reduce
g
996 to Minibatch Adam (by substituting M, K with 1 and o with in (D.27) [Petrov, 1992]), and
Y £ VIR

997 the convergence guarantee is

2(a—1)

R— _o Ba—2

A ~ [ LA Ao? LAg=a—T

= Vi (z, =0 | 44/ - . (D.166
; I f (z ”H R + YMKR + <(MK)2(0¢1)R> ( )

998 Therefore, in centralized setting with iteration number R and batch size 1, our guarantee for squared
999 norm of gradient of Moreau envelope is

133

2(a—1)

N AAG? (LAo—ﬁl)S“‘“
+ +

(D.167)

o\ =® YR R

LA
1000 The last term is induced by the bias of clipped gradient. For simplicity, let R 2> —5- so that the last
g

1001 term can be dominated by the first term. Then we obtain

- [ LA AAo?
O — . D.168
( R 'yMKR> (D.168)

1002 In the previous literature of weakly convex function [Davis and Drusvyatskiy, 2019, Alacaoglu et al.,
1003 2020, Mai and Johansson, 2021], f is typically non-smooth and stochastic gradient is assumed to
1004 have bounded second order moment. This is weaker than the smoothness assumption but stronger
1005 than that of noise with bounded moment. There are a few existing results for smooth objective [Davis
1006 and Drusvyatskiy, 2019, Mai and Johansson, 2020, Deng and Gao, 2021], but they set 7 = L. Overall,
1007 our result is the first convergence guarantee for smooth weakly convex function with 7 < L and
1008 bounded-moment noise.

1009 Dependence on 5. The default setting of 55 in the Adam optimizer of PyTorch is 0.999, which is

1010 a constant close to 1. Adam with small 35 has been shown to diverge in some examples [Reddi et al.,
1011 2019]. However, if it is too close to 1, e.g., B2 > 1 — O(Tﬁl), then the denominator would be too
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stagnant to provide adaptivity. Therefore, to derive a proper range for 5 is crucial in the theoretical
analysis of Adam.

On the other hand, 35 is notoriously difficult to handle even under centralized setting. In finite sum
case, Zou et al. [2019] assumes By > 1 — O(Tﬁl). Shi et al. [2020] suggests that o > 1 — O(n*3'5)
suffices, where n is sample size. Zhang et al. [2022b] claims Adam can converge to the neighborhood
of stationary points with constant radius if 3, > 1 — O(n~3). Further, Wang et al. [2022] shows
Adam can converge to stationary points if 5o is sufficiently close to 1, but the explicit bound is
missing. In streaming data case, Défossez et al. [2020] shows 35 can be a constant but relies on the
bounded gradient assumption. [Li et al., 2024b] suggests 8o > 1 — (’)(T_%).

As for distributed setting, works discussing the range of S, are much fewer. Our theory requires
By > 1— O(K 2R ). For distributed Adam, Karimireddy et al. [2020a], Zhao et al. [2022]
fixed the denominator during local iterations and thus did not discuss the range of 5. To the best
of our knowledge, our result is the first one to show the O (R_%) dependence with respect to R.
Nevertheless, it is an interesting question to improve the dependence on K. Since K is usually a

constant in practice, our results suggest 5o > 1 — O(R*%) in essence. Still, we believe that the
dependence on K has room for improvement. We leave this for future work.

Dependence on \. ) in the denominator of Adam is aimed to avoid numerical instability, and
usually a small constant in practice. Note H, = diag(/V,. + A2) and v, is the EMA of squared past
gradients. Informally, v, vanishes as r grows and thus H, would gradually reduce to Al;. In the
worst case, H,. can be bounded by a constant. In conclusion, the LHS in (3.9) is roughly the averaged
squared gradient norm if A is not too small. It is worth noting that A can be arbitrarily small or even 0
in [Défossez et al., 2020, Wang et al., 2022, 2024]. However, their results all depend on poly(d). It is
still an interesting question to get dimension-free result with small A.

Dependence on 3;. The default setting of 81 in PyTorch is 0.9, a constant away from 0 and 1. In
the centralized setting, Li et al. [2024b] requires $; = 1 — O(T*%) to converge, which is too large.
Défossez et al. [2020] shows O ((1 — ﬁl)_l), which is the state of the art result to the best of our
knowledge. However, it relies on the bounded gradient assumption. Regarding the dependence on
(1, our convergence rate in Theorem D.1 suggests O (( 1-— 61)*2). Although it also supports any
constant choice of 31, we leave the exploration of better dependence for future work.

E Failure of Standard SGD with Heavy-Tailed Noise

The convergence of standard SGD in high probability is widely studied. If we assume the noises are
light-tailed, e.g., sub-exponential, sub-gaussian, then SGD can get high probability bound depending

on log 3 However, if only finite variance is assumed, Sadiev et al. [2023] has shown that standard

1
SGD fails to get a high probability bound having logarithmic dependence on —. In fact, this claim is
still valid when the stochastic noises only have finite ath-moment, as shown in Theorem E.1 below.

1
Therefore, gradient clipping is necessary to get the log 5 bound.

Theorem E.1. Foranye >0, § € (0, 1), and SGD with the iteration number T and learning rate n,
there exists an 1D-problem satisfying Assumption 1, 2, 3, 4, with ) = R and L = p, such that, if

0<n<1/L, then
~ L
]P’{f(xT)—f*ze}§6:>T:Q<6;‘/a\/Z>. (E.1)

Proof. We follow the construction of the counter example in Sadiev et al. [2023]. To prove the above
theorem, we consider a simple 1D-problem f(z) = Lz?/2. It is easy to see that the considered
problem is L-strongly convex, L-smooth, and has optimum at z,. = 0. We construct the noise in an
adversarial way with respect to the parameters of the SGD. Concretely, the noise depends on the
number of iterates ¢, learning rate 7, target precision €, the starting point xy, and the moment bound
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o such that
VE(x;6) = Loy — o0&y, (E.2)
where

2
0, ift <T —1or(1—nL)" |zl > fg’
1
—A, with probability SAa (E.3)

1 .
0, with probability 1 — Ta otherwise

1
, with probability ——

A
24’

92./2€
where A = max 7L, 1. Wenote that E [§;] = 0 and E [VF(24;&;)] = V f(x). Furthermore,
no

1
E o< A” A¥ =1 E4
[|€t| ] = 94« + 2 A ) ( )
which implies that Assumption 3 holds.
We are interested in the situation when
P{f(xr)— f« >} <, (E.5)

2
for 6 € (0,1). We first prove that this implies (1 — nL)” |zo| < 4/ fg To do that we proceed by

contradiction and assume that
2e
(1 =nL)" |zo| >/ 7 (E.6)

By construction, this implies that & = 0,Vt € {0,--- ,T — 1}. This, in turn, implies that z =
(1 — nL)"z¢, and further, by (E.6) that

P{f(xT)_f* ZE} :P{le| > \/2L>€} —

2
Thus, the contradiction shows that (1 — L) |zo| < 4/ fg Using (E.3), we obtain

L
flzr) — fu = 5 [(1 — nL)Txo + nagT_1]2. (E.7)
Furthermore,

2e

P{f(zr) = fs > e} =P |(1 777L)T550+7)0§T—1’ > L}

(E.8)
> HD{|770'§T—1| > 2\/2»E

92,/2¢€
Now if L < 1 then A = 1. Therefore,
no

92,./2€
1=Pq [Er_1] >

o [ SEUGn - f>eh<s (E9)
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yielding contradiction, which implies that —— > 1,i.e.,n < 2
no

and we have

92,/2
6> P{f(or) = fo =2} = P |gra| > Vi

261/« [2 1
This implies that n < —6. Combining this inequality with T > —— log
o L 2nL 2e

o L L}
T_Q<&mvabg%>'

This concludes the proof.
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1
Ao’

La?

9 yields

(E.10)

(E.11)
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