Mixture of Scope Experts at Test: Generalizing Deeper
Graph Neural Networks with Shallow Variants

Gangda Deng Hongkuan Zhou
University of Southern California University of Southern California
Los Angeles, USA Los Angeles, USA
gangdadeQ@usc.edu hongkuaz@usc.edu
Rajgopal Kannan Viktor Prasanna
DEVCOM ARL Army Research Office University of Southern California
Los Angeles, USA Los Angeles, USA
rajgopal.kannan.civ@army.mil prasanna@usc.edu
Abstract

Heterophilous graphs, where dissimilar nodes tend to connect, pose a challenge
for graph neural networks (GNNs). Increasing the GNN depth can expand the
scope (i.e., receptive field), potentially finding homophily from the higher-order
neighborhoods. However, GNNs suffer from performance degradation as depth
increases. Despite having better expressivity, state-of-the-art deeper GNNs achieve
only marginal improvements compared to their shallow variants. Through the-
oretical and empirical analysis, we systematically demonstrate a shift in GNN
generalization preferences across nodes with different homophily levels as depth
increases. This creates a disparity in generalization patterns between GNN models
with varying depth. Based on these findings, we propose to improve deeper GNN
generalization while maintaining high expressivity by Mixture of scope experts at
test (Moscat). Experimental results show that Moscat works flexibly with various
GNNSs across a wide range of datasets while significantly improving accuracy. Our

code is available at https://github.com/Hydrapse/moscat.

1 Introduction

Graph neural networks (GNNs) are
emerging as powerful tools for graph
mining applications, such as social
recommendations [17], traffic predic-
tion [27], and fraud detection [49].
GNNs’ superior performance is largely
attributed to graph homophily, where
similar nodes tend to be connected.
However, some graphs exhibit het-
erophily, where connected nodes tend
to be dissimilar. When aggregating het-
erophilous information, GNNs tend to
generate similar embeddings for nodes
of different classes, leading to subopti-
mal performance.

= ACMGCN GCN = m GAMLP

Accuracy: GNN(L = 6) Accuracy Diff: GNN(L=6) — GNN(L =2)

1.0 deeper GNNs :
better :

Accuracy
.‘\

Accuracy Difference

e : L
0.2 shallow GNNs
better . - _015

0.2 0.4 0.6 0.8 0.08 0.25 0.42 0.58 0.75 0.92
Node Homophily Node Homophily

Figure 1: Performance on amazon-ratings. (Left)
Deeper GNNs exhibit performance disparities across node
subgroups with different homophily ratios, with the shaded
area indicating the node distribution. (Right) Deeper GNNs
and their shallow variants show a shift in generalization
preference across homophily ratios, with the red dotted
line indicating the average training set homophily (0.38).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Hydrapse/moscat

To find homophily on graphs where heterophily dominates, GNNs need to search for neighbors
from higher hops. Typically, a GNN with L layers of propagation can perceive the entire L-hop
neighborhood for each node, making the scope (i.e., receptive field) size tightly coupled with the
GNN’s depth. However, a persistent challenge is that GNNs experience performance degradation as
they become deeper. Studies have shown that deeper GNNs suffer from three key issues: reduced
expressivity due to over-smoothing [32}[72]], model degradation from optimization challenges [80,41]],
and large generalization gaps caused by overfitting [[73]]. While many techniques have been proposed
to address the first two issues, these solutions often sacrifice generalization [[13], resulting in limited
overall performance improvements.

Existing theoretical analyses of deeper GNN generalization adopt a purely global perspective [[13|
64]], which overlooks the diversity of local structural patterns (e.g., homophily) that appear in
real-world graphs. For example, Figure [T (left) shows that variations in homophily can induce
substantial performance discrepancies for deeper GNNs. Recent work has moved toward more
realistic assumptions by modeling graphs as mixtures of node subgroups with varying homophily
levels [45, 39]. However, these theories are restricted to one- or two-layer GNNs and thus fail to
reveal the generalization behavior of GNNs with increasing depths.

To address this gap, we derive a new PAC-Bayesian generalization bound, which reveals a shift in
model generalization preferences across nodes with different homophily levels as depth increases.
This provides a new understanding of deeper GNNs’ failure: while deeper GNNs achieve better
generalization than their shallow variants in either homophily or heterophily region, they sacrifice
generalization performance in the other region, thus limiting overall performance. Figure [I] (right)
demonstrates the generalization preference shift with increasing depth in real-world data.

These insights motivate us to learn the =~ —>Ffoward --» Backward 0-hop Expert 1-hop Expert 2-hop Expert

generalization patterns of GNN experts I Soft Scoping during Expert Training GNN [Hard Scoping during GNN Training

with varying depths with a gating model, i 7% Training Ei Expert Traiing s
which can combine the advantages of ! :?i‘ T l | Zgi*
both shallow and deeper GNNs. We first 1 (WP ver) N [(weoer) (o) (SNier
: S l L ¥ :: ? ?
GNN depth, which can be broadly cat- E _.. . & =
1
I
1
1
1

e, ——

examine existing approaches to handle

egorized into two paradigms: “Deeper N T R i
GNN” and “Graph MoE” (Figure [2]left). 1 - b b

“Deeper GNN” typically uses skip con-

H = h Expert |
" y 1 il
_ _ . | : Ey
nections to mix embeddings from differ- 1 Gating Taiing !
ent scopes, while “Graph MoE” stacks == === --=--=--=-—===——-—= t----------o----- -
. (a) Deeper GNN (b) Graph MoE (c) MOSCAT &B
varying numbers of GNN layers as ex-]) o
perts for their corresponding scopes. Figure 2: The landscape of GNNs with scope mixing.
These methods use gating mechanisms
to mix knowledge from different scope experts and impose soft scoping: while each expert encodes
only its own scope during forward propagation, gradients from higher-hop information still flow
back to the shallow experts through the gating model. Although this can be expressive, shallow
experts tend to overfit to noise from higher-hop neighbors, resulting in suboptimal performance. For
empirical evidence, please refer to Appendix [G.5]

To address this issue, we propose a new paradigm that decouples the gating module from GNN
training. As illustrated in Figure[2](right), we first train each expert independently. Then, a specialized
gating model learns to node-adaptively combine predictions from shallow experts to enhance the
generalization of the deeper expert. This enforces hard scoping: each expert can only learn from the
knowledge available in its specific scope. Notably, the gating model should be trained on a holdout
set to accurately measure the generalization preference of experts.

Based on this paradigm, we develop a concrete method named Moscat: Mixture of scope experts at
test—a post-processing attention-based gating model that seamlessly integrates with various GNN
architectures to exploit depth. We further develop two techniques: heterophily-biased sample filtering
and scope-aware logit augmentation to address technical challenges in scope expert mixing (detailed
in Section[d). Our main contributions are summarized as follows:

A novel paradigm: We propose a novel decoupled expert-gating paradigm that learns generalization
patterns of GNNs with different depths, supported by our theoretical analysis.

Superior flexibility: Moscat detects various patterns of expert failure, enabling better gating that
significantly improves performance across various GNN architectures.

SOTA performance: Moscat outperforms state-of-the-art GNNs, Graph Transformers, and Graph
MokEs across a wide range of datasets with varying sizes and homophily ratios.

2 Preliminaries

We denote a graph as G (V, £) with node set V = {v;}7-,, edge set £ C V x V. Nodes are associate
with node feature matrix X € R!VI*F and one-hot class label matrix Y € RIVI*C, By N,, we
denote the neighbors of v, which is the set of nodes dlrectly connected to v. Let A be the adjacency
matrix, D be the dlagonal degree matrix and A =D >AD"? be the normalized adjacency matrix,

where A=A +ILD=D + I, and I is the identity matrix. Further preliminary details and related
work are in Appendix [Cland [A]

Node Homophily. Homophily metrics are widely used as graph properties to measure the probability
of nodes with the same class connected to each other. In this paper, we mainly use a node-wise
homophily metric called node homophily [52]]. It defines the fraction of neighbors that have the same
class for each node v: [{u € N, : yy = yu }|/|No|.

Node subgroup. The nodes in a graph can be divided into non-overlapping node subgroups, with
each subgroup containing nodes that share similar properties (e.g., node homophily).

3 Understanding Generalization Disparity across GNN Scope Experts

3.1 Unpacking the Depth Dilemma: Why Do GNNs Struggle with Generalization?

Existing studies have proved that deeper GNNs are more expressive [50, 25, 48, [10]. In practice,
however, performance degradation is widely observed when going deep. Unlike previous studies that
attribute the failure of deeper GNNSs to a single cause, we argue that this failure stems from multiple
factors, varying based on GNN architectures. To analyze each factor separately, we break down the
error of deeper GNNs on unseen samples. Let F denote the function class for a given deeper GNN
architecture, and fs € F denote a function learned on the training set S. The population risk (true
risk) of fg over the entire data distribution can be decomposed as:

R(fs) =Rs (fs,prm) + Rs (fs) — Rs (fs,erar) + R(fs) — Rs (fs),

representation error optimization error generalization error

ey

where Rg is the empirical risk (training error) and fg gras is the empirical risk minimizer. In the
following, we discuss these errors and connect them with recent findings: (1) Representation error
measures the minimum error over the function class F on .9, evaluating the expressive power of
the GNN architecture. A major factor limiting deeper GNNs’ expressivity is over-smoothing [32]],
where node representations become indistinguishable after multiple GNN layers. Recent studies [80]
show that GNNs without non-linearity between propagation layers (e.g., SGC) tend to suffer from
over-smoothing. (2) Optimization error depicts how well fg trained by calculating the risk difference
between the learned model fg with the empirical risk minimizer fg gras. Research shows that deeper
GNN’s encounter significant training difficulties [41] and exhibit model degradation [80] as depth
increases, leading to decreased accuracy in both training and testing. The primary cause is gradient-
related issues such as vanishing gradients [30] and gradient instability [[13]. These problems can
be mitigated through optimization tricks like skip-connections. (3) Generalization error measures
how well the trained model fs generalizes from the training set S to the true distribution. The
overfitting |13} [13] issue has been identified to explain why well-trained deeper GNNs with higher
expressivity failed to outperform their shallow variants. To address this issue, existing works typically
reduce GNN parameters or employ regularization techniques.

While useful, existing solutions face inherent trading-offs between these three types of errors (See
Appendix |D| for detailed analysis). Given these theoretical limitations and the ineffective use of depth
in practice, a crucial question emerges: Is it possible to enhance the generalization capabilities of
deeper GNNs without compromising their expressivity or increasing training difficulty?

3.2 Subgroup Generalization Bound for GNNs with Varying Scopes: A Data-Centric
Perspective

To investigate this question, we conduct a theoretical analysis of how GNNs generalize at different
depths. Rather than focusing on model architecture [13]], we take a data-centric perspective to
understand generalization across diverse local structural patterns. Recent work [45] [39]] has shown
that real-world graphs comprise node subgroups with varying homophily levels, causing GNNs to
exhibit generalization discrepancies across these subgroups. However, these studies only focus on
simplified GNNs with one or two layers, which fails to explain deeper GNNs’ failure. Though deeper
GNNGs have superior expressivity and may generalize better on specific subgroups, these improvements
often get obscured by overall performance degradation. To rigorously analyze generalization disparity
with respect to GNN depth and examine the role of homophily, we derive a new generalization bound
for multi-layer GNNs by extending [45]’s non-i.i.d. PAC-Bayesian analysis on GNNs with one-hop
aggregation. Following the assumptions used in [45]], we adopt the contextual stochastic block model
(CSBM) with 2 classes for a controlled study, which is widely used for graph analysis [4}167].

Assumption 3.1 (CSBM-Subgroup dataset). The generated nodes consist of two disjoint sets Cy
and Cs of the same size. The features for nodes belonging to C; and Cs are sampled from N (g1, 1)
and N (u2,I), respectively. Each set consists of M subgroups. Each subgroup m, appears with
probability Pr(m), has probabilities of intra-class edge p("*) and inter-class edge ¢("™) =1 — p(™).
The dataset can be denoted as D (g1, 2, {(Pm, gm); Pr(m)}2_,).

m=1

Since the key distinction between deeper neural networks and deeper GNNSs is the expansion of
scopes, we use SGC as our GNN model. SGC decouples scope enlargement from the addition of
linear transformations, allowing us to specifically analyze how varying scopes impact generalization.
Assumption 3.2 (GNN model). We use the following architecture:
Y ("X, 6); WD, W@ ... , WD), where g” denotes an L-hop mean aggregation
function and f' is a ReLU-activated L’ -layer MLP with hidden dimension d.

The following theorem is based on the PAC-Bayes analysis with margin loss [44}[12]. We aim to
bound the generalization gap between the expected loss £2, (6) of a test subgroup m for 0 margins

and the empirical loss E’é(@) on train subgroup S for a margin .

Theorem 3.3 (GNN Subgroup generalization bound). Assume the aggregated features g* (X, G)

share the same variance o*1. Let 0 be any classifier in the parameter set {VV(Z)}ZL:/1 and S denote
the training set. For any test subgroup m € {1,--- . M} and large enough number of the training

nodes Ns = |Vs|, with probability at least 1 — & over the sample {y, }vevy, there exists 0 < v < %
we have:
- W12 (€)% " In(1/6
‘C?n(e) - ‘Cg'(e) S O(% <€m + P(pS 7pm)PL—l)> + O(%) + O((Q/Q)>7
o Ng N¢
(2)
where |[W|? = Zlell HWGH%, p = |lu1 — peo|| is feature distribution separability, €, =

maxyev, Min,evy HgL (X,6). — g-(X, Q)UH2 is the bound of the aggregated feature distance,

and 'y, 1 = Eopr(0),0e{1,.... M} [(po — qo)L_l} represents L-hop homophily coefficient.

Proofs and details are in Appendix[B] With a sufficiently large training set Ng, the bound is dominated
by the first term. It has the following properties. Prop.1: The generalization error for each subgroup
m depends on the aggregated feature distance ¢, as well as the homophily ratio difference pg — p, .
Prop.2: Consider any two subgroups ¢ and j where p; > ps and p; < ps, respectively. Due to the
decay of |I'z,_1| when increasing L, the minimum achievable generalization error occurs at different
depth L for these two subgroups. Prop.3: Varying L yields a larger disparity in generalization error
on heterophilous graphs (where I';,_; € [—1, 1]) than on homophilous graphs (where 'z, _; € [0, 1)).

Theorem [3.3] suggests that varying the depth shifts the GNN generalization pattern across subgroups.
This creates a notable disparity in subgroup generalization between shallow and deeper GNNs,
especially on heterophilous graphs. In particular, the generalization disparity emerges between test
subgroups with low and high homophily—partitioned by the average homophily ratio of training set.

3.3 Performance Disparity across Scope Experts on Real-World Datasets

In this subsection, we empirically examine our theoretical analysis from multiple perspectives.
First, we use Jaccard Coefficient to calculate the overlapping ratio of correctly predicted test
nodes between each pair of depths. Figure 3] (Top) shows that all overlapping ratios are
relatively small, indicating that each variant can correctly predict a unique subset of nodes.
The ratio between deeper and shallow variants

is even lower. On Penn94, GCN models with Gen AT
depth L > 2 deviates from its shallow vari- “° “’“H ﬂ w0 100 RS
ants, while GAT shows deviation at greater H“’" M = >

e

0.66| 055 0.47

depths (L > 5). Second, we further com- *“* oo joez oo IR < EEE] 1 O BCASERES
pare the performance of deeper and shallow
GNNs across node subgroups with different ho-
mophily levels. As shown in Figure [T] (Right),
shallow and deeper GNN variants exhibit a sig- "~ K& R -
nificant generalization disparity between sub- commmEmm mE e
groups partitioned by the average homophily Model |~ S6C —GN —GAT | Twe e MuiSwpe -a- Medscope
ratio of training set. Third, we examine the e s
significance of the observed generalization dis- ,on
parity. Since training randomness can lead to ;"
performance variations, we compare the union fos
of nodes correctly predicted by (1) models of !” ¥
different depths and (2) models with the same = o« ! — =i
depth but different random seeds. Figure 3] (Bot- Hum (1) of Ensemble Hodels

tom) demonstrates that the performance gains Figure 3: (Top) The overlapping ratio on Penn94.
from increased depth significantly exceed those (Bottom) Test accuracy under Oracle ensemble.
from training stochasticity, particularly on the p,1i-Scope represents the ensemble of GNNs with
heterophilous graph (amazon-ratings) com- depths ranging from L = 0 (MLP) to n (n <
pared to the homophilous graph (PubMed). We) Fixed-Scope represents the ensemble of GNNs
defer additional empirical evidence and analysis yith identical depth L = Lyey. The horizontal red
to Appendix [G.9} dotted line shows the SOTA GNN accuracy.

In summary, our theoretical and empirical anal-

ysis provides a new understanding of GNNs’ depth dilemma: Increasing GNN depth enhances
generalization for certain subgroups but inevitably compromises generalization for others, leading to
suboptimal overall performance. This insight demonstrates the value of combining predictions from
deeper and shallow GNN models during inference—an approach that improves overall generalization
while maintaining expressivity and avoiding additional training complexity.

0.82 1.00 0.80 075 072 L=3 0.74 0.85 1.00 [0.76 XML

(BN 0.66 0.81 0.80 1.00 (0.77 0.75 L=4 JG3 0.76 0.76 1.00 NUCENEEN)

L=5 0.74 0.75 077 1.00 (076 L=5

055 0.57 0.60 0.60 0.59 BRI o.

0.47 046 0.48 048 0.46 |0.59 RN

4 Proposed Method: GNN-Moscat

Moving from the paradigm (Figure 2]right) to practical implementation, several technical challenges
emerge: (1) Feature construction. Although node homophily is a strong identifier for experts’
generalization disparity (Section[3.2), it’s not available during testing. (2) Training sample selection.
The training set for experts is noisy for training the gating model since experts can all achieve high
accuracy on the training set but cannot generalize equality well. (3) Diverse expert architectures.
Expert failures may stem from complex reasons—such as over-smoothing, model degradation
(underfitting), and overfitting (Section [3.I)—that vary across different expert architectures.

We introduce Moscat, a post-processing gating model for scope experts that successfully addresses
these challenges. Figure] presents an overview of our proposed method.] presents the overall
model and [#.2] discuss the properties.

4.1 The MoE Workflow

Scope Experts Training. Different depth GNN models serving as experts of their corresponding
scope is a hot topic in recent Graph MoE research [61] 78} [75]. For decoupled GNNs like SGC, we
consider the number of propagation layers as depth while keeping the transformation layers fixed.
Formally, given a GNN architecture M and the maximum number of layers Lp,x, we independently
train L, + 1 models { M0, ..., MEm=} with depth from 0 to Ly, where MY is an MLP.

Node Homophily Distribution e Scope-Aware Logit Augmentation

1
1 =
: - Training i Gfor Expertl) NESEED
. Logits [Logits of =
Expert O: Sample AL | Logits o = T L
o Filtering /%/ \/ | Expert,L @ @ - €
% > Lo o | I I] 1l
—_— 3 () Before filtering ‘\\ 1
— 0 atter filtering " Filtered : Label Embeddings Structural Encoding™ PageRank
xpert 1 [EUIUIIL A e e e e o o o o o
GNN (L=1) \ H &

i 1
g} | =W, = B
A
)/ sy == et
—_— 3 e . %,

o Gating Model
Training

) MLP Yu

a
)

Expert Lmax:
GNN (L=Lmax)
—_—

1
0 Scope Experts | [2) Heterophily-Biased

Training i Sample Filtering

Figure 4: Overview of Moscat. (1) Different-depth GNN models serve as scope experts (with MLP
as 0-hop), each trained independently. (2) Collect logits from each expert by running inference on the
expert-training set Vexp, and a holdout set Vyo1q, then perform heterophily-biased filtering to form the
gating-training set Vgae. (3) Enhance logits with label embeddings and structural encoding. (4) Train
the gating model using node labels, with learnable parameters shown in yellow blocks.

Holdout Set for Gating Model. Let V., denote the training set for the experts. To understand how
experts generalize, we reserve a holdout set Vg from the labeled data for training the gating model
@, ensuring Vexp N Vhola = 9. To expand the gating model’s training data, we may optionally include
a subset of Veyp to form the final gating training set Veae € Vexp U Vhold-

Heterophily-Biased Sample Filtering. However, samples in Ve, can be noisy for gating model
¢ training, which fall into two categories: (1) Samples that are underfitted or properly fitted by all
experts are ideal for ¢ training, as they accurately reflect each expert’s performance. (2) Samples that
are overfitted by some experts become problematic for ¢ training since ¢ will mistakenly assign high
weights to the overfitted experts for that subgroup. Importantly, we notice that experts tend to overfit
to heterophilous nodes Vexp-ner. This is because heterophily nodes exhibit more diverse neighborhood
label patterns than homophily nodes, making them more challenging for experts to generalize (See
Appendix . To address these cases, we introduce a hyperparameter v € [0, 1] that randomly
filters out samples in Vexp-ner. We also add a binary hyperparameter to determine whether to use Veyp

for gating training. We denote the node sample dropped from Vexp a8 Vexp-drop € { Vexps V;:g_het}.

Additionally, certain nodes present a particular challenge where all experts fail to make correct
predictions. These difficult samples Vaiwrong & Vexp U Vhotd, found primarily in the heterophily
region, fall into two categories: (1) Cases where individual experts make incorrect predictions, but
their logits still contain valuable structural patterns that contribute to task prediction. (2) Cases where
all experts generate meaningless predictions, either due to inherent dataset noise or architectural
limitations. To address both scenarios, we introduce a binary hyperparameter to control the masking
of these samples Vyyr-arop € {Vall_wmng, @}, The final training set for the gating model ¢ is:

Vgate = (Vhold U (Vexp \ Vexp»drop)) \ Vwr»drop (3)

Scope-Aware Logit Augmentation. Expert logits serve as a crucial input for the gating model,
encoding both structural information and the expert’s confidence. However, experts may suffer from
overfitting, showing strong confidence despite poor generalization. Theorem [3.3]|shows that experts’
generalization capability across subgroups can be identified by node homophily, which is defined as
the similarity between a node’s own label distribution and its neighborhood’s label distribution. We
extend this concept to higher-hop neighbors and approximate it using pseudo-label distribution. Let
Z(L) denote the logits for expert M%. We propose label embeddings to augment M*’s logits with

pseudo neighborhood label distribution from 1 to Lyax hops: 5121%2,1 = [Alz@) |-l ALmaXZ(L)]

When an expert lacks expressivity, it can suffer from over-smoothing as depth increases. To help
identify when over-smoothing happens in experts, we augment their logits with structural encoding,

incorporating node smoothness and centrality. Let X (%) = ALX represent node features smoothed
within the scope size L. We measure its distance from both the original feature X(°) = X and the

final smoothed feature X(°) = A>X, where :&jfv = (dy, + 1)% (dy + 1)%/(2|S| + |V|) [32]. For

each node v, we calculate two distance scalars ;) = ||X5,L) -x ||2 and &b = ||XgL) - x> Il2

to measure smoothness. We also incorporate PageRank centrality 7, to encode node position. The

structural encoding can be represented as Ss(tfu)c = [E(L) | €5 || . Finally, we combine these

components to form the overall augmented logits for expert M~ as ¢() = [Z(L) I 5&21 [FE=AR

where (1) € RIVI*Fue and Fye = C' + LinaxC + 3.

Gating Model Training. Taking the augmented logits from all experts as input {¢(©), ..., ¢(Em)},
we train the gating model ¢ on Vg, using node labels Y. Figure 4 illustrates the architecture of
our gating model ¢. Moscat uses an attention-based gating mechanism to calculate weight gy, ,, for
expert L on node v. Fj;q denotes the hidden dimension and W, € RFwsxFhia g, ¢ Rt W . €
R (Ema+1) X (Lnax+1) are Jearnable weights. Notably, it’s crucial to separate transformation weights
‘W, and ay, for each expert. Since experts may suffer from over-smoothing and overfitting to varying
degrees, each expert favors a specific combination of predefined structural patterns in ¢ (%), Formally,

Jr = Sigmoid (HLaL), H; = RelU (C(L)WL), L e {0, ey Lmax};
(905 3 L] = Softmax ([go; 3 G L] Wnix), “)

g1 € RV is the node-adaptive gating weights for expert L. Then, we use a classifier f(-) to combine
the knowledge from all experts to make predictions Y = f (Zé“:o diag(gr)H L). Empirically,

we find out that using a simple MLP as f(-) performs best compared to more complex models like
GNNGs or Transformers. For the gating model optimization, we employ the same loss function used to
train the experts In this paper, we focus on the node classification task, therefore, we adopt the cross

entropy loss (CE) to train the gating model: £L=E 5 CE (gb({(’f,L)}f“‘:“B), Yq,).

U~ Virain

4.2 Discussion and Analysis

Runtime and space analysis. Moscat is a lightweight module with relatively small training time
and memory consumption. Please refer to Appendix [G.2]and [G.3|for detailed analysis.

Comparison with LLM MoEs. Unlike LLM MoEs with joint training, Moscat employs a separate
"train-then-merge" strategy for GNN experts. Please refer to Appendix [E for details.

Comparison with ensemble methods. Ensemble methods typically require extensive tuning of
models with varying hyperparameters and architectures. In contrast, Moscat focuses on a controlled
study of scope/depth effects by using identical architecture and hyperparameters across all experts.

5 Experiments

In this section, we aim to answer the following questions to verify the effectiveness of Moscat. Q1:
How does Moscat perform in improving GNNs with varying architectures? Q2: How does Moscat
compare to other techniques in enhancing deeper GNNs? Q3: How does each component of Moscat
contribute to its overall performance? To understand why Moscat is effective, we further conduct a
case study at the end of this section and defer other in-depth experimental analyses to the Appendix:
Appendix investigates how expert training affects Moscat performance, Appendix[G.8] provides
a visual interpretation of how Moscat enhances GNN generalization, and Appendix analyzes
AH’s learned gating weights of different scope experts.

5.1 Experimental setup

Datasets. We evaluate Moscat on real-world datasets with varying node homophily ratios and graph
sizes. We exclude commonly used small heterophilous graphs (fewer than thousands of nodes) due to
their high variance and lack of statistical significance [53]]. Please see Appendix [F.I]for details.

Evaluation Setup. We assess model performance on node classification task using test accuracy
(ROC-AUC on genius). We adopt two sample splits for our method: (1) Moscat*. We split the
training set into two disjoint subsets—one for training the GNN experts Vex, and another for the
holdout set Vyo1a. The split ratio serves as a tunable hyperparameter, and we do not use the original
validation set for expert/gate training. (2) Moscat. Following prior work [29] 162]], we leverage the

Table 1: Moscat exhibits large improvements over various base GNN architectures. Each *-Moscat
() combines predictions from 7 base GNN models with O (MLP) to 6 convolution layers. We report
the best accuracy among these base GNN models as baselines.

Squirrel snap-patents arxiv-year Flickr amazon-ratings Penn94 genius ogbn-arxiv
#Nodes 2223 2.9M 0.16M 89250 24492 40000 0.4M 0.16M Avg.%
#Edges 46998 13M 1.2M 0.89M 93050 1.3M M 2.3M Improv.
Node Homo. 0.16 0.19 0.28 0.32 0.38 0.48 0.51 0.64
MLP 38.57 £1.99 31.13 +0.07 37.25 +£0.30 47.48 £0.09 41.85 +0.77 74.63 £0.39 86.80 £0.07 55.68 +0.22 |
SGC 40.04 +1.77 48.71 £0.10 45.88 £0.32 52.07 £0.15 49.58 +0.55 81.17 £0.40 88.01 020 71.89 £0.10
SGC-Moscats 42.73 +2.06 5545 +£0.07 52.09 £0.27 53.78 +0.07 51.82 +0.29 84.75 £0.41 9231 £0.06 73.31 =0.10 | 1 6.05%
SGC-Moscat 43.35 +1.97 55.16 £0.06 51.86 £0.30 54.40 -0.11 52.72 £0.53 84.80 £0.49 9229 +£0.09 73.94 022 | 1 6.53%
GCN 4133 +1.46 50.79 +0.16 48.68 +0.34 5552 £0.36 48.55 +0.38 82.54 £043 9022 +026 72.13 £0.17
GCN-Moscatx 4291 £1.96 55.29 £0.09 52.58 £0.15 57.53 £0.07 51.02 £0.50 85.51 £0.42 9237 £0.06 7337 £0.14 | 1 4.25%
GCN-Moscat 43.55 £2.08 55.29 £0.07 53.00 £0.18 57.75 +0.16 52.25 £0.69 85.76 £0.32 9237 £0.06 74.09 £0.32 | 1 4.96%
GAT 3936 +1.89 44452033 5277 £0.32 55.87 +0.28 49.78 +0.47 81.81 £0.62 88.44 +1.06 72.01 £0.22
GAT-Moscats 43.10 3 54.60 =0.11 55.53 £0.15 58.04 +0.13 52.56 +0.40 85.41 £0.48 92.18 £0.30 73.53 =0.07 | 1+ 6.29%
GAT-Moscat 43.10 +2.13 54.77 £0.09 56.06 £0.28 58.52 +0.19 53.77 +0.61 85.35 £0.59 9221 £031 7413 2017 | 1 6.90%
GCNII 4248 +1.86 49.18 =023 51.75 £0.36 56.31 +0.27 5245 +0.57 82.34 £051 9041 +035 72.74 £0.17
GCNII-Moscat* | 43.61 8 54.86 £0.13 54.60 £0.24 57.45 =021 53.99 £0.19 85.33 036 92.36 £0.07 73.33 £0.09 | 1 3.59%
GCNII-Moscat 4371 +1.88 54.55 £0.16 55.10 £0.45 57.95 -0.16 54.38 £0.59 85.66 £0.50 92.35£0.08 74.13 2027 | 1 4.05%
ACMGCN 35.00 £2.56 48.90 =0.15 4545 037 5451 +0.32 53.37 +0.42 83.38 £0.47 64.74 £555 71.85 +0.41
ACMGCN-Moscatx | 42.81 +2.09 55.04 +0.08 50.72 £0.22 56.40 =024 56.02 +0.50 85.79 £0.23 91.90 +0.14 73.23 0.07 | 1 11.97%
ACMGCN-Moscat | 42.78 £2.00 54.84 £0.10 50.82 £0.15 56.81 +0.23 56.36 +0.52 86.03 £0.33 91.91 £0.15 73.79 £0.20 | 1 12.28%

Table 2: Moscat achieves new state-of-the-art results with proper base GNNs. For each dataset,
GNN-Moscat(*) reports the highest accuracy obtained by selecting its base GNN from GAT, MixHop,
GCNII and ACMGCN (see Table[8). Graph MoE baselines are likewise tuned over their respective
supported GNN architectures. The top 15¢, 2< and 3" results are highlighted.

Model

Type ‘ ‘ Squirrel snap-patents arxiv-year Flickr amazon-ratings Penn94 genius ogbn-arxiv
H2GCN 35.10 £1.15 OOM 49.09 +£0.10 51.60 +0.20 46.31 +0.44 81.31 +£0.60 OOM 72.80 +0.24
GPRGCN 38.95 £1.99 40.19 +0.03 45.07 £0.21 53.23 +0.14 48.19 +0.92 84.34 £029 90.05 +0.31 71.10 +0.12
Heterophily FSGNN 35.92 +1.30 45.44 +0.05 45.99 +035 51.30 +0.10 52.74 +0.83 83.87 £0.98 88.95 +1.51 73.50 £0.30
GNN GAT 39.36 +1.89 44.45 033 52.77 +032 55.87 +0.28 49.78 +0.47 81.81 £0.62 88.44 +1.06 72.01 £0.22
MixHop 41.92 +1.83 52.16 +£0.09 51.81 +0.17 55.30 +0.13 52.74 +0.47 84.86 +0.40 71.29 £0.29
GCNII 42.48 +1.86 49.18 +0.23 51.75 +£036 56.31 +0.27 5245 +0.57 82.34 +0.51 72.74 +0.17
ACMGCN 35.00 +2.56 48.90 +0.15 4545 +037 5451 +0.32 53.37 +0.42 83.38 +0.47 71.85 +0.41

Graph GraphGPS 39.81 +2.28 OOM OOM OOM 53.27 £0.66 OOM OOM OOM
Transformer SGFormer 42.65 +2.41 47.74 +0.15 46.63 £0.20 53.48 £0.13 54.14 +0.62 83.07 £0.49 88.47 +0.43 72.76 +0.33
Polynormer 40.17 +2.11 OOM 53.67 £042 53.72 +1.21 54.96 +0.22 84.60 +0.31 OOM 73.46 +0.16
GMoE 35.49 +1.26 51.19 +0.07 49.87 +0.24 53.03 +0.14 53.47 +0.68 81.61 +0.27 88.88 +0.55 71.88 +0.32
Graph MoE | Mowst 37.75 +3.73 45.38 +9.56 52.56 4022 55.48 +0.32 49.13 +0.64 84.56 +0.31 84.80 +0.54 72.52 +0.07
DA-MoE 36.66 +0.78 51.46 +0.45 47.99 £020 5221 +0.75 50.67 +0.59 80.14 +0.70 91.36 +0.18 71.96 +0.16
Ours GNN-Moscats | 43.61 +2.18 55.39 +0.07 55.53 +£0.15 58.04 £0.13 56.02 +0.50 86.63 +£0.36 92.36 +0.07 73.53 +0.07
urs GNN-Moscat | 43.71 £1.88 55.33 +0.11 56.06 +0.28 58.52 £0.19 56.36 +0.52 86.72 +0.33 92.35 +0.08 74.13 +0.27

labeled data in the validation set. We use the complete training set as Ve, and sample 90% of the
validation set for Vyo14, reserving the remaining 10% for gating model validation. While the validation
set naturally serves as a holdout set for evaluating model generalization, other baselines can not fully
utilize this advantage. Please refer to Appendix [F2]for details about these two setups.

Baselines and Hyperparameters. We compare ours against popular homophilous GNNs, het-
erophilous GNNs, Graph Transformers, Graph MoEs, and also deeper GNNs with various skip-
connections. For baseline hyperparameters, we follow their original papers when available; otherwise,
we conduct hyperparameter search using Optuna [2]]. For Moscat, we tune only the gating model’s
hyperparameters, while experts inherit the same settings as their baseline counterparts. Detailed
baseline descriptions and hyperparameters are listed in Appendix [F-3]and Appendix [F4]

5.2 Performance comparison

Improvements over GNNs. To address Q1, Table |I| shows that both Moscat variants consistently
yield substantial improvements across all base GNNs. Moscat#* shows comparable accuracy to
Moscat, validating that AH’s effectiveness does not stem from utilizing more labeled data. Notably,
Moscat achieves the lowest performance gains with GCNII and the highest with ACM-GCN. This is
because GCNII aims to avoid overfitting, limiting AH’s impact. Conversely, ACM-GCN is more
expressive and prone to overfitting. Table 2] further shows that by selecting proper base GNNs as
experts, Moscat can outperform state-of-the-art methods by a large margin on all datasets. In contrast,
Graph MoEs and Graph Transformers struggle on certain datasets, highlighting the superiority of our
paradigm. Appendix [G.I|compares with leaderboard results.

Penn94

amazon-ratings Flickr

—_e—e—0—0—0

0.56 o—® 0.86 0.58 merrEmaen
o o
P o—e—0—0
0.54 0.84 0.56 =~
o LT S —e— ACMGCN-Moscat
§0.52 [T TR At Sl Bt -) 0.82 054 /4 . ACMGCN
5 el | 4 GCN-Moscat
5 i ~ge . osca
goso 0.80 0.52 i e GON
0.48 o 0.78 os0 —F
e D [
[TSI B,
0.46 R 048 |
0.56 0.86 3 0.56
o [o—a—a—0—a—a
o—o—0—" ° = CAEL TR R TPt Er) [T T
0.54 o 084 ®° 054 pee LTI P04
> O mEmEgm g R = —e— GAMLP-Moscat
Sos2 = 0.82 0.52 & 2 GAMLP
e 1. S
£ # o = SGC-Moscat
3 3 PRAMINS Se ST Y
goso o 0.80 i oso 4 ¥ R ks T B B
1 4
0.48 \+ o7s h 1 0.48 ¥p
N I'h ;
046 T 076 1 046 F
ST .
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Layers Layers Layers

Figure 5: Moscat outperforms classic GNNs (e.g., SGC, GCN) and soft-scoping GNNs (e.g., GAMLP,
ACMGCN). GAMLP and ACMGCN adaptively learn the scope of SGC and GCN, respectively.

Compare with techniques for deeper GNNs. To an- Table 3: Accuracy comparison of deeper
swer Q2, we compare Moscat with skip-connection GCNs (set L = 6).
methods for deeper GCN. We examine (1) residual con-

. . . . Model amazon-ratings Penn94
nections (Res: ResNet-like residual connection [23]], II: | < | e —

. « s, . . N .68 +0.65 70.08 =1.13
GCNII-like initial residual, Cat: GraphSAGE-like self + Moscat ‘ 52251060 85761032
concatenation [22]]) and (2) learnable gating mechanisms ‘ GCN-Res ‘ 4789 064 8296 +061

. . . G 62

(JK: JKNet with concatenation layer aggregation, Attn: g g | ooscet | 51907049 85717062
. . . . " GCN-II 51.77 +£0.43 80.52 £0.51
GAMLP-like layer aggregation, G?: gradient gating Connections | L0 ‘ 5438050 8566 -0.50
framework [S7]]). As shown in TableE[, GCN-Moscat out- GCN-Cat ‘ 54464040 8040 =0.60
performs other skip-connection techniques on Penn94. *Moscav | 36667057 84367038
o0 GCN-JK 49.45 +0.37 82.80 +0.48
Additionally, Moscat achieves significant improvements +Moscat ‘ 52231088 85694027
over GNNs with skip-connections on amazon-ratings. L&male | goyaun ‘ 49515069 8212041
However, skip-connections mix output from different *hoscat | 52702081 85644059
. ke simil dicti d GCN-G? 49.06 +0.32 78.56 +1.36

scopes, causing experts to make similar predictions an tMoscat | 5104054 8378 1048

limiting AH’s effectiveness.

Performance variation with depths. As depth increases, we further investigate how Moscat
improves two state-of-the-art deeper GNNs with cross-layer gating, ACMGCN [81]] and GAMLP [40].
Figure 3] shows that classic GNNs like GCN and SGC often degrade rapidly beyond 2 layers. With
gating, GAMLP and ACM-GCN sustain gains up to 4-6 layers. In contrast, GNN-Moscat achieves the
best results across all depths and continues to improve through 610 layers. Notably, when increasing
the maximum layers from 1-10, GNN-Moscat with message-passing architectures (GCN, ACMGCN)
can derive 4-10% accuracy improvements (Figure 5} top), whereas GNN-Moscat with decoupled
architectures (SGC, GAMLP) yields only 1-2% gains (Figure [5] bottom). This gap likely arises from
the higher expressivity of message-passing models, which enables depth-varying experts to produce
more diverse predictions. See Appendix [G.4]for additional experiments.

5.3 Ablation study

In this subsection, we evaluate each compo-
nent in Moscat to answer Q3. As shown in
Table] using Mean-Ensemble to average
GNN logits across different depths cannot
guarantee accuracy improvements, primar-
ily due to the poor performance of deeper
GNNs. By enabling node-level adaptation,
Moscat consistently achieves significant
improvements over Mean-Ensemble. We
evaluate the effectiveness of critical compo-
nents in Moscat by removing them one at a
time: (1) When we remove the holdout set
and train both the gating model and experts
on the full training set, we observe a dras-
tic accuracy drop compared to Moscatx

Table 4: Ablation study. Mean-Ensemble combines all
scope experts with uniform weights. For Moscat, w/o
Holdout-Set trains the gating model on the same expert
training set, w/o Multi-Scope ensemble experts with the
same best scope, w/o Hetero-Filter removes heterophily-
biased sample filtering, and w/o Scope-Augment re-
moves scope-aware logit augmentation.

‘ Squirrel amazon-ratings Penn94 arxiv-year
SGC 40.04 +1.77 49.58 +0. 81.17 £0.40 45.88 +0.32
w/ Mean-Ensemble | 39.65 +1.76 50.56 L() 53 80.20 +0.77 46.68 £0.25
SGC-Moscat* ‘ 4273 +£2.06 51.82 +£0.29 84.75 £0.41 52.09 £0.27
SGC-Moscat 43.35 +1.97 52.72 +£0.53 84.80 +£0.49 51.86 +0.30
w/o Holdout-Set 39.86 +2.31 49.56 +0.31 77.72 095 49.80 +0.23
w/o Multi-Scope 40.98 +1.72 51.09 +0.56 8220 +0.45 46.63 +£0.28
w/o Hetero-Filter 4248 +2.37 50.87 +0.88 84.64 +0.52 -
w/o Scope-Augment | 42.29 £+2.06 52.34 +0.64 82.79 £0.49 47.10 £0.28

(which also restricts model training within the training set). This highlights the necessity of the
holdout set. (2) Multi-Scope experts prove critical for incorporating knowledge from different scopes.
(3) Heterophily-biased sample filtering is designed as an optional technique, where "-" denotes it not
being used in our hyperparameter settings. We find it critical for sampling high-quality data for gating
model training. (4) Scope-aware logit augmentation shows particular effectiveness when combined
with SGC, likely due to SGC’s limited model expressivity.

5.4 Case Study: how Moscat become effective?

o =3 L=4 s =5 -4- L=6 - Moscat

We examine the >40% performance gain 1o-
of ACMGCN-Moscat on genius (Table [I). °=-
Dropping the MLP expert and using only six ~ 3,...
weak experts (1-6 layers ACMGCN) yields ~ os-
the same improvement, so the strong expert £ .=
isn’t driving this effect. Figure [0 (layers os I8
1-2 omitted) shows that: (1) Even mistaken 00°
ACMGCN predictions carry structurally in-
formative logits. (2) When there are suf- Figure 6: Moscat over ACMGCN on genius.
ficient training samples, Moscat can learn

proper expert mixtures for correct predictions. (3) With limited samples, Moscat can still learn to
select the best-performing expert.

Node Homophily

6 Conclusion

In this paper, we investigate the challenges of applying deeper GNNs to heterophilous graphs. Our
analysis reveals that GNNs exhibit shifting generalization preferences across nodes with different
homophily levels as their depth increases. To address this, we propose Moscat, which follows a novel
decoupled expert-gating paradigm. Experiments show that Moscat can improve GNN generalization,
better exploit deeper GNNs, and adapt to diverse architectures.

Acknowledgments and Disclosure of Funding

This work is supported by DEVCOM ARL Army Research Office (ARO) under grants
WO11NF2220159 and W911NF2320186, and by National Science Foundation (NSF) under grant
OAC-2209563. Distribution Statement A: Approved for public release. Distribution is unlimited.

References

[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine
learning, pages 21-29. PMLR, 2019.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions
in multi-layer networks. arXiv preprint arXiv:2204.09297, 2022.

[5] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rézemberczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural
networks with approximate pagerank. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2464-2473, 2020.

[6] Chandramani Chaudhary, Nirmal Kumar Boran, N Sangeeth, and Virendra Singh. Gnndld:
Graph neural network with directional label distribution. In ICAART (2), pages 165-176, 2024.

10

[7] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen.
Scalable graph neural networks via bidirectional propagation. Advances in neural information
processing systems, 33:14556-14566, 2020.

[8] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725-1735.
PMLR, 2020.

[9] Xuanze Chen, Jiajun Zhou, Jinsong Chen, Shanqging Yu, and Qi Xuan. Mixture of decoupled
message passing experts with entropy constraint for general node classification. arXiv preprint
arXiv:2502.08083, 2025.

[10] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383-10395, 2020.

[11] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. arXiv preprint arXiv:2006.07988, 2020.

[12] Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Wide stochastic networks: Gaus-
sian limit and pac-bayesian training. In International Conference on Algorithmic Learning
Theory, pages 447-470. PMLR, 2023.

[13] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in
training graph convolutional networks. Advances in Neural Information Processing Systems,
34:9936-9949, 2021.

[14] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Li0, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

[15] Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph
transformer in linear time. arXiv preprint arXiv:2403.01232, 2024.

[16] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[17] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin
Chang, Depeng Jin, Xiangnan He, et al. A survey of graph neural networks for recommender
systems: Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1
(1):1-51, 2023.

[18] Xinyi Gao, Wentao Zhang, Junliang Yu, Yingxia Shao, Quoc Viet Hung Nguyen, Bin Cui,
and Hongzhi Yin. Accelerating scalable graph neural network inference with node-adaptive
propagation. arXiv preprint arXiv:2310.10998, 2023.

[19] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[20] Johannes Gasteiger, Chendi Qian, and Stephan Giinnemann. Influence-based mini-batching for
graph neural networks. In Learning on Graphs Conference, pages 9—1. PMLR, 2022.

[21] Shengbo Gong, Jiajun Zhou, Chenxuan Xie, and Qi Xuan. Neighborhood homophily-guided
graph convolutional network. arXiv preprint arXiv:2301.09851, 2023.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[24] Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang, and Xiaokui Xiao. Node-wise diffusion for
scalable graph learning. In Proceedings of the ACM Web Conference 2023, pages 1723-1733,
2023.

11

[25] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks. arXiv preprint arXiv:2008.09864, 2020.

[26] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448-456. pmlr, 2015.

[27] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
systems with applications, 207:117921, 2022.

[28] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[29] Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. Policy-gnn: Aggregation opti-
mization for graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 461-471, 2020.

[30] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pages
9267-9276, 2019.

[31] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gens. arXiv preprint arXiv:2006.07739, 2020.

[32] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[33] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Sigiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pages 13242—-13256. PMLR, 2022.

[34] Xunkai Li, Jingyuan Ma, Zhengyu Wu, Daohan Su, Wentao Zhang, Rong-Hua Li, and Guoren
Wang. Rethinking node-wise propagation for large-scale graph learning. In Proceedings of the
ACM on Web Conference 2024, pages 560-569, 2024.

[35] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887-20902, 2021.

[36] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887-20902, 2021.

[37] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 4424-4431, 2019.

[38] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
1d=B112bp4YwS.

[39] Donald Loveland, Jiong Zhu, Mark Heimann, Benjamin Fish, Michael T Schaub, and Danai
Koutra. On performance discrepancies across local homophily levels in graph neural networks.
In Learning on Graphs Conference, pages 6-1. PMLR, 2024.

[40] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiagi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362—1375, 2022.

[41] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking
potentials of deeper graph convolutional neural networks. In International Conference on
Complex Networks and Their Applications, pages 49—-60. Springer, 2023.

12

https://openreview.net/forum?id=B1l2bp4YwS
https://openreview.net/forum?id=B1l2bp4YwS

[42] Yuankai Luo, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Structure-aware semantic node
identifiers for learning on graphs. arXiv preprint arXiv:2405.16435, 2024.

[43] Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns
for node classification. arXiv preprint arXiv:2406.08993, 2024.

[44] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. Advances in Neural Information Processing Systems, 34:1048-1061, 2021.

[45] Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang
Tang. Demystifying structural disparity in graph neural networks: Can one size fit all? Advances
in neural information processing systems, 36:37013-37067, 2023.

[46] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with
simple architecture design. arXiv preprint arXiv:2105.07634, 2021.

[47] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Feature selection: Key to enhance node
classification with graph neural networks. CAAI Transactions on Intelligence Technology, 8(1):
14-28, 2023.

[48] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural

networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602-4609, 2019.

[49] Soroor Motie and Bijan Raahemi. Financial fraud detection using graph neural networks: A
systematic review. Expert Systems With Applications, page 122156, 2023.

[50] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947, 2019.

[51] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S11d02EFPr!

[52] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

[53] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tJbbQfw-5wv.

[54] Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Character-
izing graph datasets for node classification: Homophily-heterophily dichotomy and beyond.
Advances in Neural Information Processing Systems, 36, 2024.

[55] Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501-14515, 2022.

[56] Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Giinnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pages 25—1. PMLR, 2024.

[57] T Konstantin Rusch, Benjamin Paul Chamberlain, Michael W Mahoney, Michael M Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. /CLR, 9:25,
2023.

[58] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[59] Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The journal of
machine learning research, 15(1):3221-3245, 2014.

13

https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=tJbbQfw-5wv

[60] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

[61] Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana
Kompella, Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs
with explicit diversity modeling. Advances in Neural Information Processing Systems, 36, 2024.

[62] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy
graph neural networks via confidence calibration. Advances in Neural Information Processing
Systems, 34:23768-23779, 2021.

[63] Zhen Wang, Zhewei Wei, Yaliang Li, Weirui Kuang, and Bolin Ding. Graph neural networks
with node-wise architecture. In Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining, pages 1949-1958, 2022.

[64] Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. A manifold perspective on the statistical
generalization of graph neural networks. arXiv preprint arXiv:2406.05225, 2024.

[65] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861-6871. PMLR, 2019.

[66] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations.
Advances in Neural Information Processing Systems, 36, 2024.

[67] Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. arXiv preprint arXiv:2212.10701, 2022.

[68] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pages 5453-5462. PMLR, 2018.

[69] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km,

[70] Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, and Hanghang
Tong. Node classification beyond homophily: Towards a general solution. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’23, page 2862-2873, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701030. doi: 10.1145/3580305.3599446. URL https://doi.org/10.1145/
3580305.3599446.

[71] Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, and
Hanghang Tong. From trainable negative depth to edge heterophily in graphs. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview!
net/forum?id=p8lowHbuv8|

[72] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022
IEEFE International Conference on Data Mining (ICDM), pages 1287-1292. IEEE, 2022.

[73] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gens. arXiv preprint arXiv:2003.13663, 2020.

[74] Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. arXiv preprint arXiv:2212.09034, 2022.

[75] Zelin Yao, Chuang Liu, Xianke Meng, Yibing Zhan, Jia Wu, Shirui Pan, and Wenbin Hu.
Da-moe: Addressing depth-sensitivity in graph-level analysis through mixture of experts. arXiv
preprint arXiv:2411.03025, 2024.

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3580305.3599446
https://doi.org/10.1145/3580305.3599446
https://openreview.net/forum?id=p8lowHbuv8
https://openreview.net/forum?id=p8lowHbuv8

[76] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?7id=BJe8pkHFwS.

[77] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks. Advances in Neural Information Processing Systems, 34:19665-19679, 2021.

[78] Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak and strong
experts on graphs. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=wYvuY60SdD.

[79] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao, Zhi Yang,
and Bin Cui. Node dependent local smoothing for scalable graph learning. Advances in Neural
Information Processing Systems, 34:20321-20332, 2021.

[80] Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and
Bin Cui. Model degradation hinders deep graph neural networks. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pages 2493-2503, 2022.

[81] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi
Yang, and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4560-4570, 2022.

[82] Jiajun Zhou, Chenxuan Xie, Shengbo Gong, Jiaxu Qian, Shanqing Yu, Qi Xuan, and Xiaoniu
Yang. Pathmlp: Smooth path towards high-order homophily. Neural Networks, 180:106650,
2024.

[83] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in neural information processing systems, 33:7793-7804, 2020.

15

https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=wYvuY60SdD

A Related Work

A.1 Graph neural networks meet heterophily

GNNs were initially designed under the homophily assumption and have recently gained signif-
icant interest due to their superior performance and small parameterization. Various aspects of
GNNs have been widely studied, including scalability [22l 76, 5, 20], expressivity [69} 38} 51]], and
generalization [13} 74} 45]).

To extend GNNs to heterophilous graphs, existing works primarily focus on improving higher-order
neighborhood utilization [[71]. MixHop [1] extracts features from multi-hop neighborhoods in each
layer. GCNII [8] prevents over-smoothing in deeper GCNs by proposing initial residual connections
and identity mapping. To adapt to graphs with different label patterns, GPR-GNN [11] learns signed
scalar weights for the propagated features with different propagation steps. Other works focus on
mapping topology [36, 133140, using global attentions [[15], or exploiting edge directionality [56] to
improve learning on heterophilous graphs.

A.2 GNNs with personalized scoping

Personalized scoping aims to set a tailored receptive field to each node to restrict the length of feature
propagation, which is able to extract essential long-range dependencies while reducing computational
overhead. Although this idea has been around for a long time and has a fundamental impact on
various GNN domains, few works summarize these advancements from the personalized scoping
perspective. Here, we classify these works into two categories based on whether or not each scope is
learned.

Heuristics methods. The heuristics for personalized scoping originate from works that generalize
personalized PageRank (PPR) to GNNs. PPNP [19] first introduces PPR as the final propagation
matrix for decoupled GNNs. GBP [7] combines reverse push and random walks to approximate PPR
propagation. NDLS [79] examines the smoothing effects in graph diffusion, noting that the level of
smoothness should be node-specific. NDM [24]] advances this by developing a unified diffusion kernel
that extends PPR with the heat kernel and enables custom propagation steps following NDLS. To
generalize personalized scoping to non-decoupled GNNs, ShaDow [77] proposes a design principle
that decouples the scope from the model depth. For each node, a shallow scope is constructed using
its neighboring nodes with the top-k PPR.

Learnable methods. However, these heuristics assume homophily and heavily rely on topological
information, often falling short on heterophilous graphs. Recent research has explored parameterized
techniques to address this issue. One line of work integrates personalized scoping into GNN
architectures. We refer to these methods as soft personalized scoping since they typically learn
node-dependent weights to control the scope. GeniePath [37] proposes a gated unit as the scope
controller. GAMLP [81] uses the attention mechanism to enable personalized scoping on a decoupled
GNN [16]. NW-GNN [63]] further extends this to non-decoupled GNNs by proposing a node-wise
architectural search. ACM-GCN [40] employs an alternative strategy by introducing additional
identity channels beyond aggregation.

A.3 Graph Mixture of Experts

Another line of work considers different depths of GNNs as different experts and develops a gating
module to activate a small subset of experts for each input node. Policy-GCN [29] uses reinforcement
techniques and takes the average accuracy of different depth models as rewards. GraphMoE [61]
and DA-MoE [75] proposes a top-K sparse gating technique for mixing multiple GNN experts.
Additionally, Mowst 78] proposes separating rich self-features from informative neighborhoods by
using a mixture of weak MLP and strong GNN experts. However, these methods require retraining
the GNN models, which introduces significant overhead and may suffer from overfitting, potentially
downgrading each model’s performance.

B Proof

The following provides the proof for Theorem 3.3]

16

Lemma B.1. Under Assumptlonn Assumptlon and assume the aggregated features g~ (X, G)
share the same variance o1. For any subgroup 1,J € M and any nodes u € V;,v € V; with

aggregated features £, = g¥(X,G), and f = g% (X, G),, we have:
Pr(y, = eilfu) — Pr(yy = aify)
(p+ ko) I ®)
< 2250 (e~ £+ p (s =) By lom — 4l

where p = ||p1 — p2|| and k is a small constant.

Proof. To begin with, we recall that Assumption assumes every node feature follows the normal

distribution. The aggregated features F = ¢*(X,G) = (D_lA)L X for different subgroups of
different classes has the following distribution:

£, ~ N (ug,;, 21) forwe Ve, ce{l,2},me {1, M}, 6)
where V), denotes the node subset with class label ¢ and belongs to subgroup m. u&% denotes the

mean value of L-hop aggregated features of V.

Next, we break down Pr(y,, = ¢1|f,,), which is the conditional probability of node u € V; classified
as class ¢p given feature f,,, with Bayes theorem

Pr(yu - Cl|fu)
_ Pr(fu|yw = ¢1) Pr(yy = 1)
Pri(fu|yw = c1) Pr(y, = c1) + Pri(fu|yu = ¢2) Pr(y, = ¢2)

_ (D)2 7
exp((f 5;21) > @)

= £ (o) D2
(a) eXp(() >+exp<<))

where (a) utilize Assumption [3.1] that different classes have the same number of samples and the PDF
of normal distribution. Hence, we have

Pr(yu = Cl|f) - Pr(yu = cllf) =
(fu—pi")? (f—pso)? (£.—ni"))? (fu—pi)?
eXp | ——5,7— | eXP | — 58— o2 | EXP | Tz — (8)
f,— (L) f,— (L) — (L> — (L) 2 ’
o (5587) s (5)] [exp () o (507

L)\2
Note that the denominator can be bounded in [0, 4] since each component exp <W> € [0,1].

202

We can then denote the denominator as exp(A), where A is a constant. Hence, we have
Pr(y, = c1lfy) — Pr(y, = a1lfy)
£, (L)y2 + (£, — (L)y2
—exp<(l"ll) + (“2]) A

_20—2

(m—u@> + (£ uﬁ)_A>

1
< 55 {(fv - #g,Lj))Q (fu — /J'ng)) + (fu — p‘é,Li))2 - (f, — “gLJ)) }
1
= 57 (6 =) + (& = w2 (& —£) + () - ui2))
(6 = i)+ (E = 1)) (= £) + () —)]

17

(a) is derived from the Lagrange mean value theorem. Let (f, — ug Z)) + (f, — ugL])2 = C and

(£, — 8% + (£, — ps))? = D. Given that Pr(y, = ¢1|f,) and Pr(y, = c1|f,) are probabilities
that smaﬂer than 1, we can derive

C
o2 5 — A<O. (10)
From the Lagrange mean value theorem, we have
exp(z) — exp(y
O ~OPW) _ (), € € (). an
T—-Yy
Letz = —— — A. Given Equation I we have exp(€) < 1. Hence,
c D D-C
exp (_202 > — exp (_202 — A) < 952 " (12)

The proof for (a) is complete.

Equation 9] shows that Pr(y,, = ¢;|f,) — Pr(y, = c1|f,) can be bounded by three terms:

1. The maximum distance between any node feature to the mean value of any subgroup

— (L)
= ma 13
€ij wEViUVj,ce{l},(Q},me{i,j} || uc m” ()

2. The feature distance ||f, — f,|| between node u and v.
3. The mean value difference between subgroup ¢ and j: H(u) u(le) and M(L) ug’L])

We first bound term (1) ¢;;. Recall that f,, follows the normal distribution with variance o2. For the
mean value of the aggregated feature of node set V} and V72, we have

L L— _
u‘g,i) :piEPr(m) {ngm 1)] + QiEPr(m) |:/J'é ml)}) 14)
and
which reveals that for every L we have
min(py, p2) < iy, psly) < max(pa, p2) (16)

since every p;, ¢;, Pr(m) lie in [0, 1]. Therefore, €;; can be bounded by
€ij < |1 — pel|l + ko, an
where k is a small constant. When £ > 3, this equation holds with a probability close to 1.
To bound the term (3), we derive the following equation based on Equation[T4]and Equation T3]
(L) (L)

Hl % p‘? %
L— L—
(pz — 4]EPr(m) [“’ng Y Mng 1)]

(P — @) - Epr(o) [uii 2) HéLJ?)” (18)

(L—2) (L— 2)]

1
EPr(m) [Pm - qm] : IEPr(m) [“’1,m —Hom

) -
— i) - Epr(m)
=i —a)-

)

(pz —q;]EPr(m) [pm - QM]L_l : (/1'1 - HQ)-

18

We also have

L
l'l'g z) - I'l’g j)

L-1 L-1
= (pi = pj) - Epr(m) [uﬁm)} +(a = ¢j) - Epe(m) [ué,m)]

L—1 L—1
o (Pi = ;) Epr(m) [Mg Dl)} (19)

= (pi _pj) ’]EPr(m) {(pm - Qm) ’ EPr(o) [po - QO]L72 (/Jll - HQ)}
= (pi = P3) - Epegm) [pm — am] "™ (11 —),

where (a) utilizes the definition of p; + ¢; = 1. Follow the same proof, we can derive /,Léﬂ) péﬁ)

L L
(u§ P]))

Next, we substitute terms (1), (2), and (3) to Equation@]to continue the proof. Let p = |1 — p2|,

we have
Pr(yu = cl|fu) - Pr(yv = Cl‘fv)

(8 = 85)) + (8 = 85) + (8, = p85)) + (£ — uS1))

< 2 53
_ (20)
’ (”fu - fUH + (pi - pj) : IEPr(m) [pm - qm}L (l‘/l - H2)>
2(p+ko) _
< S (I = £ull + 20 = 25) - Err o — 0] 7).
The proof for Lemma[B.T]is complete. O

Proof for Theorem [3.3] Theorem 1 in [45] provides a PAC-Bayes subgroup generalization bound for
GNN;s with one-hop aggregation. In our work, we extend their theorem to arbitrary hop to investigate
how different scope sizes affect the generalization of different subgroups. Besides that, both theorem
follows the same setting. To avoid replicates, we only provide the proof for the different parts and
direct readers to the specific sections of [45] for the rest details and proofs.

Appendix F.4 in [45] provides complete proof for the proposed PAC-Bayes bound. There exists
O<ax< %,Wehave

L£9,(0) — LL(0)

2 A W2 /
S (D%O<P;)\) —1In 3) + W/L,]V(f(&n)z/ll
S

Lo (2 po) 4L
Nga K} 4N§72a7

where D%%(P; A) is bounded by [43]’s Lemma 4.

Lemma 4 in [45]] further depends on the bound of [45]’s Lemma 2 in Appendix E, which calls out the
main difference compared with our theorem. By substituting [45]]’s Lemma 2 with our Lemma[B.T]
we complete the proof for our Theorem 3.3|

£0.(0) = L(6)
2K(p+ka)

o2

AL AWil3 o, 1 3 1
LPSIESE Ml . — (mZy2)
+ (V/S)Q/L/Ng (E) +N§a n6+ +4N§—2a

2

+

(Gm +p (pS - pm) EPr(o) [po - QO]L_l) (22)

For the first term, K = 2 is the number of classes, k is a small constant, and o < 1. We denote
Epr(o) [Po — g tasTL ;. For the rest of the terms, b and are constants. We denote |W||? :=

Zz[il ||Vf[7l\|% Since 0 < o < %, we have 4N; = < 1. We simplify Equatlonas follows:

19

£5,(0) = L3(0)
< 0L (n + o5 —pyTus)) o EESEY oMUY -

C Supplementary Preliminaries

C.1 Scope and Depth

The scope of model M for a node v is a latent subgraph Q[/:J’]t that contains all the nodes V|,; C V and
edges &, C & used by M when predicting v.

Definition C.1 (Size of scope). Assume g[ﬁ is connected. The size of scope ’g[f;ﬁ

max,ey,, d (u,v), where d (u, v) denotes the shortest path distance from u to v.

1
We focus on GNN architectures where the model depth equals the size of the scope for every node in
this paper.

C.2 Homophily Metrics

The homophily/heterophily metrics are widely used as graph properties to measure the probability of
nodes with the same class connected to each other. This paper uses a node-wise homophily metric
called node homophily [52]]. Node homophily defines the fraction of neighbors that have the same
class for each node:

hoode[v] = [{u € Nyt yu = Yo }/INo| 24

In Table[2] we also report the average node homophily for each dataset:
1
Hioge = 7 2 hacce o] (25)

There are also some other commonly used homophily metrics in the literature. Edge homophily [1,83]]
measures the fraction of edges that connect nodes of the same class. Class homophily [36), 140]]
further addresses the sensitivity issue of edge homophily on graphs with imbalanced classes. For
instance, genius dataset [36] has a majority class for roughly 80% of nodes, which can mislead edge

homophily into classifying it as a homophilous graph (4, egdge = 0.618). In contrast, class homophily

accurately identifies it as a heterophilous graph (H, Cglass = (0.080). However, class homophily does not
satisfy some desired properties, such as asymptotic constant baseline and empty class tolerance. [54]]

proposed a variant called adjusted homophily to address this issue.

C.3 GNN Basics.

As a pioneer work, graph convolutional network (GCN) [28]] provides a layer-wise architecture that
stacks feature propagation with linear transformation to approximate spectral graph convolutions.
The (I 4+ 1)—th layer of GCN is defined as:

(t+1) _ A ROW®O
h ReLU <ZueNvu{v} A, hy W) (26)

where hSP = x,. Subsequent GNNs typically modify GCN in terms of aggregator and backbone.
Some works develop more expressive aggregators [60} 14} 34]. For example, GAT [60] substituting
the degree-normalized coefficients in GCN’s aggregator with learnable attention scores. Another line
of works alters the backbone by decoupling aggregation from transformation [65, 19, |16 |81 146]]
or adding skip connections between layers [68] 31} [8, |80]. For instance, SGC [65]] eliminates the
ReLU (+) function in the GCN layer to allow precomputing feature propagation. JKNet [68]] directly

maps the concatenated outputs of each layer [hsjo); cees hg,L)} to the prediction.

20

C.4 Personalized Scoping.

Real-world graphs often exhibit a mix of homophilous and heterophilous patterns [36, 33} 145]]. An
ideal way to incorporate sufficient homophilous information is to set a personalized scope, allowing
different nodes to have distinct scope sizes.

Definition C.2 (Model with personalized scoping). Assume the input graph G is connected with radius

o]

exceed max,cy ‘Qm ‘ The model M has personalized scoping if Ju, v € V, where ’g[ﬂlf]

The above definitions assume the graph’s radius is larger than each node’s scope size, which is
true for most nodes in large graphs. According to the definition, an L-layer GCN does not support
personalized scoping because it forces the scope size to be uniformly L for every node. To break
this limit, recent works (e.g., ACMGCN, GAMLP, NW-GNN, GNN-G?) propose additional gating

modules that learn the weight ag) for each hop on a node-dependent basis:

L L
ho' = Zg:o oOh{Y, where Z@ZO o =1 27)

By setting the weights of larger scopes to O for some nodes, these methods allow different nodes to
have different scope sizes. In this paper, we adopt a broader definition: we consider a model to support
personalized scoping if it can generate node-adaptive weights for each scope embedding. Notably, our
proposed method Moscat also enables personalized scoping for any base GNN architecture through
an attention-based gating mechanism.

W% (em)*

£.0) = £4(0) < O(5 (em + plos —pm) T)) +O() + O

In(1/6)
00)
(28)

D Supplementary Analysis for Deeper GNNs’ Failure

The depth dilemma. Increasing the GNN depth favorably increases the number of non-linear
transformations and expands the scope of each node to exponentially incorporate more neighboring
information. Existing studies also show that deeper GNNs are provably more expressive by using
distance-based metrics [50, 25] and WL-based metrics [48 [10]. In practice, however, performance
degradation is widely observed when going deep. Many novel architectures have been proposed to
alleviate this issue, yet they achieve only marginal gains over shallow variants, which is undesirable
given deeper GNNSs’ superior expressive power and substantially higher computational costs. How to
effectively leverage the depth remains an open question.

Limitation of existing solutions. While useful, current techniques for deeper GNNSs face inherent
trading-offs between these three types of errors. Residual connections (e.g., ResGCN) address the
vanishing gradient issue but result in a larger generalization gap [[13]. Learnable cross-layer gating
modules (e.g., G2-GNN) achieve personalized scoping to alleviate over-smoothing, but they lead to
an increase in training difficulties and the risk of overfitting. Meanwhile, GCNII attempts to prevent
overfitting by mixing initial embeddings and adding identity mappings to weight matrices, but this
comes at the cost of reduced expressivity.

E Compare Expert-Gate Joint Training MoEs with Independent
Train-then-Merge MoEs

Expert-gate joint training is widely used in current MoE methods for LLMs. Instead, Moscat employs
a separate "train-then-merge" strategy which is optimized for GNN experts. Our work is motivated by
the observation that directly transferring MoE designs from LLMs to GNNs faces inherent challenges.
In LLMs, the gating module and experts are co-trained using Top-K sparse gating to reduce training
and inference time while maintaining performance. However, for GNNs, no clear scaling law exists,
and sparse gating plus more parameters do not necessarily translate into accuracy improvements. In
our experiments with Moscat, we found that Top-K sparse gating (especially with small K) often
results in an accuracy drop compared to dense gating. Recent work [9] also reveals that sparse

21

Table 5: Hyperparameter searching space for GNNs.

Hyperparameters \ Range

learning rate | {0.05,0.01,0.005,0.001, 5e-4, le-4, Se-5 }
normalization \ { layer [3], batch [26], - }

hidden dimension ‘ { 32, 64, 128, 256, 512 }

dropout | {0,0.1,0.3,0.5,0.7 }

number of convolution layers ‘ {1,2,3,4,5,6}

Table 6: Hyperparameter Searching space for Moscat.

Hyperparameters Range Notes
maximum scope size Lyax {5,6} increasing L. > 6 can slightly improve accuracy
Moscat specific validation ratio n {0,0.1} dataset specific parameter
hyperparameters The Vir-het masked ratio y {0,0.3,05,09,1,-} “-” indicates Veyp is not used for Moscat training
mask wrong { True, False } -
learning rate { 0.005, 0.001, Se-4, le-4, Se-5 } -
hyperparameters for normalization { layer, batch, - } dataset specific parameter
MLP in Moscat hidden dimension { 64, 128,256 } fix to 256 for larger datasets (if not OOM)
dropout {0} fix dropout to 0 works the best
number of layers {3} 3-layer MLP is sufficient for all settings

gating can lead to performance losses on heterophilous datasets. Our independent-train-then-merge
approach for GNN MoE:s offers distinct advantages over expert-gate joint training:

* Diverse Generalization Capabilities: GNN experts, which vary in scope and architecture,
exhibit substantial disparities in generalization capability, which has been largely overlooked.
Graph data spans a wide range of domains from different perspectives (e.g., homophily,
centrality). By training experts independently, we allow each to specialize and become
robust domain generalizers.

* Avoiding Harmful Regularization: Standard joint training requires regularization to
balance node distribution among experts and prevent collapse. However, graph domains are
often unevenly distributed, typically following a power-law. Imposing such regularization
can diminish the expressive power of the GNN experts. Our experimental results (Table
demonstrate that existing GNN MoEs underperform even well-tuned single GNNs, whereas
Moscat successfully learns meaningful gating weights (see Figures |18 and without
compromising the underlying GNN training.

In summary, we highlight the limitations of directly applying LLM MoE training strategies to GNNs
and demonstrate how Moscat provides a more promising alternative that better leverages the unique
properties of graph data. We believe Moscat will provide valuable insights to the community and
open new directions for advancing GNN capabilities.

Table 7: Values of the hyperparameter o used in the Moscatx setting reported in Table

‘Squirrel snap-patents arxiv-year Flickr amazon-ratings Penn94 genius ogbn-arxiv

SGC-Moscatx* 0.6 0.65 0.65 0.85 0.9 0.9 0.9 0.85
GCN-Moscat* 0.55 0.65 0.65 0.85 0.9 0.85 0.9 0.9
GAT-Moscatx* 0.55 0.65 0.65 0.85 0.9 0.85 0.9 0.85
GCNII-Moscatx* 0.6 0.65 0.85 0.85 0.9 0.85 0.9 0.85
ACMGCN-Moscatx* 0.55 0.65 0.65 0.85 0.9 0.85 0.9 0.9

F Experimental Settings

F.1 Datasets

We evaluate Moscat on datasets with various homophily ratios. We used the filtered version [53]]
of Squirrel datasets, which removes all the duplicated nodes that share the same neighbors and

22

Table 8: Base GNN model selected for GNN-Moscat* on each dataset in Table[ﬂ

‘Squirrel snap-patents arxiv-year Flickr amazon-ratings Penn94 genius ogbn-arxiv

Base GNN

for GNN-Moscat(x) GCNIL MixHop GAT GAT ACMGCN MixHop GCNII GAT

Table 9: Comparison of Moscat with other methods use validation set for model training.

Method | Squirrel amazon-ratings Penn94 || Method | Squirrel amazon-ratings Penn94

GCN 41.33 +1.46 48.55 +0.38 82.54 +0.43 || GAT 39.36 +1.89 49.78 +0.47 81.81 £0.62
GCN-ft 41.36 +2.49 48.34 +0.88 83.07 +0.32 GAT-ft 39.74 +2.21 49.92 +0.39 82.65 +0.75
GCN-mlp 40.37 +1.76 4879 +0.57 82.60 +0.50 || GAT-mlp 38.96 +2.25 50.32 +0.40 81.87 +0.60
GCN-Moscatx | 42.91 +1.96 51.02 £0.50 85.51 £0.42 || GAT-Moscatx | 43.10 +£1.98 52.56 £0.40 85.41 +0.48
GCN-Moscat | 43.55 +2.08 52.25 +0.69 85.76 £0.32 || GAT-Moscat | 43.10 +2.13 53.77 £0.61 85.35 +0.59

labels. These duplicates exist widely in the train and test set and can cause data leakage. The
amazon-ratings dataset is from [53]]. For the Penn94, arxiv-year, genius and snap-patents
datasets, we follow the same settings as [35] with 50%/25%/25% random splits for train/valid/test.
We run 10 times on each of the 10 benchmark datasets. We follow the setup in [53]], which does not
convert the directed graphs to undirected graphs and does not use reverse edges since the outgoing
neighbors might not be observed during real-world inference.

F.2 Moscat* and Moscat

Moscatx. In this setting, we reserve the original validation set V,, exclusively for validating both the
GNN experts and the gating model, ensuring V), is not used during model training. We introduce
a hyperparameter o € (0, 1) to denote the ratio of data sampled from the original training set Viuin
for expert training Vexp. The remaining Vi, is designed as the holdout set Vyo14, Teserved for gating
training. To alleviate the experts’ performance drop caused by training on only a subset of Viin,
we create a complementary split on Vi, with the same «. In this split, the expert-training set Ve’xp
completely overlaps with the holdout set Vioq from the first split. We then follow the same procedure
to train another set of experts and gating models. At inference time, we average the outputs of the
two gating models to form the final prediction. Adding the complementary split results in an average
accuracy improvement of around 0.3, with also no validation set V,,; used during training. In practice,
Moscat achieves its best results when « is between 0.55 ~ 0.9 and remains stable across this range.
The configuration of « is shown in Table

Moscat. In this setting, we follow prior work [29, 162] to train the gating model on the original
validation set. In our experiments, we sample 90% of the original validation set Vy, as Vjog and
use the remaining 10% for gating validation. In some cases we observe further gains by training the
gating model on the full V,, and validating on Vyn,in. Thereby, we introduce a binary hyperparameter
n € {0,0.1}, where n = 0.1 denotes the former split and) = O the latter.

Importantly, the validation set serves as a natural holdout set for assessing generalization across
training epochs and hyperparameters. Our method, Moscat, can be seen as a fine-grained extension
of this idea: rather than using V., merely for early stopping, we leverage it to evaluate and weight
different experts over node subgroups. In practice, Moscat is a plug-and-play module that operates
on pre-trained GNN checkpoints without any retraining of the base model; we only train a lightweight
MLP gating model on the modestly sized validation set (which seldom includes filtered samples from
the training set), making it both fast and memory-efficient.

To verify that our performance gains arise from expert mixing rather than simply from extra training
data, we compare against two baselines in Table[9]under the same validation split as Moscat:
* GNN-ft: fine-tuning the entire pre-trained GNN on V.
* GNN-mlp: freezing the GNN backbone and training an auxiliary MLP classifier (taking
GNN logits as input) on V.

The results indicate that additional training on the validation set offers, at best, marginal accuracy
improvements and sometimes leads to degradation compared to standard GNNs, likely due to the
small size of V,, and the risk of overfitting. Together with the consistently superior gains of Moscatsx,

23

Table 10: Hyperparameter settings for Moscat. We additionally include the original node features as
the gating model input for all expert models in the amazon-ratings dataset. We observe that node
features are highly informative for the gating model prediction on the amazon-ratings dataset, but
they have negative effects or no impact on other datasets.

Dataset Model Moscat specific hyperparameters Hyperparameters for MLP
Limax n v mask wrong learning rate hidden dim. norm
SGC-Moscat 6 0.1 - v 0.001 128 -
GCN-Moscat 5 0.1 - v 0.005 128 -
Squirrel GAT-Moscat 5 0.1 - v 0.001 128 -
GCNII-Moscat 5 0.1 - 4 0.0005 128 -
ACM-GCN-Moscat 5 0.1 - - 0.001 128 -
SGC-Moscat 6 0.1 1 v 0.00005 256 batch
GCN-Moscat 6 0.1 0.5 - 0.00005 256 batch
amazon-ratings GAT-Moscat 6 0.1 03 v 0.0001 256 batch
GCNII-Moscat 6 0.1 0.9 v 0.0001 256 batch
ACM-GCN-Moscat 6 0 - v 0.00005 256 batch
SGC-Moscat 6 0.1 - v 0.005 256 batch
GCN-Moscat 6 0.1 - v 0.005 256 batch
Penn94 GAT-Moscat 6 0.1 - v 0.0001 256 batch
GCNII-Moscat 6 0.1 - - 0.005 256 batch
ACM-GCN-Moscat 6 0.1 - v 0.00005 256 layer
SGC-Moscat 6 0 - - 0.001 256 -
GCN-Moscat 6 0 - - 0.001 256 -
Flickr GAT-Moscat 6 0 - v 0.001 256 -
GCNII-Moscat 6 0.1 - - 0.0001 256 -
ACM-GCN-Moscat 6 0.1 - - 0.001 256 -
SGC-Moscat 6 0 - - 0.005 256 layer
GCN-Moscat 6 0.1 - - 0.005 256 layer
arxiv-year GAT-Moscat 6 0 - - 0.001 256 layer
GCNII-Moscat 6 0.1 - - 0.005 256 layer
ACM-GCN-Moscat 6 0 - - 0.005 256 layer
SGC-Moscat 6 0.1 0 - 0.0005 256 batch
GCN-Moscat 6 0.1 0 - 0.00005 256 batch
genius GAT-Moscat 6 0.1 0 - 0.00005 256 layer
GCNII-Moscat 6 0.1 0 - 0.00005 256 layer
ACM-GCN-Moscat 6 0.1 0 - 0.00005 256 layer
SGC-Moscat 6 0 - - 0.005 128 batch
GCN-Moscat 6 0 - - 0.005 128 batch
snap-patents GAT-Moscat 6 0 - - 0.005 128 batch
GCNII-Moscat 6 0 - - 0.005 128 batch
ACM-GCN-Moscat 6 0 - - 0.005 128 batch
SGC-Moscat 6 0.1 1 - 0.001 256 layer
GCN-Moscat 6 0.1 09 - 0.0005 256 layer
ogbn-arxiv GAT-Moscat 6 0.1 09 v 0.0005 256 layer
GCNII-Moscat 6 0.1 1 - 0.0005 256 layer
ACM-GCN-Moscat 6 0.1 1 v 0.0005 256 layer

24

these results confirm that our improvements stem from adaptive expert mixing rather than from
naively adding more labeled training data.

F.3 Baselines

To evaluate the flexibility of Moscat, we select three classic homophilous GNNs (GCN [28]],
SGC [65], GAT [60]), and two state-of-the-art heterophilous GNNs (GCNII [8]], ACM-GCN [40])
which cover comprehensive GNN architectural designs. We note that many scope mixing methods
have assumptions about GNN architectures. For example, [18] can only be used on decoupled GNNs
like SGC, while [40 34} [70] are incompatible with GNNs using learnable aggregators like GAT. We
further compare our methods with four models designed for node classification under heterophily:
H2GCN [83], GPRGCN [11], FSGNN [46], MixHop [1]]; three Graph Transformers: GraphGPS [53]],
SGFormer [66], Polynormer [15]; and three Graph MoEs: GMoE [61]], Mowst [78]], DA-MoE [73];
We also include skip-connection methods designed for deeper GNNs: Jumping Knowledge [[68]],
GAMLP [81] and G*-GNN [57].

F.4 Hyperparameters

In this section, we first clarify the hyperparameter settings for both GNNs and Moscat. Then, we
provide detailed instructions and analysis for Moscat tuning.

Table [5] shows the hyperparameter search range for baseline GNNs. We set them according to the
original paper for other special hyperparameters. Unless stated, we do not tune GNNs with residual
connections or jumping knowledge. We also include an extra dropout layer on the input node feature,
using a dropout ratio different from the one after each hidden layer. For SGC, we use an MLP
instead of a single linear layer. For every MLP, including the one used in Moscat, we add residual
connections and fix the number of layers to 3.

We observe that normalization is important for GNNSs, especially on larger datasets, and tuning the
depth can provide substantial accuracy gains. With proper hyperparameter tuning, classic GNNs
are strong baselines on heterophilous graphs, which aligns with recent works’ observation [53},42]].
When tuning the hyperparameters of the MLP in Moscat, we notice it is not sensitive to the number
of transformation layers. Setting the number of layers to 3 works well in every setting. We also find
that Moscat faces an accuracy drop when setting dropout or feature dropout to a value larger than 0.
Therefore, we set the layers of MLP to 3 and dropout to zero for all settings, as shown in Table[T0]

We further investigate tuning the Moscat-specific hyperparameters. Table[6]displays each hyperpa-
rameter’s explanation and search range. For the hidden dimension of Moscat, we notice that Moscat
often works well when setting the dimension to 256. In smaller datasets such as Chameleon, we
observe that a lower dimension is enough and enjoys better training. We limit the dimension for
the snap-patents dataset to 128 due to the GPU memory constraint. Note that we set the upper
bound of the Moscat maximum scope size Ly, to 6, rather than limiting it to a shallow 2 to 3 hop
neighborhood [77] or expanding it to a global scope [33]]. This is because (1) shallow scope does
not contain sufficient homophily in heterophilous graphs [83]], and (2) according to the six degrees
of separation theorem, a 6-hop neighborhood is already large enough for many Wikipedia, citation,
and social networks. Further increasing the scope size will only provide marginal improvement.
As shown in Table setting Lmax to 6 works best in most cases. Ly.x can be used as a crucial
parameter to trade off accuracy and overhead (see Appendix [G.4]for more details).

Table [10[shows the best hyperparameters for Moscat results presented in Table|l} Moscat* uses the
same hyperparameter configuration as Moscat, with an additional hyperparameter « tuned separately
(see Table[7)for best configuration and Appendix [F:2]for more details). We additionally include the
original node features as one of the inputs for all models in the amazon-ratings dataset (not for
other datasets) since we observe that node features are highly informative for amazon-ratings but
have adverse or negligible effects on other datasets.

F.5 Software and Hardware

We implement Moscat using Python 3.11, PyTorch 2.0.1, PyG 2.4.0, and CUDA 12.2. All the
experiments are conducted on a machine with dual 96 Core AMD EPYC 9654 CPUs paired with

25

Table 11: Leaderboard comparison. ACM-GCN++ and GloGNN++ use MLPs to transform the entire
adjacency matrix, which is only applicable to the transductive setting.

Rank | amazon-ratings Penn94 PubMed
™ 55.54 +0.51 86.18 +0.24 91.95 +0.19
tuned-GAT [43] PathMLP [82] GNNDLD [6]
nd 54.92 +0.42 86.09 +0.56 91.56 +0.50
NID [42] Dual-Net GNN [47) NHGCN [21]
3 54.81 +0.49 86.08 +0.43 91.44 +0.59
Polynormer [15] ACM-GCN++ [40] ACM-Snowball-3 [40]
Ours 56.66 +0.57 87.13 +0.45 92.40 +0.46
SAGE-Moscat (Lmax = 6) MixHop-Moscat (Lmax = 16) GCNII-Moscat (Lmax = 6)

1.5TB ECC-DDRS RAM and a single NVIDIA RTX 6000 Ada GPU with 48GB ECC-GDDR6
VRAM.

G Additional Experiments and Analysis

G.1 Leaderboard Comparison

Since Moscat is flexible for GNNs with various architectures, can GNN-Moscats achieve state-of-
the-art performance? To answer this, Table [TT|summarizes our comparison with the top 3 methods
reported on amazon-ratings, Penn94, and PubMed leaderboards from Paper With Code. To the best
of our knowledge, we find two methods, NID [42] and PathMLP [82], have reported top performance
but have not been included in the leaderboard. We also include this method in our comparison. The
result demonstrates the superior performance of GNN-Moscat. Note that we follow the standard setup
for training the base GNN models and do not include any additional tricks.

G.2 Runtime Analysis

Let L’ denote the number of MLP layers and Fiq denote the hidden dimension. The time complexity
of the gating model F is bounded by O (CLumax|V|Fhia + [V| L2 + L'[VIFZ,)-

Although GNN-Moscat requires first individually training Ly.x + 1 GNN experts and then training
an additional gating model, it does not add much overhead during training. This is due to:

1. Model depth is one of the most critical hyperparameters for GNNs on heterophilous graphs,
with deeper models typically achieving better performance. Regardless, training GNNs with
1 to 6 layers is necessary during the hyperparameter search for the optimal number of layers
L. Table|12|shows the accuracy when fixing the number of layers of the baseline GNNs to 2,
as well as the accuracy when selecting the optimal number of layers through hyperparameter
tuning.

2. Since GNNs of different depths can be trained in parallel, the total (parallel) training time
for GNN-Moscat has two components: the time to train the deepest GNN (L = L,x) and
the gating model training time. The simplicity of our design enables efficient utilization of
the GPU resources, while other personalized scoping methods require complex architecture
(e.g., GNN-G2employs additional GNNs for gating at each layer) or significantly longer
training epochs (e.g., Mowst iteratively trains GNNs and the gating module). Table[T3|shows
the parallel training time of Moscat remains low compared to other methods.

3. Moscat can be flexibly applied to shallow GNNs only while maintaining significant accuracy
improvements, reducing the computational overhead of training deeper GNNs. As shown
in Figure[/|and [8] the majority of accuracy gains from Moscat occur with GNNs of depth
L <4

26

Table 12: Performance comparison for GNNs with different depths.

Model \ Chameleon Squirrel arxiv-year genius
SGC L=2 38.79 39.55 45.28 87.53
L=best | 39.72 (L=5) 40.04 (L=1) 4588 (L=4) 88.01 (L=1)
GCN L=2 39.75 40.56 43.76 89.15
L=best | 41.74 (L=6) 4133 (L=6) 48.68 (L=5) 90.22 (L=4)
GAT L=2 37.97 37.57 50.16 86.53
L=best | 39.93 (L=5) 39.36 (L=4) 52.77 (L=3) 88.44 (L=4)

Table 13: Parallel training time comparison.

‘ Chameleon amazon-ratings Penn94

GCN (L=6) | 1.59s (x1.00) 12.67s (x1.00) 7.27s (x1.00)

Moscat x0.19 x0.16 x0.23
GCN-Moscat x1.19 x1.16 x1.23
GCN-Attn x1.40 x2.63 x2.34
GCN-G? x1.79 x13.6 x3.36
GCN-Mowst x61.6 x41.9 x23.4

G.3 Space Analysis

Moscat allows each expert and the gating model to be trained separately. Practitioners can flexibly
adjust the parallelism of expert training to balance runtime and memory consumption. Let L,y
denote the maximum depth of GNN experts, Fyiq denote the hidden dimension, and Veyp, and Vgae
denote the training sets for experts and the gating model, respectively. Taking GCN as an example,
we have two boundary cases:

* If we prioritize minimal memory overhead, we can train each expert sequentially.
The space complexity is therefore bounded by training the deepest GNN expert:
O(Lmaxlvexp|Fhid + Lmafo?jd) .

* If we prioritize minimal runtime, we can train all experts in parallel. The space complexity
then becomes proportional to the total number of layers (1 + 2 + - -+ 4+ Lyax) across all
experts: O (L2, [Vexp|Fhia + L2 Fiag) -

The memory consumption of the gating model training is relatively small and won’t become a
bottleneck: O(Lmax|Vgate|Fhid + LmathQid), since Fhig < |Vaate| < [Vexp|- In conclusion, with
comparable runtime, Moscat requires approximately L,,x times more memory than a single L, x-
layer GNN during training.

G.4 Depth Analysis

We investigate how GNN-Moscat performance changes when varying the maximum depth Ly, of
GNN experts. Figure[/|and Figure 8| compare the performance of GNN-Moscat and corresponding
GNN on amazon-ratings dataset and arxiv-year dataset, respectively. As depth increases, GNN
performance first increases and then decreases or remains unchanged, which is undesirable given
deeper GNNs’ superior expressive power [13]. In contrast, GNN-Moscat leverages depth more
effectively, showing a consistent upward trend in performance as expert depth increases. This
indicates a promising characteristic of GNN-Moscat: it does not require careful tuning of L,ax tuning
to achieve good performance. We found that Ly,,x = 6 is a good trade-off between accuracy and
computational overhead for all datasets and all base GNNs. For cases with strict runtime requirements,
setting L,x = 2 for GNN-Moscat consistently achieves performance that is better than or comparable
to the best GNN with depths between 1 and 10.

G.5 Empirical Evidence of Deeper Soft Scoping Methods Suffer from Overfitting

We plot the training and test accuracy of a representative soft scoping method ACMGCN [40] (see
Figure[9). The figure demonstrates that the 6-layer ACMGCN achieves higher training accuracy than
the 2-layer version. However, in homophily regions, the 6-layer model exhibits lower test accuracy.
This suggests that while deeper soft scoping methods offer greater expressive power, they are also

27

—— GNN-Moscat GNN

sec Gen Gar conn AcMGCN
. e —0—ta_o 5 o—0—-0—0—0—0
051 _gu0m0=0=g-0-0-0~0 032 — 9_g-0—0~0=0=0—q-0 _o—0mg-0-0-0-0—0 °* 056 =

L » 7
2051 050 0520 05

Zoas o @ 0500 052 0s2

L]
o7 046 0480 050 050

6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 a 6] 10

Figure 7: Performance comparison between GNN and GNN-Moscat on amazon-ratings dataset.
The x-axis represents the number of layers for GNN and L,,,x for GNN-Moscat.

—— GNN-Moscat GNN
sGC GeN GAT GCNII ACMGCN

052 _._._._.—0 ®=0 ;53 '_._._.—o_o—c 056 =0~ 9—0—0—0-0 osc _o—0—0 05! _e—0—0—0—0—0-0-0
_e® ! A -9 _e
S _e » . pes ®
050 051 054 054 0.9
R 'S / o

S oas 049 @ 052 0s2 o 047
g e
o o 0s0 0s0 0ss
e e e w e e e om 4 e e 4 e e w 4 e s w

Figure 8: Performance comparison between GNN and GNN-Moscat on arxiv-year dataset. The
x-axis represents the number of layers for GNN and L, for GNN-Moscat.

prone to overfitting. Considering the architecture of soft scoping methods, we speculate this issue
arises because shallow layers/experts in soft scoping models may overfit to noise from higher-hop
neighbors.

G.6 Supplementary Details for Heterophily-Biased Sample Filtering

Heterophily nodes exhibit more diverse neighborhood label patterns than homophily nodes, which
makes them more challenging for experts to generalize from. As a result, experts typically show a
larger generalization gap on heterophily nodes. When experts overfit Vexp et (i-€., the heterophilous
nodes in Vep), their logits on these samples show high prediction accuracy with high confidence.
Consequently, the gating model may incorrectly assign large weights to these overfitted experts on
heterophily nodes after training on Vexp-pet.

To further illustrate the effectiveness and reasoning behind our Veyppe filtering technique, we demon-
strate an example using GCN and SGC on the amazon-ratings dataset (see Figure [I0). When
comparing the homophily-accuracy curves for experts of depths O to 6 across the training, validation,
and test sets, we observe that:

* The curves for the validation and test sets are nearly identical.

* Although the training set’s curves align with those on the validation set in the homophily
region, they show significant deviations in the heterophily region.

These findings motivate us to exclude samples from Vexp.net When training the gating model.

G.7 How Expert Training Affects Moscat Performance

In this section, we analyze how expert training affects performance by varying the dropout ratio,
hidden dimensions, and training epochs for each expert. We set y to “-” for all GNN-Moscat models
in this analysis. Although we did not tune the GNN experts for enhanced GNN-Moscat performance
in Table 2] the insights from this hyperparameter tuning suggest that further improvements in accuracy
can be achieved for GNN-Moscat models.

Table [14] presents a performance comparison between GAT and GCNII, along with their Moscat
variants (GAT-Moscat and GCNII-Moscat), across various dropout ratios on two homophilous
datasets: arxiv-year and PubMed. We observe that as the dropout ratio decreases, the accuracy of
both GAT and GCNII experiences a slight decline, suggesting an increased risk of overfitting. In
contrast, the Moscat versions exhibit an improving accuracy trend.

This phenomenon is further explained by analyzing the distribution of nodes into three categories:

1. “All wrong” — nodes misclassified by all experts.

28

—e— ACM-GCN (L=2) ACM-GCN (L=6)

Training Set Test Set
1.000 —

0.995 >

»
0.7
0.990
0.985 g
05
0.980 o
0.4
0.975
03

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Homophily Homophily

Accuracy
Accuracy
-
&

Figure 9: Training and test accuracy of the shallow (L = 2) and deeper (L = 6) soft scoping method
ACMGCN on the amazon-ratings dataset. Results indicate that deeper ACMGCN exhibits more
pronounced overfitting, particularly on homophilous nodes.

Training Set Validation Set Test Set

Accuracy

0.4 0.4 0.6 0.8 0.0 0.2 0.4 0.6 08
Homophily Homophily Homophily

Figure 10: The accuracy of GCN experts on training/validation/test sets of the amazon-ratings
dataset. The red dotted line shows the average homophily ratio of the training set.

0.0 02 0.6 0.8 0.0 0.2

2. “All correct” — nodes correctly classified by all experts.
3. “Others” — nodes that do not fall into the above two categories

Table [T4] indicates that with decreasing dropout, the percentages of “all wrong” and “all correct”

nodes both decrease , while the proportion of “others” increased . This shift creates a larger
margin for possible performance gains when applying Moscat. Moreover, both GAT-Moscat and
GCNII-Moscat consistently outperform their standard GNN counterparts across different dropout
levels. This suggests that incorporating Moscat enhances robustness and stability across varying
dropout settings.

We further compare the performance of GCN, GAT, and their Moscat variants on the heterophilous
dataset amazon-ratings. Table[I5]illustrates how test and training accuracies evolve as the hidden
dimensions for all experts increase. For both GCN and GAT, test accuracy shows only modest
improvements while training accuracy increases substantially, highlighting an increased generalization
gap. In contrast, although the test accuracies of GCN-Moscat and GAT-Moscat also improve, the
performance gains relative to their base models follow different trends. Specifically, the accuracy
gains of GCN-Moscat over GCN gradually decrease with larger hidden dimensions, whereas those of
GAT-Moscat over GAT continue to increase. This divergence is explained by the observation that,
with increasing hidden dimensions, the percentage of “all correct” for GCN experts rises, while the
percentage of “all wrong” for GAT experts falls—leading to distinct variations in the performance
margins when applying Moscat.

To investigate the effect of expert training on Moscat performance, we selected experts from check-
points at 300, 1000, and 2000 training epochs, corresponding to underfitting (i.e., low test and training
accuracy), well-fitting (i.e., good test and training accuracy), and overfitting scenarios (i.e., similar
test accuracy but much higher training accuracy), respectively. Figure [I6] shows that as training
epochs increase, for both GCN and GAT experts, the frequency of “all wrong” predictions decreases,
while “all correct” predictions initially rise and then decline. For GNN-Moscat, it is desirable for
experts to fit the training data properly; however, the benefit of overfitting depends on the expert
architecture (e.g., GAT benefits more from overfitting, whereas GCN does not).

Overall, these experiments suggest promising directions for tuning experts to enhance Moscat
performance further. Additionally, we note that GNN experts exhibit a higher percentage of “others”

29

Test Set

Training Set

Validation Set
. Expert Depth
-0

08

thes
P

Accuracy

0.8 0.0 0.2 0.4 0.6 0.8
Homophily

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6
Homophily Homophily

Figure 11: The accuracy of SGC experts on training/validation/test sets of the amazon-ratings
dataset. The red dotted line shows the average homophily ratio of the training set.

Table 14: Test accuracy comparisons across different dropout ratios for GNN experts. We set
Lpax = 6 and fix other GNNs and Moscat hyperparameters. For GAT and GCNII, we report their
best accuracy across configurations with 1-6 layers.

Dropout 0.5 0.3 0.1
GAT 7214 +0.17 7217 +£0.17 72.01 +0.22
All wrong 18.4% 18.0% 17.6%
ogbn-arxiv All correct 56.5% 56.5% 56.0%
Others 25.1% 25.6% 26.4%
GAT-Moscat 73.69 +0.19 73.85 +0.20 73.91 +0.26
A +1.55 +1.68 +1.90
GCNII 91.27 +0.51 91.18 +0.72 91.20 +0.65
All wrong 5.4% 4.6% 4.6%
PubMed All correct 86.1% 84.8% 84.7%
Others 8.5% 10.6% 10.7%
GCNII-Moscat 92.04 +0.33 92.32 +0.34 92.24 +0.37
A +0.83 +1.14 +1.04

Table 15: Test accuracy comparisons across different hidden dimensions for GNN experts. We set
Ly.x = 6 and fix other GNNs and Moscat hyperparameters. For GCN and GAT, we report their best
accuracy across configurations with 1-6 layers. (00.00 +0.00) denotes the corresponding training
accuracy.

Hidden Dimensions 128 256 512

47.33 +0.52 48.18 +0.66 48.55 +0.38

GCN (59.03 £1.54) (61.51 +2.33) (63.25 +2.85)
All wrong 30.1% 30.1% 30.0%
All correct 16.8% 17.2% 17.4%
Others 53.1% 52.7% 52.6%

X GCN-Moscat 50.75 +0.87 51.07 +0.50 51.34 +0.68
amazon-ratings A +3.42 +2.89 +2.79

GAT 48.55 +0.51 49.42 +0.56 49.78 +0.47

(59.19 £1.56) (65.20 +0.88) (72.42 +0.99)
All wrong 29.5% 28.8% 27.0%
All correct 17.2% 17.2% 17.0%
Others 53.3% 54.0% 56.0%

GAT-Moscat 50.68 +0.57 51.57 +0.53 52.43 +0.57
A +2.13 +2.15 +2.65

on heterophilous graphs than on homophilous graphs, which may explain why Moscat achieves more
significant accuracy improvements on heterophilous graphs.

G.8 Interpretation and Visualization

The above experiments have demonstrated the effectiveness of Moscat in improving GNN gener-
alization by mixing GNN models with different scopes. To further understand how expert mixing
influences generalization, we introduce a variant of Moscat called Adaptive Scope (AS). In this
variant, instead of predicting node labels, the gating model predicts the IDs of scope experts.

30

Table 16: Test accuracy comparisons across different training epochs for GNN experts. We select
checkpoints at 300, 1000, and 2000 training epochs for each expert, representing underfitting, well-
fitting, and overfitting states, respectively. We set L,x = 6, expert droput to 0, and fix other GNNs
and Moscat hyperparameters. For GCN and GAT, we report their best accuracy across configurations
with 1-6 layers. (00.00 +0.00) denotes the corresponding training accuracy.

300 1000 2000

Training Epochs (underfitting) (well-fitting) (overfitting)
GCN 44.73 +0.90 48.34 +0.49 48.22 +0.63
(51.50 +1.89) (6547 £0.92) (68.42 +1.13)
All wrong 29.8% 29.7% 26.9%
All correct 11.7% 17.9% 16.0%
Others 58.6% 52.4% 57.1%
. GCN-Moscat 49.03 +0.72 S51.11 +0.64 51.27 +0.74
amazon-ratings A +4.30 +2.77 +3.05
GAT 46.17 +0.57 49.53 +0.58 49.59 +0.97
(54.56 £1.57) (67.44 £091) (7839 £1.15)
All wrong 29.6% 27.0% 23.4%
All correct 12.9% 16.8% 16.4%
Others 57.5% 56.2% 60.2%
GAT-Moscat 48.49 +0.75 52.12 +0.64 53.34 +0.45
A +2.32 +2.59 +3.75

1-layer GNN AS prediction = 1

'c

St
wﬁ 2t M

2- Iayer GNN AS prediction = 2

Figure 12: (Left) Visualization of t-SNE on GNN embeddings for Penn94. Green and orange dots
indicate nodes with different labels. (Right) In each embedding visualization, nodes that AS (a variant
of Moscat) predicts to have the corresponding depth are highlighted.

To analyze the behavior of AS, we use t-SNE [59]] to visualize the hidden embeddings from three
scope experts, which are GAT models with layers ranging from 0 to 2, on the Penn94 dataset
(Figure [12| Left). Specifically, we add an output linear layer to each GAT model and visualize the
hidden embeddings just before this layer. Since AS predicts the optimal scope expert (i.e., Scope-0,
Scope-1, or Scope-2) for each node, we highlight nodes according to the predicted scope expert in
the embedding visualization (Figure 2] Right).

From Figure[T2] we make three key observations:

1. AS tends to select nodes that the model can differentiate more easily.
2. The nodes chosen by AS are located near the center of each cluster.

3. An outlier in one model’s embedding can serve as the center in another model’s embedding.

31

These findings support our hypothesis that GNNs with different depths can generalize better on
different subsets of nodes.

G.9 More Empirical Findings of Performance Disparity across Scope Experts

Section[3.3]empirically examines our theoretical findings through several experiments. In this section,
we extend these experiments to include more GNN models and datasets.

G.9.1 Overlapping Ratio

Figure[T3]and Figure [T4] present heatmaps of the Jaccard overlap ratios (of correctly predicted test
nodes) between pairs of scope experts (scope sizes 0—6) for five GNN architectures (SGC, GCN, GAT,
GCNII, and ACMGCN) across multiple datasets. Darker cells denote lower overlap in each matrix,
indicating that the corresponding expert pair correctly predicts largely distinct sets of test nodes,
while lighter cells indicate higher overlap. Based on these two figures, we make several observations:

1. Scope-0 and Scope-1 experts diverge most: Across architectures and datasets, experts
with scopes of 0 and 1 exhibit the lowest overlap with other experts, suggesting they capture
unique information relative to larger-scope variants.

2. Dataset homophily drives overlap: Heterophilous datasets (e.g., Chameleon, Squirrel,
and snap-patents with average node homophily less than 0.2) show consistently low
overlaps (often < 0.7), whereas homophilous datasets (e.g., arxiv-year, PubMed) yield
high overlaps (often > 0.7).

3. Architecture-dependent diversity: Attention-based models (GAT, ACMGCN) produce
lower overlaps and more varied patterns, particularly GAT on Penn94 and ACMGCN on
Pubmed, indicating greater specialization among experts. In contrast, the decoupled SGC
architecture exhibits uniformly higher overlaps, reflecting more redundant predictions among
its experts.

G.9.2 Performance Disparity

Theorem [3.3]reveals a clear generalization disparity between shallow and deeper experts across node
homophily subgroups. Specifically, the disparity is related to the average node homophily ratio in the
training set. Although our theoretical analysis is based on SGC, our experiments indicate that the
observations also hold for other, more complex GNNs.

Figure [[3]illustrates the performance gap between deeper and shallow experts across several datasets.
In the figure, a positive bar indicates that the deeper experts outperform the shallow ones. The results
confirm our theory by showing significant performance differences between regions divided by the
average homophily ratio.

We also notice distinct patterns across various GNN architectures:

* SGC and GCN: In regions with low homophily (heterophilous regions), deeper experts
always perform worse than shallow experts.

SGC GCN GAT GCNII ACMGCN
= = = = L=0
kel = = = = L=1
o - - - -
£ = = = = L=3
-g = = = = L=4 -1.0
o L= L=5 L= =5 L=5 Loo
= = = = =6 [
L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 08
-0.7
SGC GCN GAT GCNII ACMGCN
=1 L=1 =1 =1 =1 -0.5
2 =2 L=2 = =2 L=2 o4
x = L=3 = L=3 L=3
IS
© = L=4 = L=4 L=4
=5 L=5 = L=5 L=5
=6 L=6 = L=6 ! L=6

L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6
Figure 13: The overlapping ratio matrices for scope experts on homophilous datasets.

32

chameleon
RS
Lo Y

L=0L=11=2L=3L=4L=5L=

-

L=0L=1L=21=3L=41=5L=6

-

- oo - -
[T T TR
RO N

w

-

=0L=11=21=3L=41=5L=

o

I
o
W
L
s
W

21=31=41=5L=f

-

~

- oo - -
[T T TR
@ o & A

w

ACMGCN

L=0L=1L=2L=3L=41=5L=6

GCN ACMGCN
- = L=0 =0
- L= L= L=1 =
g L= L=! L=2 =
5 - - =3 -
o L=4 L=4 L=4 L=4
[- L=5 =
L= - L= L=6 =
L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=31=4L=5L=6 L=0L=1L=21=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6
[} SGC GCN ACMGCN
g’ L= = L=0 =0
s L= L=1 =1 L=
© L= = L=2 = -10
[= =3 -
c
[} L= = L=4 =
N - s -
g = L= L=6 -
[L=0L=11=21=3L=4L=51=6 L=0L=11=21=31=41=51=6 L=0L=11=21=31=41=51=6 L=01=11=21=31=41=51=6 L=0L=11=21=31=41=51=6 Lo9
GCN GCNII ACMGCN
= L=0 L=0 = [|
= L=1 L=1 L=1
<
[-)} - L=2 L=2 L=2
E L=3 L=3 L=3 L=3 -08
1] L=4 L=4 L=4 L=4
o s L=5 L=5 L=5
= | L=6 L=6 L=6
L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=21L=3L=4L=5L=6 L=0L=1L=21L=3L=4L=5L=6 L=0L=1L=21=31=4L=51L=6
-0.7
GCN ACMGCN
= - = L=t -
= - - -
X ! .
1% = = _
- - -0.6
= = L=4 =4
- - } L=5
L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6
GCN GCNII ACMGCN 05
- - -0
-
© L= 1 L=1 L=
[- -
T
2 _ _
] L= =. L= o
E L= 5 =! -
L=t = -
L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6
SGC GCN GAT GCNII ACMGCN
" L=1 L=1 L=1 L=1 L=1
5 =2 L=2 L=2 L=2 L=2
‘e L=3 L=3 L=3 L=3 L=3
g L=4 L=4 L=4 L=4 L=4
L=5 L=5 L=5 L=5 L=5
L=6 L=6 L=6 =6 [L=6
L=0L=1L=2L=3L=4L=51L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=51L=6 L=0L=1L=2L=3L=4L=5L=6 L=0L=1L=2L=3L=4L=5L=6
SGC GCN GAT GCNII ACMGCN
n - = = = =
2 - L=0 = L=0 =0
5 L= L=1 = L=1 L=1
o L= L=2 = L=2 L=2
L= L=3 - =3 =3
a
6_ L=4 L=4 L=4 L=4 L=4
© L=! L=5 = L=5 - =
c - - - - -
H L= L=6 = L=6 - =

L=0L=11=21=31=41=5L=6

L=01=11=21=3L=41=51=6

L=01=1L=21=31=41=5L=6

L=0L=11=21=3L=41=51=6

L=0L=1L=21=31=41=51=6

Figure 14: The overlapping ratio matrices for scope experts on heterophilous datasets.

* GAT and GCNII: In these architectures, deeper experts sometimes outperform shallow

experts even in heterophilous regions.

* ACMGCN: Here, deeper experts consistently outperform shallow experts in heterophilous

regions.

A possible explanation for these differences is that GAT, GCNII, and ACMGCN incorporate specific
designs for handling heterophilous information. For instance, GAT uses attention-based neighbor
aggregation, GCNII applies inception residual connections, and ACMGCN integrates both high-pass
and full-pass filters. In contrast, SGC and GCN lack these mechanisms. In particular, stacking

multiple high-pass and full-pass filters appears to be highly effective for learning heterophily.

33

Genn ACMGEN

Accuracy Difference

chameleon

12 3 a4 s e 12 3 a4 s 6 12 3 a4 s 6 12 3 a4 s 6 12 3 a4 s s

ACMGEN

Accuracy Difference

squirrel

12 3 a4 s s

ACMGEN

gs

amazon_ratin

O

ACMGEN

penn94

12 3 4 s 6

sac Gen AT Genn ACMGEN

flickr

2 3 4 s
Homophily Group

2 3 a4 s 2 3 a4 s T 2 3 a4 s
Homophily Group Homophily Group. Homophily Group Homophily Group

Figure 15: Test accuracy differences between deeper and shallow experts. Positive values (blue)
indicate deeper experts perform better, while negative values show shallow experts perform better.
The red dotted line shows the average homophily ratio of the training set. We have can observe the
following trends. The deeper variants of homophilous GNNs (e.g., SGC, GCN) tend to perform
worse than their shallow counterparts in heterophily regions. For GNNs designed for heterophily
(e.g., GAT, GCNII, ACMGCN), in some cases, their deeper variants can outperform shallow ones in
heterophily regions. Notably, the deeper variant of ACMGCN consistently outperforms its shallow
variant across all datasets, which underscores the effectiveness of its high-pass filter in leveraging
heterophily.

G.9.3 Ensembling Upper-bound

We further investigate the extent of the observed generalization disparity across different GNN
architectures and datasets. Specifically, for a given set of scope experts, we determine the upper
bound by calculating the percentage of nodes correctly predicted by at least one expert. Figures[16]
and[T7)illustrate the upper bounds for homophilous and heterophilous datasets, respectively.

Across representative GNN architectures, all datasets exhibit sub-linear curves and notable accuracy
improvements, ranging from approximately 10% to 50%, as L,y increases. This trend suggests that
test-time scaling is promising by increasing the number of experts for different scopes.

Furthermore, our findings indicate that GAT, GCNII, and ACMGCN are best performing architectures
with sufficiently large Ly,.x, whereas SGC tends to perform the worst. These results underscore the
critical role of expert architectural design.

34

—— SGC —— GCN —— GAT —— GCNII —— ACMGCN

pubmed arxiv
0.85
0.96
§ 0.80
5 094 075
S
< 092 0.70
‘ﬁ 0.65
= o090
0.60
0.88 0.55
0 2 4 6 0 2 4 6

Limax

Figure 16: Upper-bound test accuracy achieved by scope expert ensemble on homophilous datasets.
We report the percentage of nodes correctly predicted by at least one expert with the depth ranging
from L = 0 to n (where n < 6).

— SGC —— GCN —— GAT —— GCNIIl —— ACMGCN
chameleon squirrel amazon_ratings penn94
0.75 08
0.70 0.7 0.95
0.65 0.7
0.90
0.60 / 0.6
055 06 0.85
0.50 0.5
0.5 0.80
5045
© 0.40 04 0.75
3 0.4
g o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6
% flickr arxiv-year 1.00 genius snap-patents
L 0.8
0.70
0.7 0.05 07
0.65
0.6 0.6
0.60 0.90
0.5
0.5
0.55 o085
0.4
0.50 0.4
0.80 0.3
o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6
Lmax

Figure 17: Upper-bound test accuracy achieved by scope expert ensemble on heterophilous datasets.
We report the percentage of nodes correctly predicted by at least one expert with the depth ranging
from L = 0 to n (where n < 6).

G.10 Analysis of the Gating Weights

Figure[I8|and Figure[T9)illustrate the distributions of gating weights for various experts in Moscat.
The results indicate that Moscat effectively learns gating weights, thereby preventing the collapse
issue (i.e., some experts receive extremely small weights across nodes) as noted in prior studies [53,
[58]]. Moreover, the gating model tends to assign larger weights with greater variance to shallow
experts (e.g., Scope-0 and Scope-1) compared to deeper ones. This behavior suggests that Moscat

GAT GCNII ACMGCN

E

ugoooog,

SHALLLE

pubmed
Density

10 10 10
0 - 0 o) 0
0135 0140 0145 0150 0135 0140 0145 0150 0135 0140 0145 0150 0135 0140 0145 0150 0.55
GCN GCNII ACMGCN
50 60 A 80 70 60
[70
o s 60 50
- 60 50
> = a0 40
s 2, 50
3 a 40
1] 30 40 30
© 020 30
20 2 2 20
10 *
10 0 10 0
£ - 0 0 2 0
0135 0140 0145 0.150 0.155 0135 0140 0145 0.150 0135 0140 0145 0150 0135 0140 0145 0.150

value value value value

Figure 18: Learned attention-based gating weight distributions on homophilous datasets. Different
color denotes the weight distributions for different scope experts.

35

SGC GCNII ACMGCN
50
50 20 70
40 35 60
H s
o 5 30 = 50
- 23 =3
] @ 30 25 = L=4 40
£ @ 20 (=R
[20 = L=6 30
2 15
20
[*] 10 10 10
s 10
4 0 0 4 0
0135 0140 0145 0.150 0135 0140 0145 0150 0160 0165 0170 0175 014 015 016 0135 0140 0145 0150
SGC GCN GAT GCNII ACMGCN
. 40
35
—_ 50 2
[
L £ 25
3 G 2
T o 15
wn 20
10
10 5
4 0
0135 0140 0145 0150 0.155
SGC
g 70 80
e 60 70
= 60
“".f .50
- £ 50
| @40
c S 40
a o 30
© 20 20
g 10 10
4 o

0
0140 0145 0.150 0140 0145 0150 0155 0135 0140 0145 0.150 0.155 0135 0140 0145 0.150

SGC GCN GCNII

penn9%4
Density

013 014 015 016 017

GCNII ACMGCN

60 70
50 60
s0
L 2w
v 2 ©
= o3
& O 30
20 20
10 10
o
0.135 0.140 0.145 0.150 0.13 0.14 0.15
SGC GCNII ACMGCN
50
50
E a0
40
[>
> 2 30
d 2 30
> f=4
s g 20
x 20
-
© 10 10
o o 0 o
013 014 015 016 017 013 014 015 016 017 0135 0.140 0.145 0.150 0.135 0.140 0.145 0.150 0.155 0.12 0.14 0.16
100 SGC GCN GAT GCNIl ACMGCN
100 120
80
80 100
a s
'E ﬁ 0 60 &
c =4
QO 9 4 60
o O 40
40
20
20 20
o o 0 - . o
0135 0140 0145 0150 0.155 0130 0135 0140 0145 0.150 0130 0135 0140 0.145 0.150 0135 0140 0145 0135 0140 0145 0150
value value value value value

Figure 19: Learned attention-based gating weight distributions on heterophilous datasets. Different
color denotes the weight distributions for different scope experts.

36

learns more personalized weights for shallow experts, while it adopts a more uniform weighting
scheme for deeper experts. One plausible explanation for this trend is that increasing the scope size
leads to a higher likelihood of overlapping neighbors among different nodes. Therefore, the gating
model tends to learn the same weight on deeper experts for these nodes.

37

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract clearly reflects the contribution and scope of the paper.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The proposed method might not be effective for datasets with high homophily
ratios (e.g., with homophily score larger than 0.8). Please refer to Section [3.3|for details.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

38

Justification: Our theory assumptions and proofs are mentioned in Section 3]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section [4]of the paper, we provide a detailed description of the method we
propose. Experimental settings and hyperparameters are reported in the Appendix [F}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39

Answer: [Yes]

Justification: The code is available in an anonymous repository and is included in the
Supplemental Material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the experimental setup and hyperparameters are provided in the
Appendix [F}
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviation across multiple runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

40

https://anonymous.4open.science/r/adapt-hop-D7FC/README.md
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include all the details in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[NA]

Justification: The paper proposes a general-purpose algorithmic method and does not target
any specific application domain, so societal impacts are expected to be minimal and were
not discussed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

41

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper provides code but does not release any data or models with potential
for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the creators or original owners of assets used in our paper are cited
properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

42

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new algorithm and provides code with basic documen-
tation.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

43

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were only used for minor editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

44

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Understanding Generalization Disparity across GNN Scope Experts
	Unpacking the Depth Dilemma: Why Do GNNs Struggle with Generalization?
	Subgroup Generalization Bound for GNNs with Varying Scopes: A Data-Centric Perspective
	Performance Disparity across Scope Experts on Real-World Datasets

	Proposed Method: GNN-Moscat
	The MoE Workflow
	Discussion and Analysis

	Experiments
	Experimental setup
	Performance comparison
	Ablation study
	Case Study: how Moscat become effective?

	Conclusion
	Related Work
	Graph neural networks meet heterophily
	GNNs with personalized scoping
	Graph Mixture of Experts

	Proof
	Supplementary Preliminaries
	Scope and Depth
	Homophily Metrics
	GNN Basics.
	Personalized Scoping.

	Supplementary Analysis for Deeper GNNs' Failure
	Compare Expert-Gate Joint Training MoEs with Independent Train-then-Merge MoEs
	Experimental Settings
	Datasets
	Moscat and Moscat
	Baselines
	Hyperparameters
	Software and Hardware

	Additional Experiments and Analysis
	Leaderboard Comparison
	Runtime Analysis
	Space Analysis
	Depth Analysis
	Empirical Evidence of Deeper Soft Scoping Methods Suffer from Overfitting
	Supplementary Details for Heterophily-Biased Sample Filtering
	How Expert Training Affects Moscat Performance
	Interpretation and Visualization
	More Empirical Findings of Performance Disparity across Scope Experts
	Overlapping Ratio
	Performance Disparity
	Ensembling Upper-bound

	Analysis of the Gating Weights

