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Abstract

We study distributed adaptive algorithms with local updates (intermittent commu-1

nication). Despite the great empirical success of adaptive methods in distributed2

training of modern machine learning models, the theoretical benefits of local up-3

dates within adaptive methods, particularly in terms of reducing communication4

complexity, have not been fully understood yet. In this paper, we prove that Lo-5

cal SGD with momentum (Local SGDM) and Local Adam can outperform their6

minibatch counterparts in convex and weakly convex settings, respectively. Our7

analysis relies on a novel technique to prove contraction during local iterations,8

which is a crucial yet challenging step to show the advantages of local updates,9

under generalized smoothness assumption and gradient clipping strategy.10

1 Introduction11

Leveraging parallelism is crucial in accelerating the training of modern machine learning models12

for large scale optimization problems. In distributed environments such as large data-centers or in13

the federated learning setting, where the devices working together are spread apart, communication14

between the distributed workers is a key bottleneck. In this work, we consider solving15

min
x∈Rd

f(x) := Eξ∼D[F (x; ξ)]. (1.1)

in a distributed setting with M workers. Each worker has access to f via the stochastic gradient16

oracle ∇F (x; ξ), where ξ is independently drawn from the distribution D. In federated learning, this17

is known as the homogeneous setting, since all workers draw from the same data distribution.18

Perhaps the simplest algorithm for distributed optimization is distributed minibatch stochastic gradient19

descent (SGD), in which at each iteration, each worker computes a minibatch of gradients, and a20

gradient step is taken by averaging the gradient computed among the M workers. However, such an21

algorithm requires communicating at each gradient step, which may be expensive. Thus numerous22

works have proposed distributed algorithms with less frequent communication. A popular and well-23

studied algorithm is Local SGD, also known as FedAvg [McMahan et al., 2017], where each worker24

runs SGD independently and periodically synchronizes with others by averaging the iterates.25

Despite the success of Local SGD in federated learning [McMahan et al., 2017], it may not exhibit26

good performance when training Transformer-based large language models (LLMs). Many empirical27

studies suggest that adaptive methods (e.g., Adam [Kingma and Ba, 2014]) are much better suited for28

natural language processing than vanilla SGD [Goodfellow et al., 2016, Zhang et al., 2020, Kunstner29

et al., 2023, Pan and Li, 2023]. Furthermore, as shown in Zhang et al. [2019, 2020], language models30

tend to have unbounded global smoothness and heavy-tailed noise, which may also contribute to31

the worse performance of SGD. Parallelizing adaptive methods requires an even more expensive32

communication cost since additional terms, such as the momentum or the Adam denominator, need33
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to be synchronized. Previous works on distributed adaptive optimization have utilized compression34

and quantization techniques to address this issue [Bernstein et al., 2018, Wangni et al., 2018, Wang35

et al., 2023]. While Douillard et al. [2023] has shown the great empirical success of Local Adam, to36

the best of our knowledge, there are no theoretical results trying to improve training efficiency or37

adaptive methods from the perspective of intermittent communication.38

In this paper, we investigate distributed adaptive optimization algorithms in the homogeneous39

regime, in order to establish theoretical guarantees for the benefits of local iterations in reducing40

communication complexity. We focus on the convex or weakly convex setting, because in the41

non-convex setting, without non-standard strong smoothness assumptions, we are not aware of any42

theoretical-proven advantages of local iterations, even for non-adaptive methods1. Further, in the case43

of Adam, we consider the weakly convex setting (as opposed to the standard convex setting), since44

we are not aware of any results on the convergence rate of Adam which take advantage of convexity.45

To handle unbounded global smoothness and heavy-tailed noise, we use the coordinate-wise gradient46

clipping mechanism.47

We propose a distributed version of Adam, namely, Local Adam, with gradient clipping. Our48

algorithm also reduces to Local SGD with momentum (Local SGDM), with some specific hyper-49

parameter choices.50

• In Theorem 2, we establish the first convergence guarantee for Local SGDM in the convex51

setting, which outperforms the convergence rate of Minibatch SGDM. The rate we obtain is52

in line with the rate of Local SGD [Woodworth et al., 2020a] .53

• In Theorem 3, we establish a convergence rate for Local Adam in the weakly convex setting.54

We show that Local Adam can provably improve communication efficiency compared to its55

minibatch baseline.56

For the first time, we are able to show the benefits of local iterations for the two commonly used57

algorithms, SGDM and Adam. This suggests that we may be able to improve the training efficiency58

of LLMs by using intermittent communication.59

Additionally, our results hold under generalized smoothness and heavy-tailed noise. Our result is the60

first high probability bound for distributed optimization algorithms with local updates, to the best of61

our knowledge. The conventional in-expectation rate seems fail to capture some important properties62

like heavy/light tailed noise distribution. The high probability convergence guarantee can sometimes63

be more informative and useful in practice [Gorbunov et al., 2020].64

As for technical contribution, we use a novel technique to prove contraction for adaptive methods,65

which bounds the consensus error between the iterates at different workers. This is a key step in66

proving benefits of local updates. Different from Local SGD, our update direction involves momentum67

or even distorted momentum due to the denominator in Local Adam, making it challenging to68

disentangle these accumulated stochastic gradients. To address this issue, we define and analyze an69

auxiliary sequence which is conditionally independent of the latest stochastic gradient and thus can70

construct a martingale. We will introduce the technique in more details in Section 4.71

Notation Let ∥ · ∥ be the standard Euclidean norm of a vector or the spectral norm of a matrix. For72

any x, y ∈ Rd, the expressions x+ y, x⊙ y,
x

y
stand for coordinate-wise sum, product and division,73

respectively. And x ⪯ y means each coordinate of x− y is no greater than 0. Furthermore, we use74

x2,
√
x, |x| to denote the coordinate-wise square, square root and absolute value. We use Em[Xm]75

to denote the average
1

M

M∑
m=1

Xm. The coordinate-wise clipping operator clip(·, ρ) : Rd → Rd is76

defined as [clip(X, ρ)]i = sgn([X]i) ·min{|Xi|, ρ}. We use [N ] to denote the set {1, 2, . . . , N}. For77

a subset Ω0 ⊂ Rd, let conv(·) denote the convex hull of Ω0 and BR0
(Ω0) denote the neighborhood78

1Under the stronger assumptions of 3rd-order smoothness [Glasgow et al., 2022] and mean smoothness
[Patel et al., 2022], there are demonstrated advantages of local iterations in the non-convex setting. While our
theoretical results are for the convex or weakly convex setting, it is likely that local iterations are advantageous
in practice for non-convex objectives, just in the same way Local SGD has been shown to be advantageous in
practice for non-convex objectives [McMahan et al., 2017].
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of Ω0 with radius R0. Finally, we use standard O(·),Ω(·),Θ(·) to omit constant factors and Õ(·) to79

omit logarithmic factors.80

2 Problem Setup81

Consider the distributed optimization problem82

min
x∈Rd

f(x) := Eξ∼D[F (x; ξ)]. (2.1)

Here D is the data distribution and f is the population loss function. We consider a setting with M83

parallel workers, and a budget of R total communication rounds, and T total gradient computations at84

each worker. We will describe the implementation of the local and minibatch versions of a centralized85

algorithm A, which uses a single stochastic gradient in each iteration, as illustrated in Figure 1.86

Figure 1: Minibatch A v.s. Local A in one communication round. Minibatch version computes
the average of all KM gradients and then executes one step of A, while local version runs A
independently for K steps at each worker.

In the local version of algorithm A, in each round r of the R total communication rounds, each87

worker m independently executes K = T/R steps of local updates (according to the algorithm A).88

For a worker m, we denote the kth gradient computed in round r by gmr,k. Then the M workers89

synchronize the iterates and related momentum state. We use Minibatch A to denote a distributed90

implementation of A run for R rounds, where KM stochastic gradients are computed and averaged91

at each step. This is a fair baseline to compare the local update algorithms to, since the number of92

gradient calls and communication rounds are the same.93

Local Adam is shown in Algorithm 1, which is a natural extension of centralized Adam [Kingma and94

Ba, 2014]. The stochastic gradient is clipped by an coordinate-wise clipping operator with threshold95

ρ. After K steps of local updates, all the workers average their current iterates xm
t , their first order96

momentum um
t , and their second order momentum vmt . These averaged quantities become the values97

used at the beginning of the next local round. Note that there are two slight differences from original98

Adam. First, we do not involve bias correction here, i.e., um
t and vmt are not divided by 1− βt

1 or99

1 − βt
2, respectively. Second, λ in the denominator is in the square root, while it is outside of the100

denominator in original Adam. These modifications do not harm the spirit of Adam and are made for101

the convenience of analysis.102

2.1 Assumptions103

Throughout this work, we will use the following assumptions.104

Assumption 1 (Lower-boundedness). f is closed, twice continuously differentiable and inf
x∈Rd

f(x) =105

f(x∗) = f∗ > −∞.106
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Algorithm 1 Local Adam
Require: initial model x0, learning rate η, momentum β1, β2 ∈ [0, 1)

Set xm
0,0 = x0, u

m
0,−1 = 0, v0 = 0 for each worker m ∈ [M ]

for r = 0, · · · , R− 1 do
for each worker m ∈ [M ] in parallel do

for k = 0, · · · ,K − 1 do
gmr,k = ∇F (xm

r,k; ξ
m
r,k), ĝ

m
r,k = clip(gmr,k, ρ) ▷Compute clipped stochastic gradient

um
r,k = β1u

m
r,k−1 + (1− β1)ĝmr,k ▷Update 1st-order momentum

vmr,k = β2v
m
r,k−1 + (1− β2)ĝmr,k ⊙ ĝmr,k ▷Update 2nd-order momentum

xm
r,k+1 = xm

r,k − η√
vmr,k + λ2

⊙ um
r,k ▷Update model

end for
end for
xm
r+1,0 = Em[xm

r,K ], um
r+1,−1 = Em[um

r,K−1], vmr+1,−1 = vr+1 := Em[vmr,K−1]
▷Communicate and average

end for

Assumption 2 (Smoothness). There exists some set Ω ⊂ Rd and L > 0, such that for any x, y ∈ Ω,107

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (2.2)
108

∥∇f(x)∥2 ≤ 2L(f(x)− f∗). (2.3)

Similar to Sadiev et al. [2023], we only requires some properties of f on a subset Ω of Rd, since we109

can prove that all the iterates will not leave this subset with high probability. In contrast, the typical110

smoothness assumption requires (2.2) on the entire domain.111

There are many works [Zhang et al., 2019, Crawshaw et al., 2022, Faw et al., 2023, Wang et al.,112

2022, Li et al., 2024b] that make weaker smoothness assumptions (typically called “generalized113

smoothness”), most of which are in the form of (L0, L1)-smoothness:114

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥, ∀x ∈ Rd. (2.4)

Li et al. [2024a] considers an extension called ℓ-smoothness, which replaces the linear function of115

∥∇f∥ in the right hand side of (2.4) with a sub-quadratic function ℓ(·). As pointed out in Li et al.116

[2024a, Corollary 3.6], all of these will induce Assumption 2 if Ω is some level-set of the objective117

function2. Therefore, we directly use this more general assumption to get cleaner results.118

Assumption 3 (Bounded α-moment noise). There exists some set Ω ⊂ Rd, α ≥ 4 and constant119

vector σ ⪰ 0 such that for any x ∈ Ω,120

Eξ∼D|∇F (x; ξ)−∇f(x)|α ⪯ σα. (2.5)

Let σ∞ := ∥σ∥∞ = max
i

{σi}, σ := ∥σ∥ =
(
σ2
1 + · · ·+ σ2

d

)1/2
.121

Remark 1. To get a high probability bound under generalized smoothness, the assumption on122

stochastic noise is crucial. Light-tailed noise with bounded exponential moment (e.g., bounded,123

sub-exponential, sub-gaussian) are considered in Harvey et al. [2019], Li and Orabona [2020], Li124

et al. [2024b]. There are also attempts for heavy-tailed noise with finite α-moment [Gorbunov et al.,125

2020, Cutkosky and Mehta, 2021, Faw et al., 2023]. In the most literature studying heavy-tailed126

noise, they restrict to the case where 1 < α ≤ 2. However, in the matter of getting a logarithmic127

dependence on 1/δ, where δ is the confidence level, the essence lies in whether we assume bounded128

exponential moment or just polynomial moment (see Appendix E for detailed discussions). For129

technical convenience, we only consider α ≥ 4 in this paper, but our analysis methods can be easily130

extended to the case where α < 4.131

2e.g., if Ω ⊂ {x : f(x)−f∗ ≤ ∆}, then (L0, L1)-smoothness would imply Assumption 2 for L ≍ L0+L2
1∆.

Note that we may not obtain the optimal dependence on L0, L1 in this way though.

4



Remark 2 (Noise of minibatch). It follows from Petrov [1992] that if the gradient is estimated by a132

batch of i.i.d samples with batch size N , the α-moment of noise has upper bound of:133

E
{ξi}

i.i.d∼ D

∣∣ 1
N

N∑
i=1

∇F (x; ξi)−∇f(x)
∣∣α ⪯ c(α)

(
σ/

√
N
)α

, (2.6)

where c(α) is a problem-independent constant. It is easy to see that this bound is tight when the noise134

is Gaussian. Therefore, to get the rate for batch size N , we can just simply replace σ with σ/
√
N135

(up to a constant depending on α) in the original convergence guarantee for batch size 1.136

3 Main Results137

In this section, we provide our main results for Local Adam and its simplified version: Local SGDM.138

For the first time, we will be able to show the benefits of local iterations for the two algorithms,139

compared with their minibatch baselines in certain regime of M,K,R.140

3.1 Local SGDM141

Before getting into Local Adam, we start with a simpler yet also important algorithm: Local SGD142

with momentum. Note that when β2 = 1, λ = 1, Algorithm 1 will reduce to Local SGDM. We restate143

the complete version of Local SGDM in Algorithm 2 in Appendix C.144

Assumption 4 (Convexity). There exists some set Ω ⊂ Rd and constant µ ≥ 0 such that f is145

µ-strongly convex on Ω, i.e., for any x, y ∈ Ω,146

⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2, (3.1)
147

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2. (3.2)

Let D0 := ∥x0 − x∗∥. Now we state the results for Local SGDM below. Notably, our results are the148

first convergence guarantee for distributed SGDM with local updates in (strongly) convex setting.149

Theorem 1 (Strongly convex, full version see Theorem C.4). Let Assumption 1, 2, 3, 4 hold for150

Ω := {∥x− x∗∥ ≤
√
3D0} and µ > 0. Further assume that K ≳ log

MKR

δ
, 1− β1 = Ω(1) and151

∥σ∥2αd
1
2−

1
2α = O(σ). Then with probability no less than 1− δ, Local SGDM yields152

f(x̂)− f∗ ≤ exp

(
−Θ

(
µKR

L

))
+ Õ

 σ2

µMKR
+

Lσ2

µ2KR2
+

σ2

µ

(
L

1
2

µ
1
2KR

) 2(α−1)
α

 . (3.3)

Theorem 2 (Convex, full version see Theorem C.5). Let Assumption 1, 2, 3, 4 hold for Ω :=153

{∥x − x∗∥ ≤
√
3D0} and µ = 0. Further assume that K ≳ log

MKR

δ
, 1 − β1 = Ω(1) and154

∥σ∥2αd
1
2−

1
2α = O(σ). Then with probability no less than 1− δ, Local SGDM yields155

f(x̂)− f∗ ≤ Õ

LD2
0

KR
+

σD0√
MKR

+
L

1
3σ

2
3D

4
3
0

K
1
3R

2
3

+D0

(
(LD0)

1
2σ

α
α−1

KR

) 2(α−1)
3α−1

 . (3.4)

Remark 3 (Confidence level δ). δ does not appear in the bound since we have log
1

δ
dependence.156

Our method can also be applied to Minibath SGDM (by substituting M,K with 1 and σ with
σ√
MK

;157

see Remark 2), whose convergence guarantee is158

f(x̂)− f∗ ≲


exp

(
−Θ

(
µR

L

))
+ Õ

(
σ2

µMKR

)
, if µ > 0,

Õ
(
LD2

0

R
+

σD0√
MKR

)
, otherwise.

(3.5)
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This rate matches the well-known in-expectation lower bound on the convergence rate of Minibatch159

SGD (up to logarithmic factors). In fact, our analysis improves the state-of-the-art rate for strongly-160

convex SGDM (given in Liu et al. [2020b]), which has a stochastic term as Õ
(

Lσ2

µ2MKR

)
. In the161

convex setting, our rate is consistent with the state-of-the-art centralized in-expectation bound of162

SGDM in Sebbouh et al. [2021]. Further notice that the last term in both (3.3) and (3.4) is due to the163

bias of gradient clipping and would be negligible as long as Kα−2 ≳
µR2

L
or K

3α−5
2 ≳

σR2

LD0
. In164

this case, our guarantee for Local SGDM is aligned with the rate of Local SGD in Woodworth et al.165

[2020a], Khaled et al. [2020] up to logarithmic factor. Therefore, we can see the benefits of local166

iterations in the large M and large K regime compared to minibatch baseline.167

We defer the detailed proof to Appendix C.168

3.2 Local Adam169

The convergence of Adam is much more difficult to prove. Reddi et al. [2019] pointed out that the170

original proof in Kingma and Ba [2014] in centralized convex setting was incorrect. Therefore, the171

convergence of Adam in for convex function is of independent interest and beyond our scope. Instead,172

we turn to consider Adam in the weakly convex setting.173

Assumption 5 (Weak convexity). There exists constant τ > 0 such that f is τ -weakly convex, i.e.,174

for any x, y ∈ Rd,175

⟨∇f(x)−∇f(y), x− y⟩ ≥ −τ∥x− y∥2, (3.6)
176

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − τ

2
∥x− y∥2, ∇2f(x) ⪰ −τId. (3.7)

Note that L-smoothness implies that Assumption 5 always holds with τ = L. Also note that here we177

assume the weak convexity holds in Rd for technical simplicity. Let Hr = diag(
√

vr + λ2) ⪰ λId178

and ∆ := f(x0) − f∗. Furthermore, inspired by Liu et al. [2020b], define an auxiliary sequence179

{zmr,k} as:180

zmr,k+1 =

{
(xm

r,k+1 − β1x
m
r,k)/(1− β1) if k ̸= K − 1,

(xm
r,k+1 − β1xr,k)/(1− β1) otherwise. (3.8)

Let zr,k := Em[zmr,k]. Now we state the main result of Local Adam below (see Theorem D.2 for181

more general results on Moreau envelope).182

Theorem 3 (Full version see Theorem D.3). Let Assumption 1, 2, 3, 5 hold for Ω = conv(BR0(Ω0)),183

where Ω0 := {f(x) − f∗ ≤ 4∆} and R0 =
√
∆/(80L). Further assume K ≳ log(MKR/δ),184

1 − β1 = Ω(1), ∥σ∥2αd
1
2−

1
2α = O(σ) and 1 − β2 = Õ(K−3/2R−1/2). Then with probability no185

less than 1− δ, Local Adam yields186

λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇f(zr,k)∥2H−1
r

= Õ
(τ∆

R
+

L∆

KR
+

√
L∆σ2

MKR
+

(L∆σ)
2
3

K
1
3R

2
3

+

(
L∆σ

α
α−1

KR

) 2(α−1)
3α−2 )

.

(3.9)

The RHS of (3.9) consists of four parts. The first part is
τ∆

R
+

L∆

KR
, which is the optimization term187

and determined by the upper bound of learning rate η. The second term is

√
L∆σ2

MKR
, corresponding to188

the standard statistical lower bound from MKR stochastic gradients [Arjevani et al., 2023]. The third189

component is
(L∆σ)

2
3

K
1
3R

2
3

, which is sourced from the discrepancy overhead of doing local iterations.190

And the last one,
(L∆σ

α
α−1

KR

) 2(α−1)
3α−2

, is induced by the bias of clipped stochastic gradient and can be191

dominated when K
3α−4

2 ≳ σ2R/(L∆).192
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Our analysis method can also be applied to Minibatch Adam (by substituting M,K with 1 and σ193

with
σ√
MK

; see Remark 2), and the convergence rate is194

Õ
(L∆

R
+

√
L∆σ2

MKR

)
, (3.10)

aligned with (up to logarithmic factor) the state-of-the-art convergence guarantees for smooth weakly195

convex functions [Davis and Drusvyatskiy, 2019, Deng and Gao, 2021]. Suppose K
3α−4

2 ≳196

σ2R/(L∆) and hence the last term in (3.9) would be dominated and negligible. Now we can197

observe the benefits of local iterations. Note that both (3.9) and (3.10) have the statistical lower bound198

1/
√
MKR. Hence when the statistical term dominates, both algorithms have similar worst-case rate.199

Once we leave the noise-dominated regime, then Local Adam converges faster than Minibatch Adam200

whenever K ≳ σ2R/(L∆). And the gap will increase as K grows until K ≍ L/τ .201

Therefore, we conclude that in the large M and small τ regime, Local Adam would outperform202

Minibatch Adam. Since f is close to convex function when τ is small, this is consistent with203

Woodworth et al. [2020a]. Please see Appendix D.5 for more comparisons about Moreau envelop.204

We defer further discussions on the choices of other important hyper-parameters including β1, β2, λ205

to Appendix D.5. The complete proof is in Appendix D.206

4 Proof Sketch207

In this section, we show high-level ideas in our proofs. We only demonstrate the Local Adam here208

since Local SGDM is a special case of Local Adam (β2 = 1) and has similar patterns.209

As a common practice in the study of weakly convex function [Davis and Drusvyatskiy, 2019, Mai210

and Johansson, 2020], the norm of the gradient of the Moreau envelope can serve as a proxy for211

near-stationarity. Here we use a generalized Moreau envelope for adaptive algorithms, proposed by212

Alacaoglu et al. [2020]. For any positive definite matrix H and γ > 0 such that γ−1H ⪰ τId, define213

the Moreau envelope of f as214

fH
γ (x) := min

y∈Rd
f(y) +

1

2γ
∥x− y∥2H . (4.1)

With some abuse of notation, we define fλ
γ (x) := fλId

γ (x) = fγ/λ(x). The common convergence215

metric for weakly-convex function is correspondingly ∥∇fH
γ (·)∥H−1 , which can bound ∥∇f(·)∥H−1 ,216

as shown in the following lemma.217

Lemma 4 (Full version see Lemma D.4). Let z ∈ Ω0 and y := argmin
x

f(x) +
1

2γ
∥x − z∥2H for218

some H ⪰ λId and L/λ ≥ γ−1 ≥ 2τ/λ. Then219

∇fH
γ (z) = ∇f(y) = H(z − y)/γ, ∥∇f(z)∥H−1 ≤ 2γL∥∇fH

γ (z)∥H−1/λ. (4.2)

In the rest of this section, we provide the proof sketch for general Moreau envelop.220

For any integer 0 ≤ t ≤ T−1, we define r(t), k(t) ∈ N such that t = r(t)K+k(t) and k(t) ≤ K−1.221

We will omit the dependence on t and let r = r(t), k = k(t) if not causing confusion. Further define222

xm
t := xm

r,k, g
m
t := gmr,k, ĝ

m
t := ĝmr,k, u

m
t = um

r,k, v
m
t = vmr,k, H

m
t := diag(

√
vmt + λ2) (4.3)

Then Algorithm 1 is equivalent to the following update rule:223

xm
t+1 =

{
xm
t − η(Hm

t )−1um
t if t mod K ̸≡ −1,

xt − ηEm[(Hm
t )−1um

t ] otherwise.
(4.4)

Define an auxiliary sequence {zmt } as:224

zmt+1 =

{
(xm

t+1 − β1x
m
t )/(1− β1) if t mod K ̸≡ −1,

(xm
t+1 − β1xt)/(1− β1) otherwise. (4.5)
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Let yt := argmin
y

f(y) +
1

2γ
∥y − zt∥2Hr(t)

. Define filtration F−1 = ∅,Ft := σ({gmr,k}m ∪ Ft−1)225

and conditional expectation Et[·] = E[·|Ft].226

As standard practice in distributed optimization, our proof mainly contains two parts: contraction227

and descent. Here contraction involves showing that the iterates of local training at different workers228

will not diverge to different points. And decent involves showing that the objective value decreases at229

each iteration.230

Our strategy is to inductively prove that some probabilistic event Et ∈ Ft−1 holds with high231

probability, which are designed to ensure contraction and descent. And event ET can directly imply232

the upper bound in Theorem 3. In fact, event Et has the form of233

Et = {Aj,i holds for all j ≤ t− 1, i ∈ {1, 2, 3, 4}} , (4.6)

where Aj,i ∈ Fj (defined later) is also some probabilistic event. As the components of Et, each Aj,i234

is designed to ensure either contraction or descent. We will prove the high probability bound of these235

components in sequence.236

4.1 Bounding the trajectory with high probability237

Similar to Sadiev et al. [2023], we only make assumptions on f and noise in certain subset Ω ⊂ Rd.238

This is because we are able to show that all the iterates will not leave Ω with high probability.239

Specifically, if it holds for all iterates before time t, using standard techniques for weakly convex240

optimization, we can upper bound the function value and Moreau envelope at zt+1 by241

f
Hr(t+1)
γ (zt+1) ≤ fλ

γ (x0)− Ω(η)

t∑
j=0

∥∇f
Hr(j)
γ (zj)∥2H−1

r(j)

+O(η2)

t∑
j=0

∥Em[∇f(xm
j )− ĝmj ]∥2︸ ︷︷ ︸

stochastic noise

+O(η)

t∑
j=0

∥∇f(zj)− Em[∇f(xm
j )]∥2︸ ︷︷ ︸

discrepancy

+O(η)

t∑
j=0

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[Ej [ĝmj ]− ĝmj ]
〉

︸ ︷︷ ︸
martingale

+ higher order terms.
(4.7)

To see that the last term is a martingale, note that Hr(j) is independent of ĝmj since the stochastic242

gradient ĝmj is drawn during round r. Further note that Ej [ĝmj ] − ĝmj is almost surely bounded243

thanks to clipping. Now (4.7) allows us to inductively bound f
Hr(j)
γ (zj) and thus bound ∥zj −244

ηH−1
r(j)∇f(zj)− yj∥. After these preliminaries, we are able to apply Berstein’s inequality [Bennett,245

1962, Freedman, 1975] to control this martingale. Hence the Moreau envelope at zt+1 can be bounded246

by a constant with high probability. Combining this with contraction results below, we can show that247

all the iterates stay in Ω with high probability.248

4.2 Contraction249

Next, we aim to show contraction, i.e., ∥xm
t − xn

t ∥ will not diverge during local iterations with250

high probability. This property is crucial for showing the benefits of local updates in distributed251

optimization. However, different from Woodworth et al. [2020a], Khaled et al. [2020], the update of252

xm
t in Algorithm 1 is in the direction of (Hm

t )−1um
t , which distorts the gradient by both exponential253

moving average (EMA) and coordinate-wise product. Thus, the weak monotonicity (3.6) can not be254

directly applied as in standard analysis of gradient descent. This will further impede contraction.255

Our solution has two steps. Firstly, we try to diminish the negative effects of different denominators256

used in local iterations. Then we turn to deal with the EMA of past gradient in first order momentum.257
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Lemma 5 (Informal). Define probabilistic events258

At,1 :=
{
β
K/2
2 ⪯ H−1

r(t)H
m
t ⪯ 1 + (1− β2)B and for all m ∈ [M ]

}
, (4.8)

259

At,2 :=
{
∥Hr(t)((H

m
t )−1 − (Hn

t )
−1)∥ ≤ (1− β2)B1 for all m,n ∈ [M ]

}
, (4.9)

where B,B1 are some constants. Define Et,1 := Et ∩ At,1, Et,2 := Et,1 ∩ At,2. For B =260

Õ(K), B1 = Õ(K), it holds that P(Et,1) ≥ P(Et)− δ/(4T ), P(Et,2) ≥ P(Et,1)− δ/(4T ).261

Event At,1 implies the denominator of each worker during local iterations tends to be stagnant262

and close to the averaged one after communication. Event At,2 suggests the denominator at each263

worker is close to each other. Note that when there is no noise, all the workers will be exactly264

the same and then event At,2 will always hold. Therefore, although At,2 seems to be implied by265

At,1, we will be able to take B1 ≪ B as long as σ ≪ 1 by handling them separately. The key266

idea to prove Lemma 5 is to control the magnitude of the EMA of squared stochastic gradients, i.e.,267

vmt = (1 − β2)

t∑
j=r(t)K

βt−j
2 ĝmj

2
+ β

k(t)+1
2 vr(t). Since all the iterates stay in conv(BR0(Ω0)), the268

squared true gradient ∇f(xm
j )2 can be bounded. Besides, we can again apply Berstein’s inequality269

to handle the martingale induced by ĝmj
2
− Ej [ĝmj

2
]. The remaining term Ej [ĝmj

2
]−∇f(xm

j )2 is270

controlled by the property of clipping operator.271

Now that the denominator is relatively stagnant, the update of xm
t is approximately preconditioned272

by Hr(t) for all m. Hence we can turn to handle the first order momentum. A vanilla idea is to do the273

following expansion:274

∥xm
t+1 − xn

t+1∥2Hr
≈ ∥xm

t − xn
t ∥2Hr

− 2η ⟨xm
t − xn

t , u
m
t − un

t ⟩+O(η2). (4.10)

By the definition of um
t , however, it would be influenced by noises from past stochastic gradients. In275

this way, um
t − un

t is not independent of xm
t − xn

t and thus it is difficult to construct a martingale276

and apply Berstein’s inequality. This is the reason why we introduce the auxiliary sequence {zmt }277

defined in (4.5). Fortunately, noticing that xm
t − xn

t ∈ conv({zmj − znj }j≤t), it suffices to show that278

∥zmt − znt ∥ will not get too large with high probability.279

Lemma 6 (Informal). Define probabilistic event280

At,3 :=
{
∥zmt+1 − znt+1∥2Hr

≤ η2σ2

λ
KA,

t∑
j=rK

∥ĝmj ∥2 ≤ (1− β1)
2σ2A

212(1− β2)2B2
1

for all m,n ∈ [M ]
}
,

(4.11)
where A is some constant. Define Et,3 := Et,2 ∩ At,3. For A = Õ(1) and η =281

Õ
(
min

{
1/(Kτ), 1/L

})
, it holds that P(Et,3) ≥ P(Et,2)− δ/(4T ).282

Event At,3 is the desired contraction property and can further imply that ∥xm
t+1 − xn

t+1∥2Hr
≤283

η2σ2

λ
KA when combined with event Et. In fact, for {zmt }, we can do the following expansion:284

∥zmt+1 − znt+1∥2Hr
≈ ∥zmt − znt ∥2Hr

− 2η⟨zmt − znt , ĝ
m
t − ĝnt ⟩+O(η2). (4.12)

Informally speaking, Et[ĝmt −ĝnt ] is roughly ∇f(xm
t )−∇f(xn

t ), which is close to ∇f(zmt )−∇f(znt )285

since ∥zmt − xm
t ∥2 = O(∥xm

t − xm
t−1∥2) = O(η2). In this way, the middle term O(η) of RHS above286

can be turned to −2η ⟨zmt − znt ,∇f(zmt )−∇f(znt )⟩, where the weak convexity can be applied. The287

remaining part is to control the martingale induced by
〈
zmt − znt , ĝ

m
t − ĝnt − Et[ĝmt − ĝnt ]

〉
through288

Berstein’s inequality.289

4.3 Descent290

Finally, we are ready to prove the descent lemma, which is the last component of Et+1. Define291

At,4 :=
{
f
Hr(t+1)
γ (zt+1)− f∗ +

η

12

t∑
j=0

∥∇f
Hr(j)
γ (zj)∥2H−1

r(j)

≤ 2∆
}
. (4.13)
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We proceed with (4.7) and control the stochastic noise term by subtracting its expectation to construct292

a martingale and apply Berstein’s inequality. Its expectation can be bounded by properties of293

clipping operator and variance bound. As for the discrepancy overhead, we apply the upper bound of294

∥xm
j − xn

j ∥2, which is induced by event Et and utilize the O(η2) bound on ∥zj − xj∥2. Therefore,295

thanks to all the foundations beforehand, we are able to bound each of these terms.296

Lemma 7 (Informal). For sufficiently small η, it holds that P(Et+1) ≥ P(Et,3)− δ/(4T ).297

Therefore, we prove that P(Et+1) ≥ P(Et)− δ/T . And by induction rule, P(ET ) ≥ 1− δ. After298

carefully choosing the learning rate η, we complete the proof of Theorem 3.299

5 Conclusion300

In this paper, we prove the benefits of local updates within distributed adaptive methods to reduce301

communication complexity compared to their minibatch counterparts. We study Local SGDM302

and Local Adam under convex and weakly convex setting, respectively. We consider generalized303

smoothness assumption and gradient clipping, and develop a novel technique to show contraction304

during local updates. Future works may include improved analysis of Local Adam, benefits of local305

adaptive algorithms in non-convex setting, advantages over non-adaptive methods, etc.306
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A Related Work482

Theoretical benefits of local updates in distributed optimization. Algorithms with local updates483

have been used among practitioners for a long time to reduce communication complexity [McMahan484

et al., 2017]. In the homogeneous and convex setting, Local SGD and its variants have been shown to485

outperform the minibatch baseline, for a fixed amount of gradient computations and communication486

rounds. Woodworth et al. [2020a] is the first to show that Local SGD can provably outperform487

Minibatch SGD. Yuan and Ma [2020] develops FedAC to further accelerate Local SGD. In the488

heterogeneous case, Woodworth et al. [2020b] demonstrates the advantages of Local SGD when489

heterogeneity is very low. Algorithms with local updates have also been studied in the non-convex490

setting [Karimireddy et al., 2020b, Yang et al., 2021, Glasgow et al., 2022], including momentum-491

based and adaptive methods [Reddi et al., 2020, Karimireddy et al., 2020a], though no advantage of492

local iterations over minibatch has been shown, without non-standard assumptions such as 3rd-order493

smoothness. Notably, Liu et al. [2022] is one closely related work to ours, which considers Local494

SGD with gradient clipping in homogeneous and non-convex setting and claims that the convergence495

guarantee is better than naive parallel of centralized clipped-SGD. However, it still cannot outperform496

minibatch baseline (with batch size K for each worker in each round) and thus fails to demonstrate497

the benefits of local iterations.498

Convergence of centralized Adam. Adam was first proposed by Kingma and Ba [2014] with499

convergence guarantee in online convex optimization. However, Reddi et al. [2019] found a gap500

in the original analysis of Adam and constructed a counter example to show its divergence. Since501

then, many works have developed convergence analyses of Adam with various assumptions and502

hyper-parameter settings. Guo et al. [2021] assumed the denominator is bounded from below and503

above by two constants, which typically requires a bounded gradient assumption or the AdaBound504

variant [Luo et al., 2019]. Défossez et al. [2020] assumed a bounded gradient and their convergence505

guarantee depends on poly(d). Zhang et al. [2022b], Wang et al. [2022] considered a finite sum506

setting and showed that Adam converges to the neighborhood of stationary points. One closely related507

work to ours is Li et al. [2024b], which established a high probability bound without a bounded508

gradient assumption. However they assumed that noise is bounded almost surely. Another recent509

work [Wang et al., 2024] provided a guarantee of O
(

1

ε4

)
with dependence on poly(d). Beyond the510

guarantees on gradient norm given by non-convex analyses, no stronger bounds (e.g., on function511

error) are known for Adam in the convex case.512

Convergence of distributed adaptive algorithms. In the federated learning literature, Reddi et al.513

[2020] introduced a framework, FedOPT, to leverage both worker optimizer and server optimizer.514

Many works explored adaptive server optimizer while fixing worker side as vanilla SGD. The515

theoretical results of local adaptive algorithms are much fewer. Some works have studied Local516

Adam and Local AMSGrad with fixed momentum state during local iterations [Karimireddy et al.,517

2020a, Chen et al., 2020, Zhao et al., 2022]. They also needed stringent assumptions such as a518

huge batch size depending on the inverse of target error, bounded stochastic gradients, vanishing519

difference between denominator, etc., which are not standard. Wang et al. [2021] explored adaptive520

worker optimizer based on centralized algorithm, where the state of worker optimizer changes in local521

updates. However, their analysis relied on an explicit assumptions [Wang et al., 2021, Assumption 1]522

on the contraction property of worker optimizer. To the best of our knowledge, there is no end-to-end523

convergence guarantee for distributed adaptive algorithms with local iterations.524

Gradient clipping. Pascanu et al. [2013] first proposed gradient clipping technique to address the525

issue of exploding gradient problem of deep neural networks. Since then, it has become standard526

practice in the training of language models [Gehring et al., 2017, Merity et al., 2017, Zhang et al.,527

2022a, Liu et al., 2023]. Furthermore, from theoretical perspective, gradient clipping is also used528

for multiple purposes, including differential privacy [Abadi et al., 2016], distributed optimization529

[Karimireddy et al., 2021, Liu et al., 2022], heavy-tailed noise [Zhang et al., 2020].530

Generalized smoothness. The generalized smoothness condition was initially proposed by [Zhang531

et al., 2019] to justify gradient clipping, and was called (L0, L1)-smoothness. The empirical evidence532

therein illustrated that the norm of Hessian matrix of language models depends linearly on the533

magnitude of gradient, contradicting the standard L-smoothness. A recent work [Li et al., 2024a]534
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further generalized this condition to ℓ-smoothness and proved convergence of classical SGD in this535

setting. Apart from bounding the Hessian through gradient, Sadiev et al. [2023] proposed to assume536

that the norm of Hessian is uniformly bounded in certain subset of whole space, in order to get537

high probability bounds for (accelerated) clipped-SGD. Gorbunov et al. [2023] further extended this538

setting to composite and distributed optimization without local updates. Here we follow the setting of539

[Sadiev et al., 2023] since (L0, L1)-smoothness would reduce to it in most cases. See Section 2.1 for540

details.541

B Technical Lemmas542

Lemma B.1 ([Bennett, 1962, Freedman, 1975]). Let the sequence of random variables {Xi}i≥1543

form a martingale difference sequence, i.e. E[Xi|Xi−1, · · · , X1] = 0 for all i ≥ 1. Assume that544

conditional variances σ2
i

def
= E[X2

i |Xi−1, · · · , X1] exist and are bounded and assume also that there545

exists deterministic constant c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1. Then for all546

b > 0, V > 0 and n ≥ 1,547

P

{
|

n∑
i=1

Xi| > b and
n∑

i=1

σ2
i ≤ V

}
≤ 2 exp

(
− b2

2V + 2cb/3

)
. (B.1)

Lemma B.2. Let X be a random variable in R and X̃ := clip(X, ρ), Then ∥X̃ − EX̃∥ ≤ 2ρ.548

Moreover, if for some σ > 0 and α ≥ 2,549

E[X] = x ∈ R, E|X − x|α ≤ σα, (B.2)

and |x| ≤ ρ

2
, ρ ≥ 3σ, then550

|E[X̃]− x| ≤ (2σ)α

ρα−1
, E|X̃ − x|α ≤ σα, E|X̃ − E[X̃]|α ≤ (2σ)α. (B.3)

Proof. The first claim is from [Sadiev et al., 2023] and we show the proof here for completeness. To551

start the proof, we introduce two indicator random variables. Let552

χ = I{X:|X|>ρ} =

{
1, if |X| > ρ,

0, otherwise
, η = I{X:|X−x|> ρ

2} =

{
1, if |X − x| > ρ

2
,

0, otherwise
. (B.4)

Moreover, since |X| ≤ |x|+ |X − x| ≤ ρ

2
+ |X − x|, we have χ ≤ η. Using that553

X̃ = min

{
1,

ρ

|X|

}
X = χ

ρ

|X|
X + (1− χ)X, (B.5)

we obtain554

|E[X̃]− x| =
∣∣∣∣E[X + χ

(
ρ

|X|
− 1

)
X]− x

∣∣∣∣
=

∣∣∣∣E [χ( ρ

|X|
− 1

)
X

] ∣∣∣∣
= E

[
χ

(
1− ρ

|X|

)
|X|
]
.

(B.6)

Since 1− ρ

|X|
∈ (0, 1) when χ ̸= 0, we derive555

|E[X̃]− x| ≤ E [χ|X|]
≤ E [η|X|]
≤ E [η|X − x|+ η|x|]

≤ (E [|X − x|α])
1
α
(
E
[
η

α
α−1
])α−1

α + |x|E [η]

η∈{0,1}
≤ σ (E [η])

α−1
α +

ρ

2
E [η] ,

(B.7)

16



By Markov’s inequality,556

E [η] = P
{
|X − x|α >

ρα

2α

}
≤ 2α

ρα
E [|X − x|α]

≤
(
2σ

ρ

)α

.

(B.8)

Thus, in combination with the previous chain of inequalities, we finally have557

|E[X̃]− x| ≤ σ

(
2σ

ρ

)α−1

+
ρ

2

(
2σ

ρ

)α

=
2ασα

ρα−1
. (B.9)

For the second part, since558

|X̃ − x| = |clip(X, ρ)− clip(x, ρ)| ≤ |X − x|, (B.10)

hence E|X̃ − x|α ≤ E|X − x|α ≤ σα. By Jensen’s inequality, we have for any q ∈ (0, 1),559

E|X̃ − E[X̃]|α ≤ q1−αE|X̃ − x|α + (1− q)1−α|E[X̃]− x|α

≤ q1−ασα + (1− q)1−α

(
(2σ)α

ρα−1

)α

.
(B.11)

Choose the optimal q =
σ

σ + (2σ)α

ρα−1

and we can conclude that560

E|X̃ − E[X̃]|α ≤
(
σ +

(2σ)α

ρα−1

)α

≤ (2σ)α. (B.12)

This completes the proof.561

Lemma B.3. For M independent random vectors X1, · · · , XM ∈ Rd such that E[Xm] = 0,562

E[∥Xm∥4] ≤ σ4, the following holds563

E
[
∥EmXm∥2

]2 ≤ 4σ4

M2
. (B.13)

Proof. We prove by direct calculation as follows:564

E
[
∥EmXm∥2

]2 ≤ E

[
1

M2

∑
m

∥Xm∥2 + 2

M2

∑
m<n

⟨Xm, Xn⟩

]2

= E

[
1

M2

∑
m

∥Xm∥2
]2

+ E

[
2

M2

∑
m<n

⟨Xm, Xn⟩

]2

≤ σ4

M2
+

4

M4
E
∑
m<n

⟨Xm, Xn⟩2

≤ 4σ4

M2
.

(B.14)

565

Lemma B.4. For any set Ω ∈ Rd and r > 0, define Br(Ω) :=566 {
x ∈ Rd : ∃y ∈ Ω, s.t., ∥x− y∥ ≤ r

}
. Then567

Br(conv(Ω)) = conv(Br(Ω)). (B.15)
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Proof. For any x ∈ Br(conv(Ω)),there exist y1, · · · , yN ∈ Ω and (λ1, · · · , λN ) ∈ ∆N for some N ,568

such that569

∥x− y∥ ≤ r, y :=

N∑
n=1

λnyn. (B.16)

Then x = y + (x− y) =

N∑
n=1

λn(yn + x− y) =

N∑
n=1

λnxn, where570

xn = yn + x− y ∈ Br(Ω). (B.17)

Hence x ∈ conv(Br(Ω)).571

On the other hand, for any x ∈ conv(Br(Ω)), there exist x1, · · · , xN ∈ Br(Ω), y1, · · · , yN ∈ Ω and572

(λ1, · · · , λN ) ∈ ∆N , such that573

x =

N∑
n=1

λnxn, ∥xn − yn∥ ≤ r. (B.18)

Let y :=

N∑
n=1

λnyn ∈ conv(Ω). Then ∥x− y∥ ≤
N∑

n=1

λn∥xn − yn∥ ≤ r and thus x ∈ Br(conv(Ω)).574

575

C Proof of Local SGDM576

We restate the Local SGDM algorithm here.577

Algorithm 2 Local SGDM
Require: initial model x0, learning rate η, momentum β1 ∈ [0, 1)

Set xm
0,0 = x0, u

m
0,−1 = 0 for each worker m ∈ [M ]

for r = 0, · · · , R− 1 do
for each worker m ∈ [M ] in parallel do

for k = 0, · · · ,K − 1 do
gmr,k = ∇F (xm

r,k; ξ
m
r,k), ĝ

m
r,k = clip(gmr,k, ρ) ▷Compute clipped stochastic gradient

um
r,k = β1u

m
r,k−1 + (1− β1)ĝmr,k ▷Update momentum

xm
r,k+1 = xm

r,k − ηum
r,k ▷Update model

end for
end for
xm
r+1,0 = Em[xm

r,K ], um
r+1,−1 = Em[um

r,K−1] ▷Communicate and average
end for

C.1 Overview and Main Theorem578

For any integer 0 ≤ t ≤ T−1, we define r(t), k(t) ∈ N such that t = r(t)K+k(t) and k(t) ≤ K−1.579

We omit the dependence on t and let r = r(t), k = k(t) through out the proof if not causing confusion.580

Define xm
t := xm

r,k, g
m
t := gmr,k, ĝ

m
t := ĝmr,k, u

m
t = um

r,k. Then Algorithm 2 is equivalent to the581

following update rule:582

um
t =

{
β1u

m
t−1 + (1− β1)ĝmt if t mod K ̸≡ 0,

β1ut−1 + (1− β1)ĝmt otherwise,
(C.1)

583

xm
t+1 =

{
xm
t − ηum

t if t mod K ̸≡ −1,
xt − ηut otherwise. (C.2)

Define an auxiliary sequence {zmt } as:584

zmt+1 =


1

1− β1
xm
t+1 −

β1

1− β1
xm
t if t mod K ̸≡ −1,

1

1− β1
xm
t+1 −

β1

1− β1
xt otherwise.

(C.3)
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Define probabilistic events (see (C.12) for definition of some parameters)585

At,1 :=
{
∥zmt+1 − znt+1∥2 ≤ η2σ2KA for all m,n ∈ [M ]

}
, (C.4)

586

At,2 :=


t∑

j=0

η

2
(f(zj)− f∗)(1−

ηµ

2
)t−j + ∥zt+1 − x∗∥2 ≤ 2(1− ηµ

2
)t+1D2

0

 . (C.5)

Besides, let587

Et := {Aj,i holds for all j ≤ t− 1, i ∈ {1, 2}} , Et,1 := Et ∩ At,1. (C.6)

Now we present two of our major lemmas, the first of which is to show contraction and the second is588

a descent lemma.589

Lemma C.1. Let A := max

{
210ρ2d

Kσ2
log2

MT

δ
, 29 log

MT

δ
, 212

K∥2σ∥2α2α
σ2ρ2(α−1)

}
. If η ≤590

min

{
(1− β1)

2

2L
,

D0

4σ
√
KA

}
and ρ ≥ max{3σ∞, 2G∞}, then the following holds:591

P(Et,1) ≥ P(Et)−
δ

2T
. (C.7)

Lemma C.2. For any ε > 0, let592

ρ ≥


max

{(
28∥2σ∥2α2α

µε

) 1
2(α−1)

, 3σ∞, 2G∞

}
, if µ > 0,

max

{(
28D0∥2σ∥α2α

ε

) 1
α−1

, 3σ∞, 2G∞

}
, otherwise.

η :=


2

µT
log

4µD2
0

ε
, if µ > 0,

4D2
0

Tε
, otherwise.

(C.8)

If593

η ≲


min

{
(1− β1)

2

L
,

Mε

σ2 log T
δ

,

(
Lσ2KA

ε

)−1/2

,

√
ε/µ

ρ
√
d log T

δ

}
, if µ > 0,

min

{
(1− β1)

2

L
,

Mε

σ2 log T
δ

,

(
Lσ2KA

ε

)−1/2

,
D0

ρ
√
d log T

δ

}
, otherwise,

(C.9)

where A is defined in Lemma C.1, then the following holds594

P(Et+1) ≥ P(Et,1)−
δ

2T
. (C.10)

The following is our main result, from which we will parse the implications in Theorems 1 and 2.595

Theorem C.3. Let Assumption 1, 2, 3, 4 hold for Ω := {∥x− x∗∥ ≤
√
3D0}. Further assume that596

for any x ∈ Ω, ∥∇f(x)∥∞ ≤ G∞. Then with probability ≥ 1−δ, Local SGDM yields f(x̂)−f∗ ≤ ε597

if598

T ≳


log

µD2
0

ε

[
L

(1− β1)2µ
+

σ2

µMε
log

T

δ
+

√
Lσ2KA

µ2ε
+

ρ
√
d

√
µε

log
T

δ

]
, if µ > 0,

D2
0

ε

[
L

(1− β1)2
+

σ2

Mε
log

T

δ
+

√
Lσ2KA

ε
+

ρ
√
d

D0
log

T

δ

]
, otherwise.

(C.11)
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Here599

ρ ≥


max

{(
28∥2σ∥2α2α

µε

) 1
2(α−1)

, 3σ∞, 2G∞

}
, if µ > 0,

max

{(
28D0∥2σ∥α2α

ε

) 1
α−1

, 3σ∞, 2G∞

}
, otherwise,

A := max

{
210ρ2d

Kσ2
log2

MT

δ
, 29 log

MT

δ
, 212

K∥2σ∥2α2α
σ2ρ2(α−1)

}
,

η :=


2

µT
log

4µD2
0

ε
, if µ > 0,

4D2
0

Tε
, otherwise.

(C.12)

Proof. We prove by induction that P(Et) ≥ 1− tδ

T
for t = 0, · · · , T .600

When t = 0, this is trivial. Assume that the statement is true for some t ≤ T − 1. We aim to prove601

that P(Et+1) ≥ 1− (t+ 1)δ

T
. It is easy to verify the conditions in Lemma C.1, C.2 once (C.11) and602

(C.12) hold. Hence we have603

P(Et+1) ≥ P(Et)− 2 · δ

2T
≥ 1− (t+ 1)δ

T
. (C.13)

Therefore by induction rule, P(ET ) ≥ 1− δ and this implies by event AT,2 that604

T−1∑
j=0

η

2
(f(zj)− f∗)

(
1− ηµ

2

)T−j

≤ 2
(
1− ηµ

2

)T
D2

0. (C.14)

Let x̂ :=
ηµ
∑T−1

j=0 (1−
ηµ
2 )T−jzj

2(1− (1− ηµ
2 )T )

. By convexity, we have605

f(x̂)− f∗ ≤
2(1− ηµ

2 )TµD2
0

1− (1− ηµ
2 )T

. (C.15)

(1) Case µ > 0.606

f(x̂)− f∗ ≤
2(1− ηµ

2 )TµD2
0

1− (1− ηµ
2 )T

≤ 4(1− ηµ

2
)TµD2

0 ≤ 4e−ηµT/2µD2
0 = ε. (C.16)

(2) Case µ = 0.607

f(x̂)− f∗ ≤
2(1− ηµ

2 )TµD2
0

1− (1− ηµ
2 )T

=
4D2

0

ηT
= ε. (C.17)

608

We now state and prove the implications of Theorem C.3 which yield the results stated in the main609

body of our paper.610

Theorem C.4 (Complete version of Theorem 1). Under the conditions of Theorem C.3 and µ > 0,611

assume 1− β1 = Ω(1),
(
∥σ∥2α2α
µε

) 1
2(α−1)

≳ G∞ ∨ σ∞, and K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

.612

Then with probability no less than 1− δ, Local SGDM with optimal η, ρ yields f(x̂)− f∗ ≤ ε, if613

T ≳ log
µD2

0

ε

L
µ
+

σ2

µMε
log

T

δ
+

√
Lσ2K log MT

δ

µ2ε
+

√
Ld

µ2ε
log

MT

δ

(
∥σ∥2α2α
µε

) 1
2(α−1)

 .

(C.18)
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And equivalently, let κ := L/µ,614

f(x̂)− f∗ ≲ exp

(
−Θ

(
µKR

L

))
+

σ2 log(MKR)

µMKR
log

KR

δ

+
Lσ2 log2(KR)

µ2KR2
log

MKR

δ
+

∥σ∥22α(κd)
α−1
α

µ

(
log MKR

δ

KR

) 2(α−1)
α

.

(C.19)

Proof. Plug the definition of A in (C.11),615

T ≳ log
µD2

0

ε

L
µ
+

σ2

µMε
log

T

δ
+

√
Lσ2K log MT

δ

µ2ε
+

ρ
√
d

√
µε

log
T

δ


+ log

µD2
0

ε

√
LK

µ2ε

√
ρ2d

K
log2

MT

δ
+

K∥2σ∥2α2α
ρ2(α−1)

≍ log
µD2

0

ε

L
µ
+

σ2

µMε
log

T

δ
+

√
Lσ2K log MT

δ

µ2ε


+ log

µD2
0

ε

√
LK

µ2ε

√
ρ2d

K
log2

MT

δ
+

K∥2σ∥2α2α
ρ2(α−1)

.

(C.20)

Hence the optimal ρ is given by616

ρ ≍ max

∥σ∥2α

(
K√

d log MT
δ

)1/α

,

(
∥σ∥2α2α
µε

) 1
2(α−1)

, σ∞, G∞

 . (C.21)

Note that
(
∥σ∥2α2α
µε

) 1
2(α−1)

≳ G∞ ∨ σ∞ and this implies617

T ≳ log
µD2

0

ε

L
µ
+

σ2

µMε
log

T

δ
+

√
Lσ2K log MT

δ

µ2ε


+ log

µD2
0

ε

√√√√ L

µ2ε
·

[
∥σ∥22αK

2
α

(
d log2

MT

δ

)1− 1
α

+

(
∥σ∥2α2α
µε

) 1
(α−1)

d log2
MT

δ

]

≍ log
µD2

0

ε

L
µ
+

σ2

µMε
log

T

δ
+

√
Lσ2K log MT

δ

µ2ε
+

√
Ld

µ2ε
log

MT

δ

(
∥σ∥2α2α
µε

) 1
2(α−1)

 .

(C.22)

In the last equation we use K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

. This completes the proof.618

Theorem C.5 (Complete version of Theorem 2). Under the conditions of Theorem C.3 and µ = 0,619

assume 1− β1 = Ω(1),
(
D0∥σ∥α2α

ε

) 1
α−1

≳ G∞ ∨ σ∞, and K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

.620

Then with probability no less than 1− δ, Local SGDM with optimal η, ρ yields f(x̂)− f∗ ≤ ε if621

T ≳
D2

0

ε

L+
σ2

Mε
log

T

δ
+

√
Lσ2K log MT

δ

ε
+

√
dL

ε

(
D0∥σ∥α2α

ε

) 1
α−1

log
MT

δ

 . (C.23)
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And equivalently,622

f(x̂)− f∗ ≲
LD2

0

KR
+

σD0√
MKR

log
1
2
KR

δ

+
L

1
3σ

2
3D

4
3
0

K
1
3R

2
3

log
1
3
MKR

δ
+

(
∥σ∥

2α
α−1

2α dLD0

) α−1
3α−1

D0

(
log MKR

δ

KR

) 2(α−1)
3α−1

.

(C.24)

Proof. Plug the definition of A in (C.11),623

T ≳
D2

0

ε

L+
σ2

Mε
log

T

δ
+

√
Lσ2K log MT

δ

ε
+

ρ
√
d

D0
log

T

δ


+

D2
0

ε

√
LK

ε

√
ρ2d

K
log2

MT

δ
+

K∥2σ∥2α2α
ρ2(α−1)

≍ D2
0

ε

L+
σ2

Mε
log

T

δ
+

√
Lσ2K log MT

δ

ε
+

√
LK

ε

√
ρ2d

K
log2

MT

δ
+

K∥2σ∥2α2α
ρ2(α−1)

 .

(C.25)
Hence the optimal ρ is given by624

ρ ≍ max

∥σ∥2α

(
K√

d log MT
δ

)1/α

,

(
D0∥σ∥α2α

ε

) 1
α−1

, σ∞, G∞

 . (C.26)

Note that
(
D0∥σ∥α2α

ε

) 1
α−1

≳ G∞ ∨ σ∞ and this implies625

T ≳
D2

0

ε

L+
σ2

Mε
log

T

δ
+

√
Lσ2K log MT

δ

ε


+

D2
0

ε

√√√√L

ε
·

[
∥σ∥22αK

2
α

(
d log2

MT

δ

)1− 1
α

+

(
D0∥σ∥α2α

ε

) 2
α−1

d log2
MT

δ

]

≍ D2
0

ε

L+
σ2

Mε
log

T

δ
+

√
Lσ2K log MT

δ

ε
+

√
dL

ε

(
D0∥σ∥α2α

ε

) 1
α−1

log
MT

δ

 .

(C.27)

In the last equation we use K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

. Solve ε and we get the upper626

bound of f(x̂)− f∗. This completes the proof.627

C.2 Preliminaries628

In this subsection, we show that event Et implies all the iterates remain in certain area, so that we629

can apply all kinds of properties of f afterwards.630

Lemma C.6. If ησ
√
KA ≤ (

√
3−

√
2)D0, Event Et implies that for all j ≤ t,m ∈ [M ], we have631

xm
j , xj , z

m
j , zj ∈ Ω. And ∥xm

j − xn
j ∥ ≤ ησ

√
KA for all m,n.632

Proof. Event Et implies that for all j ≤ t,633

∥zj − x∗∥ ≤
√
2D0, ∥zmj − znj ∥ ≤ ησ

√
KA ≤ (

√
3−

√
2)D0. (C.28)
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Hence zj ∈ Ω, ∥zmj − x∗∥ ≤
√
3D0 and zmj ∈ Ω. Also, notice that xj ∈ conv{zi}i≤j and634

xm
j − xn

j ∈ conv{zmi − zni }i≤j . We have635

∥xj − x∗∥ ≤
√
2D0, ∥xm

j − xn
j ∥ ≤ ησ

√
KA, ∥xm

j − xj∥ ≤ ησ
√
KA ≤ (

√
3−

√
2)D0. (C.29)

Therefore xm
j , xj ∈ Ω. This completes the proof.636

C.3 Proof of Contraction Lemma C.1637

In this subsection, we aim to show contraction, i.e., ∥xm
t − xn

t ∥ won’t be too large during local638

iterations with high probability. This property is crucial for showing the benefits of local updates in639

distributed optimization. However, different from [Woodworth et al., 2020a, Khaled et al., 2020],640

the update of xm
t is in the direction of momentum um

t , which incorporates information from all past641

gradient. Therefore, we cannot directly apply ⟨xm
t − xn

t ,Et[u
m
t − un

t ]⟩ ≥ 0. Fortunately, noticing642

that xm
t − xn

t ∈ conv({zmj − znj }j≤t), it suffices to show that ∥zmt − znt ∥ won’t get too large with643

high probability. Besides, the update rule of zmt is much easier to handle.644

Proof. First note that by the upper bound of η, Lemma C.6 holds. Since zmt+1 = zmt − ηĝmt ,645

∥zmt+1 − znt+1∥2 = ∥zmt − znt ∥2 − 2η
〈
zmt − znt , ĝ

m
t − ĝnt

〉
+ η2∥ĝmt − ĝnt ∥2

≤ ∥zmt − znt ∥2 − 2η ⟨zmt − znt ,∇f(xm
t )−∇f(xn

t )⟩+ 2η2∥∇f(xm
t )−∇f(xn

t )∥2

+ 2η
〈
zmt − znt ,∇f(xm

t )−∇f(xn
t )− ĝmt + ĝnt

〉
+ 2η2∥∇f(xm

t )−∇f(xn
t )− ĝmt + ĝnt ∥2.

(C.30)

Event Et implies zmt , xm
t ∈ Ω and thus by ∀x, y ∈ Ω, ⟨x − y,∇f(x) − ∇f(y)⟩ ≥ 1

L
∥∇f(x) −646

∇f(y)∥2,647

⟨zmt − znt ,∇f(xm
t )−∇f(xn

t )⟩ = ⟨xm
t − xn

t ,∇f(xm
t )−∇f(xn

t )⟩+ ⟨zmt − znt − (xm
t − xn

t ),∇f(xm
t )−∇f(xn

t )⟩
≥ ⟨xm

t − xn
t ,∇f(xm

t )−∇f(xn
t )⟩

−
[
L∥zmt − znt − (xm

t − xn
t )∥2 +

1

4L
∥∇f(xm

t )−∇f(xn
t )∥2

]
≥ 3

4L
∥∇f(xm

t )−∇f(xn
t )∥2 − L∥zmt − znt − (xm

t − xn
t )∥2.

(C.31)
Therefore, for the second and third term in the RHS of (C.30),648

−2η ⟨zmt − znt ,∇f(xm
t )−∇f(xn

t )⟩+ 2η2∥∇f(xm
t )−∇f(xn

t )∥2

≤ − η

L
∥∇f(xm

t )−∇f(xn
t )∥2 + 2ηL∥zmt − znt − (xm

t − xn
t )∥2.

(C.32)
By the update rule,649

∥zmt − znt − (xm
t − xn

t )∥2 =

(
ηβ1

1− β1

)2

∥um
t−1 − un

t−1∥2

≤
(

ηβ1

1− β1

)2
∥∥∥∥∥∥(1− β1)

t−1∑
j=rK

βt−j−1
1 [ĝmk − ĝnk ]

∥∥∥∥∥∥
2

≤ 2(ηβ1)
2

1− β1

t−1∑
j=rK

βt−j−1
1

[
∥∇f(xm

j )−∇f(xn
j )∥2 + ∥ĝmj − ĝnj −∇f(xm

j ) +∇f(xn
j )∥2

]
.

(C.33)
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Let St :=

t∑
j=rK

βt−j
1 ∥∇f(xm

j )−∇f(xn
j )∥2. We further get650

LHS of (C.32) ≤ − η

L
(St − β1St−1) +

4ηL(ηβ1)
2

1− β1

St−1 +

t−1∑
j=rK

βt−j−1
1 [∥ĝmj − ĝnj −∇f(xm

j ) +∇f(xn
j )∥2]


= − η

L
(St − St−1) +

4ηL(ηβ1)
2

1− β1

 t−1∑
j=rK

βt−j−1
1 [∥ĝmj − ĝnj −∇f(xm

j ) +∇f(xn
j )∥2]


(C.34)

Then plug in (C.30),651

∥zmt+1 − znt+1∥2 ≤ ∥zmt − znt ∥2 −
η

L
(St − St−1)

+
4ηL(ηβ1)

2

1− β1

 t−1∑
j=rK

βt−j−1
1 [∥ĝmj − ĝnj −∇f(xm

j ) +∇f(xn
j )∥2]


+ 2η

〈
zmt − znt ,∇f(xm

t )−∇f(xn
t )− ĝmt + ĝnt

〉
+ 2η2∥ĝmt − ĝnt −∇f(xm

t ) +∇f(xn
t )∥2.

(C.35)
Notice that this recursive bound holds for any rK ≤ i ≤ t. Unroll it and recalculate the coefficients652

using ηL ≤ (1− β1)
2/2,653

∥zmt+1 − znt+1∥2 +
η

L
St ≤

t∑
j=rK

2η
〈
zmj − znj ,∇f(xm

j )−∇f(xn
j )− ĝmj + ĝnj

〉

+

t∑
j=rK

4η2∥∇f(xm
j )−∇f(xn

j )− ĝmj + ĝnj ∥
2

≤
t∑

j=rK

2η
〈
zmj − znj ,Ej [ĝmj − ĝnj ]− [ĝmj − ĝnj ]

〉
︸ ︷︷ ︸

①: martingale

+

t∑
j=rK

2η
〈
zmj − znj ,∇f(xm

j )−∇f(xn
j )− Ej [ĝmj − ĝnj ]

〉
︸ ︷︷ ︸

②: clipping bias

+
t∑

j=rK

4η2
[
∥∇f(xm

j )−∇f(xn
j )− ĝmj + ĝnj ∥

2 − Ej [∥∇f(xm
j )−∇f(xn

j )− [ĝmj − ĝnj ]∥
2]
]

︸ ︷︷ ︸
③: martingale

+ 4η2K · 2σ2.
(C.36)

For ①, define654

ζm,n
j =

{
2η
〈
zmj − znj ,Ej [ĝmj − ĝnj ]− [ĝmj − ĝnj ]

〉
, if event Ej holds,

0, otherwise.
(C.37)

Then since event Ej implies ∥zmj − znj ∥ ≤ ησ
√
KA,655

|ζm,n
j | ≤ 2η · ησ

√
KA · 2ρ

√
d = 4η2σρ

√
dKA

def
= c, (C.38)

656

Varj(ζ
m,n
j ) ≤ 4η2 · η2σ2KA · 2σ2 = 8η4σ4KA. (C.39)
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Let b =
1

4
η2σ2KA, V = 8η4σ4K2A. By Lemma B.1, |

t∑
j=0

ζm,n
j | ≤ b with probability no less than657

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4M2T
. (C.40)

For ②,658

|②| ≤ 2ηK · ησ
√
KA · 2∥2σ∥

α
2α

ρ(α−1)
≤ 1

4
η2σ2KA. (C.41)

For ③, define659

θm,n
j =

{
4η2

[
∥∇f(xm

j )−∇f(xn
j )− ĝmj + ĝnj ∥

2 − Ej [∥∇f(xm
j )−∇f(xn

j )− [ĝmj − ĝnj ]∥
2]
]
, if event Ej holds,

0, otherwise.
(C.42)

Then,660

|θm,n
j | ≤ 4η2 · 4ρ2d = 16η2ρ2d

def
= c, (C.43)

661

Varj(θ
m,n
j ) ≤ 16η4 · Ej [∥∇f(xm

j )−∇f(xn
j )− [ĝmj − ĝnj ]∥

2]2 ≤ 64η4σ4. (C.44)

Let b =
1

4
η2σ2KA, V = 64Kη4σ4. By Lemma B.1, |

t∑
j=0

θm,n
j | ≤ b with probability no less than662

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4M2T
. (C.45)

Combine ①, ②, ③and thus we can conclude that with probability no less than P(Et)− 2 · δ

4T
, event663

Et holds and ∥zmt+1 − znt+1∥2 ≤ η2σ2KA for all m,n. This completes the proof.664

C.4 Proof of Descent Lemma C.2665

Now we are ready to state the main descent lemma of Local SGDM.666

Proof. Again, note that by the upper bound of η, Lemma C.6 holds. Under event Et,667

∥zt+1 − x∗∥2 = ∥zt − x∗∥2 − 2η
〈
zt − x∗,Em[ĝmt ]

〉
+ η2∥Em[ĝmt ]∥2

≤ ∥zt − x∗∥2 − 2η ⟨zt − x∗,Em[∇f(xm
t )]⟩ − 2η

〈
zt − x∗,Em[ĝmt −∇f(xm

t )]
〉

+ 2η2∥Em[ĝmt −∇f(xm
t )]∥2 + 2η2∥Em[∇f(xm

t )]∥2.
(C.46)

Since xm
t , xt, zt ∈ Ω, for the second term,668

⟨zt − x∗,Em[∇f(xm
t )]⟩ = ⟨xt − x∗,Em[∇f(xm

t )]⟩+ ⟨zt − xt,Em[∇f(xm
t )]⟩

= Em [⟨xt − xm
t ,∇f(xm

t )⟩+ ⟨xm
t − x∗,∇f(xm

t )⟩]
+ ⟨zt − xt,∇f(xt)⟩+ ⟨zt − xt,Em[∇f(xm

t )−∇f(xt)]⟩ .
(C.47)

By smoothness,669

Em [⟨xt − xm
t ,∇f(xm

t )⟩] ≥ −LEm[∥xm
t − xt∥2], (C.48)

670

f(zt) ≤ f(xt) + ⟨zt − xt,∇f(xt)⟩+
L

2
∥xt − zt∥2. (C.49)

By µ-strong convexity,671

Em [⟨xm
t − x∗,∇f(xm

t )⟩] ≥ Em[f(xm
t )− f∗ +

µ

2
∥xm

t − x∗∥2]

≥ f(xt)− f∗ +
µ

2
∥xt − x∗∥2.

(C.50)
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Therefore,672

⟨zt − x∗,Em[∇f(xm
t )]⟩ = ⟨xt − x∗,Em[∇f(xm

t )]⟩+ ⟨zt − xt,Em[∇f(xm
t )]⟩

(C.48),(C.50)

≥ f(xt)− f∗ +
µ

2
∥xt − x∗∥2 − LEm[∥xm

t − xt∥2]

+ ⟨zt − xt,∇f(xt)⟩+ ⟨zt − xt,Em[∇f(xm
t )−∇f(xt)]⟩

(C.49), AM-GM
≥ f(zt)− f∗ +

µ

2
∥xt − x∗∥2 −

L

2
∥zt − xt∥2 − LEm[∥xm

t − xt∥2]

− L

2

(
∥zt − xt∥2 + Em[∥xm

t − xt∥2
)

AM-GM
≥ f(zt)− f∗ +

µ

4
∥zt − x∗∥2 −

3L

2

(
∥zt − xt∥2 + Em[∥xm

t − xt∥2]
)
.

(C.51)
For the last term in (C.46),673

2η2∥Em[∇f(xm
t )]∥2 ≤ 6η2

[
L2∥xm

t − xt∥2 + L2∥xt − zt∥2 + ∥∇f(zt)∥2
]

≤ 6η2
[
L2∥xm

t − xt∥2 + L2∥xt − zt∥2 +
1

2L
(f(zt)− f∗)

]
(C.52)

Combine all these inequalities plugging in (C.46) and notice that η ≤ 1

6L
,674

∥zt+1 − x∗∥2 ≤ (1− ηµ

2
)∥zt − x∗∥2 − η(f(zt)− f∗) + 4ηL

[
∥zt − xt∥2 + Em[∥xm

t − xt∥2]
]

− 2η
〈
zt − x∗,Em[ĝmt −∇f(xm

t )]
〉
+ 2η2∥Em[ĝmt −∇f(xm

t )]∥2.
(C.53)

Define Λt :=

t−1∑
j=0

at,j∥xj − xj+1∥2, where at,j := βt−j−1
1 (t − j +

β1

1− β1
). By Lemma C.7,675

we plug (C.85) in the above inequality and compute (C.53) +
28(ηL)3β2

1

(1− β1)4
× (C.84). Now let676

Φt := ∥zt − x∗∥2 +
28(ηL)3β2

1

(1− β1)4
Λt−1. Hence we obtain677

Φt+1 ≤ (1− ηµ

2
)Φt − η(f(zt)− f∗) + 4ηL

[
Em[∥xm

t − xt∥2] + 64

(
ηβ1

1− β1

)2

∥∇f(zt)∥2
]

+ 32ηL

(
ηβ1

1− β1

)2
(1− β1)

t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
− 2η

〈
zt − x∗,Em[ĝmt −∇f(xm

t )]
〉
+ 2η2∥Em[ĝmt −∇f(xm

t )]∥2

≤ (1− ηµ

2
)Φt −

η

2
(f(zt)− f∗) + 4ηLEm[∥xm

t − xt∥2]

+ 32ηL

(
ηβ1

1− β1

)2
(1− β1)

t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
− 2η

〈
zt − x∗,Em[ĝmt −∇f(xm

t )]
〉
+ 2η2∥Em[ĝmt −∇f(xm

t )]∥2

≤ (1− ηµ

2
)Φt −

η

2
(f(zt)− f∗) + 16ηL · η2σ2KA

+ 32ηL

(
ηβ1

1− β1

)2
(1− β1)

t−1∑
j=0

βt−j−1
1 ∥Em[ĝmj −∇f(xm

j )]∥2


− 2η
〈
zt − x∗,Em[ĝmt −∇f(xm

t )]
〉
+ 2η2∥Em[ĝmt −∇f(xm

t )]∥2.
(C.54)
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Here in the second inequality we use ∥∇f(zt)∥2 ≤ 2L(f(zt)− f∗). In the last inequality, we apply678

contraction results implied by event Et,1.679

Unroll this recursive bound and re-calculate the coefficients,680

t∑
j=0

η

2
(f(zj)− f∗)(1−

ηµ

2
)t−j +Φt+1 ≤ (1− ηµ

2
)t+1Φ0 +

32η2Lσ2KA

µ

− 2η

t∑
j=0

(1− ηµ

2
)t−j

〈
zj − x∗,Em[ĝmj −∇f(xm

j )]
〉

+ 4η2
t∑

j=0

(1− ηµ

2
)t−j∥Em[ĝmj −∇f(xm

j )]∥2

(C.55)
Simplify Φt+1 term,681

t∑
j=0

η

2
(f(zj)− f∗)(1−

ηµ

2
)t−j + ∥zt+1 − x∗∥2 ≤ (1− ηµ

2
)t+1∥x0 − x∗∥2 +

32η2Lσ2KA

µ

−2η

t∑
j=0

(1− ηµ

2
)t−j

〈
zj − x∗,Em[ĝmj − Ej [ĝmj ]]

〉
︸ ︷︷ ︸

①: martingale

−2η

t∑
j=0

(1− ηµ

2
)t−j

〈
zj − x∗,Em[Ej [ĝmj ]−∇f(xm

j )]
〉

︸ ︷︷ ︸
②: clipping bias

+ 4η2
t∑

j=0

(1− ηµ

2
)t−j∥Em[ĝmj −∇f(xm

j )]∥2.

(C.56)
For the last term,682

4η2
t∑

j=0

(1− ηµ

2
)t−j∥Em[ĝmj −∇f(xm

j )]∥2 ≤ 8η2
t∑

j=0

(1− ηµ

2
)t−j

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 − Ej [∥Em[ĝmj − Ej [ĝmj ]]∥2]

]
︸ ︷︷ ︸

③: martingale

+ 8η2
t∑

j=0

(1− ηµ

2
)t−jEj [∥Em[ĝmj − Ej [ĝmj ]]∥2]︸ ︷︷ ︸

Lemma B.2

+ 8η2
t∑

j=0

(1− ηµ

2
)t−j∥Em[Ej [ĝmj ]−∇f(xm

j )]∥2︸ ︷︷ ︸
④: clipping bias

,

(C.57)
we finally get683

t∑
j=0

η

2
(f(zj)− f∗)(1−

ηµ

2
)t−j + ∥zt+1 − x∗∥2 ≤ (1− ηµ

2
)t+1D2

0 + 32

[
ηLKA+

1

M

]
ησ2

µ

+ ① + ② + ③ + ④.
(C.58)

(1) Case µ > 0.684
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For ①, define685

ζj =

{
−2η(1− ηµ

2
)t−j

〈
zj − x∗,Em[ĝmj − Ej [ĝmj ]]

〉
, if event Ej holds,

0, otherwise.
(C.59)

Then since event Ej implies ∥zj − x∗∥ ≤
√
2(1− ηµ

2
)j/2D0,686

|ζj | ≤ 2η ·
√
2(1− ηµ

2
)t/2D0 · 2ρ

√
d = 4(1− ηµ

2
)t/2ηρ

√
2dD0

def
= c, (C.60)

687

Varj(ζj) ≤ 4η2(1− ηµ

2
)2(t−j) · 2(1− ηµ

2
)jD2

0 ·
σ2

M
= 8(1− ηµ

2
)2t−j η

2D2
0σ

2

M
. (C.61)

Let b =
(1− ηµ

2 )t+1D2
0

5
, V = 16(1− ηµ

2
)t
ηD2

0σ
2

µM
. By Lemma B.1, |

t∑
j=0

ζj | ≤ b with probability688

no less than689

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4T
. (C.62)

For ②, since by Lemma B.2,690

∥Ej [ĝmj −∇f(xm
j )]∥2 ≤ ∥2σ∥2α2α

ρ2(α−1)
, (C.63)

event Et implies that691

|②| ≤ 2η

t∑
j=0

(1− ηµ

2
)t−j ·

√
2(1− ηµ

2
)j/2D0 ·

∥2σ∥α2α
ρα−1

≤ 4
√
2(1− ηµ

2
)t/2

D0∥2σ∥α2α
µρα−1

≤
(1− ηµ

2 )t+1D2
0

5
.

(C.64)

Here we use the definition of η and conditions of ρ in (C.12).692

For ③, define693

θj =

{
8η2(1− ηµ

2
)t−j

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 − Ej [∥Em[ĝmj − Ej [ĝmj ]]∥2]

]
, if event Ej holds,

0, otherwise.
(C.65)

Then694

|θj | ≤ 8η2 · 4ρ2d = 32η2ρ2d
def
= c, (C.66)

695

Varj(θj) ≤ 64η4(1− ηµ

2
)2(t−j) ·Ej [∥Em[ĝmj −Ej [ĝmj ]]∥2]2

Lemma B.3
≤ 64η4(1− ηµ

2
)2(t−j) · 4(2σ)

4

M2
.

(C.67)

Let b =
(1− ηµ

2 )t+1D2
0

5
, V =

213η3σ4

µM2
. By Lemma B.1, |

t∑
j=0

θj | ≤ b with probability no less than696

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4T
. (C.68)

For ④, by Lemma B.2,697

|④| ≤ 16η

µ
· ∥2σ∥

2α
2α

ρ2(α−1)
≤

(1− ηµ
2 )t+1D2

0

5
. (C.69)
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Combine the above claims, with probability no less than P(Et,1)−2· δ

4T
, we have |①+②+③+④| ≤698

4

5
(1− ηµ

2
)t+1D2

0 . By (C.58), these implies699

t∑
j=0

η

2
(f(zj)− f∗)(1−

ηµ

2
)t−j + ∥zt+1 − x∗∥2 ≤ (1− ηµ

2
)t+1D2

0 + 32

[
ηLKA+

1

M

]
ησ2

µ

+
4

5
(1− ηµ

2
)t+1D2

0

≤ 2(1− ηµ

2
)t+1D2

0.

(C.70)

Therefore, we conclude that P(Et+1) ≥ P(Et,1)−
δ

2T
.700

(2) Case µ = 0.701

In this case, (C.58) reduces to702

η

2

t∑
j=0

(f(zj)−f∗)+∥zt+1−x∗∥2 ≤ D2
0+16

[
ηLKA+

1

M

]
η2σ2(t+1)+①+②+③+④. (C.71)

For ①, define703

ζj =

{
−2η

〈
zj − x∗,Em[ĝmj − Ej [ĝmj ]]

〉
, if event Ej holds,

0, otherwise.
(C.72)

Then since event Ej implies ∥zj − x∗∥ ≤
√
2D0,704

|ζj | ≤ 2η ·
√
2D0 · 2ρ

√
d = 4ηρ

√
2dD0

def
= c, (C.73)

705

Varj(ζj) ≤ 4η2 · 2D2
0 ·

σ2

M
=

8η2D2
0σ

2

M
. (C.74)

Let b =
D2

0

5
, V =

8η2D2
0σ

2T

M
. By Lemma B.1, |

t∑
j=0

ζj | ≤ b with probability no less than706

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4T
. (C.75)

For ②, since by Lemma B.2,707

∥Ej [ĝmj −∇f(xm
j )]∥2 ≤ ∥2σ∥2α2α

ρ2(α−1)
, (C.76)

event Et implies that708

|②| ≤ 2η(t+ 1) ·
√
2D0 ·

∥2σ∥α2α
ρ(α−1)

≤ D2
0

5
. (C.77)

Here we again use definitions and conditions in (C.12).709

For ③, define710

θj =

{
8η2

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 − Ej [∥Em[ĝmj − Ej [ĝmj ]]∥2]

]
, if event Ej holds,

0, otherwise.
(C.78)

Then711

|θj | ≤ 8η2 · 4ρ2d = 32η2ρ2d
def
= c, (C.79)

712

Varj(θj) ≤ 64η4 · Ej [∥Em[ĝmj − Ej [ĝmj ]]∥2]2
Lemma B.3

≤ 64η4 · 4(2σ)
4

M2
. (C.80)
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Let b =
D2

0

5
, V =

212η4σ4

M2
. By Lemma B.1, |

t∑
j=0

θj | ≤ b with probability no less than713

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4T
. (C.81)

For ④, by Lemma B.2,714

|④| ≤ 8η2(t+ 1) · ∥2σ∥
2α
2α

ρ2(α−1)
≤ D2

0

5
. (C.82)

Combine the above claims, with probability no less than P(Et,1)−2· δ

4T
, we have |①+②+③+④| ≤715

4

5
D2

0 . By (C.58), these implies716

η

2

t∑
j=0

(f(zj)− f∗) + ∥zt+1 − x∗∥2 ≤ D2
0 + 16

[
ηLKA+

1

M

]
η2σ2(t+ 1) +

4

5
D2

0

≤ 2D2
0.

(C.83)

Therefore, we conclude that P(Et+1) ≥ P(Et,1)−
δ

2T
.717

718

Lemma C.7. Let Λt :=

t−1∑
j=0

at,j∥xj − xj+1∥2, where at,j := βt−j−1
1 (t− j +

β1

1− β1
). Under the719

conditions in Lemma C.2, then the following holds:720

Λt ≤
(
1− (1− β1)

2

2

)
Λt−1 +

32η2

1− β1
∥∇f(zt)∥2

+ 4η2
t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
.

(C.84)

721

∥zt − xt∥2 ≤
(

ηβ1

1− β1

)2 [
16L2Λt−1 + 32∥∇f(zt)∥2

]
+

4 (ηβ1)
2

1− β1

t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
.

(C.85)

Proof. By definition, ∥zt − xt∥2 =

(
β1

1− β1

)2

∥xt − xt−1∥2 and722

∥xt − xt−1∥2 = η2∥ut−1∥2

= η2

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 Em[ĝmj ]

∥∥∥∥∥∥
2

≤ 2η2


∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 Em[∇f(xm

j )]

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 Em[ĝmj −∇f(xm

j )]

∥∥∥∥∥∥
2


≤ 4η2

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 ∇f(xj)

∥∥∥∥∥∥
2

+ 2η2(1− β1)

t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
.

(C.86)
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Note that723 ∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 ∇f(xj)

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 [∇f(xj)−∇f(xt)]

∥∥∥∥∥∥
2

+ 2∥∇f(xt)∥2

≤ 2(1− β1)

t−1∑
j=0

βt−j−1
1 L2∥xj − xt∥2 + 2∥∇f(xt)∥2

≤ 2(1− β1)

t−1∑
j=0

βt−j−1
1 L2 · (t− j)

t−1∑
i=j

[∥xi − xi+1∥2] + 2∥∇f(xt)∥2

≤ 2L2
t−1∑
j=0

at,j∥xj − xj+1∥2 + 4∥∇f(zt)∥2 + 4L2∥xt − zt∥2

≤ 2L2
t−2∑
j=0

at−1,j∥xj − xj+1∥2 + 4∥∇f(zt)∥2 +
4L2

(1− β1)2
∥xt − xt−1∥2

(C.87)

Here at,j = βt−j−1
1 (t − j +

β1

1− β1
). For j ≤ t − 2, we have at,j ≤ β1(2 − β1)at−1,j . Since724

Λt =

t−1∑
j=0

at,j∥xj − xj+1∥2, we can conclude that725

∥xt − xt−1∥2 ≤ 16η2L2Λt−1 + 32η2∥∇f(zt)∥2

+ 4η2(1− β1)

t−1∑
j=0

βt−j−1
1

[
2L2Em[∥xm

j − xj∥2] + ∥Em[ĝmj −∇f(xm
j )]∥2

]
,

(C.88)
which implies (C.85). We complete the proof by plugging the above inequality in726

Λt ≤ β1(2− β1)Λt−1 +
1

1− β1
∥xt − xt−1∥2. (C.89)

727

C.5 Further Discussion728

Coordinate-wise clipping and global clipping. Lemma B.2 can be easily extended to Rd, similar729

to Sadiev et al. [2023, Lemma 5.1]. Therefore, our results can be easily generalized to global730

clipping operator clipg(X, ρg) := min

{
1,

ρg
∥X∥

}
X with threshold ρg := ρ

√
d. We omit the731

details in this paper. Readers may also wonder why our Theorem C.4 and Theorem C.5 depend on732

poly(d). However, if we assume ∥σ∥2αd
1
2−

1
2α = O(σ), both of which are of order O(d

1
2 ), then733

our convergence guarantee will not depend on poly(d) explicitly. Zhang et al. [2020, Corollary734

7] claims that coordinate-wise clipping has better dependence on dimension d. But they simply735

upper bound Eξ∼D∥∇F (x, ξ)∥α by dα/2Eξ∼D∥∇F (x, ξ)∥αα, which is too pessimistic. In fact, if we736

assume Eξ∼D∥∇F (x, ξ)∥α = O(dα/2−1Eξ∼D∥∇F (x, ξ)∥αα), both of which are of order O(d
α
2 ),737

then there is still no difference between coordinate-wise clipping and global clipping in their setting.738

Prior works on distributed SGDM with local updates. There are many works on Local SGDM in739

distributed setting. Liu et al. [2020a] studies Local SGDM in convex setting and rely on some strong740

assumptions to show convergence. Xu et al. [2021] analyze Local SGDM with bounded gradient741

assumption and the use a global momentum parameter during local iterations. Yu et al. [2019]742

considers non-convex Local SGDM but is only able to prove linear speedup. Wang et al. [2019],743

Cheng et al. [2023] also study non-convex problem and use momentum to handle heterogeneity in744

federated learning. All these works fail to show the benefits of local iterations compared to minibatch745

baseline.746
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D Proof of Local Adam747

D.1 Overview and Main Theorem748

For any integer 0 ≤ t ≤ T−1, we define r(t), k(t) ∈ N such that t = r(t)K+k(t) and k(t) ≤ K−1.749

We omit the dependence on t and let r = r(t), k = k(t) through out the proof if not causing confusion.750

Define xm
t := xm

r,k, g
m
t := gmr,k, ĝ

m
t := ĝmr,k, u

m
t = um

r,k. Then Algorithm 2 is equivalent to the751

following update rule:752

um
t =

{
β1u

m
t−1 + (1− β1)ĝmt if t mod K ̸≡ 0,

β1ut−1 + (1− β1)ĝmt otherwise,
(D.1)

753

vmt =

{
β2v

m
t−1 + (1− β2)ĝmt

2
if t mod K ̸≡ 0,

β2vt−1 + (1− β2)ĝmt
2

otherwise,
(D.2)

754

xm
t+1 =

{
xm
t − η(Hm

t )−1um
t if t mod K ̸≡ −1,

xt − ηEm[(Hm
t )−1um

t ] otherwise.
(D.3)

Define an auxiliary sequence {zmt } as:755

zmt+1 =


1

1− β1
xm
t+1 −

β1

1− β1
xm
t if t mod K ̸≡ −1,

1

1− β1
xm
t+1 −

β1

1− β1
xt otherwise.

(D.4)

Let756

emt :=
β1

1− β1
(Id −Hm

t (Hm
t−1)

−1)um
t−1. (D.5)

Then the definition of {zmt } implies757

zmt+1 − zmt = −η(Hm
t )−1um

t

1− β1
+

ηβ1(H
m
t−1)

−1um
t−1

1− β1

= − ηβ1

1− β1
[(Hm

t )−1 − (Hm
t−1)

−1]um
t−1 − η(Hm

t )−1ĝmt

=: −η(Hm
t )−1(ĝmt + emt ).

(D.6)

Finally, let yt := argmin
y

f(y) +
1

2γ
∥y − zt∥2Hr(t)

.758

Define probabilistic events (see (D.15) for definition of some parameters)759

At,1 :=
{
β
K/2
2 ⪯ H−1

r(t)H
m
t ⪯ 1 + (1− β2)B and for all m ∈ [M ]

}
, (D.7)

760

At,2 :=
{
∥Hr(t)((H

m
t )−1 − (Hn

t )
−1)∥ ≤ (1− β2)B1 for all m,n ∈ [M ]

}
, (D.8)

761

At,3 :=

∥zmt+1 − znt+1∥2Hr
≤ η2σ2

λ
KA,

t∑
j=rK

∥ĝmj ∥2 ≤ (1− β1)
2σ2A

212(1− β2)2B2
1

for all m,n ∈ [M ]

 ,

(D.9)762

At,4 :=

f
Hr(t+1)
γ (zt+1)−min fλ

γ +
η

12

t∑
j=0

∥∇f
Hr(j)
γ (zj)∥2H−1

r(j)

≤ 2∆

 . (D.10)

Here ∆ := fλ
γ (x0)−min fλ

γ . Besides, let763

Et := {Aj,i holds for all j ≤ t− 1, i ∈ {1, 2, 3, 4}} , (D.11)
764

Et,1 := Et ∩ At,1, Et,2 := Et,1 ∩ At,2, Et,3 := Et,2 ∩ At,3. (D.12)
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Theorem D.1. For L/λ ≥ γ−1 ≥ 2τ/λ, let Assumption 1, 2, 3, 5 hold for Ω = conv(BR0(Ω0)),765

where Ω0 := {fλ
γ (x)−min fλ

γ ≤ 2∆}, ∆ = fλ
γ (x0)−min fλ

γ and R0 =

√
∆γ

160λ
. Further assume766

that for any x ∈ Ω, ∥∇f(x)∥ ≤ G, ∥∇f(x)∥∞ ≤ G∞, and767

1− β2 ≲ min

{
1− β1

K1/2B1

(1− β1)σ
√
A

K1/2B1G
,
η

γB
,
1− β1

K1/2B
,
1

K

}
. (D.13)

If η =
24λ∆

εT
, then with probability no less than 1 − δ, Local Adam yields768

λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇fHr
γ (zr,k)∥2H−1

r
≤ ε if769

T ≳
λ∆σ2

γMε2
log

1
2
T

δ
+

∆

ε
·

√
L2σ2KA

min{ε, σ2
∞/G∞}

+
L∆

(1− β1)2ε
+

Kτ∆

ε
+

√
L∆ρ2d log T

δ

(
√
β2 − β1)ε

. (D.14)

Here770

ρ ≥ max

{(
26∥2σ∥2α2α

ε

) 1
2(α−1)

, 3σ∞, 2G∞

}
,

B := max

{
6K(G2

∞ + σ2
∞)

λ2
,
16ρ2

λ2
log

dMT

δ
, 26

√
K(G∞ + σ∞)σ∞

λ2
log1/2

dMT

δ

}
,

B1 := max

{
16Kσ2

∞
λ2

,
16ρ2

λ2
log

dMT

δ
, 26

√
K(G∞ + σ∞)σ∞

λ2
log1/2

dMT

δ

}
,

A := max

{
220ρ2d

Kσ2
log

MT

δ
, 220 log2

MT

δ
,
28K∥2σ∥2α2α
σ2ρ2(α−1)

}
.

(D.15)

Proof. We prove by induction that P(Et) ≥ 1− tδ

T
for t = 0, · · · , T .771

When t = 0, this is trivial. Assume that the statement is true for some t ≤ T − 1. We aim to prove772

that P(Et+1) ≥ 1− (t+ 1)δ

T
. By Lemma D.8, D.9, D.10, D.11, we have773

P(Et+1) ≥ P(Et)− 4 · δ

4T
≥ 1− (t+ 1)δ

T
. (D.16)

Therefore by induction rule, P(ET ) ≥ 1− δ and this implies774

λ

T

T−1∑
t=0

∥∇f
Hr(t)
γ (zt)∥2H−1

r(t)

≤ 24∆λ

ηT
= ε. (D.17)

Now we verify the conditions in all the lemmas. In Lemma D.7,775

η

λ
≲

√
∆γ

λσ2KA
⇐= T ≳

σ

ε

√
L∆KA. (D.18)

In Lemma D.9,776

η

λ
≲

σ2
∞

G∞Lσ
√
KA

⇐= T ≳
∆

ε
·

√
L2σ2KA

σ2
∞/G∞

. (D.19)

In Lemma D.10,777

η

λ
≲ min

{
1

Kτ
,
(1− β1)

2

L

}
⇐= T ≳

L∆

(1− β1)2ε
+

Kτ∆

ε
. (D.20)
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In Lemma D.11, by noticing that
24∆λ

ηT
= ε, (D.113) is equivalent to ρ ≳

(
∥2σ∥2α2α

ε

) 1
2(α−1)

and778

η

λ
≲ min

{
(1− β1)

2

L
,

Mγε

λσ2 log1/2 T
δ

,

(
L2σ2KA

ε

)−1/2

,
M∆

σ2 log T
δ

,

√
γ∆

λρ2d log T
δ

,

√
Tε(

√
β2 − β1)

Lρ
√
d log1/2 T

δ

}
,

(D.21)
which can be ensured as long as779

T ≳ max

 L∆

(1− β1)2ε
,
λ∆σ2

γMε2
log

1
2
T

δ
,
∆

ε
·
√

L2σ2KA

ε
,

√
L∆ρ2d log T

δ

(
√
β2 − β1)ε

 . (D.22)

Here we use the fact that γ ≥ λ

L
. Therefore we can conclude that all the lemmas hold if780

T ≳
λ∆σ2

γMε2
log

1
2
T

δ
+

∆

ε
·

√
L2σ2KA

min{ε, σ2
∞/G∞}

+
L∆

(1− β1)2ε
+

Kτ∆

ε
+

√
L∆ρ2d log T

δ

ε
. (D.23)

Finally, we verify the upper bound of 1− β2 in Lemma D.9, D.10 and D.11 as:781

1− β2 ≲ min

{
1− β1

K1/2B1

(1− β1)σ
√
A

K1/2B1G
,
η

γB
,
1− β1

K1/2B
,
1

K

}
. (D.24)

782

Theorem D.2. Under the conditions of Theorem D.1, assume 1− β1 = Ω(1) and783

1− β2 = Õ
(

1

K3/2R1/2

)
,

(
∥σ∥2α2α

ε

) 1
2(α−1)

≳ G∞ ∨ σ∞, ε ≲
σ2
∞

G∞
,

K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

.

(D.25)

Then with probability no less than 1 − δ, Local Adam with optimal η, ρ yields784

λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇fHr
γ (zr,k)∥2H−1

r
≤ ε if785

T ≳
λ∆σ2

γMε2
log

1
2
T

δ
+

L∆

ε
3
2

·
√
σ2K log

MT

δ
+

(L+Kτ)∆

ε
+

L∆

ε
3
2

(
∥σ∥2α2α

ε

) 1
2(α−1)

d
1
2 log

MT

δ
.

(D.26)
And equivalently,786

λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇fHr
γ (zr,k)∥2H−1

r
≲

τ∆

R
+

L∆

KR
+

√
λ∆σ2

γMKR
log

1
4
KR

δ

+
(L∆σ)

2
3

K
1
3R

2
3

log
1
3
MKR

δ
+
(
∥σ∥2αd

1
2−

1
2α

) 2α
3α−2

(
L∆ log MKR

δ

KR

) 2(α−1)
3α−2

.

(D.27)
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Proof. Plug the definition of A in (D.14),787

T ≳
λ∆σ2

γMε2
log

1
2
T

δ
+

∆

ε
·

√
L2σ2K log MT

δ

ε
+

(L+Kτ)∆

ε
+

√
L∆ρ2d log T

δ

ε

+
∆

ε
·
√

L2K

ε

√
d log2 MT

δ

K
ρ2 +K∥σ∥2α2α · ρ2(1−α)

≍ λ∆σ2

γMε2
log

1
2
T

δ
+

∆

ε
·

√
L2σ2K log MT

δ

ε
+

(L+Kτ)∆

ε

+
∆

ε
·
√

L2K

ε

√
d log2 MT

δ

K
ρ2 +K∥σ∥2α2α · ρ2(1−α).

(D.28)

Hence the optimal ρ is given by788

ρ ≍ max

∥σ∥2α

(
K√

d log MT
δ

)1/α

,

(
∥σ∥2α2α

ε

) 1
2(α−1)

, σ∞, G∞

 . (D.29)

Note that
(
∥σ∥2α2α

ε

) 1
2(α−1)

≳ G∞ ∨ σ∞ and this implies789

T ≳
λ∆σ2

γMε2
log

1
2
T

δ
+

∆

ε
·

√
L2σ2K log MT

δ

ε
+

(L+Kτ)∆

ε

+
L∆

ε
3
2

[
∥σ∥2αd

1
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In the last equation we use K ≳ log
MT

δ

(
∥σ∥2αd

1
2−

1
2α

σ

) 2α
α−2

. Solve ε and we get the upper790

bound of
λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇fHr
γ (zr,k)∥2H−1

r
.791

Further note that A = Õ(1), B = Õ(K), B1 = Õ(K), η = Õ(1/
√
T ) and we can get the upper792

bound of 1− β2 as:793

1− β2 = Õ
(

1

K3/2R1/2

)
. (D.31)

This completes the proof.794

Theorem D.3 (Complete version of Theorem 3). Under the conditions of Theorem D.2, let γ =
λ

L
795

and thus Ω0 ⊂ {x : f(x)− f∗ ≤ 4(f(x0)− f∗)},∆ ≍ f(x0)− f∗. Then with probability no less796

than 1− δ, Local Adam with optimal η, ρ yields
λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇f(zr,k)∥2H−1
r

≤ ε if797
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+

L∆

ε
3
2

·
√
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And equivalently,798
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Further, if 1 − β2 ≲
G2

∞ + σ2
∞

ρ2 log dR
δ

, where ρ is definded in (D.29), then with probability no less than799

1− 2δ,800
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(D.34)

Proof. By Lemma D.6, we have Ω0 ⊂ {x : f(x)−f∗ ≤ 4(f(x0)−f∗)},∆ ≍ f(x0)−f∗. By Lemma801

D.4, we have ∥∇f(zr,k)∥H−1
r

≤ 2∥∇fHr
γ (zr,k)∥H−1

r
. Therefore, the bound for T in Theorem D.2802

will reduce to (D.32). Solve ε and we get the upper bound of
λ

KR

R−1∑
r=0

K−1∑
k=0

∥∇f(zr,k)∥2H−1
r

.803

Now we turn to bound ∥Hr∥. Note that Hr+1 = diag(
√
vr+1 + λ2) and804

[vr+1]i = (1− β2)

rK−1∑
j=0

βrK−j−1
2 Em[ĝmj ]2i

= (1− β2)

rK−1∑
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βrK−j−1
2

(
Em
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[ĝmj ]2i − Ej [ĝmj ]2i

]
+ EmEj [ĝmj ]2i

)
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βrK−j−1
2 Em

[
[ĝmj ]2i − Ej [ĝmj ]2i

]
+ σ2

∞ + 3G2
∞,

(D.35)

where the last inequality is due to Lemma B.2. Define805

[θj ]i =

{
(1− β2)β

rK−j−1
2 Em

[
[ĝmj ]2i − Ej [ĝmj ]2i

]
, if event Ej holds,

0, otherwise.
(D.36)

Further note that806

|[θj ]i| ≤ (1− β2)ρ
2 def
= c, (D.37)

807

Varj([θj ]i) ≤
(1− β2)

2β
2(rK−j−1)
2

M
EmEj

[
[ĝmj ]2i − Ej [ĝmj ]2i

]2
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M
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(D.38)
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Let b = G2
∞ + 3σ2

∞, V =
2(1− β2)σ

2
∞(σ2

∞ + 4G2
∞)

M
. If 1 − β2 ≲

G2
∞ + σ2

∞

ρ2 log dR
δ

, then by Lemma808

B.1, we have |
rK−1∑
j=0

[θj ]i| ≤ b with probability no less than809

1− 2 exp

(
− b2

2V + 2cb/3

)
≥ 1− δ

dR
, (D.39)

which implies [Hr]i,i ≤ λ+ 2G∞ + 2σ∞. Therefore, we have810

P {ET and ∥Hr∥ ≤ λ+ 2G∞ + 2σ∞ for all r ≤ R} ≥ 1− 2δ. (D.40)

And thus811
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(D.41)
812

D.2 Preliminaries813

We start with theoretical properties of weakly convex function and Moreau envelop, which are814

repeatedly used in our proof.815

Lemma D.4. Let z ∈ Rd and y = y(z) := argmin
x

f(x) +
1

2γ
∥x − z∥2H for some H ⪰ λId and816

L/λ ≥ γ−1 ≥ 2τ/λ. Then817

∇fH
γ (z) = ∇f(y) =

H(z − y)

γ
. (D.42)

If further assume fH
γ (z)−min fλ

γ ≤ 2∆, 0 ≤ η ≤ λ

L
, then z, y ∈ Ω0, and818

∥∇f(z)∥H−1 ≤ 2γL

λ
∥∇fH

γ (z)∥H−1 , (D.43)
819

∥H(z − y)− η∇f(z)∥H−1 ≤ γ∥∇f(y)∥H−1 . (D.44)
820

∥∇fH
γ (z)∥2H−1 ≤ 2

γ
(fH

γ (z)−min fλ
γ ). (D.45)

Proof. Since y is the minimizer,821

0 = ∇y

[
f(y) +

1

2γ
∥y − z∥2H

]
= ∇f(y) +

H(y − z)

γ
, (D.46)

and note that822

∇fH
γ (z) = ∇z

[
f(y(z)) +

1

2γ
∥y(z)− z∥2H

]
=

H(z − y)

γ
. (D.47)

If fH
γ (z)−min fλ

γ ≤ 2∆, then fλ
γ (z) ≤ fH

γ (z) and823

fλ
γ (y) ≤ fH

γ (y) ≤ f(y) ≤ fH
γ (z) ≤ f(z), (D.48)

which implies y, z ∈ Ω0.824

By mean value theorem, there exists a symmetric matrix −τId ⪯ Hg ⪯ LId, such that825

∇f(z)−∇f(y) = Hg(z − y) = γHgH
−1∇f(y). (D.49)
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Hence,826

∥∇f(z)−∇f(y)∥H−1 ≤ γ∥H−1∇f(y)∥HgH−1Hg
≤ γL

λ
∥∇fH

γ (z)∥H−1 . (D.50)
827

∥∇f(z)∥H−1 ≤ (1 +
γL

λ
)∥∇fH

γ (z)∥H−1 ≤ 2γL

λ
∥∇fH

γ (z)∥H−1 . (D.51)

Also,828

H(z − y)− η∇f(z) = (γId − η(Id + γHgH
−1))∇f(y) =: γΛ∇f(y). (D.52)

By noticing that829

−Id ⪯ H−1/2ΛH1/2 = Id − ηγ−1 − ηH−1/2HgH
−1/2 ⪯ Id, (D.53)

we have ∥H(z − y)− η∇f(z)∥H−1 ≤ γ∥∇f(y)∥H−1 .830

Last,831

min fλ
γ ≤ fλ

γ (y) ≤ f(y) = fH
γ (z)− 1

2γ
∥y − z∥2H = fH

γ (z)− γ

2
∥∇fH

γ (z)∥2H−1 . (D.54)

This completes the proof.832

Lemma D.5. If x, y ∈ Ω, then833

−⟨x− y,∇f(x)−∇f(y)⟩+ 1

L
∥∇f(x)−∇f(y)∥2 ≤ 2τ∥x− y∥2. (D.55)

Proof. By mean value theorem, there exists a symmetric matrix −τId ⪯ H ⪯ LId, such that834

∇f(x)−∇f(y) = H(x− y). (D.56)

Therefore,835

−⟨x− y,∇f(x)−∇f(y)⟩+ 1

L
∥∇f(x)−∇f(y)∥2 = (x− y)T (−H +

H2

L
)(x− y)

≤ (τ +
τ2

L
)∥x− y∥2

≤ 2τ∥x− y∥2.

(D.57)

836

Lemma D.6. If γ =
λ

L
, then for z ∈ Ω0, it holds that

f(z)− f∗
2

≤ f1/L(z)− f∗ ≤ f(z)− f∗.837

Proof. By definition of Moreau envelop, the second inequality is trivial. Let y = argmin
x

f(x) +838

L

2
∥x− z∥2. Note that x → f(x) +

L

2
∥x− z∥2 is 2L-smooth. Then we have839

f(z) ≤ f(y) +
L

2
∥y − z∥2 + L∥y − z∥2 = f1/L(z) + L∥y − z∥2. (D.58)

Furthermore, by Lemma D.4840

L

2
∥y − z∥2 =

1

2L
∥∇f(y)∥2 ≤ f(y)− f∗. (D.59)

Therefore, f(z)− f∗ ≤ f1/L(z)− f∗ + L∥y − z∥2 ≤ 2(f1/L(z)− f∗).841

Next, we show that event Et implies all the iterates remain in certain area.842

Lemma D.7. If
ησ

λ

√
KA ≤

√
∆γ

160λ
, then event Et implies that for all j ≤ t,m ∈ [M ], we have843

zj ∈ Ω0, x
m
j , xj , z

m
j ∈ Ω. And ∥xm

j − xn
j ∥ ≤ ησ

λ

√
KA for all m,n.844
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Proof. Event Et implies that for all j ≤ t,845

fλ
γ (zj)−min fλ

γ ≤ 2∆, ∥zmj − znj ∥ ≤ ησ

λ

√
KA ≤

√
∆γ

160λ
. (D.60)

Hence zj ∈ Ω0, ∥zmj − zj∥ ≤ ησ

λ

√
KA and zmj ∈ BR0(Ω0) ⊂ Ω. Also, notice that xj ∈846

conv{zi}i≤j ⊂ conv(Ω0) ⊂ Ω and xm
j − xn

j ∈ conv{zmi − zni }i≤j . We have847

∥xm
j − xn

j ∥ ≤ ησ

λ

√
KA, ∥xm

j − xj∥ ≤ ησ

λ

√
KA ≤

√
∆γ

160λ
. (D.61)

Therefore by Lemma B.4, xm
j ∈ BR0

(conv(Ω0)) = Ω.848

The following lemma shows that the second order momentum vmt does not change too much from849

vr(t) during local training with high probability, which is also repeatedly used in our proof.850

Lemma D.8. Let B := max

{
6K(G2

∞ + σ2
∞)

λ2
,
16ρ2

λ2
log

dMT

δ
, 26

√
K(G∞ + σ∞)σ∞

λ2
log1/2

dMT

δ

}
.851

If ρ ≥ max{3σ∞, 2G∞}, then the following holds852

P(Et,1) ≥ P(Et)−
δ

4T
. (D.62)

Proof. Let t = rK + k. By the update rule of local Adam, we have853

vmt = βk+1
2 vr + (1− β2)

t∑
j=rK

βt−j
2 ĝmj ⊙ ĝmj ⪰ βK

2 vr, (D.63)

and hence854

Hm
t = diag(

√
vmt + λ2) ⪰ β

K/2
2 diag(

√
vr + λ2) = β

K/2
2 Hr. (D.64)

For the upper bound, for any index i ∈ [d], by Lemma B.2,855

Ej [ĝmj ]2i ≤ σ2
i + [Ej [ĝmj ]i]

2 ≤ σ2
∞ + 3G2

∞. (D.65)

Therefore,856

[vmt ]i ≤ [vr]i + (1− β2)K(σ2
∞ + 3G2

∞) + (1− β2)

t∑
j=rK

[
[ĝmj ]2i − Ej [ĝmj ]2i

]
. (D.66)

Define857

[θmj ]i =

{
[ĝmj ]2i − Ej [ĝmj ]2i , if event Ej holds,
0, otherwise.

(D.67)

Event Et implies [θmj ]i = [ĝmj ]2i − Ej [ĝmj ]2i . Further note that |[θmj ]i| ≤ ρ2
def
= c,858

Varj([θ
m
j ]i) ≤ Ej

[
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j )]2i

]2
= Ej

[
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[
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(D.68)

Let b = Bλ2/2, V = 2Kσ2
∞(σ2

∞ + 4G2
∞). Applying Lemma B.1, we have |

t∑
j=rK

[θmj ]i| ≤ b with859

probability no less than860

1− 2 exp

(
− b2

2V + 2cb/3

)
≥ 1− δ

4dMT
, (D.69)
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which implies with probability no less than 1− δ

4T
, for any m ∈ [M ],861

vmt ⪯ vr + (1− β2)K(σ2
∞ + 3G2

∞) + (1− β2)Bλ2/2 ⪯ vr + (1− β2)Bλ2. (D.70)

and thus862

Hm
t ⪯

√
1 + (1− β2)BHr. (D.71)

863

D.3 Proof of Contraction864

In this subsection, we aim to show contraction, i.e., ∥xm
t − xn

t ∥ will not get too large during local865

iterations with high probability. However, since the update of xm
t involves the coupling of both first866

order momentum and second order momentum, it is much harder than showing the contraction of867

Local SGDM. Our solution below is in two folds.868

We begin with showing contraction of the second order momentum in some sense.869

Lemma D.9. Let B1 := max

{
16Kσ2

∞
λ2

,
16ρ2

λ2
log
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δ
, 26

√
K(G∞ + σ∞)σ∞

λ2
log1/2

dMT

δ

}
870

and 1− β2 ≤ 1

4K
. If ρ ≥ max{3σ∞, 2G∞}, ηLσ

λ

√
KAG∞ ≤ 2σ2

∞, then the following holds:871

P(Et,2) ≥ P(Et,1)−
δ

4T
(D.72)

Proof. Event Et,1 implies for all j ≤ t, xm
j , xn

j ∈ Ω and for any index i ∈ [d],872 ∣∣∣∣[vmt − vnt ]i
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2
i − Ej

[
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[ĝmj ]2i − [ĝnj ]
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Here in the second inequality we apply Lemma B.2 and contraction results implied by Et,1.873

Define874

[Ξm,n
j ]i =

{
βt−j
2

[
[ĝmj ]2i − [ĝnj ]

2
i − Ej

[
[ĝmj ]2i − [ĝnj ]

2
i

]]
, if event Ej holds,

0, otherwise.
(D.74)

Then we have875 ∣∣∣∣[Ξm,n
j ]i

∣∣∣∣ ≤ 2ρ2
def
= c, (D.75)
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Varj([Ξ
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Let b = B1λ
2/2, V = 4Kσ2

∞(σ2
∞ + 4G2

∞) and by Lemma B.1, we have |
t∑

j=rK

[Ξm,n
j ]i| ≤ b with877

probability no less than878

1− 2 exp

(
b2

2V + 2cb/3

)
≥ 1− δ

4dM2T
. (D.77)

This implies with probability no less than 1− δ

4M2T
,879 ∣∣∣∣vmt − vnt

∣∣∣∣ ⪯ (1− β2)B1λ
2/2 + 8(1− β2)K · σ2
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2. (D.78)

Combine this inequality and event Et,1,880 ∣∣∣∣ Hr

Hm
t

− Hr

Hn
t

∣∣∣∣ = √
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(D.79)

The last inequality is due to event Et,1 and 1− β2 ≤ 1

4K
. We can conclude that under event Et,1,881

with probability no less than 1− δ

4T
, the inequality above holds for any m,n ∈ [M ], which implies882

P(Et,2) ≥ P(Et,1)−
δ

4T
.883

Now we are ready to prove contraction of zmt .884
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then the following holds:887

P(Et,3) ≥ P(Et,2)−
δ

4T
. (D.81)

Proof. If t mod K ≡ −1, then zmt+1 = znt+1 for all m,n and the claim is trivial. Below we assume888

that t mod K ̸≡ −1. The update rules implies889

∥zmt+1 − znt+1∥2Hr

(D.6)
= ∥zmt − znt ∥2Hr

− 2η
〈
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m
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〉
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∥∥∥(Hm

t )−1(ĝmt + emt )− (Hn
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∥∥∥2
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①

.
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Note that the first order term is890 〈
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And for the first term above,891
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By definition of {zmt } and event Et,2,892
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Besides,893
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+ 2ηK · (∗). (D.87)
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Here we repeatedly apply ∥Hr(H
n
t )

−1 − Id∥ ≤ (1 − β2)B and ∥Hr((H
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t )−1 − (Hn
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−1)∥ ≤898
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In the second to last inequality we apply 8K(1− β2)
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Unroll the recursive bound (D.91) and note that (1 +
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Note that by definition, ur = (1−β1)
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Therefore, event Et,2 implies907
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By Lemma D.5, and ∥∇f(xm
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j )∥2 + ∥ĝnj −∇f(xn
j )∥2

]

+ 96η2K

(
1− β2

1− β1

)2
B2

1

λ

t∑
j=rK

(
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Then (D.99) implies ∥zmt+1 − znt+1∥2Hr
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Let b =
σ2KA

212
, V = σ4K. Then by Lemma B.1, |
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This implies with probability no less than 1− δ
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√
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This implies with probability no less than 1− δ
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We now turn to deal with
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Then
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In conclusion, combining (D.105), (D.109), (D.111), we have923
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D.4 Proof of Descent Lemma925

After laying all the groundwork above, we are now in the position of showing the main descent926

lemma.927

Lemma D.11. Assume that ρ ≥ max{3σ∞, 2G∞} and928
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and929
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Then the following holds:930

P(Et+1) ≥ P(Et,3)−
δ
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. (D.115)

Proof. For any x ∈ Rd, since ∇2f(·) ⪰ −τId and Hr ⪰ λId, y 7→ f(y) +
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Recall that the definition of {zmt } implies934
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Here emt =
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160λ
= R0, we have zt+1 ∈ Ω and936

f(zt+1)− f(yt) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 − f(yt)

≤ ⟨∇f(zt), zt+1 − yt⟩+
τ

2
∥zt − yt∥2 +

L

2
∥zt+1 − zt∥2

≤ ⟨∇f(zt), zt+1 − yt⟩+
τ

2λ
∥zt − yt∥2Hr

+
L

2λ
∥zt+1 − zt∥2Hr

.

(D.118)

Combine this with (D.116),937

1
η + 1

γ − τ
λ

2
∥zt+1 − yt∥2Hr

−
1
η − 1

γ + τ
λ

2
∥zt − yt∥2Hr

+

1
η + 1

γ − L
λ

2
∥zt+1 − zt∥2Hr

≤
〈
zt+1 − yt,∇f(zt) +

Hr(zt+1 − zt)

η

〉
=
〈
zt − ηEm[(Hm

t )−1(ĝmt + emt )]− yt,∇f(zt)−HrEm[(Hm
t )−1(ĝmt + emt )]

〉
=
〈
zt − ηH−1

r ∇f(zt)− yt,∇f(zt)−HrEm[(Hm
t )−1(ĝmt + emt )]

〉
+ η∥∇f(zt)−HrEm[(Hm

t )−1(ĝmt + emt )]∥2
H−1

r

≤
〈
zt − ηH−1

r ∇f(zt)− yt,∇f(zt)−HrEm[(Hm
t )−1(ĝmt + emt )]

〉
+ 4η∥∇f(zt)− Em[∇f(xm

t )]∥2
H−1

r
+ 4η∥Em[∇f(xm

t )− ĝmt ]∥2
H−1

r

+ 4η
∥∥∥Em[(Hr(H

m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

+ 4η
∥∥Em[(Hm

t )−1emt ]
∥∥2
Hr

.

(D.119)
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By Lemma D.4, we have938

〈
zt − ηH−1

r ∇f(zt)− yt,∇f(zt)−HrEm[(Hm
t )−1ĝmt ]

〉
=
〈
zt − ηH−1

r ∇f(zt)− yt,∇f(zt)− Em[∇f(xm
t )]
〉

+
〈
zt − ηH−1

r ∇f(zt)− yt,Em[∇f(xm
t )− ĝmt ]

〉
+
〈
zt − ηH−1

r ∇f(zt)− yt,Em[(Id −Hr(H
m
t )−1)ĝmt ]

〉
(D.44)

≤ γ

16
∥∇f(yt)∥2H−1

r
+ 8γ∥∇f(zt)− Em[∇f(xm

t )]∥2
H−1

r
+ 8γ

∥∥∥Em[(Hr(H
m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

+
〈
zt − ηH−1

r ∇f(zt)− yt,Em[∇f(xm
t )− ĝmt ]

〉
.

(D.120)
Also,939

〈
zt − ηH−1

r ∇f(zt)− yt,−HrEm[(Hm
t )−1emt ]

〉
≤ γ

16
∥∇f(yt)∥2H−1

r
+ 4γ

∥∥Em[(Hm
t )−1emt ]

∥∥2
Hr

(D.121)
Further noticing that η ≤ γ

4
and by AM-GM inequality, we conclude that940

LHS of (D.119)

≤ γ

8
∥∇f(yt)∥2H−1

r
+ 9γ∥∇f(zt)− Em[∇f(xm

t )]∥2
H−1

r
+ 9γ

∥∥∥Em[(Hr(H
m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

+ 4η
∥∥∥Em[∇f(xm

t )− ĝmt ]
∥∥∥2
H−1

r

+ 5γ
∥∥Em[(Hm

t )−1emt ]
∥∥2
Hr

+
〈
zt − ηH−1

r ∇f(zt)− yt,Em[∇f(xm
t )− ĝmt ]

〉
.

(D.122)
If t mod K ≡ −1, then r(t+ 1) = r(t) + 1 = r + 1 and event Et,1 implies941

H−1
r Hr+1 ⪯ 1 + (1− β2)B ⪯ 1 +

η

4γ
, (D.123)

942

fHr+1
γ (zt+1) ≤ f(yt) +

1

2γ
∥zt+1 − yt∥2Hr+1

≤ f(yt) +
1 + η/4γ

2γ
∥zt+1 − yt∥2Hr

.

(D.124)

On the other hand, if t mod K ̸≡ −1, then r(t+ 1) = r(t) = r,943

f
Hr(t+1)
γ (zt+1) ≤ f(yt) +

1

2γ
∥zt+1 − yt∥2Hr

. (D.125)
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Hence the following always holds:944

f
Hr(t+1)
γ (zt+1) ≤ fHr

γ (zt)−
1

2γ
∥zt − yt∥2Hr

+
1 + η/4γ

2γ
∥zt+1 − yt∥2Hr

(D.122)

≤ fHr
γ (zt)−

7γ−1

8γ(η−1 + γ−1)
∥zt − yt∥2Hr

+

(1 + η/4γ)

[
1
8∥∇f(yt)∥2H−1

r
+ 9∥∇f(zt)− Em[∇f(xm

t )]∥2
H−1

r
+ 9

∥∥∥Em[(Hr(H
m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

]
η−1 + γ−1 − τ/λ

+

(1 + η/4γ)

[
4η
∥∥∥Em[∇f(xm

t )− ĝmt ]
∥∥∥2
H−1

r

+ 5γ
∥∥Em[(Hm

t )−1emt ]
∥∥2
Hr

]
γ(η−1 + γ−1 − τ/λ)

+
(1 + η/4γ)

〈
zt − ηH−1

r ∇f(zt)− yt,Em[∇f(xm
t )− ĝmt ]

〉
γ(η−1 + γ−1 − τ/λ)

(D.42)

≤ fHr
γ (zt)−

η

8
∥∇f(yt)∥2H−1

r
+

5η2

λγ
∥Em[∇f(xm

t )− ĝmt ]∥2 + 6η
∥∥Em[(Hm

t )−1emt ]
∥∥2
Hr

+
10η

λ
∥∇f(zt)− Em[∇f(xm

t )]∥2 + 10η
∥∥∥Em[(Hr(H

m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

+
1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

〈
zt − ηH−1

r ∇f(zt)− yt,Em[∇f(xm
t )− ĝmt ]

〉
.

(D.126)
Sum over t and we get945

f
Hr(t+1)
γ (zt+1) ≤ fλ

γ (x0)−
η

8

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
5η2

λγ

t∑
j=0

∥Em[∇f(xm
j )− ĝmj ]∥2 + 6η

t∑
j=0

∥∥Em[(Hm
j )−1emj ]

∥∥2
Hr(j)

+
10η

λ

t∑
j=0

∥∇f(zj)− Em[∇f(xm
j )]∥2 + 10η

t∑
j=0

∥∥∥Em[(Hr(j)(H
m
j )−1 − Id)ĝmj ]

∥∥∥2
H−1

r(j)

+
1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

t∑
j=0

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[∇f(xm
j )− ĝmj ]

〉
︸ ︷︷ ︸

(∗)

.

(D.127)
By AM-GM inequality and notice that xt, zt ∈ Ω,946

∥∇f(zt)− Em[∇f(xm
t )]∥2

≤ 2∥∇f(zt)−∇f(xt)∥2 + 2∥∇f(xt)− Em[∇f(xm
t )]∥2

≤ 2L2∥zt − xt∥2 + 2∥∇f(xt)− Em[∇f(xm
t )]∥2.

(D.128)

Under event Et,3,947 ∥∥∥Em[(Hr(H
m
t )−1 − Id)ĝmt ]

∥∥∥2
H−1

r

≤ (1− β2)
2B2Em

[
∥ĝmt ∥2

H−1
r

]
. (D.129)

948 ∥∥Em[(Hm
t )−1emt ]

∥∥2
Hr

≤ 4

(
β1(1− β2)

1− β1

)2

B2Em

[
∥um

t−1∥2H−1
r

]
. (D.130)

By the definition of um
t−1, we have949

Em

[
∥um

t−1∥2H−1
r

]
≤ (1− β1)

t−1∑
j=0

βt−j−1
1 Em

[
∥ĝmj ∥2

H−1
r

]

≤ (1− β1)

β
K/2
2

t−1∑
j=0

(β1/
√
β2)

t−j−1Em

[
∥ĝmj ∥2

H−1
r(j)

]
.

(D.131)
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Plug these inequalities above in (D.127),950

f
Hr(t+1)
γ (zt+1) ≤ fλ

γ (x0)−
η

8

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
5η2

λγ

t∑
j=0

∥Em[∇f(xm
j )− ĝmj ]∥2

(D.128)
+

20η

λ

t∑
j=0

[
L2∥zj − xj∥2 + ∥∇f(xj)− Em[∇f(xm

j )]∥2
]

(D.129)-(D.131)
+ η

(
48β2

1

(1− β1)(
√
β2 − β1)

+ 10

)
(1− β2)

2B2
t∑

j=0

Em

[
∥ĝmj ∥2

H−1
r(j)

]
+ (∗).

(D.132)
By AM-GM inequality and Lemma D.4,951

Em

[
∥ĝmt ∥2

H−1
r

]
≤ 4Em

[
∥ĝmt −∇f(xm

t )∥2
H−1

r
+ ∥∇f(xm

t )−∇f(xt)∥2H−1
r

+∥∇f(xt)−∇f(zt)∥2H−1
r

+ ∥∇f(zt)∥2H−1
r

]
≤ 4

λ

[
Em∥ĝmt −∇f(xm

t )∥2 + L2Em[∥xm
t − xt∥2] + L2∥zt − xt∥2

]
+

16(γL)2

λ2
∥∇fHr

γ (zt)∥2H−1
r

.

(D.133)
Therefore, we achieve that952

f
Hr(t+1)
γ (zt+1) ≤ fH0

γ (x0)−
η

9

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
5η2

λγ

t∑
j=0

∥Em[∇f(xm
j )− ĝmj ]∥2

+
40η

λ

t∑
j=0

[
L2∥zj − xj∥2 + ∥∇f(xj)− Em[∇f(xm

j )]∥2
]

+
160η(1− β2)

2B2

λ(1− β1)(
√
β2 − β1)

t∑
j=0

[
Em∥ĝmj −∇f(xm

j )∥2 + L2Em[∥xm
j − xj∥2]

]
+ (∗).

(D.134)
By (D.160), (D.164) in Lemma D.12, under event Et,3,953

∥zj − xj∥2 ≤
(

β1

1− β1

)2 [
64η2

(
∥∇f(zj)∥2H−2

r(j)
+

L2

λ2
Λj−1

)

+
36η2

λ2
(1− β1)

j−1∑
i=r(j)K

βj−i−1
1

[
η2L2σ2

λ2
KA+ Em∥ĝmi −∇f(xm

i )∥2
] .

(D.135)
Hence954

t∑
j=0

∥zj − xj∥2 ≤
(

β1

1− β1

)2
64η2 t∑

j=0

(
∥∇f(zj)∥2H−2

r(j)
+

L2

λ2
Λj−1

)

+
36η2

λ2

t−1∑
j=0

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
] .

(D.136)

Additionally by Lemma D.12,955

Λt +
(1− β1)

2

2

t−1∑
j=0

Λj ≤
64η2

1− β1

t∑
j=0

∥∇f(zj)∥2H−2
r(j)

+
36η2

λ2
(1− β1)

t−1∑
j=0

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]
.

(D.137)
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Therefore, by noticing that Λt ≥ 0 and
ηL

λ
≤ (1− β1)

2

16
,956

t∑
j=0

∥zj − xj∥2 ≤ 2

(
ηβ1

1− β1

)2
64 t∑

j=0

∥∇f(zj)∥2H−2
r(j)

+
36

λ2

t−1∑
j=0

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]

(D.138)
For the third term of RHS of (D.130),957

5η2

λγ

t∑
j=0

∥Em[∇f(xm
j )− ĝmj ]∥2 ≤ 10η2

λγ

t∑
j=0

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 + ∥Em[∇f(xm

j )− Ej [ĝmj ]]∥2
]

Lemma B.2
≤ 10η2

λγ

t∑
j=0

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 + ∥2σ∥2α2α

ρ2(α−1)

]

≤ 10η2

λγ

t∑
j=0

[
∥Em[ĝmj − Ej [ĝmj ]]∥2 − Ej

[
∥Em[ĝmj − Ej [ĝmj ]]∥2

]]
︸ ︷︷ ︸

①: martingale

+
10η2T

λγ

[
∥2σ∥2α2α
ρ2(α−1)

+
σ2

M

]
(D.139)

For the (∗) term of RHS of (D.130),958

1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

t∑
j=0

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[∇f(xm
j )− ĝmj ]

〉

=
1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

t∑
j=0

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[∇f(xm
j )− Ej [ĝmj ]]

〉

+
1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

t∑
j=0

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[Ej [ĝmj ]− ĝmj ]
〉

︸ ︷︷ ︸
②: martingale

AM-GM
≤ 2η

γ

t∑
j=0

[
1

120γ
∥Hr(j)(zj − yj)− η∇f(zj)∥2H−1

r(j)

+ 30γ
∥2σ∥2α2α
λρ2(α−1)

]
+ ②

(D.44)

≤ η

60

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

+ ②

(D.140)

Here we remark that ② is a martingale because Hr(j) only depends on stochastic gradients drawn959

strictly before round r(j) and thus independent of ĝmj , which is drawn during round r(j).960
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Plug (D.138),(D.139), (D.140) in (D.130),961

f
Hr(t+1)
γ (zt+1) ≤ fλ

γ (x0)−
η

12

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+ ① +
10η2T

λγ

[
∥2σ∥2α2α
ρ2(α−1)

+
σ2

M

]

+
40η

λ

t∑
j=0

[
72(ηLβ1)

2

(λ(1− β1))2

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]
+

η2L2σ2

λ2
KA

]

+
160η(1− β2)

2B2

λ(1− β1)(
√
β2 − β1)

t∑
j=0

[
Em∥ĝmj −∇f(xm

j )∥2 + η2L2σ2

λ2
KA

]

+
60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

+ ②

≤ fλ
γ (x0)−

η

12

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+ ① +
10η2T

λγ

[
∥2σ∥2α2α
ρ2(α−1)

+
σ2

M

]

+
160η

λ

[18(ηLβ1

λ )2 + (1− β2)
2B2]

(1− β1)(
√
β2 − β1)

t∑
j=0

[
Em∥ĝmj −∇f(xm

j )∥2
]

+
160ηT

λ
·

[
1

4
+

18(ηLβ1

λ )2 + (1− β2)
2B2

(1− β1)(
√
β2 − β1)

]
· η

2L2σ2

λ2
KA

+
60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

+ ②

≤ fλ
γ (x0)−

η

12

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+ ① +
10η2T

λγ

[
∥2σ∥2α2α
ρ2(α−1)

+
σ2

M

]

+
160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

t∑
j=0

Em

[
∥ĝmj −∇f(xm

j )∥2 − Ej

[
∥ĝmj −∇f(xm

j )∥2
]]

︸ ︷︷ ︸
③: martingale

+
50ηT

λ
· η

2L2σ2

λ2

(
KA+

64

(1− β1)(
√
β2 − β1)

)
+

60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

+ ②

≤ fλ
γ (x0)−

η

12

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
10η2σ2

λγM
T +

60ηT

λ
· η

2L2σ2

λ2
KA+

60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

+ ① + ② + ③.
(D.141)

where in the third inequality, we apply (1− β2)B ≤ ηL

λ
.962

For ①, define963

θj =

 10η2

λγ

[∥∥∥Em[ĝmj − Ej [ĝmj ]]
∥∥∥2 − Ej

[∥∥∥Em[ĝmj − Ej [ĝmj ]]
∥∥∥2]] , if event Ej holds,

0, otherwise.
(D.142)

Then event Et implies ① =

t∑
j=0

θj and notice that964

|θj | ≤
10η2

λγ
· 4ρ2d =

40η2ρ2d

λγ

def
= c, (D.143)

965

Varj(θj) ≤
(
10η2

λγ

)2

Ej

[
∥Em[ĝmj − Ej [ĝmj ]]∥2

]2 Lemma B.3
≤ 1600

(
η2σ2

λγM

)2

. (D.144)
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Let b = ∆/4, V = 1600T

(
η2σ2

λγM

)2

. Then by Lemma B.1, |
t∑

j=0

θj | ≤ b with probability no less966

than967

1− 2 exp

(
− b2

2V + 2cb/3

)
≥ 1− δ

12T
. (D.145)

For ③, define968

ξj =

 160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

(
Em

[
∥ĝmj −∇f(xm

j )∥2 − Ej [∥ĝmj −∇f(xm
j )∥2]

])
, if event Ej holds,

0, otherwise.
(D.146)

Note that969

|ξj | ≤
160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

· 4ρ2d def
= c (D.147)

970

Varj(ξj) ≤

(
160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

)2
EjEm∥ĝmj −∇f(xm

j )∥4

M

≤

(
160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

)2
σ4

M
.

(D.148)

Let b = ∆/4, V =

(
160η

λ

20(ηLλ )2

(1− β1)(
√
β2 − β1)

)2
Tσ4

M
. Then by Lemma B.1, |

t∑
j=0

ξj | ≤ b with971

probability no less than972

1− 2 exp

(
− b2

2V + 2cb/3

)
≥ 1− δ

12T
. (D.149)

For ②, define973

ζj =


1 + η/4γ

γ(η−1 + γ−1 − τ/λ)

〈
zj − ηH−1

r(j)∇f(zj)− yj ,Em[Ej [ĝmj ]− ĝmj ]
〉
, if event Ej holds,

0, otherwise.
(D.150)

Then event Et implies ② =

t∑
j=0

ζj and notice that by Lemma D.4,974

∥zj − ηH−1
r(j)∇f(zj)− yj∥2 ≤

∥∥Hr(j)(zj − yj)− η∇f(zj)
∥∥2
H−1

r(j)

λ

≤
γ2∥∇f

Hr(j)
γ (zj)∥2H−1

r(j)

λ

≤ 2γ∆

λ
.

(D.151)

Therefore,975

|ζj | ≤
2η

γ
·
√

2γ∆

λ
· 2ρ

√
d = 4ηρ

√
2∆d

γλ

def
= c, (D.152)

976

Varj(ζj) ≤
(
2η

γ

)2

· γ
2

λ
∥∇f(yj)∥2H−1

r(j)

· σ
2

M
≤ 4η2σ2

λM
∥∇f(yj)∥2H−1

r(j)

. (D.153)

Let b = ∆/4, V =
100ησ2∆

λM
. Then by Lemma B.1,977

P

|
t∑

j=0

ζj | > b and
t∑

j=0

Varj(ζj) ≤ V

 ≤ 2 exp

(
− b2

2V + 2cb/3

)
≤ δ

12T
. (D.154)
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Note that by Lemma D.4 and event Et,978

∥∇f(yt)∥2H−1
r(t)

≤ 2

γ
(f

Hr(t)
γ (zt)−min fλ

γ ) ≤
4∆

γ
. (D.155)

979

t∑
j=0

Varj(ζj) ≤
4η2σ2

λM

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

≤ 4η2σ2

λM
· (24∆

η
+

4∆

γ
) ≤ V. (D.156)

Therefore, combining ①, ②, ③, with probability no less than P(Et,3) − 3 · δ

12T
, event Et,3 holds980

and |
t∑

j=0

ζj | ≤
∆

4
, |

t∑
j=0

θj | ≤
∆

4
, |

t∑
j=0

ξj | ≤
∆

4
. These implies981

f
Hr(t+1)
γ (zt+1)−min fλ

γ ≤ 7

4
∆− η

12

t∑
j=0

∥∇f(yj)∥2H−1
r(j)

+
10η2σ2

λγM
T +

60ηT

λ
· η

2L2σ2

λ2
KA+

60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

≤ 2∆− η

12

t∑
j=0

∥∇f
Hr(j)
γ (zj)∥2H−1

r(j)

.

(D.157)
In the last inequality, we apply982

10η2σ2

λγM
T ≤ ∆

12
,

60η

λ
T · η

2L2σ2

λ2
KA ≤ ∆

12
,

60ηT

λ

∥2σ∥2α2α
ρ2(α−1)

≤ ∆

12
(D.158)

Therefore, we can conclude that P(Et+1) ≥ P(Et,3)−
δ

4T
.983

Lemma D.12. Define Λt :=

t−1∑
j=0

at,j∥xj − xj+1∥2 where at,j := βt−j−1
1 (t− j +

β1

1− β1
). Under984

the same conditions in Lemma D.11, event Et,3 implies985

Λt ≤
(
1− (1− β1)

2

2

)
Λt−1 +

64η2

1− β1
∥∇f(zt)∥2H−2

r

+
36η2

λ2
(1− β1)

t−1∑
j=rK

βt−j−1
1

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]
.

(D.159)

Proof. By the update rule, it always holds that986

∥zt − xt∥2 = (
β1

1− β1
)2∥xt − xt−1∥2. (D.160)

By AM-GM inequality and event Et,1,987

∥xt − xt−1∥2 = η2∥Em(Hm
t−1)

−1um
t−1∥2

≤ 2η2∥Em(Hm
t−1)

−1ut−1∥2 +
2η2

λ2
Em∥um

t−1 − ut−1∥2

≤ 4η2∥EmH−1
r ut−1∥2 +

2η2

λ2
Em∥um

t−1 − ut−1∥2.

(D.161)

54



Event Et,1 implies zmj , xm
j ∈ conv(BR0(Ω)) for all j ≤ t and thus988

Em∥um
t−1 − ut−1∥2 ≤ (1− β1)

t−1∑
j=rK

βt−j−1
1 Em[∥ĝmj − gj∥2]

≤ 2(1− β1)

t−1∑
j=rK

βt−j−1
1 Em

[
∥ĝmj −∇f(xm

j )∥2 + ∥∇f(xm
j )− Em∇f(xm

j )∥2
]

≤ 2(1− β1)

t−1∑
j=rK

βt−j−1
1 Em

[
L2∥xm

j − xj∥2 + ∥ĝmj −∇f(xm
j )∥2

]

≤ 2(1− β1)

t−1∑
j=rK

βt−j−1
1

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]
.

(D.162)989

1

4
∥ut−1∥2H−2

r
≤

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 ∇f(xt)

∥∥∥∥∥∥
2

H−2
r

+

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 [∇f(xj)−∇f(xt)]

∥∥∥∥∥∥
2

H−2
r

+

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 Em[∇f(xm

j )−∇f(xj)]

∥∥∥∥∥∥
2

H−2
r

+

∥∥∥∥∥∥(1− β1)

t−1∑
j=0

βt−j−1
1 Em[ĝmj −∇f(xm

j )]

∥∥∥∥∥∥
2

H−2
r

≤ ∥∇f(xt)∥2H−2
r

+
(1− β1)

λ2

t−1∑
j=0

βt−j−1
1 L2∥xj − xt∥2

+
(1− β1)

λ2

t−1∑
j=0

βt−j−1
1

[
∥Em[ĝmj −∇f(xm

j )]∥2 + ∥Em[∇f(xm
j )−∇f(xj)]∥2

]

≤ 2 ∥∇f(zt)∥2H−2
r

+
2L2

λ2
∥zt − xt∥2 +

(1− β1)

λ2

t−1∑
j=0

βt−j−1
1 L2(t− j)

t−1∑
i=j

∥xi − xi+1∥2

+
(1− β1)

λ2

t−1∑
j=0

βt−j−1
1

[
∥Em[ĝmj −∇f(xm

j )]∥2 + ∥Em[∇f(xm
j )−∇f(xj)]∥2

]

≤ 2 ∥∇f(zt)∥2H−2
r

+
2L2

λ2
∥zt − xt∥2 +

L2

λ2

t−1∑
j=0

at,j∥xj − xj+1∥2

+
(1− β1)

λ2

t−1∑
j=0

βt−j−1
1

[
∥Em[ĝmj −∇f(xm

j )]∥2 + ∥Em[∇f(xm
j )−∇f(xj)]∥2

]
.

(D.163)
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Here at,j := βt−j−1
1 (t − j +

β1

1− β1
). For j ≤ t − 2, we have at,j ≤ β1(2 − β1)at−1,j . Since990

Λt =

t−1∑
j=0

at,j∥xj − xj+1∥2, we conclude that991

∥xt − xt−1∥2 ≤ 64η2
[
∥∇f(zt)∥2H−2

r
+

L2

λ2
Λt−1

]
+

4η2

λ2
(1− β1)

t−1∑
j=rK

βt−j−1
1

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]

+
32η2(1− β1)

λ2

t−1∑
j=0

βt−j−1
1

[
∥Em[ĝmj −∇f(xm

j )]∥2 + ∥Em[∇f(xm
j )−∇f(xj)]∥2

]
≤ 64η2

[
∥∇f(zt)∥2H−2

r
+

L2

λ2
Λt−1

]
+

36η2

λ2
(1− β1)

t−1∑
j=rK

βt−j−1
1

[
η2L2σ2

λ2
KA+ Em∥ĝmj −∇f(xm

j )∥2
]
,
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and992

Λt ≤ β1(2− β1)Λt−1 +
1

1− β1
∥xt − xt−1∥2. (D.165)

This completes the proof.993

D.5 Further Discussion994

Compared to other results under centralized weakly convex setting. Theorem D.2 can reduce995

to Minibatch Adam (by substituting M,K with 1 and σ with
σ√
MK

in (D.27) [Petrov, 1992]), and996

the convergence guarantee is997

λ

R

R−1∑
r=0

∥∇fHr
γ (zr)∥2H−1

r
= Õ

L∆

R
+

√
λ∆σ2

γMKR
+

(
L∆σ

α
α−1

(MK)
α

2(α−1)R

) 2(α−1)
3α−2

 . (D.166)

Therefore, in centralized setting with iteration number R and batch size 1, our guarantee for squared998

norm of gradient of Moreau envelope is999

Õ

L∆

R
+

√
λ∆σ2

γR
+

(
L∆σ

α
α−1

R

) 2(α−1)
3α−2

 . (D.167)

The last term is induced by the bias of clipped gradient. For simplicity, let R ≳
L∆

σ2
so that the last1000

term can be dominated by the first term. Then we obtain1001

Õ

(
L∆

R
+

√
λ∆σ2

γMKR

)
. (D.168)

In the previous literature of weakly convex function [Davis and Drusvyatskiy, 2019, Alacaoglu et al.,1002

2020, Mai and Johansson, 2021], f is typically non-smooth and stochastic gradient is assumed to1003

have bounded second order moment. This is weaker than the smoothness assumption but stronger1004

than that of noise with bounded moment. There are a few existing results for smooth objective [Davis1005

and Drusvyatskiy, 2019, Mai and Johansson, 2020, Deng and Gao, 2021], but they set τ = L. Overall,1006

our result is the first convergence guarantee for smooth weakly convex function with τ ≪ L and1007

bounded-moment noise.1008

Dependence on β2. The default setting of β2 in the Adam optimizer of PyTorch is 0.999, which is1009

a constant close to 1. Adam with small β2 has been shown to diverge in some examples [Reddi et al.,1010

2019]. However, if it is too close to 1, e.g., β2 ≥ 1−O(T−1), then the denominator would be too1011
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stagnant to provide adaptivity. Therefore, to derive a proper range for β2 is crucial in the theoretical1012

analysis of Adam.1013

On the other hand, β2 is notoriously difficult to handle even under centralized setting. In finite sum1014

case, Zou et al. [2019] assumes β2 ≥ 1−O(T−1). Shi et al. [2020] suggests that β2 ≥ 1−O(n−3.5)1015

suffices, where n is sample size. Zhang et al. [2022b] claims Adam can converge to the neighborhood1016

of stationary points with constant radius if β2 ≥ 1 − O(n−3). Further, Wang et al. [2022] shows1017

Adam can converge to stationary points if β2 is sufficiently close to 1, but the explicit bound is1018

missing. In streaming data case, Défossez et al. [2020] shows β2 can be a constant but relies on the1019

bounded gradient assumption. [Li et al., 2024b] suggests β2 ≥ 1− Õ(T− 1
2 ).1020

As for distributed setting, works discussing the range of β2 are much fewer. Our theory requires1021

β2 ≥ 1 − Õ(K− 3
2R− 1

2 ). For distributed Adam, Karimireddy et al. [2020a], Zhao et al. [2022]1022

fixed the denominator during local iterations and thus did not discuss the range of β2. To the best1023

of our knowledge, our result is the first one to show the Õ(R− 1
2 ) dependence with respect to R.1024

Nevertheless, it is an interesting question to improve the dependence on K. Since K is usually a1025

constant in practice, our results suggest β2 ≥ 1 − Õ(R− 1
2 ) in essence. Still, we believe that the1026

dependence on K has room for improvement. We leave this for future work.1027

Dependence on λ. λ in the denominator of Adam is aimed to avoid numerical instability, and1028

usually a small constant in practice. Note Hr = diag(
√
Vr + λ2) and vr is the EMA of squared past1029

gradients. Informally, vr vanishes as r grows and thus Hr would gradually reduce to λId. In the1030

worst case, Hr can be bounded by a constant. In conclusion, the LHS in (3.9) is roughly the averaged1031

squared gradient norm if λ is not too small. It is worth noting that λ can be arbitrarily small or even 01032

in [Défossez et al., 2020, Wang et al., 2022, 2024]. However, their results all depend on poly(d). It is1033

still an interesting question to get dimension-free result with small λ.1034

Dependence on β1. The default setting of β1 in PyTorch is 0.9, a constant away from 0 and 1. In1035

the centralized setting, Li et al. [2024b] requires β1 = 1−O(T− 1
2 ) to converge, which is too large.1036

Défossez et al. [2020] shows O
(
(1− β1)

−1
)
, which is the state of the art result to the best of our1037

knowledge. However, it relies on the bounded gradient assumption. Regarding the dependence on1038

β1, our convergence rate in Theorem D.1 suggests O
(
(1− β1)

−2
)
. Although it also supports any1039

constant choice of β1, we leave the exploration of better dependence for future work.1040

E Failure of Standard SGD with Heavy-Tailed Noise1041

The convergence of standard SGD in high probability is widely studied. If we assume the noises are1042

light-tailed, e.g., sub-exponential, sub-gaussian, then SGD can get high probability bound depending1043

on log
1

δ
. However, if only finite variance is assumed, Sadiev et al. [2023] has shown that standard1044

SGD fails to get a high probability bound having logarithmic dependence on
1

δ
. In fact, this claim is1045

still valid when the stochastic noises only have finite αth-moment, as shown in Theorem E.1 below.1046

Therefore, gradient clipping is necessary to get the log
1

δ
bound.1047

Theorem E.1. For any ε > 0, δ ∈ (0, 1), and SGD with the iteration number T and learning rate η,1048

there exists an 1D-problem satisfying Assumption 1, 2, 3, 4, with Ω = R and L = µ, such that, if1049

0 < η ≤ 1/L, then1050

P {f(xT )− f∗ ≥ ε} ≤ δ =⇒ T = Ω̃

(
σ

δ1/α

√
L

ε

)
. (E.1)

Proof. We follow the construction of the counter example in Sadiev et al. [2023]. To prove the above1051

theorem, we consider a simple 1D-problem f(x) = Lx2/2. It is easy to see that the considered1052

problem is L-strongly convex, L-smooth, and has optimum at x∗ = 0. We construct the noise in an1053

adversarial way with respect to the parameters of the SGD. Concretely, the noise depends on the1054

number of iterates t, learning rate η, target precision ε, the starting point x0, and the moment bound1055

57



σ such that1056

∇F (xt; ξt) = Lxt − σξt, (E.2)
where1057

ξt =



0, if t < T − 1 or (1− ηL)T |x0| >
√

2ε

L
,

−A, with probability
1

2Aα
,

0, with probability 1− 1

Aα
,

A, with probability
1

2Aα
,

otherwise
(E.3)

where A = max

2
√

2ε
L

ησ
, 1

. We note that E [ξt] = 0 and E [∇F (xt; ξt)] = ∇f(xt). Furthermore,1058

E[|ξt|α] ≤
1

2Aα
Aα +

1

2Aα
Aα = 1, (E.4)

which implies that Assumption 3 holds.1059

We are interested in the situation when1060

P {f(xT )− f∗ ≥ ε} ≤ δ, (E.5)

for δ ∈ (0, 1). We first prove that this implies (1 − ηL)T |x0| ≤
√

2ε

L
. To do that we proceed by1061

contradiction and assume that1062

(1− ηL)T |x0| >
√

2ε

L
. (E.6)

By construction, this implies that ξt = 0,∀t ∈ {0, · · · , T − 1}. This, in turn, implies that xT =1063

(1− ηL)Tx0, and further, by (E.6) that1064

P {f(xT )− f∗ ≥ ε} = P

{
|xT | ≥

√
2ε

L

}
= 1.

Thus, the contradiction shows that (1− ηL)T |x0| ≤
√

2ε

L
. Using (E.3), we obtain1065

f(xT )− f∗ =
L

2

[
(1− ηL)Tx0 + ησξT−1

]2
. (E.7)

Furthermore,1066

P {f(xT )− f∗ ≥ ε} = P

{∣∣(1− ηL)Tx0 + ησξT−1

∣∣ ≥√2ε

L

}

= P

{
|ησξT−1| ≥

√
2ε

L
+ (1− ηL)T |x0|

}

≥ P

{
|ησξT−1| ≥ 2

√
2ε

L

}

= P

|ξT−1| ≥
2
√

2ε
L

ησ

 .

(E.8)

Now if
2
√

2ε
L

ησ
< 1 then A = 1. Therefore,1067

1 = P

|ξT−1| ≥
2
√

2ε
L

ησ

 ≤ P {f(xT )− f∗ > ε} ≤ δ, (E.9)
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yielding contradiction, which implies that
2
√

2ε
L

ησ
≥ 1, i.e., η ≤ 2

√
2ε

Lσ2
. In this case, A =

2
√

2ε
L

ησ
1068

and we have1069

δ ≥ P {f(xT )− f∗ ≥ ε} ≥ P

|ξT−1| ≥
2
√

2ε
L

ησ

 =
1

Aα
. (E.10)

This implies that η ≤ 2δ1/α

σ

√
2ε

L
. Combining this inequality with T ≥ 1

2ηL
log

Lx2
0

2ε
yields1070

T = Ω

(
σ

δ1/α

√
L

ε
log

Lx2
0

2ε

)
. (E.11)

This concludes the proof.1071
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