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Abstract001

Large Language Models (LLMs) have demon-002
strated exceptional proficiency in language-003
related tasks, but their deployment poses sig-004
nificant challenges due to substantial memory005
and storage requirements. Weight-only quan-006
tization has emerged as a promising solution007
to address these challenges. Previous research008
suggests that fine-tuning through up and down009
rounding can enhance performance. In this010
study, we introduce SignRound, a method that011
utilizes signed gradient descent (SignSGD) to012
optimize rounding values and weight clipping013
within just 200 steps. SignRound integrates014
the advantages of Quantization-Aware Training015
(QAT) and Post-Training Quantization (PTQ),016
achieving exceptional results across 2 to 4 bits017
while maintaining low tuning costs and avoid-018
ing additional inference overhead. For example,019
SignRound achieves absolute average accuracy020
improvements ranging from 6.91% to 33.22%021
at 2 bits. It also generalizes robustly to recent022
models and achieves near-lossless quantization023
in most scenarios at 4 bits. The source code024
will be publicly available.025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated remarkable proficiency in a variety of028

language-related tasks (Touvron et al., 2023a).029

However, deploying LLMs poses significant chal-030

lenges due to their extensive memory and storage031

requirements. Additionally, the computational de-032

mands of these models create obstacles for real-033

time applications. Therefore, studying techniques034

such as quantization is crucial for enabling the ef-035

ficient deployment of LLMs. Quantization tech-036

niques can be broadly categorized into two main037

types: quantization-aware training (QAT) (Esser038

et al., 2020; Zhuang et al., 2021; Lee et al., 2021;039

Liu et al., 2023b) and post-training quantization040

(PTQ) (Nagel et al., 2019; Xiao et al., 2023; Fran-041

tar et al., 2022; Nagel et al., 2020).042

QAT involves training the model with quantiza- 043

tion in mind, using simulated lower-precision repre- 044

sentations to allow the model to learn and adapt to 045

the effects of quantization. This approach often re- 046

sults in better accuracy compared to PTQ. However, 047

QAT has drawbacks, including increased training 048

complexity, longer training times, and the need to 049

tune hyperparameters. The application of QAT 050

to LLMs can be particularly resource-intensive, 051

despite recent efforts (Hu et al., 2021; Dettmers 052

et al., 2023) to improve the efficiency of fine-tuning 053

LLMs. 054

On the other hand, PTQ directly quantizes the 055

model without any simulated training or fine- 056

tuning. While PTQ is a more straightforward ap- 057

proach, it is susceptible to significant accuracy 058

drops. This underscores the importance of further 059

advancements in PTQ methods to enhance their 060

accuracy preservation capabilities. 061

Quantization commonly applies to two types of 062

tensors: activations and weights. Quantizing acti- 063

vations for LLMs can be challenging (Wei et al., 064

2023; Xiao et al., 2023; Bondarenko et al., 2024), 065

making weight-only quantization a more practical 066

option. Moreover, the main bottleneck in generat- 067

ing new tokens for LLMs often arises from memory 068

bandwidth limitations (Kim et al., 2023a), empha- 069

sizing the advantage of weight-only quantization. 070

This study focuses on weight-only quantiza- 071

tion. In quantizing weights, a critical step involves 072

rounding, primarily achieved through rounding- 073

to-nearest (RTN). RTN quantizes each weight in- 074

dependently by rounding it to the nearest integer, 075

but it overlooks the relationships between weights 076

and between weights and activations. Nagel et al. 077

(Nagel et al., 2020) explored the potential for an 078

enhanced rounding strategy to improve accuracy. 079

They approached the rounding task by formulating 080

it as a quadratic unconstrained binary optimization 081

problem and approximating the loss using a Tay- 082

lor series expansion. However, relying solely on 083
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the second-order term may not yield accurate re-084

sults, as rounding can significantly modify weights,085

making other order terms non-negligible.086

We selected SignSGD as our optimization087

method to approach the optimal rounding solution088

within a limited number of steps, inspired by the089

well-defined boundaries of the solution space. This090

space is confined to ranges of [-0.5, 0.5] for round-091

ing and [0, 1] for weight clipping scales, offering092

several advantages for SignSGD. Firstly, the op-093

timal values for up and down rounding typically094

reside in a large region rather than a single float, as095

only the threshold for altering the rounding value096

is significant. This eliminates the necessity for097

the gradient magnitude to converge precisely to098

a single point. Secondly, due to these confined099

boundaries, SignSGD allows efficient navigation100

of this space within a limited number of steps. In101

contrast, optimizers like Adam (Kingma and Ba,102

2014) may struggle due to significant variations103

in gradient magnitude, making it challenging to104

converge to the optimal value within a restricted105

number of steps. Thirdly, SignSGD is inherently106

intuitive, facilitating easy adjustment of the step107

size (learning rate). For example, we employed the108

same optimizer hyperparameters across all exper-109

iments unless explicitly stated, consisting of 200110

steps and a learning rate of 5e-3, with linear weight111

decay. This ensures that 200× 0.005/2 = 0.5 cov-112

ers the range of [-0.5, 0.5] for rounding and [0.5, 1]113

for weight clipping, which works well in practice.114

Fourthly, SignSGD stands out for its lightweight115

nature compared to other optimizers, requiring less116

memory and computational resources. Figure 1117

provides an overview of our method. Our contribu-118

tions primarily lie in three aspects:119

• We introduce a concise yet effective method120

for optimizing the weight only quantization,121

combining the strengths of both QAT and122

PTQ. Our approach leverages SignSGD to123

tune the rounding with the weight clipping,124

without introducing any additional overhead125

during inference.126

• Our empirical results demonstrate a signifi-127

cant performance enhancement compared to128

recent works across various quantization con-129

figurations, ranging from 2-bit to 4-bit.130

• We demonstrate that SignRound’s perfor-131

mance can be further enhanced by fine-tuning132

model-specific hyperparameters within a con-133

strained space. Moreover, our method demon- 134

strates strong generalization across various 135

models and delivers nearly lossless results 136

across the majority of scenarios using 4-bit 137

quantization. 138

2 Related Work 139

Quantization Aware Training. QAT methods 140

have gained widespread popularity in model com- 141

pression, as they enable the fine-tuning process 142

(Esser et al., 2020; Zhuang et al., 2021; Lee et al., 143

2021), often leading to superior accuracy compared 144

to the PTQ method. 145

Post-training Quantization (PTQ). PTQ meth- 146

ods simplify the quantization process without the 147

need for additional training. (Nagel et al., 2019; 148

Liu et al., 2021; Frantar and Alistarh, 2022; Has- 149

sibi et al., 1993; Yao et al., 2021). Given its low 150

resource requirement, PTQ is particularly suitable 151

for the quantization of Large Language Models 152

(LLMs). 153

Large Language Models Quantization. Signif- 154

icant strides have been made in addressing the 155

pressing need for quantizing large language mod- 156

els (LLMs). GPT3.int8() (Dettmers et al., 2022) 157

introduces a mixed-precision approach to preserve 158

crucial channels in high precision. AQLM (Mao 159

et al., 2024) builds upon Additive Quantization, a 160

classic algorithm from the Multi-Codebook Quan- 161

tization family, adapting it to LLM quantization. 162

ZeroQuantV2 (Yao et al., 2024) employs low-rank 163

matrices to enhance model quality recovery. RPTQ 164

(Yuan et al., 2023) addresses range differences be- 165

tween channels by rearranging and quantizing them 166

in clusters. LLM-QAT (Liu et al., 2023b) employs 167

QAT to enhance performance. Some other methods, 168

such as SPIQ (Yvinec et al., 2023b), SmoothQuant 169

(Xiao et al., 2023), and Outlier Suppression+ (Wei 170

et al., 2023), utilize handcrafted equivalent trans- 171

formations to mitigate quantization errors. These 172

methods rely on the model architecture to fuse the 173

equivalent transformation operations. 174

Weight Only Quantization. Weight-only quan- 175

tization reduces the memory footprint and band- 176

width demands by quantizing only the weights 177

while retaining activations in floating-point pre- 178

cision, offering a promising balance between ac- 179

curacy and compression. GPTQ (Frantar et al., 180

2022) optimizes weights using the Optimal Brain 181
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Figure 1: An illustration of SignRound. Unlike the direct rounding in RTN, SignRound performs signed gradient
descent to fine-tune the rounding and weight clipping through block-wise output reconstruction. After lightweight
forward and backward steps, WINT4 has been well optimized. Note that Quant and Dequant are two standard
operations for quantization and dequantization respectively.

Surgeon technique (Hassibi et al., 1993), achiev-182

ing low-bit quantization on LLMs with minimal183

tuning overhead. AWQ (Lin et al., 2023) follows184

the equivalent transformation approach with addi-185

tional tuning in a constrained space, sharing similar186

limitations with SmoothQuant (Xiao et al., 2023).187

TEQ (Cheng et al., 2023) and OmniQuant (Shao188

et al., 2023) both utilize a trainable equivalent trans-189

formation, while OmniQuant employs extra weight190

clip tuning. HQQ (Badri and Shaji, 2023) acceler-191

ates quantization for large models by eliminating192

the need for calibration data, making the quanti-193

zation process extremely fast. Some other works194

have incorporated optimization methods with ex-195

tra inference overhead to improve quantization ac-196

curacy, such as dense-and-sparse decomposition197

techniques in SqueezeLLM (Kim et al., 2023a) and198

EasyQuant (Tang et al., 2023), as well as nonuni-199

form quantization methods in NUPES (Yvinec200

et al., 2023a), QuIP# (Tseng et al., 2024),(Gong201

et al., 2024), AQLM (Mao et al., 2024), etc. Ad-202

ditionally, FineQuant (Kim et al., 2023b) intro-203

duces a straightforward heuristic weight quanti-204

zation approach that adaptively determines quan-205

tization granularity. In this work, we focus on ap-206

proaches that do not introduce overhead during207

inference.208

Rounding Methods. Adaptive Rounding (Nagel209

et al., 2020) has already showcased the potential of210

an advanced rounding strategy to enhance accuracy211

(Li et al., 2021; Wei et al., 2022). They used the212

rounding task as a quadratic unconstrained binary213

optimization problem by approximating the task214

loss through a Taylor series expansion. However,215

considering only the second-order term may not216

yield accurate results. This is because the round-217

ing value gets multiplied by a scaling coefficient 218

during de-quantization, potentially introducing sig- 219

nificant weight changes that make other order terms 220

non-negligible. FlexRound (Lee et al., 2023) in- 221

troduces a more flexible approach to rounding by 222

incorporating element-wise division. However, it’s 223

not easily scalable to apply to LLMs due to the 224

needs of specialized hyperparameters for each spe- 225

cific model and task. Furthermore, Oscillation-free 226

(Liu et al., 2023a) suggests that the introduction of 227

learnable parameters might result in weight oscilla- 228

tion problems. AQuant (Li et al., 2022) introduced 229

a dynamic approach where the border becomes a 230

function dependent on the activation value to re- 231

duce the quantization error of activation. 232

Signed Gradient Descent. Signed gradient de- 233

scent is not commonly utilized and is typically ap- 234

plied in specific scenarios, such as reducing com- 235

munication costs. This is because signed gradient 236

carries significantly less information compared to 237

original gradient. Recent studies have shed light 238

on the advantages of sign-based methods over gra- 239

dient descent in certain conditions. Safaryan et 240

al. (Safaryan and Richtárik, 2021) found that sign- 241

based methods are preferable when the Hessian 242

matrix is concentrated on its diagonal and the max- 243

imal eigenvalue is much larger than the average 244

eigenvalue. Li et al. (Li et al., 2023a) investigated 245

a variant of sign-based gradient descent that ex- 246

hibits faster convergence. Safaryan et al. (Safaryan 247

and Richtárik, 2021) proposed a stochastic sign de- 248

scent with momentum, which converges under the 249

standard bounded variance assumption with the op- 250

timal asymptotic rate. These findings contribute to 251

a better understanding of the potential benefits and 252

applications of signed gradient descent methods. 253
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Algorithm 1 SignRound
Input: Calibration Data D, learning rate lr, total
steps T , Model M , block module mw with weights
w, batch size bs
Output: best_V , best_α, best_β

1: V ← 0, α ← 1.0, β ← 1.0 , best_l ←
maximum

2: for i← 0 to T do
3: d← draw bs samples
4: x←M(d)m ▷ get the inputs of m
5: yf ← mw(x) ▷ get the output of original

module
6: w̃ ← qdq(w,α, β, V ) ▷ quantize and

dequantize w via Eq.3
7: yq ← mw̃(x) ▷ get the output of quantized

module
8: loss← mse(yq, yf ) ▷ get the loss via

Eq.5
9: loss.backward()

10: if loss < best_l then
11: best_V, best_α, best_β ← V, α, β
12: best_l← loss
13: end if
14: update α, β and V via SignSGD optimizer
15: end for

3 Methodology254

We begin with an overview of quantization before255

delving into the specifics of our approach. The256

following operations can be utilized to quantize257

and dequantize the weights W :258

W̃ = s ∗ clip(
⌊
W

s
+ zp

⌉
, n,m), n,m ∈ N (1)259

where the rounding operation ⌊·⌉ is typically per-260

formed using the RTN method. Although RTN is261

a straightforward approach, it quantizes each ele-262

ment independently, which results in the loss of263

the ability to model the correlation among differ-264

ent weights or activations. The s represents the265

quantization scale, which can be obtained using the266

following equation, and zp is the zero point.267

s =
max(W )−min(W )

2bit − 1
(2)268

In order to improve the efficacy of the round-269

ing quantization operation, we build upon prior270

research (Nagel et al., 2020) by introducing a train-271

able parameter V to adjust the rounding values.272

W̃ = s ∗ clip(
⌊
W

s
+ zp+ V

⌉
, n,m), n,m ∈ N

(3) 273

Additionally, following recent works (Lin et al., 274

2023; Shao et al., 2023), we introduce two addi- 275

tional trainable parameters, denoted as α ∈ [0, 1] 276

and β ∈ [0, 1], to fine-tune the scale of weight clip- 277

ping. These parameters are incorporated into the 278

equations as follows: 279

s =
max(W ) ∗ α−min(W ) ∗ β

2bit − 1
(4) 280

These modifications enable a more adaptable quan- 281

tization process. We utilize block-wise output re- 282

construction to train these parameters via optimizer, 283

thus framing the optimization as follows. 284

min
α,β,V

∥WX − W̃X∥2F (5) 285

where X is the input of the block and ||·||F denotes 286

the Frobenius norm. 287

Our method distinguishes itself primarily by 288

leveraging SignSGD, with the motivation thor- 289

oughly outlined in Introduction 1. Figure 1 pro- 290

vides an illustration of our approach. And the Pseu- 291

docode 1 presents more details of SignRound. 292

4 Experiments 293

This section presents a comprehensive evaluation 294

of SignRound from multiple perspectives. We be- 295

gin with a brief overview of the LLM architectures 296

and tasks included in our assessment. Next, we 297

provide a detailed comparison between our method 298

and several existing approaches, emphasizing the 299

unique advantages of SignRound. Furthermore, we 300

conduct ablation studies to reinforce the efficacy 301

of our choices and investigate the sensitivity of hy- 302

perparameters. Lastly, we evaluate the generation 303

ability of our method across various recent mod- 304

els. The tuning cost comparisons are provided in 305

Appendix A. 306

4.1 Experimental Settings 307

Evaluation and Tasks. We evaluate multiple 308

language tasks to address the task-agnostic set- 309

ting. Specifically, we present the average accu- 310

racy results for 11 zero-shot tasks, including Hel- 311

laSwag (Zellers et al., 2019), WinoGrande (Sak- 312

aguchi et al., 2021), PIQA (Bisk et al., 2020), 313

LAMBADA (Paperno et al., 2016), TruthfulQA 314
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Config Method Mistral-7B V2-7B V2-13B V2-70B
16 bits 63.30 57.98 61.42 66.12

W4G-1

RTN 58.84 55.49 60.46 65.22
GPTQ 61.37 56.76 59.79 65.75
AWQ 61.36 57.25 60.58 66.28
HQQ 58.40 46.05 46.82 57.47
Omni 60.52 56.62 60.31 65.80
Ours 62.33 57.48 61.20 66.27
Ours* 62.64 57.52 61.23 66.27

W4G128

RTN 62.36 56.92 60.65 65.87
GPTQ 62.32 56.85 61.00 66.22
AWQ 62.16 57.35 60.91 66.23
HQQ 62.75 57.41 60.65 66.06
Omni 62.18 57.30 60.51 66.02
Ours 62.62 57.57 60.85 66.39
Ours* 62.87 57.97 60.90 66.41

Config Method Mistral-7B V2-7B V2-13B V2-70B
16 bits 63.30 57.98 61.42 66.12

W3G128

RTN 58.20 53.81 58.57 64.08
GPTQ 59.91 54.14 59.58 65.08
AWQ 59.96 55.21 58.86 65.12
HQQ 59.33 54.31 58.10 64.80
Omni 58.53 54.72 59.18 65.12
Ours 60.43 56.68 59.44 65.31
Ours* 60.96 56.68 59.78 65.59

W2G128

RTN 30.52 29.94 33.51 38.14
GPTQ 39.61 35.37 42.46 28.47
AWQ 30.06 30.10 32.16 32.23
HQQ 31.41 29.87 35.28 37.42
Omni 32.17 40.74 46.55 51.31
Ours 52.71 48.64 53.46 61.69
Ours* 53.01 50.34 54.16 61.77

Table 1: Average accuracies (↑) across 11 tasks, as detailed in Section 4.1, for LLaMA and Mistral models at
W2-W4. ’Our*’ denotes the highest accuracy achieved among the 8 hyperparameter choices, outlined in Section
4.2, whereas for the 70B model, we tested only a few options.

(Lin et al., 2022), OpenBookQA (Mihaylov et al.,315

2018), BoolQ (Clark et al., 2019), RTE (Dagan316

et al., 2010), ARC-Easy, ARC-Challenge (Clark317

et al., 2018), and MMLU (Hendrycks et al., 2020).318

We use lm-eval-harness (Gao et al., 2023) for all319

the above tasks. Furthermore, we complement our320

evaluation with perplexity (PPL) analysis on Wiki-321

text2 (Merity et al., 2016), PTB (Marcus et al.,322

1993), and C4 (Raffel et al., 2020), following323

the source code1 of GPTQ and Wikitext2 (Mer-324

ity et al., 2016) using lm-eval-harness (Gao et al.,325

2023). However, we argue that perplexity is no-326

tably influenced by outliers, as illustrated in Ta-327

ble 14 for different algorithms. This suscepti-328

bility likely arises from the mathematical expres-329

sion PPL(X) = exp
(
−1

t

∑t
i=1 log pθ(xi|x<i)

)
,330

where assigning a low probability to even one to-331

ken can significantly inflate the perplexity score.332

Consequently, we prioritize the accuracy of the 11333

tasks mentioned above as the primary metric, with334

perplexity data serving as supplementary reference.335

Quantization Configurations. In alignment336

with GPTQ (Frantar et al., 2022), our focus is337

specifically on weight-only quantization, targeting338

the linear layers within transformer blocks. Lay-339

ers such as the embedding layer and typically the340

last linear layer like ’lm-head’ are excluded from341

the quantization process. Our evaluation primar-342

ily centers on W4G-1, W4G128, W3G128 and343

W2G128 configurations, where W4 indicates quan-344

tizing weights with 4 bits and G represents finer-345

grained grouping as described in (Park et al., 2022;346

1https://github.com/IST-DASLab/gptq

Frantar et al., 2022). We adopt asymmetric quanti- 347

zation. To mitigate overfitting on the WikiText and 348

C4 datasets, we randomly select 512 samples with 349

the same seed from the readily available pile-10k 350

dataset 2 for calibration, which comprises the first 351

10k samples from pile (Gao et al., 2020). We used 352

a sequence length of 2048 for calibration, while for 353

other methods, we adhere to their official settings. 354

Large Language Models. We compare differ- 355

ent algorithms on commonly used models such as 356

LLaMA-V1 (Touvron et al., 2023a), LLaMA-V2 357

(Touvron et al., 2023b), and Mistral-7B-v0.1 (Jiang 358

et al., 2023). Our comparison covers a wide range 359

of LLM parameters, ranging from 7B to 70B, to 360

ensure comprehensive coverage and analysis. 361

SignRound Hyperparameters. Unless explic- 362

itly stated, the tuning process involved adjusting 363

each block for 200 steps with a learning rate of 364

5 × 10−3, a batch size of 8, and linear learning 365

rate decay. Additionally, we employed automatic 366

mixed precision (AMP) to accelerate the tuning. 367

4.2 Comparing With Recent Methods 368

In this section, we compare our methods with those 369

that have already demonstrated remarkable results 370

and impose no additional overhead on our tested 371

models in weight-only quantization for LLMs, in- 372

cluding GPTQ (Frantar et al., 2022), AWQ (Lin 373

et al., 2023), HQQ (Badri and Shaji, 2023), Om- 374

niQuant (Shao et al., 2023) with a naive method 375

RTN. 376

2https://huggingface.co/datasets/NeelNanda/
pile-10k
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.

Mistral-7B

16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 55.92 66.10 59.01 71.35 80.14 24.85 29.00 79.17 57.76 77.95 45.99 58.84
GPTQ 58.22 73.45 59.47 74.03 80.20 26.93 31.00 81.50 64.98 78.24 47.01 61.37
AWQ 57.20 71.45 59.21 73.64 79.43 25.34 30.40 82.69 68.95 79.25 47.44 61.36
HQQ 52.65 66.58 59.09 70.56 79.60 23.13 27.80 80.03 59.57 77.02 46.33 58.40
Omni 57.52 70.00 60.27 72.93 79.87 23.99 30.80 81.53 63.90 78.54 46.42 60.52
Ours 59.52 73.76 60.75 73.32 80.09 27.17 33.00 82.02 66.07 80.47 49.49 62.33
Ours* 60.00 73.30 60.57 74.35 80.09 27.91 32.20 83.52 67.51 79.92 49.66 62.64

V2-7B

16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 36.87 67.96 55.63 68.51 76.82 26.19 30.60 73.64 58.84 74.07 41.30 55.49
GPTQ 39.66 71.92 55.89 68.03 77.58 25.09 30.20 76.67 62.09 75.55 41.72 56.76
AWQ 40.24 71.20 56.26 69.61 76.93 26.07 32.60 77.31 63.18 75.00 41.30 57.25
HQQ 28.94 43.96 48.43 59.43 71.82 23.62 24.80 52.11 53.79 64.90 34.73 46.05
Omni 39.82 71.45 55.76 67.56 76.88 25.09 30.80 76.15 64.98 74.12 40.19 56.62
Ours 39.97 71.63 56.52 68.43 77.91 25.70 31.60 76.18 65.70 76.01 42.58 57.48
Ours* 40.85 72.75 56.01 67.88 77.86 25.34 31.80 76.39 66.43 75.88 41.55 57.52

V2-13B

16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 50.37 74.35 59.12 71.98 79.00 24.85 33.00 81.77 64.98 79.08 46.59 60.46
GPTQ 51.14 75.37 59.14 72.06 78.02 25.34 32.20 80.46 62.09 77.36 44.54 59.79
AWQ 51.16 75.98 59.51 70.80 78.40 25.21 34.60 78.26 66.79 79.12 46.59 60.58
HQQ 35.92 49.54 46.27 58.01 72.47 23.99 19.80 61.77 51.26 62.84 33.19 46.82
Omni 51.01 75.45 59.48 71.74 78.94 24.60 33.20 77.37 66.07 78.75 46.76 60.31
Ours 52.30 75.96 59.79 72.30 78.84 25.58 34.00 80.15 66.79 79.38 48.12 61.20
Ours* 52.29 76.15 59.73 71.90 78.51 25.21 34.40 80.24 67.51 79.34 48.21 61.23

V2-70B

16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 63.85 77.62 63.38 76.72 81.50 28.89 37.80 83.39 68.23 81.99 54.10 65.22
GPTQ 64.81 79.27 63.86 76.87 81.61 31.46 36.40 82.23 70.04 82.53 54.18 65.75
AWQ 65.08 78.77 64.14 77.11 81.45 30.48 37.20 83.64 72.92 82.49 55.80 66.28
HQQ 56.45 66.74 53.67 73.32 76.50 25.58 33.40 67.95 61.73 72.90 43.94 57.47
Omni 64.40 79.20 63.91 76.95 81.94 31.70 37.60 82.35 69.31 82.24 54.18 65.80
Ours 65.43 79.55 64.47 78.06 82.10 30.60 36.40 83.91 71.12 82.53 54.78 66.27

Table 2: Detailed accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W4G-1. ’Our*’ denotes
the highest accuracy achieved among the 8 hyperparameter choices, outlined in Section 4.2, whereas for the 70B
model, we tested only a few options. Appendix C provides more detailed data.

Model Method Steps Mistral-7B V2-7B V2-13B

W4G-1

Flex
200 58.93 56.10 60.06
1000 60.62 56.98 60.29
5000 60.94 57.49 60.69

Ada
200 58.30 55.06 59.86
1000 58.38 55.05 59.92

Ours
200 62.33 57.48 61.20
200* 62.64 57.52 61.23

W2G128

Flex
200 30.10 30.01 30.66
1000 30.16 31.26 32.29

Ada
200 30.74 30.21 30.36
1000 30.84 30.30 30.02

Ours
200 52.71 48.64 53.46
200* 53.01 50.34 54.16

Table 3: Comparing with some other rounding methods,
the average accuracies (↑) across 11 tasks (detailed in
Section 4.1) for Mistral and LLaMA models at W4G-1
and W2G128.

To ensure fair comparison as much as possible, 377

we enabled act-order and true-sequential in GPTQ 378

and also activated static_group in scenarios with 379

group_size. The notation GPTQ+ indicates that we 380

adjusted the random seed or data pre-processing 381

to address issues related to the non-positive def- 382

inite Hessian matrix or other issues. For Omni- 383

Quant(Shao et al., 2023), we adhere to the official 384

settings, which include running for 20 epochs in- 385

cluding W2G128 for saving time and disabling ’let’. 386

We conducted calibration tests using sample sizes 387

of 512 and 128, as well as a sample size of 512 with 388

a batch size of 4. Our findings show that using a 389

sample size of 512 typically results in comparable 390

or slightly higher performance for models less than 391

or equal to 13B. Therefore, we present the results 392

based on the sample size of 512. For 70B models, 393

due the the Not a Number (NAN) loss issue and to 394

reduce the tuning cost of OmniQuant, we adopted 395
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Config Model 2.5e-3 5e-3 7.5e-3 1e-2 1.25e-2 1.5e-2 1.75e-2 2e-2 SignSGD

W4G-1
Mistral-7B 61.82 61.16 61.30 60.69 60.80 61.07 61.53 61.23 62.33
V2-7B 56.79 57.45 57.09 57.28 56.88 57.24 57.40 57.10 57.48
V2-13B 60.58 60.73 60.76 60.86 61.02 60.79 61.06 60.85 61.20

W2G128
Mistral-7B 37.12 40.37 41.11 42.02 42.86 43.55 43.44 42.44 52.71
V2-7B 42.26 44.64 45.08 45.04 45.15 43.13 38.71 35.73 48.64
V2-13B 47.81 50.01 49.55 50.80 48.67 51.94 38.28 34.67 53.46

Table 4: Comparison of Adam optimizer with various learning rates against the SignSGD optimizer.. The average
accuracies(↑) across 11 tasks (detailed in Section 4.1) for Mistral and LLaMA models at W4G-1 and W2G128.

Config Mistral-7B V2-7B V2-13B Mistral-7B V2-7B V2-13B
W4G-1 W2G128

RTN 58.84 55.49 60.46 30.52 29.94 33.51
Weight clip only 61.10 57.41 60.10 46.60 40.53 49.77
Rounding only 61.62 56.74 60.64 52.32 49.14 54.41
Default 62.33 57.48 61.20 52.71 48.64 53.46

Table 5: Ablation study of round tuning and weight clip tuning. The average accuracies(↑) across 11 tasks(detailed
in Section 4.1) for Mistral and LLaMA models at W4G-1 and W2G128.

128 samples for calibration.396

We present the summary results of Mistral-7B397

and LLAMAV2 in Table 1, detailed results of W4G-398

1 in Table 2, and additional detailed results are pro-399

vided in Appendix C due to space constraints. In400

summary, our approach demonstrated superior per-401

formance compared to GPTQ (Frantar et al., 2022),402

achieving scores of 30/32, AWQ (Lin et al., 2023)403

with 27/32, HQQ (Badri and Shaji, 2023) with404

15/16, and OmniQuant (Shao et al., 2023) with a405

score of 29/32 across llamv1/llamav2/mistral-7b406

on various quantization settings, including W4G-1,407

W4G128, W3G128, and W2G128. These evalua-408

tions were based on the average accuracies of 11409

zero-shot tasks.410

It’s worth noting that as the bit depth decreases,411

the advantages of SignRound become more notable.412

For example, as shown in Table 2, SignRound413

could yield absolute average accuracy improve-414

ments ranging from 6.91% to 33.22% at W2G128.415

Moreover, we can enhance the performance by416

tuning the model’s hyperparameters from a selec-417

tion of eight choices, denoted as ours*. These418

choices include steps (200, 1000), weight clip learn-419

ing rate (1.0/steps, 2.0/steps), and the option to420

either enable or disable quantized inputs, which421

refers to utilizing the output from the previous quan-422

tized block or the previous original block.423

4.3 Comparing with Rounding Methods424

In this section, we conduct a comparative analysis425

between SignRound, FlexRound(Lee et al., 2023),426

and AdaRound(Nagel et al., 2020). Notably, during427

the experiment, there is no formal official imple-428

mentation available for FlexRound and AdaRound 429

for LLMs. Hence, we reference the Code 3 and 430

Code 4 for further details. However, it’s important 431

to highlight that due to the lack of AMP support 432

and other optimizations, the implementation is no- 433

tably slow, especially when adhering to the official 434

settings, which involve tuning 5000 steps, as pre- 435

sented in Table 9. Therefore, our comparison is 436

limited to models of size 13B or smaller. We set 437

the learning rate to 2e-4 for LLaMA-v2-7b and 438

Mistral-7B, and 1e-4 for LLaMA-v2-13b to align 439

with the official settings as closely as possible. As 440

shown in Table 3, SignRound achieves better re- 441

sults in just 200 steps compared to the 5000 steps 442

required by other rounding methods. 443

4.4 Ablation Studies 444

SignSGD versus Adam. To validate the effec- 445

tiveness of SignSGD, Table 4 compares it with the 446

Adam optimizer (Kingma and Ba, 2014). SignSGD 447

employs a fixed learning rate of 5e-3 throughout 448

all experiments, comprising 200 steps, with linear 449

weight decay. For Adam, we explored learning 450

rates ranging from 2.5e-3 to 2e-2. We choose to 451

quantize models of 13B or less with W4G-1 due 452

to the experiment’s cost. SignSGD demonstrated 453

a distinct advantage in average accuracy metrics 454

across 11 tasks, which demonstrate the unique ad- 455

vantage of signed gradient descent in this scenario. 456

Round and Weigh Clip Tuning. To validate the 457

contributions of rounding tuning and weight clip 458

3https://openreview.net/forum?id=-tYCaP0phY_
4https://github.com/quic/aimet
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Model Seqlen_512 Samples_128 Batch_4 Steps_100 Steps_1000 LR_1e-2 Default
Mistral-7B 60.32 61.82 61.78 61.06 62.58 61.27 62.33
V2-7B 57.91 56.41 57.21 57.10 57.19 55.89 57.48
V2-13B 60.88 60.87 61.21 60.80 61.01 61.03 61.20

Table 6: Ablation study of hyperparameter sensitivity. The average accuracies(↑) across 11 tasks(detailed in Section
4.1) for LLaMA models at W4G-1.

Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg. Vari. %

Gemma-2b
BF16 32.87 63.44 52.73 65.04 76.71 22.03 29.80 69.27 64.26 74.20 40.19 53.69 -
Ours 32.97 63.07 51.59 65.43 76.12 22.03 30.00 69.39 63.90 73.53 39.33 53.40 -0.54%

Llama-2-7b-chat-hf
FP16 46.40 71.05 57.80 66.38 76.39 30.23 33.40 79.76 69.68 73.82 44.20 59.01 -
Ours 45.45 70.37 57.06 66.14 76.33 30.35 32.60 80.64 72.92 73.36 43.52 58.97 -0.07%

Llama-3-8B-Instruct
BF16 63.86 71.82 57.69 71.43 78.67 36.23 34.00 82.97 67.51 81.52 52.99 63.52 -
Ours 63.06 72.00 56.99 72.38 77.97 35.37 33.00 83.09 68.59 80.89 51.02 63.12 -0.63%

Mistral-7B-Instruct-v0.2
BF16 59.06 71.41 66.02 73.95 80.52 52.51 36.00 85.35 70.40 81.61 54.35 66.47 -
Ours 58.72 71.41 65.57 73.64 80.47 51.53 34.20 85.41 71.48 81.65 54.35 66.21 -0.39%

Mixtral-8x7B
BF16 68.02 78.27 64.90 76.48 82.48 34.27 35.40 85.23 70.76 84.30 56.66 66.98 -
Ours 66.93 78.25 64.59 75.14 82.10 32.19 35.60 84.74 69.31 84.30 56.48 66.33 -0.97%

Mixtral-8x7B-Instruct
BF16 68.85 77.18 67.67 76.87 83.51 49.69 36.80 88.50 71.84 86.99 62.20 70.00 -
Ours 68.24 77.90 67.45 77.19 83.35 48.84 37.20 87.83 70.04 87.12 62.29 69.77 -0.33%

Phi-3-mini-4k-instruct
BF16 67.97 68.08 60.64 74.03 80.30 39.53 38.80 86.21 77.98 83.54 55.72 66.62 -
Ours 66.59 67.71 59.70 74.59 79.33 37.45 38.80 85.66 79.06 82.70 56.83 66.33 -0.44%

Table 7: Accuracies(↑) across 11 tasks(0-shot) with 1000 steps for LLMs at W4G128

tuning, we conducted ablation studies on three mod-459

els with two quantization configurations. As shown460

in Table 5, each component provides benefits over461

RTN, with rounding tuning offering greater advan-462

tages. However, when combined, weight clip tun-463

ing can sometimes result in lower accuracy in cer-464

tain cases at W2G128.465

Hyperparameters Sensitivity. To validate the466

sensitivity of hyperparameters in SignRound, we467

conducted ablation studies on sequence length for468

calibration, the number of samples for calibration,469

tuning batch size, tuning steps, and tuning learning470

rate. The results are presented in Table 6. Over-471

all, our default hyperparameters achieved balanced472

results.473

4.5 Generalization to Other Models474

To assess the generalization of our method on475

LLMs, we evaluate SignRound on various main-476

stream LLMs such as Gemma (Team et al., 2024),477

Phi (Li et al., 2023b), Mistral (Jiang et al., 2023),478

Mixtral (Jiang et al., 2024) and Llama3 (Touvron479

et al., 2024). Table 7 demonstrated that all int4480

models maintained an accuracy drop within 1% of481

FP16 or BF16 accuracy by employing 1000 tuning482

steps and model wise hyperparameters among 4483

choices detailed in Section 4.1. Notably, the gener-484

alization experiments utilized an updated version485

(0.4.0+) of lm-eval-harness (Gao et al., 2023) and486

real quantized models, which may result in minor 487

discrepancies compared to other benchmark data. 488

5 Conclusions 489

In this paper, we introduce SignRound, an efficient 490

and concise approach for optimizing weight round- 491

ing in the quantization of large language models. 492

SignRound employs signed gradient descent for 493

tuning rounding value and weight clipping in 200 494

steps, completing the quantization of LLAMA-V2- 495

70B in approximately 2.5 hours. Our extensive ex- 496

periments show that SignRound outperforms other 497

quantization methods across various models and 498

weight bits in the majority of scenarios. Addition- 499

ally, SignRound shows promising generation ca- 500

pabilities in recent models and achieves enhanced 501

performance through model-specific hyperparame- 502

ter tuning. 503

6 Limitations 504

Despite the advantages, we observed a notice- 505

able gap in accuracy performance for ultra-low bit 506

quantization, particularly with 2-bit quantization, 507

compared to the original model. This challenge 508

could potentially be addressed by exploring non- 509

uniform quantization and mixed-precision quanti- 510

zation, which we leave for future work. 511
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7 Ethics Statement512

Our research aims to advance knowledge in LLM513

quantization. SignRound utilizes open-source mod-514

els and publicly available datasets, and is not tied515

to particular applications, requiring only minimal516

fine-tuning steps on the original models. This en-517

sures that the technical details of our method carry518

no potential ethical implications. We acknowledge519

the contributions of the creators and maintainers of520

these resources and provide citations to the original521

sources.522
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Model GPTQ AWQ HQQ OmniQuant Ours
LLaMAV2-7B 1821 1328 19 10255 1041
LLaMAV2-13B 3266 2630 30 18186 1918
LLaMAV2-70B 18517 13586 119 35694 9116

Table 8: Quantization cost in seconds at W4G-1 for LLaMA2. Align with the accuracy experiments, OmniQuant
70b is tested with 128 calibration samples, while all the others are tested with 512 samples.

Method FlexRound AdaRound Ours
Mistral-7B-V0.1 9369 9332 1045
LLaMAV2-7B 9628 9701 1041
LLaMAV2-13B 17583 17865 1918

Table 9: Quantization Time (seconds) of Rounding
Methods at W4G-1 with 200 steps for LLaMA V2 Mod-
els and Mistral-7B.

A Quantization Cost834

Table 8 compares the quantization costs of dif-835

ferent methods, with all measurements conducted836

on a single NVIDIA A100 GPU with 80GB of837

memory. We ensure each evaluation process ex-838

clusively occupies one GPU, but CPU and other839

resources may be shared among different processes840

due to limited resources. For SignRound, we dis-841

abled low_gpu_mem_usage in our implementation842

to achieve faster tuning, albeit with higher memory843

usage. Despite this, LLaMAV2-70B was still able844

to run on an A100 GPU with 80GB of memory.845

Although HQQ is exceptionally fast, our methods846

outperform others in terms of speed. Table 9 also847

compares the costs between FlexRound, Adaptive848

Round, and our method.849

B View of distribution of tuned850

parameters851

Figure 2 illustrates the distribution of the magni-852

tudes of V in Eq.3 and α, β in Eq. 4 for Mistral-853

7B-v0.1 and LLaMA-2-7B at W4G-1. The results854

indicate that the distribution is flat for most layers,855

except for a few layers at the beginning and the856

end.857

C More results858

We present the detailed accuracy results for 11 tasks859

using the LLaMA and Mistral models, ranging in860

size from 7B to 70B, at W2-W4 in Tables 10, 11,861

12 and 13. The detailed perplexity (PPL) results862

are shown in Table 14. Overall, SignRound demon-863

strates a clear advantage in accuracy tasks, par-864

ticularly in ultra-low bit quantization, achieving865

state-of-the-art performance compared to several866

popular weight quantization methods. In terms 867

of perplexity (PPL), SignRound outperformed all 868

other methods in 83 out of 124 scenarios, demon- 869

strating its advantages. However, we observed that 870

several quantization algorithms, including Sign- 871

Round, exhibit sensitivity across different models 872

and tasks. The reason for this sensitivity is detailed 873

in Section 4.1. 874
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 31.34 70.02 55.35 69.77 77.69 20.32 32.60 73.43 59.57 74.45 41.30 55.08
GPTQ 29.06 71.08 55.11 70.01 77.37 20.93 32.20 72.69 63.90 74.66 41.64 55.33
AWQ 33.33 70.81 55.98 68.27 78.07 21.18 31.40 74.37 64.62 74.03 41.21 55.75
Omni 32.52 72.13 55.87 70.17 78.35 22.77 32.80 75.05 66.07 75.13 40.19 56.46
Ours 31.80 71.96 56.57 69.53 79.00 21.91 33.20 75.72 66.79 74.83 43.09 56.76

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 39.57 70.93 58.82 71.98 78.02 24.85 32.00 78.20 66.43 75.67 44.62 58.28
GPTQ+ 40.01 74.67 58.92 71.03 78.45 26.44 33.60 77.09 68.23 76.85 44.97 59.12
AWQ 44.56 74.13 59.13 71.27 78.94 25.83 33.20 76.42 66.06 76.89 46.67 59.37
Omni 43.66 75.59 59.36 72.38 78.89 25.34 32.20 75.99 69.68 77.10 45.65 59.62
Ours 43.94 75.82 59.51 72.22 78.78 25.70 32.80 77.34 67.51 76.47 46.67 59.71

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 53.05 75.65 62.08 74.82 80.09 25.95 35.80 81.87 63.54 79.76 50.26 62.08
GPTQ 53.04 77.22 61.95 73.80 80.69 27.29 34.60 81.07 66.06 78.79 49.15 62.15
AWQ 54.13 76.77 62.78 74.11 81.07 27.78 35.00 82.66 67.15 79.97 51.71 63.01
Omni 53.43 77.64 62.73 75.30 80.58 26.56 35.40 82.51 67.87 79.76 50.51 62.93
Ours 54.72 77.84 62.91 75.06 80.69 26.68 36.40 82.60 66.79 80.13 52.13 63.27

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 58.74 76.42 64.12 76.72 81.01 29.25 38.60 84.13 70.40 80.72 51.88 64.73
GPTQ+ 59.10 78.17 63.78 75.69 81.34 28.27 38.40 83.76 68.59 80.98 51.62 64.52
AWQ 58.86 77.37 63.86 76.56 80.85 28.27 35.20 83.94 71.48 78.75 50.94 64.19
Omni 59.59 79.16 64.03 75.93 81.99 27.05 36.80 84.65 71.48 80.98 51.79 64.86
Ours 59.21 79.16 64.37 76.64 81.34 26.81 37.80 84.40 69.68 80.98 51.79 64.74

Table 10: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W4G-1. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 59.72 74.44 61.06 73.40 80.36 27.17 32.60 83.67 64.62 79.63 49.32 62.36
GPTQ 59.17 74.52 60.37 74.90 80.58 26.68 31.00 83.33 67.15 79.67 48.12 62.32

Mistral-7B AWQ 60.20 75.14 60.43 73.80 80.03 27.05 30.40 84.01 62.09 80.39 50.26 62.16
HQQ 60.02 75.41 60.79 74.11 81.01 27.29 32.60 82.97 66.79 79.92 49.32 62.75
Omni 59.71 73.94 60.62 73.56 80.36 26.68 30.80 83.58 65.70 80.01 49.06 62.18
Ours 60.47 75.59 61.03 73.88 80.09 27.54 31.60 83.09 66.07 79.97 49.49 62.62
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 40.91 72.44 56.91 68.35 77.58 24.97 31.20 77.61 56.32 76.26 43.52 56.92
GPTQ 42.57 73.28 56.36 69.06 78.02 25.34 30.20 75.72 57.04 75.63 42.15 56.85

V2-7B AWQ 41.00 72.60 56.40 68.98 77.31 25.70 31.60 78.75 58.48 76.14 43.86 57.35
HQQ 41.79 73.20 56.21 68.43 77.58 25.83 31.60 76.09 62.82 75.84 42.15 57.41
Omni 41.72 73.04 56.59 68.98 77.91 24.97 30.80 75.81 61.37 75.76 43.34 57.30
Ours 41.82 72.75 56.79 68.67 78.13 25.58 30.20 77.49 63.54 75.76 42.58 57.57
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 52.10 76.27 59.77 72.14 78.62 24.72 34.20 80.24 62.09 79.00 47.95 60.65
GPTQ 52.66 76.54 59.76 72.14 78.35 25.70 34.00 79.33 66.43 78.58 47.53 61.00

V2-13B AWQ 52.39 76.89 59.97 73.24 79.00 25.21 32.60 80.40 63.54 79.04 47.70 60.91
HQQ 52.09 75.74 59.46 72.14 78.45 24.36 33.60 79.17 66.06 79.00 47.01 60.65
Omni 52.01 76.17 59.53 72.06 78.35 23.87 33.40 80.80 66.07 78.37 47.18 60.51
Ours 51.92 76.46 59.87 71.67 79.00 25.83 35.20 79.60 63.54 79.25 47.01 60.85
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 64.91 79.06 63.93 78.14 81.66 30.11 37.00 83.61 68.59 82.79 54.78 65.87
GPTQ 65.63 79.22 64.45 78.22 81.88 31.09 37.00 84.19 69.31 82.79 54.61 66.22

V2-70B AWQ 65.79 79.76 64.48 77.58 82.32 30.72 38.00 83.06 68.95 82.70 55.12 66.23
HQQ 65.34 79.14 64.56 77.35 81.56 30.48 37.20 83.67 69.31 82.83 55.20 66.06
Omni 65.30 79.39 64.52 77.51 81.88 30.60 37.40 83.39 68.23 82.91 55.12 66.02
Ours 65.65 79.49 64.60 78.30 82.05 31.58 37.40 84.83 68.95 82.87 54.52 66.39

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 32.63 72.31 56.26 70.01 78.45 20.93 33.60 74.74 64.26 74.71 42.75 56.42
GPTQ 31.16 72.40 55.85 70.09 78.13 22.28 30.40 74.65 64.26 74.20 40.19 55.78
AWQ 33.42 72.95 56.30 68.75 77.97 21.42 32.80 74.89 62.09 75.00 41.21 56.07
Omni 31.15 72.35 56.25 69.22 78.35 21.42 33.80 74.74 65.70 74.87 42.06 56.36
Ours 32.15 72.85 56.45 70.17 78.51 22.28 32.80 75.14 67.87 75.13 41.89 56.84

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 42.71 75.26 59.30 72.53 79.54 25.95 32.60 76.76 65.34 76.98 45.82 59.34
GPTQ+ 42.65 75.41 59.51 72.93 79.33 24.97 32.40 77.49 68.23 76.89 45.56 59.58
AWQ 42.66 75.76 59.50 72.77 78.89 26.56 33.60 77.46 68.59 76.94 45.48 59.84
Omni 43.99 76.29 59.53 73.56 79.43 25.83 33.20 77.58 67.15 76.64 45.48 59.88
Ours 42.27 76.17 59.53 73.56 79.33 25.70 32.80 78.20 70.04 76.94 46.25 60.07

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 54.24 77.02 62.90 74.35 80.52 27.29 34.20 81.96 67.15 80.89 52.05 62.96
GPTQ 54.20 77.41 62.79 75.14 80.41 27.54 34.60 81.93 67.51 80.05 50.51 62.92
AWQ 55.14 77.49 63.08 75.77 80.52 27.29 34.20 82.87 67.15 80.43 52.90 63.35
Omni 55.22 77.80 63.09 75.14 80.30 28.52 36.00 82.20 69.31 80.81 52.82 63.75
Ours 54.68 77.90 62.93 74.82 80.47 28.15 35.80 82.39 66.79 80.13 51.11 63.20

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 59.53 79.51 64.63 77.35 80.96 27.91 38.40 84.43 71.48 81.48 52.22 65.26
GPTQ+ 60.47 78.79 64.45 76.24 81.18 28.03 37.40 83.85 68.95 81.57 53.07 64.91
AWQ 59.45 79.31 64.67 76.72 81.56 28.15 38.00 84.43 71.12 81.10 52.13 65.15
Omni 59.27 78.65 64.48 76.87 81.23 27.78 39.00 84.13 70.76 81.57 53.07 65.17
Ours 58.93 79.22 64.48 77.03 81.28 27.91 38.60 84.31 70.76 81.19 52.22 65.08

Table 11: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W4G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 53.49 68.74 58.12 68.27 79.33 24.60 29.60 79.97 57.40 76.89 43.77 58.20
GPTQ 55.84 73.04 57.61 70.24 78.67 24.85 30.80 81.44 63.54 77.27 45.65 59.91

Mistral-7B AWQ 55.61 73.69 57.86 71.27 79.82 26.07 29.00 81.10 59.21 79.00 46.93 59.96
HQQ 53.97 68.66 58.59 72.22 78.73 25.70 30.00 80.24 63.90 76.81 43.86 59.33
Omni 54.79 69.34 58.42 68.51 79.38 24.85 28.80 80.15 56.68 77.74 45.14 58.53
Ours 57.54 73.01 59.60 72.85 79.54 25.70 31.60 81.74 58.12 78.70 46.33 60.43
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 34.22 65.96 54.90 67.56 76.28 24.48 30.80 71.68 54.51 72.98 38.57 53.81
GPTQ 36.11 69.61 53.66 68.59 76.01 21.91 27.80 73.43 54.51 73.74 40.19 54.14

V2-7B AWQ 35.82 69.90 54.98 67.40 76.01 25.21 29.80 74.68 57.76 74.07 41.64 55.21
HQQ 34.40 66.64 53.27 67.01 75.46 25.46 28.80 73.58 61.37 72.94 38.48 54.31
Omni 34.51 69.75 54.42 66.69 76.77 24.24 31.40 73.21 56.68 74.37 39.85 54.72
Ours 40.13 71.01 55.33 68.27 76.82 25.34 32.80 75.32 60.29 75.25 42.92 56.68
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 48.01 72.33 57.74 70.72 78.07 25.21 32.00 77.28 60.65 77.69 44.62 58.57
GPTQ 49.56 75.24 57.83 70.88 78.56 24.97 33.40 78.44 62.82 77.99 45.65 59.58

V2-13B AWQ 49.77 75.22 58.58 71.82 77.75 24.11 34.20 79.97 53.43 77.95 44.62 58.86
HQQ 48.40 73.22 57.66 69.77 77.31 24.11 30.60 76.97 60.29 77.15 43.60 58.10
Omni 47.25 73.67 58.46 70.01 78.40 24.36 33.60 79.79 64.62 77.86 46.16 59.18
Ours 49.64 75.20 59.11 71.59 78.29 24.85 34.20 78.47 58.12 78.58 45.82 59.44
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 61.15 77.95 61.98 77.90 80.79 29.74 36.00 81.28 64.62 81.10 52.39 64.08
GPTQ 63.15 79.06 62.94 77.66 81.45 30.72 36.20 81.53 67.87 81.65 53.67 65.08

V2-70B AWQ 64.09 79.47 63.75 76.48 81.77 29.74 37.20 82.69 66.06 81.40 53.67 65.12
HQQ 63.45 78.05 63.12 77.03 81.01 29.38 36.60 82.23 66.43 81.78 53.67 64.80
Omni 63.18 78.63 63.54 76.48 81.50 30.35 35.80 82.57 70.40 81.02 52.82 65.12
Ours 64.94 78.89 63.83 76.56 81.50 31.21 37.20 81.41 68.59 81.73 52.56 65.31

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 28.00 67.67 53.43 66.38 76.50 21.42 31.20 72.72 59.21 70.92 38.31 53.25
GPTQ 30.16 66.31 53.92 67.48 76.82 21.42 29.60 71.31 59.21 72.22 38.74 53.38
AWQ 30.33 70.19 54.53 68.98 76.71 20.81 31.60 74.68 64.62 73.23 38.91 54.96
Omni 28.35 70.54 54.48 68.27 77.48 21.05 29.40 72.29 66.07 72.73 37.12 54.34
Ours 25.85 70.95 55.45 69.69 77.37 21.66 32.00 73.88 60.29 73.48 39.33 54.54

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 34.87 69.65 57.25 70.48 77.31 26.93 32.00 71.44 62.82 75.63 43.94 56.57
GPTQ 35.51 73.08 57.89 70.80 77.37 24.48 31.40 77.52 62.82 74.41 43.26 57.14
AWQ 40.53 73.94 57.89 69.53 78.94 26.68 33.40 74.83 65.34 75.93 45.05 58.37
Omni 38.35 74.42 57.79 70.80 78.07 26.68 33.20 75.81 65.34 75.88 43.69 58.18
Ours 39.16 75.22 58.64 71.59 78.94 25.95 35.20 76.30 65.34 76.52 45.39 58.93

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 52.41 75.08 61.45 74.27 79.87 25.95 33.00 81.38 65.34 79.12 48.89 61.52
GPTQ 51.39 74.97 60.35 75.30 79.60 26.93 34.80 82.75 64.62 78.11 48.46 61.57
AWQ 53.84 76.71 61.94 75.14 80.03 25.34 34.40 81.90 67.15 79.59 50.77 62.44
Omni 53.67 76.95 61.82 74.51 80.14 25.95 34.40 81.10 66.07 79.76 48.21 62.05
Ours 54.39 77.49 62.13 74.03 80.47 27.30 35.00 79.76 68.59 79.46 48.98 62.51

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 57.47 77.43 63.23 75.93 80.41 28.64 38.40 82.69 66.43 80.22 51.19 63.82
GPTQ+ 57.92 78.69 62.98 76.87 80.63 27.66 37.60 84.16 68.95 80.89 51.19 64.32
AWQ 58.87 77.94 63.77 75.37 80.96 27.66 36.80 85.02 71.12 81.10 50.34 64.45
Omni 57.19 77.00 63.15 75.53 80.90 28.15 37.60 83.18 69.68 80.18 50.51 63.92
Ours 58.30 78.11 63.60 76.56 80.85 29.50 37.80 84.80 70.04 80.22 50.68 64.59

Table 12: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W3G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Mistral-7B, alpha values Llama-2-7B, alpha values

Mistral-7B, beta values Llama-2-7B, beta values

Mistral-7B, V values Llama-2-7B, V values

Figure 2: The distribution of the magnitude of V in Eq. 3 and α, β in Eq. 4 for Mistral-7B-v0.1 and LLaMA-2-7B
at W4G-1, each color in the distribution represents a specific layer index in the models, with blue indicating shallow
layers closer to the data layer, and red representing deeper layers.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 23.45 0.14 27.43 49.64 54.30 24.24 15.20 38.69 51.99 29.08 21.59 30.52
GPTQ 25.23 30.47 38.28 53.83 64.91 24.11 17.40 58.29 50.90 47.77 24.57 39.61

Mistral-7B AWQ 25.38 0.00 25.71 52.01 51.58 23.99 17.60 37.83 47.29 26.98 22.27 30.06
HQQ 23.35 0.85 27.77 51.62 56.69 26.68 15.80 40.55 53.43 28.62 20.14 31.41
Omni 23.24 5.38 29.38 49.72 56.09 26.32 16.60 41.99 52.71 32.11 20.39 32.17
Ours 40.46 58.61 50.87 62.90 75.84 24.85 22.80 78.56 57.04 70.88 37.03 52.71
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 23.98 0.02 26.04 49.49 52.50 24.85 15.20 41.01 49.10 27.48 19.71 29.94
GPTQ 23.65 11.72 32.59 55.17 58.32 25.95 15.80 52.14 51.99 40.45 21.25 35.37

V2-7B AWQ 25.38 0.00 25.69 49.96 52.34 23.75 17.80 37.83 52.71 24.62 21.08 30.10
HQQ 24.51 0.02 26.06 49.49 53.26 24.72 13.80 37.92 50.90 26.52 21.33 29.87
Omni 22.97 35.53 40.28 55.88 65.13 22.89 15.60 63.24 53.07 50.13 23.46 40.74
Ours 27.20 55.25 47.35 61.01 72.96 24.85 25.60 68.07 54.51 65.99 32.25 48.64
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 23.77 7.47 33.08 49.01 57.94 26.19 16.00 47.74 53.43 32.03 21.93 33.51
GPTQ 24.69 45.20 41.06 55.80 67.08 23.26 19.80 54.40 52.35 55.60 27.82 42.46

V2-13B AWQ 27.04 0.00 25.80 51.85 52.99 23.62 13.60 62.17 47.29 26.22 23.12 32.16
HQQ 23.48 8.17 31.27 52.17 61.86 24.85 17.20 50.46 54.51 42.85 21.25 35.28
Omni 25.53 49.84 46.23 57.93 70.13 24.60 21.80 66.85 55.60 63.22 30.29 46.55
Ours 34.33 63.92 53.35 64.33 76.17 25.70 26.00 72.75 61.73 71.17 38.57 53.46
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 24.20 20.18 40.88 54.85 63.87 24.11 17.60 43.06 53.07 50.51 27.22 38.14
GPTQ 23.12 0.00 25.04 49.57 49.51 0.00 27.60 37.83 52.71 25.08 22.70 28.47

V2-70B AWQ 24.46 0.00 25.46 51.38 52.50 23.50 14.20 62.17 52.71 25.76 22.35 32.23
HQQ 23.16 19.46 35.45 56.67 66.00 22.52 20.00 40.46 52.71 52.06 23.12 37.42
Omni 33.84 61.83 52.44 64.33 74.10 24.48 28.20 71.68 53.07 67.21 33.28 51.31
Ours 54.04 72.97 59.65 74.90 79.00 29.01 34.80 79.63 69.68 78.37 46.59 61.69

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 24.36 0.52 27.24 49.25 54.24 24.24 15.20 39.63 57.40 27.86 21.84 31.07
GPTQ 22.95 12.75 33.36 51.70 60.07 23.99 13.40 48.62 53.07 40.82 21.50 34.75
AWQ 23.12 0.00 25.37 53.28 52.56 25.21 13.80 37.83 52.71 25.63 22.53 30.18
Omni 23.58 44.23 42.39 58.48 68.82 21.54 20.40 60.80 53.07 59.55 27.56 43.68
Ours 24.46 13.53 42.16 56.99 70.02 24.60 25.20 62.91 47.29 60.90 31.74 41.80

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 24.66 4.97 29.67 49.33 57.24 25.58 12.40 44.10 53.79 32.07 22.01 32.35
GPTQ+ 26.43 40.48 39.47 58.25 66.97 23.50 18.60 52.78 50.54 51.52 25.00 41.23
AWQ 27.04 0.00 25.59 50.36 53.05 24.11 15.60 62.17 47.29 25.97 23.21 32.22
Omni 26.93 56.41 47.67 61.17 73.23 23.38 24.60 68.75 53.07 67.00 33.79 48.73
Ours 31.87 59.65 51.25 67.64 76.28 25.58 27.80 69.11 58.48 70.71 37.12 52.32

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 23.24 5.55 27.22 53.99 56.80 21.79 18.20 51.65 53.07 36.74 21.33 33.60
GPTQ 30.47 49.93 45.05 61.88 68.88 23.26 22.60 68.29 51.99 60.69 30.72 46.70
AWQ 27.04 0.00 25.41 50.20 52.94 24.48 16.60 62.17 47.29 24.71 23.38 32.20
Omni 26.89 63.03 52.23 64.64 74.27 23.87 29.20 70.86 54.51 70.45 36.18 51.47
Ours 40.83 67.92 56.73 68.90 76.17 24.36 31.60 75.54 62.45 74.92 42.41 56.53

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 24.48 32.78 43.59 57.85 67.52 22.89 22.80 61.53 50.54 52.10 28.24 42.21
GPTQ+ 37.06 67.44 53.97 69.46 76.44 24.36 28.00 73.64 60.29 71.34 38.57 54.60
AWQ 25.38 0.00 25.58 49.96 53.10 24.24 11.00 37.83 52.71 24.96 22.44 29.75
Omni 27.36 65.94 55.53 68.11 76.99 25.21 29.60 75.69 59.21 69.82 35.07 53.50
Ours 47.21 72.07 60.06 73.24 78.62 25.46 34.20 80.64 62.82 77.48 46.76 59.87

Table 13: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W2G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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LLaMA-V2 Wiki2. Ptb C4 Wiki.

7B

16 bits 5.47 37.92 7.26 8.79

W4G-1

RTN 6.12 82.85 8.16 10.06
GPTQ 5.84 1246 7.82 9.59
AWQ 5.81 57.09 7.70 9.42
Ours 7.85 3005.52 7.71 10.34

W4G128

RTN 5.72 65.35 7.58 9.22
GPTQ 5.60 246.28 7.48 9.05
AWQ 5.61 42.67 7.44 9.03
Ours 8.96 473.78 7.50 9.01

W3G128

RTN 6.66 55.10 8.98 11.21
GPTQ 6.32 2245 8.55 10.37
AWQ 6.24 66.57 8.27 10.18
Ours 8.09 164.90 8.12 9.76

W2G128

RTN 4270 9646 4807 1.8e5
GPTQ 25.56 9429 34.87 79.65
AWQ 2.3e5 2.1e5 1.7e5 1.1e7
Ours NAN NAN NAN NAN

13B

16 bits 4.88 50.93 6.73 7.90

W4G-1

RTN 5.20 60.69 7.14 8.65
GPTQ 5.12 55.99 7.04 942.3
AWQ 5.07 55.39 6.96 8.39
Ours 5.00 51.71 6.89 8.33

W4G128

RTN 4.98 53.69 6.87 8.12
GPTQ 4.98 52.43 6.85 10.86
AWQ 4.97 54.18 6.84 8.08
Ours 4.96 51.62 6.83 8.14

W3G128

RTN 5.52 64.85 7.58 9.27
GPTQ 5.39 72.96 7.47 334.2
AWQ 5.30 57.66 7.30 8.81
Ours 5.23 53.82 7.18 8.68

W2G128

RTN 122.5 1212 131.8 1054
GPTQ 11.30 410.9 15.11 270.6
AWQ 1.2e5 1.1e5 9.7e4 5.5e6
Ours 7.64 4250 11.73 57.52

70B

16 bits 3.32 24.25 5.71 4.54

W4G-1

RTN 3.67 23.56 6.01 5.18
GPTQ 3.57 23.76 5.89 5.00
AWQ 3.48 24.93 5.85 4.81
Ours 3.44 24.33 5.81 4.78

W4G128

RTN 3.46 24.20 5.83 4.78
GPTQ 3.42 24.01 5.78 4.71
AWQ 3.41 24.36 5.77 4.70
Ours 3.40 23.69 5.77 4.68

W3G128

RTN 3.98 23.59 6.27 5.77
GPTQ 3.83 24.78 6.09 5.50
AWQ 3.73 25.68 6.03 5.31
Ours 3.68 24.26 5.99 5.23

W2G128

RTN 27.01 758.9 47.57 298.3
GPTQ NAN NAN NAN NAN
AWQ 7.2e4 8.1e4 NAN 2.5e6
Ours NAN NAN NAN NAN

Mistral Wiki2. Ptb C4 Wiki.

7B

16 bits 5.25 35.00 8.38 OOM

W4G-1

RTN 5.99 44.88 9.47 OOM
GPTQ 5.57 54.45 8.86 OOM
AWQ 5.75 42.21 9.14 OOM
Ours 5.43 81.67 8.66 OOM

W4G128

RTN 5.42 34.08 8.62 OOM
GPTQ 5.37 37.53 8.56 OOM
AWQ 5.37 37.12 8.55 OOM
Ours 5.34 36.36 8.51 OOM

W3G128

RTN 6.16 49.97 9.68 OOM
GPTQ 5.90 49.50 9.30 OOM
AWQ 5.90 51.01 9.27 OOM
Ours 5.66 44.50 8.96 OOM

W2G128

RTN 1375 2351 1015 OOM
GPTQ 16.59 269.2 22.38 OOM
AWQ 3.7e4 3.4e4 3.7e4 OOM
Ours 8.70 86.08 12.54 OOM

LLaMA-V1 Wiki2. Ptb C4 Wiki.

7B

16 bits 5.68 41.15 7.34 9.49

W4G-1

RTN 6.29 48.65 8.12 10.62
GPTQ 6.13 47.18 7.93 10.32
AWQ 5.97 48.25 7.73 10.11
Ours 5.93 54.84 7.62 9.91

W4G128

RTN 5.96 42.33 7.70 10.00
GPTQ 5.90 42.36 7.66 9.91
AWQ 5.80 44.00 7.50 9.75
Ours 5.79 56.45 7.49 9.74

W3G128

RTN 7.01 56.28 9.18 12.11
GPTQ 6.60 53.75 8.72 11.46
AWQ 6.32 49.27 8.21 10.81
Ours 6.28 47.57 8.09 10.55

W2G128

RTN 1847 6574 936.2 1.3e4
GPTQ 28.52 638.3 37.85 128.0
AWQ 2.6e5 2.8e5 2.9e5 2.1e7
Ours 641.8 824.9 2533 1876

13B

16 bits 5.09 28.10 6.80 14.06

W4G-1

RTN 5.53 29.45 7.23 37.17
GPTQ 5.34 30.23 7.09 13.09
AWQ 5.25 30.34 7.01 12.36
Ours 5.21 27.81 6.93 113.24

W4G128

RTN 5.26 28.36 6.94 25.34
GPTQ 5.19 29.36 6.91 13.33
AWQ 5.19 28.34 6.90 15.25
Ours 5.18 27.80 6.88 59.09

W3G128

RTN 5.88 33.10 7.86 44.06
GPTQ 5.56 32.52 7.48 95.24
AWQ 5.53 29.63 7.34 22.26
Ours 5.45 28.13 7.21 15.44

W2G128

RTN 797.7 1695 449.1 1.5e4
GPTQ 12.13 185.8 NAN 546.1
AWQ 2.8e5 2.6e5 2.4e5 1.6e7
Ours 8.36 48.93 10.64 1773

30B

16 bits 4.10 23.51 6.13 6.89

W4G-1

RTN 4.54 25.49 6.54 8.03
GPTQ 4.41 24.22 6.40 8.50
AWQ 4.30 24.20 6.30 6.88
Ours 4.23 27.97 6.24 6.90

W4G128

RTN 4.23 23.90 6.26 7.05
GPTQ 4.24 23.92 6.23 7.73
AWQ 4.22 23.98 6.21 7.29
Ours 4.18 31.38 6.20 7.39

W3G128

RTN 4.87 26.99 6.85 NAN
GPTQ 4.72 25.14 6.73 8.44
AWQ 4.61 25.05 6.56 7.84
Ours 4.50 67.01 6.47 7.90

W2G128

RTN 68.40 566.8 114.2 1192
GPTQ 9.21 59.75 12.50 21.21
AWQ 2.3e5 2.2e5 2.4e5 1.5e7
Ours 7.13 55.40 12.02 118.7

LLaMA-V1 Wiki2. Ptb C4 Wiki.

65B

16 bits 3.53 25.07 5.81 4.96

W4G-1

RTN 3.92 28.07 6.07 5.60
GPTQ 3.79 34.82 6.00 5.46
AWQ 3.72 44.83 5.96 5.30
Ours 3.65 22.42 5.89 5.19

W4G128

RTN 3.67 25.61 5.90 5.21
GPTQ 3.64 33.81 5.88 5.17
AWQ 3.62 24.46 5.87 5.14
Ours 3.61 35.87 5.87 5.13

W3G128

RTN 4.25 50.00 6.33 6.25
GPTQ 4.05 32.64 6.21 6.03
AWQ 3.95 23.48 6.14 5.83
Ours 3.90 29.15 6.08 5.69

W2G128

RTN 15.21 276.7 20.03 29.39
GPTQ 6.85 37.79 NAN 12.25
AWQ 7.3e4 6.7e4 7.4e4 NAN
Ours 5.52 NAN NAN 9.25

Table 14: Perplexity(PPL) (↓) of Wikitext2, PTB, C4 and Wikitext tasks for LLaMA and Mistral models. we follow
the source code of GPTQ for wikitext2, PTB and C4 PPL evaluation, while for wikitext, we adopt lm-eval-harness
(Gao et al., 2023). NAN indicates not a number, while OOM denotes out of memory.
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