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Abstract

We consider the problem of determining how well large language models (LLMs) are able to judge
LLM-generated text when a generator is prompted to align with a specific writing style. To illustrate,
such an issue is important in a scenario where a user’s preferred writing style is known (e.g.,
“inspirational”) and an LLM is used as a judge to evaluate whether generated text adheres to this
preference. In this paper, we evaluate performance on two judge tasks: style detection and style
quality pairwise ranking. We focus on how the (1) writing task, (2) generator-judge relationship,
and (3) general commonsense and reasoning LLM ability impact the judge LLMs performance. To
this end, we collected human style detection and pairwise ranking labels on text generated from
four models for three generation tasks (email, tweet, and summary writing) that we use to assess
LLM judging performance. We find that judge quality correlates strongly with general LLM ability
measured using MMLU (Pearson 𝑟 = 0.87), varies by writing task (performance is highest for email
by 28%), and is consistent across most judging strategies. We likewise find that LLM evaluators
are more consistent and reliable when using AB comparisons rather than rubric-based scoring for
style ranking. Finally, we find that for style detection, using the LLM with the strongest general
capabilities is best, however this is not true for style quality pairwise ranking, as the strongest models
rely on details humans are insensitive to when identifying the better response.

1 Introduction

Large language models (LLMs) are used to assist users with a variety of tasks, such as writing (Mysore et al., 2025)
or developing software (Liu et al., 2024), and in domains such as healthcare (Mirzaei et al., 2024), government (Aoki,
2025), and academia (Meyer et al., 2023). When working on behalf of a user, a model must be aligned to that user so that
its generations contain the correct individual style and principles. For example, if a user’s messages typically contain
jokes and emojis, then friends might be confused to receive messages lacking these characteristics. Such alignment can
be achieved efficiently at inference-time using a persona: a description of the user and desired characteristics, which
are specified in a prompt (Moon et al., 2024).

However, there are challenges with using personas for inference-time personalization. First, the description of the user
traits must be accurate and clearly defined so that the model can understand the persona it is expected to adopt (Li
et al., 2025). Second, when an LLM adopts a persona, biases in the model can be exposed and can severely degrade
performance (Gupta et al., 2024). Finally, measuring the degree to which an LLM adheres to the persona is important
to ensure both the quality and consistency of the style alignment, which we study in this work.

Quality and consistency of adherence to a persona can be measured using another LLM to analyze outputs generated by
the persona-driven LLM (Zhou et al., 2025; Lu et al., 2025; Dong et al., 2024) using criteria such as rating the presence
of desired attributes (e.g., humorous or formal) (Bhandari et al., 2025; Samuel et al., 2024) or detecting specific styles
(Toshevska & Gievska, 2025). However, the ability of LLMs to assess the quality of arbitrary writing attributes distinct
from those LLMs are trained for (e.g., helpfulness or harmlessness) has not been explored in depth. That is, can the
evaluators reliably evaluate the personalization quality of generations in terms of the adherence to style?

We assess how well eight evaluator LLMs of varying size and from three families can detect the presence of styles and
pairwise rank the quality of writing style compliance in LLM-generated text. We collected over 350,000 human and
LLM annotations for generations from four LLMs. The human annotations serve as the ground-truth for the evaluator
LLM annotations. We evaluate the impact of the scoring scheme used by the evaluator LLMs, the relationship between
the generator and evaluator LLM (e.g., same vs. different family of model), and how particular styles impact evaluator
performance. We consider five personas (defined as a group of three preferred writing styles) constructed from 15
(individual) writing style elements (e.g., poetic, journalistic), and generations are evaluated for three tasks. We find
evaluator performance is strongly correlated (Pearson 𝑟 = 0.87) with LLM ability (general performance measured using
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Figure 1: An overview of the process for generating a query response aligned with a persona (Left), evaluating the
degree of style-alignment (Top-Right), and then verifying that evaluation with human annotations (Bottom-Right).

MMLU), that evaluators’ performance varies by task, and that the relationship between the generator and evaluator
LLM can influence performance. Overall we found that GPT4o with a scoring scheme that estimates the probability
that styles are present is best able to recover the human annotated styles across writing tasks. For the pairwise style
ranking task we found Qwen2.5 14B Instruct with AB comparison performed best, and that performance in terms
of ranking quality degrades as LLMs become too strong along dimensions of general commonsense and reasoning
capabilities. We conclude that for classification-style tasks, such detecting the presence of styles, using the strongest
LLM available is the best choice. However, when ranking responses, LLMs that are too strong rely on details that
humans are insensitive to when identifying the better response.

2 Related Work

Using LLMs as Evaluators Prior works use LLMs as evaluators to both improve upon traditional evaluation scores,
such as BLEU and ROUGE, and to avoid the expense of using human annotators. Zheng et al. (2023) coin the term
LLM-as-a-Judge and show strong alignment between GPT-4 and human annotators (citing an 85% agreement between
the two). Several other works (Liu et al., 2023b; Fu et al., 2024) explore how prompting styles affect the correlation
between LLM evaluators and human annotators. Subsequently, Atreja et al. (2025) consider the trade-offs of various
prompt designs, such as asking for ranked outputs vs. assigning numerical scores, or asking models to justify their
score assignment, and find they mixed results across tasks. We adapt prompts from Zheng et al. (2023) and incorporate
findings from Atreja et al. (2025), such as asking for explanations.

LLM Judges for Instruction Fine-Tuning datasets A popular use-case for LLM evaluators is to label instruction
fine-tuning datasets as human labeling costs are expensive. Prior work has established that LLMs can serve as effective
human surrogates for data annotation tasks where there exists a clear answer, such as relevance and stance detection
(Gilardi et al. (2023)), safety (Movva et al. (2024)), or media bias (Horych et al. (2025)). A more complete survey
of related work is available from Tan et al. (2024). These works focus on labeling according to a predefined task
definition, rather than modifying their labels to align with specific users or preferences.

Personalization with LLMs LLMs have been studied for personalization in contexts ranging from recommendation
(Zhang et al., 2025a) to financial advising (Liu et al., 2023a) and more (Chen et al., 2024; Zhang et al., 2025b). We are
specifically interested in understanding how effectively LLMs can serve as proxy judges for personalized text generation,
where personalization is defined by stylization to align with a user’s preferences (e.g., to produce text that exhibits a
different style while preserving the content (Hu et al., 2022)). Prior work has applied an LLM-as-Judge framework for
measuring personalization (Wang et al., 2023; 2024a; Sun et al., 2024), though these works have neither focused on
detecting stylization nor evaluated such a diverse distribution of preferences as ours. While diverse data generation and
evaluation have been proposed in works like AlpacaFarm (Dubois et al., 2023), these focus on instruction-following as
a task, not on personalization as style-adherence. In these and many other works, personas (Moon et al., 2024) have
emerged as an effective and efficient option for personalization without fine-tuning or extensive data collection, and we
conduct our investigation by examining a handful of predefined personas for both generation and evaluation.
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3 Preliminaries

3.1 Terminology

Figure 1 provides an overview of the pipeline for assessing LLM evaluators. We begin with a set of fifteen writing
styles, 𝑤 ∈ 𝑊 , from which a population of five individual user personas, u𝑖 ∈ 𝑈, is formed using combinations of
three writing styles u𝑖 = {𝑤𝑙 , 𝑤𝑚, 𝑤𝑛} that describes the stylistic writing preferences of user u𝑖 . The fifteen individual
styles and the five combinations of styles are listed in Appendix Figure 12. We include a null-persona, u∅ for a total of
six personas, which specifies no writing specific styles, leaving the LLM to write according to its default writing style.

For a given writing task 𝑡 ∈ {email, tweet, summary} and user query 𝑞 ∈ 𝑄, a generator model, LLM𝑔, is prompted
with the persona u𝑖 , the writing task 𝑡 𝑗 , and user query 𝑞𝑘 . For the email and tweet tasks the user query is a question
to be answered, and for the summary task it is a piece of text to be summarized (see Appendix B for the list of user
queries). We denote the prompts for the generator model for a given task as 𝑝𝑡𝑔 = {u𝑖 , 𝑡 𝑗 , 𝑞𝑘} ∈ 𝑃𝑔, which are listed in
Appendix C. Given 𝑝𝑡𝑔, LLM𝑔 is expected to produce the appropriate response, 𝑟𝑔, in terms of content and style. Next,
an evaluator model, LLM𝑒 is prompted to assess 𝑟𝑔 according to (1) how much each individual writing style 𝑤 ∈ 𝑊
is present in the text, or (2) how effectively 𝑟𝑔 aligns to a given persona u𝑖 as compared to another generation (as an
AB comparison). The specific scoring strategy that LLM𝑒 uses to assess 𝑟𝑔 is included in the corresponding prompt
𝑝𝑒 ∈ 𝑃𝑒, which are listed in Appendix C.5. Superscripts 𝑑 and 𝑟 are added to 𝑝𝑒 to indicate whether LLM𝑒 is prompted
to detect a style in 𝑟𝑔, 𝑝𝑑𝑒 , or to rank (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ) according to which best aligns with u𝑖 , 𝑝𝑟𝑒. The ground-truth human
annotations are denoted 𝑦𝑑 and 𝑦𝑟 for the style detection and pairwise ranking tasks respectively. The corresponding
LLM annotations are indicated by 𝑦̂𝑑 and 𝑦̂𝑟 .

3.2 Dataset

Our primary objective is to measure the degree to which evaluator LLMs can reliably assess writing style compliance in
LLM generated outputs. To achieve this, we created a collection of LLM generated writing samples with corresponding
human annotations to serve as ground-truth against which LLM𝑒 decisions can be evaluated. The complete user-study
design is provided in Appendix F.

We first construct a set of prompts for LLM𝑔 ∈ {OLMo-2-1124-13B-Instruct (OLMo et al., 2024), Qwen2.5-14B-
Instruct (Team, 2024), Claude-sonnet-3.7 (Anthropic, 2025), and o4-mini-2025-04-16 (OpenAI, 2025)} that relate to
three writing tasks 𝑡 ∈ {emails, tweets, and summarization}. For each 𝑡, we construct 10 queries 𝑞𝑘 (either questions or
text snippets to be summarized). LLM𝑔 is then given each of our six personas (Figure 12), u𝑖 (the five style conditioning
personas and u∅ that we use for convenience to define no style conditioning), paired with each query 𝑞𝑘 for 6 personas
× 10 queries = 60 prompts, 𝑝𝑔, per writing task. We then generate responses 𝑟𝑔 by repeatedly sampling responses from
LLM𝑔 until we have 10 diverse responses for each query, resulting in 600 generations per writing task per LLM𝑔, for
a total of 600 responses × 3 tasks × 4 LLMs = 7200 responses. We provide complete details in Appendix E.

3.2.1 Obtaining Style Detection Labels

Labels that indicate how well the responses 𝑟𝑔 adhere to the styles in u𝑖 are obtained from over 1000 annotators on a
crowd-sourcing platform. For the style detection task, each 𝑟𝑔 is annotated 10 times for each of the 15 writing styles
resulting in > 1 million total annotations. Following Chhun et al. (2022), annotators are asked to rate the adherence
of 𝑟𝑔 to each 𝑤 ∈ 𝑊 on a three-point scale (1=“not present”, 2=“somewhat present”, 3=“strongly present”—exact
wording depending on the queried style), and the realism of 𝑟𝑔 in terms of how likely is 𝑟𝑔 human generated (also on
a three-point scale). The mean and standard deviation of the inter-annotator agreement across all annotation tasks is
relatively low (0.48 ±0.1) — see Section 3.3 for a detailed analysis. This low agreement highlights the subjective nature
of assessing style and indicates the expected difficulty of this task for LLMs. The (ground-truth) label 𝑦𝑑𝑚assigned to
each response is the majority vote over the individual labels 𝑦𝑑

𝑖
∈ [1, 30].

3.2.2 Obtaining Pair-Wise Style Ranking Labels

To construct the samples for pairwise style ranking, we use labels 𝑦𝑑 to sub-select two responses 𝑟𝑎𝑔 and 𝑟𝑏𝑔 per LLM𝑔,
and per writing task and query pair 𝑝𝑡𝑔. The responses are selected by computing the compliance with u𝑖 by computing
the mean majority vote 𝑦𝑑 for the three writing styles 𝑤 in the persona u𝑖 and then selecting the samples with the
strongest and weakest compliance. For the u∅ , the two responses are sampled randomly. The samples in each response
pair share the same LLM𝑔, writing task 𝑡, and user query 𝑞, and are constructed both within and across personas u.
Therefore, each response associated with a given persona u𝑖 is paired with the other response from the same persona,
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and with responses from all five other personas (including u∅). This results in 66 response pairs constructed from 12
responses, and a total of 4 LLMs × 3 tasks × 10 prompts × 66 response pairs = 7,920.

For the pairwise style ranking task, each pair of responses (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ) was ranked by human annotators based on the
alignment with each persona u𝑖 . For u∅ , the responses were ranked according primarily according to helpfulness (Wang
et al., 2024b;c; Dubois et al., 2023). The instructions are detailed in Appendix G. Each pair of responses was ranked
by five annotators 𝑦𝑟

𝑖
, 𝑖 ∈ [0, 5] and the final label 𝑦𝑟𝑚 was assigned based on the majority vote.

3.3 Trends in the Human Annotation Labels

3.3.1 Inter-annotator Agreement in Style Detection

Randolph’s multi-rater kappa 𝜅free (Randolph, 2005) was used to quantify inter-annotator agreement, as implemented
in statsmodels (Seabold & Perktold, 2010). This free-marginal implementation of the kappa was chosen to match
our experimental design; specifically, because the annotators did not know a priori how many of the annotated samples
belonged to each style level (see discussion in Randolph (2005)).

Inter-annotator agreement is in Table 1, broken up by style and task. We observe moderate-to-high agreement
(𝜅free > 0.4) in approximately half of the styles in email writing and two-thirds of the styles in tweet writing and
summarization, and fair agreement in the rest (0.4 ≥ 𝜅free > 0.2), as per the interpretation provided in Landis & Koch
(1977). “Rhyming and rhythmic” and “Poetic & Lyrical” were the styles with most agreement (least subjectivity)
across writing tasks, likely because it is relatively easy to determine if something is rhyming and poetic. Conversely,
“Scholarly-yet-friendly” and “Visual and spatial” had most disagreement among annotators, likely because these styles
may not lend themselves naturally to the writing tasks, and “scholarly” and “friendly” could be rated as less likely to
co-occur. In general, agreement tended to be higher for summaries compared to emails and tweets. The consistency
between annotators when scoring “Realism” was only 𝜅free ≈ 0.23 suggesting that the annotators disagree on the extent
the generations appear to be written by a person.

3.3.2 The Effect of Style Conditioning on Human Detected Styles

Human annotations, 𝑦𝑑 , show that when a style is specified in 𝑝𝑡𝑔, the probability of observing that style as “strongly
present” is relatively high, and generally higher than when no style conditioning is used, see Figure 14. To illustrate,
when “playful and whimsical” is specified in 𝑝𝑡𝑔, the probability of the corresponding responses having this style labeled
as strongly, somewhat, and not present is 𝑝𝑦𝑑=3,2,1 = {0.78, 0.14, 0.08} respectively. This suggests that generators are
producing output aligned with the styles specified in the prompt, but Figure 14 suggests there are some styles (e.g.,
“rich descriptions” and “sensory-focused”) for which generators have less success with adhering to because either “not
present” is the most probable label or the probabilities are relatively uniformly distributed across the labels. That said,
style conditioning does seem to have an impact when compared to annotations collected without style conditioning in
𝑝𝑡𝑔, or u∅ . The probability of “not present” decreases in all styles but “Scholarly-yet-friendly” and “Journalistic” when
a style is specified (see Appendix Figure 14 A-E vs. F). Additionally, certain styles appear correlated; for instance,
when “Playful and whimsical” is used in conditioning the LLMs, “Poetic and lyrical” also has a relatively high mean
annotation score (see Figure 13 in Appendix).

Table 1: Inter-annotator agreement in style detection according to Randolph’s (2005) multi-rater kappa (𝜅free) per
style for each of the three writing tasks across all four generators. Moderate-to-high agreement was observed in
approximately half of the styles, with others showing only fair agreement, as interpreted according to Landis & Koch
(1977). ∗Realism was not used in instructing the generators

Style Email Tweet Summary Style Email Tweet Summary
Scholarly-yet-friendly 0.23 0.28 0.45 Visual & Spatial 0.23 0.30 0.42
Encouraging & Supportive 0.29 0.45 0.53 Rich descriptions 0.34 0.49 0.42
Legal precision 0.34 0.44 0.51 Storytelling 0.46 0.49 0.37
Inspirational & Uplifting 0.35 0.52 0.53 Sensory-focused 0.40 0.49 0.52
Telegraphic brevity 0.43 0.35 0.63 Playful & Whimsical 0.54 0.49 0.54
Journalistic 0.56 0.67 0.46 Step-by-step instructional 0.47 0.56 0.66
Robotic & Emotionless 0.57 0.58 0.63 Poetic & Lyrical 0.61 0.63 0.58
Rhyming & Rhythmic 0.66 0.67 0.64 Realism∗ 0.24 0.21 0.23

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 Experiments

We next describe experiments conducted to measure: (1) the consistency (Section 4.1.1) and the reliability (Sec-
tion 4.1.2) of LLM𝑒 predictions, (2) the sensitivity of the evaluators to the scoring strategy used, (3) the effects of
different relationships between LLM𝑒 and generator (LLM𝑔) models, and (4) the effect on LLM𝑒 when task-irrelevant
information is included in the persona.

For each query, 𝑞𝑟 , for style detection and (𝑟𝑎𝑞 , 𝑟𝑏𝑞 ) for pairwise style ranking, the LLM𝑒 (LLM𝑒 ∈ {OLMo-2-1124-
7B-Instruct, OLMo-2-1124-13B-Instruct, OLMo-2-0325-32B-Instruct (OLMo et al., 2024), Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct (Team, 2024), o4-mini-2025-04-16 (OpenAI, 2025), and gpt-4o-2024-
11-20 (OpenAI, 2024)}) is prompted with 𝑝𝑑𝑒 or 𝑝𝑟𝑒 30 times with a relatively high temperature (0.7). We consider the
variation in LLM𝑒’s 𝑦̂𝑑 or 𝑦̂𝑟 as an estimate of the consistency of the model in terms of its prediction, and indirectly the
certainty of the model in terms of its output. Although there are several ways that this could be measured, we use the
outputs rather than the internal states to remain consistent with the closed models, like o4-mini-2025-04-16. We use
the multiple 𝑦̂ to measure how reliable the the LLM𝑒 are, and to improve the quality of our 𝑦̂ as found in Yuan et al.
(2024). We use majority-vote aggregation to collapse all 30 labels into a single label per query per model, described
in detail below.

4.1 Writing Style Detection

Each evaluator model is used to rate each generator (LLM𝑔) using four different detection prompts 𝑝𝑑𝑒 : (1) binary
detection: an indicator specifying whether 𝑤 ∈ 𝑊 is present in 𝑟𝑔 or not ({yes, no}), (2) probability estimation: an
estimate of the probability that 𝑤 ∈ 𝑊 is present in 𝑟𝑔 ([0 − 1]), (3) Likert-3: a rating of ({“not present”, “somewhat
present”, or “very present”} signaling the degree to which 𝑤 ∈ 𝑊 is in 𝑟𝑔, and finally (4) Likert-10: a numerical
rating ([1 − 10]) signaling the degree to which 𝑤 ∈ 𝑊 is in 𝑟𝑔. We explore multiple style detection scoring strategies
to understand how soliciting different types of labels (i.e. categorical, rating, and probability) impact the ability of
LLM𝑒 to accurately detect the presence of the styles𝑊 . To compare these scores to the binarized human annotations1

, they are each binarized and mapped to “not present”2 or “present”3. The specific details for how binarization and
these mappings were selected are provided in Appendix C.4.

4.1.1 LLM𝑒 Self Consistency

Table 2: The consistency (Randolph’s 𝜅) across all LLM𝑒

and 𝑝𝑑𝑒 for each task. Most models show high consistency
for binary detection and Likert-3 ratings, and become less
consistent when more choices are available.

Score Email Tweet Summary
Binary Detection 0.92 0.92 0.93

Likert-3 0.85 0.80 0.80
Likert-10 0.57 0.53 0.55

Probability Estimation 0.67 0.64 0.69

To measure the consistency of LLM𝑒, we use Randolph’s
kappa (Randolph, 2005) to quantify inter-annotator
agreement across all LLMs used in this work, using
the same setup described in Section 3.3.1. Consis-
tency between all LLMs for each task is reported in
Table 2, and we provide full details of each LLM𝑒’s self-
consistency in Appendix I. For all detection prompts 𝑝𝑑𝑒 ,
self-consistency is scored based on the binarized LLM𝑒

label rather than directly on the unprocessed label. Nev-
ertheless, we observe that fewer labeling options leads
to higher internal consistency, as evidenced by the bi-
nary detection and Likert-3 prompts scoring much higher self-consistency than the Likert-10 and probability estimation
scores. This trend holds across all tasks and models. Finally, we observe that Qwen and GPT models exhibit generally
high consistency across tasks, while OLMo is less consistent in every task.

4.1.2 LLM𝑒 Style Detection Performance

Set Up To measure how well the LLM𝑒 are able to detect the presence of our 𝑊 , we use our majority-vote and
binarized LLM𝑒 labels. We refer readers to Appendix H for complete details. We also consider style detection with
reflection, in which we prompt LLM𝑒 to reflect on its answer and give the LLM an opportunity to change or to maintain
its original answer. Results for the reflection experiments are available in Appendix J.3. F1-scores below are computed
using the human-assigned labels as the ground truth.

1We cast the three-point labels to binary labels because both “somewhat present” and “very present” indicate some degree of
presence of the style as detected by human annotators, and the distinction between them is somewhat arbitrary and subjective.

2{“no”, [0 - 0.49], [0 - 4] “not present”} → “not present”
3{“yes”, [0.5 - 1.0], [5 - 10], “somewhat present”, “very present”}→ “present”
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(a) Overall (b) By user-query response versus judge LLM relationship

Figure 2: All Writing Tasks: The performance (F1-score) for each scoring strategy for the LLM𝑒 models on the
across all writing task: (a) across all writing styles, generators and evaluators and (b) broken down by the relationship
between the response and evaluator LLMs (LLMs relationship). The standard deviation in F1-score is computed across
writing tasks, where the mean per writing task is computed over writing styles, generators, and evaluators.

Results We evaluate the ability of the judge LLMs (LLM𝑒) to recover the binarized labels assigned by humans. We
examine the impact of our various data dimensions on the LLM style-detection F1-score. We find that the probability
estimation 𝑝𝑑𝑒 performs best across LLM𝑒 and the writing tasks (see Figure 2(a)). However, the standard error bars
overlap between Likert-3, Likert-10, and probability estimation. We break the F1-score analysis down by writing task
in Appendix Figure 19(a), and find that writing task greatly impacts the performance generally, and the performance of
𝑝𝑑𝑒 specifically, with Likert-10 performing worse than random for tweet and summary despite being the top-performer
for email. For a more detailed analysis on the per-task performance, see Appendix J.2.

Analyzing the relationship between the writing task 𝑡, LLM𝑒, and the style detection scoring scheme 𝑝𝑑𝑒 in detail
(Appendix J.1), we find that across LLM𝑒 and 𝑡, probability estimation is most frequently the best performing style
detection prompt (and never the worst performing) and GPT4o is the top-performing LLM𝑒 (Appendix Table 21).
However, Qwen2.5-32B-Instruct frequently performs on par with GPT4o (e.g. F1-scores = 70 vs. 72 for email and
tweet, 68 vs. 68 for summary), suggesting it is a strong open weight alternative. Qwen2.5-32B-Instruct frequently
outperforms GPT4o-mini as well. We find that the family of OLMo LLMs generally under-perform the families of
Qwen and GPT LLMs. While GPT4o is the top-performing LLM𝑒 for all writing tasks 𝑡, there is some variability
in the top-performing 𝑝𝑑𝑒 : probability estimation for email and tweet, and binary detection for summary. We find
that performance on the email writing task is least sensitive to the exact style detection scoring scheme with no
significantly best-performing scheme, unlike tweet and summary. This relative lack of sensitivity to 𝑝𝑑𝑒 for the email
writing task may be due to the email writing task imposing the least amount of structure on the text and allowing for the
greatest freedom of style expression, whereas tweets have length limits and summaries can be influenced by the tone
and structure of the original text. This finding is complemented by the result in Appendix Figure 19(a) showing that the
LLM𝑒 were best able to detect the target styles for the email writing task (F1-score= 72 versus 62 and 59). Finally, we
confirm the performance drop observed in Likert-10 𝑝𝑑𝑒 for the tweet and summary tasks is consistent across LLM𝑒,
and is not a quirk from a subset of outlier LLMs decreasing performance.

We find a strong correlation between the ability of the LLM𝑒 to solve the style detection task and its general
commonsense and reasoning abilities4(Pearson-r=0.87) across all writing tasks and 𝑝𝑑𝑒 . We see a stronger positive
correlation (Pearson-r ∈ {0.94, 0.96}) for each writing task. However, when looking at the correlation within a 𝑝𝑑𝑒 ,
we find that style detection ability is more strongly correlated with general LLM ability for some 𝑝𝑑𝑒 than others:
binary detection 𝑟 = 0.93, Likert-3 𝑟 = 0.81, Likert-10 𝑟 = −0.46, and probability estimation 𝑟 = 0.76. This supports
that some 𝑝𝑑𝑒 , Likert-10, are poorly suited to the task. It is interesting to note, the best performing 𝑝𝑑𝑒 (probability
estimation) has one of the weaker correlations to commonsense reasoning performance.

In Figure 2(b) we look at how style detection performance is impacted by the relationship between LLM𝑔 and LLM𝑒.
Specifically we look at the difference in F1-scores when the LLMs are the same versus different (self -- other),
when the LLMs come from the same versus different LLM families (same family -- different family)
(e.g. both are Qwen models versus one is a Qwen model and the other an OLMo model), and when LLM𝑒 is stronger
than the LLM𝑔 (stronger -- weaker) (e.g. Qwen2.5-Instruct-32B vs. Qwen2.5-Instruct-13B). We find that the

4Measured with MMLU score (Hendrycks et al., 2021).
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impact of the relationship between LLM𝑔 and LLM𝑒 depends on the style detection scoring strategy and the writing
task 𝑡.

The only common trend across 𝑝𝑑𝑒 and the writing tasks is, using a stronger LLM𝑒 than LLM𝑔 performs better.
However, the impact is small for several combinations of 𝑝𝑑𝑒 and 𝑡. Therefore, we recommend using a stronger LLM
as the LLM𝑒 while quantifying the gains to appropriately balance cost and style detection quality.

Understanding the Effects of Additional Persona Attributes on Style Detection Performance. Following Gupta
et al. (2024) we explored the impact on style detection performance of including protected attributes in the persona
since it was shown previously that protected attributes can have a detrimental effect on task performance. Specifically
LLM performance at tasks such as coding and Q&A degraded significantly, and the amount of degradation depended
on the specific values assigned to the protected attributes. In this self-contained case study on the email-writing task
using the Likert-3 scoring scheme, we find that including protected attributes in the persona system prompt had little
effect on performance in terms of the F1-score. For more detailed results, see Appendix J.4.

4.2 Pairwise Style Ranking

Table 3: The consistency (Randolph’s multi-rater kappa)
of LLM𝑒 ratings 𝑦̂𝑟 when annotating responses 𝑟𝑔 to be
able to rank which response in a pair (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ) better reflect
the described attributes (i.e. writing style elements).

Score Email Tweet Summary
AB 0.85 0.87 0.87

Rubric 0.44 0.44 0.43

Table 4: The performance of the different pairwise style
ranking prompt 𝑝𝑟𝑒 by the style ranking task. Results are re-
ported as the mean (standard error) F1-score across LLM𝑒.

Score Helpfulness Targeted Style Targeted

Email AB 53.84(±3.94) Yes
Rubric 49.04(±2.20) Yes

Summary AB 50.78(±2.8) 60.35(±1.27)
Rubric 39.11(±1.09) 46.21(±2.01)

Tweet AB 55.7(±1.3) 62.93(±0.8)
Rubric 46.53(±1.4) 49.26(±1.8)

Using the same set of LLM𝑒 as in Section 4.1, the paired responses (𝑟𝑎𝑞 , 𝑟𝑏𝑞 ) outlined in Sect 3.2.2 are assigned labels
𝑦𝑟 for two versions of the pairwise ranking task: helpfulness targeted and style targeted. In the helpfulness-targeted
version of the task, the LLM𝑒 identifies which of two responses better meet a set of response quality criteria focused
on helpfulness and answer completeness. This type of judge prompt is commonly used when deploying LLM judges
to augment or replace human preference labelers (Yuan et al., 2024; Dubois et al., 2023; 2024; Cui et al., 2024). This
is the setting for which prompt-based judging has received the most human evaluation (Dubois et al., 2023; 2024). In
the style-targeted version of the task, the LLM𝑒 assesses which of two responses 𝑟𝑞 better complies with the writing
style of a given persona u𝑖 .

For each version of the pairwise style ranking task, different prompting approaches are explored: (1) rubric-based
where the LLM𝑒 assigns a score to each response based on how well each response meets the criteria outlined in the
given rubric (see Table 12 Appendix C.5), and (2) AB comparison where the LLM𝑒 is presented with both responses
(𝑟𝑎𝑞 , 𝑟𝑏𝑞 ) and selects “a” or “b” based on which better aligns with the given criteria (see Table 11 Appendix C.5). For
the rubric-based 𝑝𝑟𝑒, the 𝑟𝑞 with the higher score is selected – if 𝑟𝑎𝑞 has a higher score than 𝑟𝑏𝑞 then the label is “a”, if
𝑟𝑏𝑞 has the higher score then the label is “b”, and if 𝑟𝑎𝑞 and 𝑟𝑏𝑞 have the same score then the label is a “tie”. For the AB
comparison 𝑝𝑟𝑒, the LLM𝑒 compares 𝑟𝑎𝑞 and 𝑟𝑏𝑞 in both the AB and BA orders with a “tie” occurring whenever different
responses are selected given the different orders.

4.2.1 LLM𝑒 Self Consistency

The consistency in the pairwise ranking labels from the each LLM𝑒 is measured using Randolph’s multi-rater kappa
(𝜅free) computed over the repeated samples (𝑛 = 30) using the setup described in Section 3.3.1. Consistency between
the LLM𝑒 for each writing task 𝑡 and pairwise style ranking prompt 𝑝𝑟𝑒 is reported in Table 3, and a full breakdown
of per LLM𝑒 self consistency is provided in Appendix K . We find that the LLM𝑒 are more internally consistent
when using the AB versus rubric 𝑝𝑟𝑒 and that the writing task 𝑡 has little to no impact on self consistency. Examining
Appendix Table 26, we can see that, with the exception of the OLMo family of models, for the AB 𝑝𝑟𝑒 and within
a writing task, the majority of LLM𝑒 have similarly high levels of self consistency. However, for the rubric 𝑝𝑟𝑒, the
amount of self consistency steadily increases as the LLM𝑒’s general abilities improve, which suggests the rubric 𝑝𝑟𝑒 is
a more challenging version of the pairwise ranking task.
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Figure 3: Per Writing Task: The performance (F1-score) for each pairwise style ranking 𝑝𝑟𝑒 and pairwise style ranking
task across LLM𝑒 on each writing task: (a) across all writing styles, generators and evaluators and (b) broken down by
the relationship between the LLM𝑔 and LLM𝑒 (LLMs relationship).

4.2.2 LLM𝑒 Pairwise Style Ranking Performance

Set Up For the LLM𝑒, the pairwise ranking task is a three-class classification task with “a”, “b”, and “tie” are the
possible labels 𝑦̂𝑟 . However, for the human annotators it is a five-class problem: “a is better”, “a is slightly better”,
“tie”, “b is slightly better”, and “b is better”. To be able to compare the LLM𝑒 labels, the human labels “a is better”
and “a is slightly better” are mapped to “a”, and “b is slightly better” and “b is better” are mapped to “b”. For the
rubric-based 𝑝𝑟𝑒, the multiple 𝑦̂𝑟 are consolidated by taking the mean 𝑦̂𝑟 across the repeated generations following
Yuan et al. (2024) and then comparing the 𝑟𝑎𝑞 score to the 𝑟𝑏𝑞 . For the AB comparison 𝑝𝑟𝑒, the majority vote 𝑦̂𝑟 is
applied after consolidating 𝑦̂𝑟 across the AB and BA response orderings.

Results We evaluate the ability of the LLM𝑒 to recover the pairwise style ranking labels 𝑦𝑟 assigned by humans.
Examining the impact of the pairwise ranking task (helpfulness versus style) and the scoring strategy (AB 𝑝𝑟𝑒 versus
rubric 𝑝𝑟𝑒) on the pairwise ranking performance (F1-score) in Figure 3(a), across LLM𝑒 and writing tasks 𝑡 the AB 𝑝𝑟𝑒
leads to better performance for both the helpfulness (F1-score≈ 41 vs. ≈ 32) and style-targeted (F1-score=≈ 53
vs. ≈ 45) pairwise ranking tasks. The standard errors bars do not overlap across 𝑝𝑟𝑒 scoring strategies indicating
the performance is not sensitive to the specific writing task, which is upheld when looking at the per writing task
results in Figure 23 Appendix L. Additionally, the standard error reported in Table 4 shows that across LLM𝑒 is more
consistent (i.e., lower average standard error) for the AB 𝑝𝑟3. Across scoring strategies, the style-targeted pairwise
ranking task (F1-score≈ 49) is easier for the LLM𝑒 than the helpfulness-targeted task (F1-score≈ 37). Even when
examining the results broken down by writing task 𝑡 and LLM𝑒 in Appendix L.1, the AB 𝑝𝑟𝑒 out performs rubric and
the LLM𝑒 performance is higher for the style-targeted than the helpfulness-targeted pairwise ranking task. However,
we do find there are some personas u𝑖 for which the LLM𝑒 performs worse on than the helpfulness-targeted pairwise
ranking task. For more details on how each persona u𝑖 impacts LLM𝑒 pairwise ranking on the different writing tasks,
see Appendix L.2. Examining Table 4 and the standard error bars in Figure 3(a) we see that performance is consistent
across writing tasks.

Per LLM𝑒 performance is reported in Appendix L.1, where we find that all LLM𝑒 are able to solve the pairwise
style ranking task at greater than random chance (≈ 33). However, multiple LLM𝑒 (5 / 8) barely exceed the random
chance threshold on the summary writing task using the rubric 𝑝𝑟𝑒 scoring strategy. Analyzing the relationship between
the writing task 𝑡, the LLM𝑒, the pairwise ranking task type, and the scoring strategy 𝑝𝑟𝑒 in detail (Appendix L.1),
we find that the best performing LLM𝑒 is dependent on the writing task and the pairwise ranking task. In
all cases the AB 𝑝𝑟𝑒 outperforms the rubric 𝑝𝑟𝑒. For the style-targeted pairwise ranking task, Qwen2.5 14B Instruct
is the best performing, whereas for the helpfulness-targeted task either OLMo2 32B Instruct or GPT4o is the best
performing. Examining the per LLM𝑒 and per pairwise ranking task performance in Figures 24 – 25, we see that
for the style-targeted pairwise ranking task, performance increases until the LLM𝑒 reach a middling point in terms of
commonsense and reasoning capabilities (e.g. 75 ≥ 80 on MMLU (Hendrycks et al., 2021)) after which the pairwise
ranking performance drops. For instance, OLMo2 7/13B Instructs have similar performance to GPT4o-mini while
Qwen2.5 7B instruct and OLMo2 32B Instruct have similar performance to GPT4o despite very different MMLU
scores (e.g., 75 versus 88). This leads us to conclude that those LLMs with the “strongest” general commonsense
and reasoning abilities, such as GPT4o, are not always the best suited to serve as human proxies on tasks that
involve comparing and choosing between two pieces of text.

To better understand what might be leading to this inverted U-shaped relationship between the general commonsense
and reasoning capabilities and the style-targeted ranking task, we examine the LLM𝑒 frequency of each label (“response
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a”, “response b”, and “tie”) and compare to the humans’ frequencies. A detailed breakdown by writing task 𝑡, LLM𝑒,
scoring strategy 𝑝𝑟𝑒, and pairwise ranking task is in Appendix L.3 Figures 17 and 30. We find that humans assign
“tie” labels 19% – 27% of the time while assigning a similar proportion of “response a” labels as “response b” labels.
We note that with the rubric 𝑝𝑟𝑒 the LLM𝑒 almost never assign “tie” labels, which we attribute its poor performance
relative to the AB 𝑝𝑟𝑒 to. Looking at the trend in “tie” label frequencies across LLM𝑒, we find that the “tie” label’s
frequency decreases as the LLM𝑒’s general commonsense and reasoning capabilities increase – the weakest LLM𝑒

(i.e., MMLU ≤ 75) assign the most “tie” labels while the strongest LLM𝑒 (i.e., MMLU > 80) assign the least. This
result suggests the “weaker” LLM𝑒 are not able to handle the complexity of the labelling prompt leaving their labels
sensitive to the AB versus BA response prompt ordering (i.e. which response is listed first). Whereas for the “strongest”
LLM𝑒 the result suggests they rely on differences between the two responses 𝑟𝑎𝑞 and 𝑟𝑏𝑞 that humans are insensitive to,
either because the humans did not detect the difference or identified them as irrelevant. Therefore, we conclude it is
important to use LLMs that are strong enough to be insensitive to the influence of prompt ordering, but not so
strong they differentiate between responses at a level of detail exceeding that of humans. We find these models
are not those with the strongest general commonsense and reasoning capabilities.

For the helpfulness-targeted task, the relationship between general commonsense and reasoning capabilities versus
performance on the pairwise ranking task is writing task dependent (Appendix L.3 Figures 17 and 30). On the tweet
task the relationship matches that of the style-targeted ranking task, whereas for summary we see a steady increase in
pairwise ranking performance as general commonsense and reasoning capabilities improve. We attribute this to the
heavy use of helpful as a guiding principle in the RLHF labelling process as exemplified by the publicly available
labelling instructions (Yuan et al., 2024; Dubois et al., 2023; 2024; Cui et al., 2024).

To further understand the relationship between general commonsense and reasoning capabilities and pairwise ranking
performance, we measure the correlation between the two. For the AB 𝑝𝑟𝑒 we find a Pearson-r= 0.41 on the style-
targeted pairwise ranking task (Pearson-r= 0.42 for tweet and 𝑟 = 0.51 for summary) and Pearson-r= 0.46 on the
helpfulness-targeted ranking task (Pearson-r= 0.41 for tweet and 𝑟 = 0.75 for summary). For the rubric 𝑝𝑟𝑒 the
style-targeted pairwise ranking task has Pearson-r= 0.73 (Pearson-r= 0.85 for tweet and 𝑟 = 0.69 for summary) and a
Pearson-r= 0.49 for helpfulness-targeted (Pearson-r= 0.85 for tweet and 𝑟 = 0.53 for summary). The weak correlation
for the style-targeted pairwise ranking task for the AB 𝑝𝑟𝑒 aligns with the per LLM𝑒 pairwise style ranking performance
discussed above and observed in Appendix L.1 Figures 24 and 25. Additionally, the difference in correlation strength
for the on the helpfulness-targeted pairwise ranking task per writing task aligns with the trends discussed above. For
the rubric 𝑝𝑟𝑒 we see a strong correlation across board speaking to increased difficulty of scoring with a rubric versus
directly selecting a preferred response.

Finally, in Figure 3(b) we examine the impact the relationship between the LLM𝑔 and the LLM𝑒 has on the pairwise
ranking performance. We see similar trends between the AB and rubric 𝑝𝑟𝑒 in that using a LLM𝑒 that is stronger5

improves performance as does using a LLM𝑒 that is different from the LLM𝑔. We see that using a LLM𝑒 in the same
versus a different family as the LLM𝑔 has no impact on performance for the AB 𝑝𝑟𝑒, but for the rubric 𝑝𝑟𝑒 using a LLM𝑒

from the same family is better. Overall, the strongest performance difference stems from using a LLM𝑒 that is
stronger than the LLM𝑔. For a detailed breakdown by writing task 𝑡 and pairwise ranking task, see Appendix L.5.

5 Conclusions

We investigated the ability of LLMs able to act as judges when labelling text for subjective attributes (i.e., styles) and
rating the quality of LLM generated text (i.e., according to a specific writing style or for general helpfulness). To this
end we investigated a number of factors, including the relationship between the source LLM that generated the text
and the LLM evaluator, the types of writing styles that generators are asked to conform to, the type of scoring strategy
that the evaluator LLM is asked to rate against, and the impact of the general commonsense and reasoning capabilities
of the evaluator LLM. We first ran a user study to obtain ground-truth labels in the form of human judgments of style
adherence, and then ran a number of evaluator models and tested for consistency in the LLM labels and the degree
with which the LLM labels aligned with the human labels. Overall we find that LLMs are consistent in their ratings,
that the ability of a model to rate text is dependent on the writing task and the particular scoring strategy used to
rate the quality. Based on the best performing models for the style detection and pairwise ranking tasks, we conclude
that for classification-style tasks (i.e., detecting the presence of styles) using the strongest LLM available is the best
choice. However, when ranking responses, LLMs that are too strong (according to general commonsense and reasoning
capabilities) rely on details humans are insensitive to when identifying the better response.

5Measured according to MMLU Hendrycks et al. (2021)
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6 Ethics Statement

All human participants were recruited and the annotation protocol was constructed in accordance with our IRB
guidelines. The data presented to our participant population was selected to be neutral (e.g., not reflective of politics,
religion, etc) and to avoid annotators having to read and evaluate potentially toxic and harmful content.

7 Reproducibility Statement

We provide all prompts used to create the LLM generated data used in our study in Appendix B, and we provide all
LLM evaluation prompts in Appendix C and Appendix D. Specific model identifiers are provided in Section 3.2 of the
main paper. Additionally, we provide a detailed breakdown of the full dataset in Appendix E. While the generations and
labels may not be completely reproducible due to our temperature-based sampling, we used majority-vote aggregation
to ensure repeatable labeling results. Overall, we provide sufficient detail for future work to replicate our results.
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A LLM Usage

The authors utilized LLMs in this research to provide feedback and suggest alternatives for potential prompts, preference
sets, and user queries. None of the evaluation LLMs were used to provide feedback on the prompts that were used for
the generations.

B User Queries

Table 5: The questions used as topics in the email-writing and tweet generations.

Topics Questions
Practical / Automotive How do you change a car tire?
Biology What are the structural differences between a plant cell and an animal cell?
Physics What is the relationship between mass, force, and acceleration?
Economics How is the interest rate of a mortgage determined?
Cooking / Food What ingredients are needed to make bread?
History What were the primary goods traded along the Silk Road?
Gardening / Home How do you care for a houseplant?
Psychology What is cognitive dissonance?
Games / Recreation What are the basic rules of tic-tac-toe?
Mathematics What is a prime number?

Table 6: The dataset IDs and associated Sub-Reddits from the SLF5K dataset (Scheurer et al., 2024) that were used for
our summarization task. While the dataset is publicly available, we do not include the posts here for privacy reasons.

Sub-Reddit SLF5K Data ID
r/relationships t3 3291e0
r/tifu t3 2ha5l1
r/personalfinance t3 4ftgyf
r/needadvice t3 21mfop
r/jobs t3 2ruwyj
r/AskReddit t3 27xmjc
r/dogs t3 4kql83
r/college t3 2slh7g
r/books t3 2anheo
r/legaladvice t3 1ajctx

5As of September 23rd, 2025 the SLF5k dataset was released under an Apache 2.0 license
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C Prompts

C.1 User-Query Response Generation Prompts Without Style Conditioning

This section contains the prompts that were used to generate the LLM responses without style guidance to the user
queries in Appendix B. The prompts used to generate responses to the user queries are in Figure 4 for email, Figure 5
for tweet, and Figure 6 for summary.

Email: No Style Conditioning Prompt

System prompt: You are a helpful assistant.
User prompt: "Write an email answering the following question:
{user query}"

Figure 4: The email writing tasks prompt for generating responses without style guidance. “{user query}” is where
the user query to be answered is added to the prompt.

Tweet: No Style Conditioning Prompt

System prompt: You are a helpful assistant.
User prompt: Write a tweet (280 characters or less) answering the
following question: {user query}

Figure 5: The tweet writing tasks prompt for generating responses without style guidance. “{user query}” is where
the user query to be answered is added to the prompt.

Summary: No Style Conditioning Prompt

System prompt: You are a helpful assistant.
User prompt: Summarize the following Reddit post, highlighting the
main ideas only: {reddit post}

Figure 6: The summary writing tasks prompt for generating responses without style guidance. “{reddit post}” is
where the Reddit post to be summarized is added to the prompt.

C.2 Candidate Style Conditioned Writing Prompts

This section contains the set of writing task instruction prompts that were considered for the writing tasks. The
candidate writing tasks for email are shown in Figure 7, for tweet in Figure 8, and for summary in Figure 9.

C.3 Selected Style Conditioned Writing Prompts

This section contains the writing task prompt that was selected per LLM and writing task. For email-writing prompts
2, 3, 2, and 4 were selected for GPT-4o-mini, OLMo 13B, Qwen 14B, and Sonnet 3.7, respectively. For tweet-writing
prompts 1, 3, 1, and 4 were selected for GPT-4o-mini, OLMo 13B, Qwen 14B, and Sonnet 3.7, respectively. And lastly
for summary-writing, prompt 3 was selected for all models. The prompts were selected following the rubric outlined
in Appendix D.
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Email-Writing Prompt 1: Standard, Third Person Prompt

System prompt: You have the following writing style preferences: {preferences}
User prompt: Write an email answering the following question: {user query}

Email-Writing Prompt 2: Descriptive Task Prompt

System prompt: You are an email generation agent. Your function is to produce
an email based on a query. The output must include a subject line, a greeting,
a body, and a closing. The output’s style is determined by the following style
parameters: {preferences}
User prompt: Generate a complete email that answers the following question:
{user query}

Email-Writing Prompt 3: Ultra-Neutral Prompt

System prompt: Transform the following query into email format. Apply
formatting rules: {preferences}
User Prompt: {user query}

Email-Writing Prompt 4: Using ‘‘Prefer’’

System prompt: You prefer emails which have: {preferences}
User prompt: Write an email answering the following question: {user query}

Figure 7: The candidate prompts to use to instruct the user-query response LLMs to complete email writing task. {...}
indicate where string formatting happens.
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Tweet-Writing Prompt 1: Standard, Third Person Prompt

System prompt: You have the following writing style preferences: {preferences}
User prompt: Write a tweet (280 characters or less) answering the following
question: {user query}

Tweet-Writing Prompt 2: Descriptive Task Prompt

System prompt: You are a social media post generation agent. Your function
is to produce a tweet based on a query. The output must fit within 280
characters. The output’s style is determined by the following style parameters:
{preferences}
User prompt: Generate a tweet that answers the following question: {user query}

Tweet-Writing Prompt 3: Ultra-Neutral Prompt

System prompt: Transform the following query into tweet format (280 characters
or less). Apply formatting rules: {preferences}
User Prompt: {user query}

Tweet-Writing Prompt 4: Using ‘‘Prefer’’

System prompt: You prefer tweets which have: {preferences}
User prompt: Write a tweet answering the following question: {user query}

Figure 8: The candidate prompts to use to instruct the user-query response LLMs to complete tweet writing task. {...}
indicate where string formatting happens.
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Summary-Writing Prompt 1: Standard, Third Person Prompt

System prompt: You are an assistant who writes personal summaries given articles
based on a user’s preferences.
User prompt: Reddit Post: {user query}
Summarize the above Reddit post for a user who prefers the following styles:
{preferences}. Please write a summary of the above Reddit post to address those
specified preferences. Summary:

Summary-Writing Prompt 2: Descriptive Task Prompt

System prompt: You prefer summaries which have: {preferences}
User prompt: Summarize the following Reddit post in 3-4 sentences, highlighting
the main ideas only: {user query}

Summary-Writing Prompt 3: Ultra-Neutral Prompt

System prompt: You are an assistant who helps users write personal summaries
given articles based on their preferences.
User Prompt: Given a Reddit post and set of preferences, generate a personalized
summary of around three sentences that matches the user’s unique voice and style.
Reddit Post:
{user query}
User Preferences:
{preferences}
Summary:

Summary-Writing Prompt 4: Using ‘‘Prefer’’

System prompt: Transform summaries to match specified style requirements. Your
output must demonstrate clear stylistic differentiation from the original while
maintaining factual accuracy. It must also be concise.
User prompt:
REDDIT POST: {user query}
ORIGINAL SUMMARY: {summary}
STYLE REQUIREMENTS: {preferences}
Transform the summary to strongly exhibit these stylistic characteristics.
The output should be clearly distinguishable from the original in style while
preserving all factual content.
TRANSFORMED SUMMARY:

Figure 9: The candidate prompts to use to instruct the user-query response LLMs to complete summary writing task.
{...} indicate where string formatting happens.
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C.4 Style Detection Prompts

This section contains the prompts that were used to detection style elements in LLM generated text.

Table 7: Email Style Detection Prompts: {...} indicate where string formatting is done with “{style description}” as
the description of the style (e.g. “scholarly-yet-friendly”) and “{response}” the text to assess. For all style detection
prompts the system prompt is: “You are an expert at detecting the presence of writing styles in passages of text.”

Prompt Name Prompt
yes/no Below is an email response to a question. Your task is to analyze the text in the email and

determine whether the writing style matches {style description}. Answer with just
Yes/No. Prefix your answer with ‘Answer: ’.
EMAIL TO EVALUATE:
{response}

3-point Likert Below is an email response to a question. Your task is to analyze the text in the email and
determine the degree to which the writing conforms to the writing style
{style description}.
Choose from these labels:
- Does not exhibit
- Somewhat exhibits
- Clearly exhibits
Answer with just one of the provided labels. Prefix your answer with ‘Answer: ’.
EMAIL TO EVALUATE:
{response}

10-point Likert Below is an email response to a question. Your task is to analyze the text and rate on a
scale of 1 to 10 how well the writing conforms to the style {style description}. For the
rating, a score of 1 means the text does not conform to the style at all, whereas as 10
means the text conforms entirely to the style. Answer with just your estimate of the
rating. Prefix your answer with ‘Answer: ’.
EMAIL TO EVALUATE:
{response}

probability
estimation

Below is an email response to a question. Your task is to analyze the text and determine
the probability that the writing conforms to the style(s) {style description}. Answer with
just your probability estimate as a decimal between 0.0 and 1.0 (where 0.0 = no
conformance, 1.0 = perfect conformance). Prefix your answer with ‘Answer: ’.
EMAIL TO EVALUATE:
{response}
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Table 8: Tweet Style Detection Prompts: {...} indicate where string formatting is done with “{style description}” as
the description of the style (e.g. “scholarly-yet-friendly”) and “{response}” the text to assess. For all style detection
prompts the system prompt is: “You are an expert at detecting the presence of writing styles in passages of text.”

Prompt Name Prompt
yes/no Below is an tweet response to a question. Your task is to analyze the text in the tweet and

determine whether the writing style matches {style description}. Answer with just
Yes/No. Prefix your answer with ‘Answer: ’.
TWEET TO EVALUATE:
{response}

3-point Likert Below is an tweet response to a question. Your task is to analyze the text in the tweet and
determine the degree to which the writing conforms to the writing style
{style description}.
Choose from these labels:
- Does not exhibit
- Somewhat exhibits
- Clearly exhibits
Answer with just one of the provided labels. Prefix your answer with ‘Answer: ’.
TWEET TO EVALUATE:
{response}

10-point Likert Below is an tweet response to a question. Your task is to analyze the text and rate on a
scale of 1 to 10 how well the writing conforms to the style {style description}. For the
rating, a score of 1 means the text does not conform to the style at all, whereas as 10
means the text conforms entirely to the style. Answer with just your estimate of the
rating. Prefix your answer with ‘Answer: ’.
TWEET TO EVALUATE:
{response}

probability
estimation

Below is an tweet response to a question. Your task is to analyze the text and determine
the probability that the writing conforms to the style(s) {style description}. Answer with
just your probability estimate as a decimal between 0.0 and 1.0 (where 0.0 = no
conformance, 1.0 = perfect conformance). Prefix your answer with ‘Answer: ’.
TWEET TO EVALUATE:
{response}
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Table 9: Summary Style Detection Prompts: {...} indicate where string formatting is done with “{style description}”
as the description of the style (e.g. “scholarly-yet-friendly”) and “{response}” the text to assess. For all style detection
prompts the system prompt is: “You are an expert at detecting the presence of writing styles in passages of text.”

Prompt Name Prompt
yes/no Below is a summary of Reddit post. Your task is to analyze the text in the summary and

determine whether the writing style matches {style description}. Answer with just
Yes/No. Prefix your answer with ’Answer:’.
SUMMARY TO EVALUATE:
{response}

3-point Likert Below is a summary of a Reddit post. Your task is to analyze the text in the summary and
determine the degree to which the writing conforms to the writing style
{style description}.
Choose from these labels:
- Does not exhibit
- Somewhat exhibits
- Clearly exhibits
Answer with just one of the provided labels. Prefix your answer with ‘Answer: ’.
SUMMARY TO SUMMARY:
{response}

10-point Likert Below is a summary of a Reddit post. Your task is to analyze the text and rate on a scale
of 1 to 10 how well the writing conforms to the style {style description}. For the rating,
a score of 1 means the text does not conform to the style at all, whereas as 10 means the
text conforms entirely to the style. Answer with just your estimate of the rating. Prefix
your answer with ‘Answer: ’.
EMAIL TO EVALUATE:
{response}

probability
estimation

Below is a summary of a Reddit post. Your task is to analyze the text and determine the
probability that the writing conforms to the style(s) {style description}. Answer with just
your probability estimate as a decimal between 0.0 and 1.0 (where 0.0 = no conformance,
1.0 = perfect conformance). Prefix your answer with ‘Answer: ’.
SUMMARY TO EVALUATE:
{response}
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C.5 Pairwise Style Ranking Prompts

This section contains the prompts that were used to assign a pairwise ranking to two user-query responses 𝑟𝑔. Two
different approaches to assigning the pairwise ranking were explored: (1) a direct comparison between both responses
(AB) (Dubois et al., 2023; Li et al., 2023) and (2) given a rubric, score both responses independently and prefer the
response with the higher score (rubric) (Yuan et al., 2024). For each prompt approach, one version instructed the
LLM𝑒 to rate according to compliance with a specific set of writing styles and the other version to rate according to
general quality (e.g. “helpfulness”).

For both approaches to the pairwise style ranking task, the LLM𝑒 has access to the query that the LLM𝑔 response 𝑟𝑔
should address. These are formatted into the “{user query instruction}” slot with a different instruction per writing
task. The writing task specific instructions are given in Table 10.

Table 10: The value used for “{user query instruction}” for each writing task for the pairwise style ranking prompts
in Appendix Sections C.5.1 and C.5.2.

Writing Task {user query instruction}
Email Write an email answering the following question
Tweet Write a tweet answering the following question

Summary Write a summary of the following Reddit post
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C.5.1 AB Prompts

Table 11: Pairwise AB Style Ranking Prompts: {...} indicate where string formatting is done with
“{user query instruction}” as the writing task instruction given to accompany the user query, “{user query}” as
the question answered or the Reddit post to summarize, “{style description}” as the description of the style (e.g.
“scholarly-yet-friendly”), and “{output a}” and “{output b}” the text to compare. For all style detection prompts the
system prompt is: “You are a helpful instruction-following assistant that determines the best model output by selecting
the best outputs for a given instruction.”

Helpfulness Targetted
Select the output (a) or (b) that best matches the given instruction. Choose your preferred output, which
can be subjective. Your answer should ONLY contain: Output (a) or Output (b). Here’s an example:
# Example:
## Instruction:
Give a description of the following job: “ophthalmologist”

## Output (a):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye diseases and
conditions.

## Output (b):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to read letters
from a chart.

## Which is best, Output (a) or Output (b)?
Output (a)

Here the answer is Output (a) because it provides a comprehensive and accurate description of the
job of an ophthalmologist. In contrast, Output (b) is more of a joke.

# Task:
Below is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{user query instruction}: {user query}

## Output (a):
{output a}

## Output (b):
{output b}

## Which is best, Output (a) or Output (b)?

Style Targetted
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Select the output (a) or (b) that best matches the given writing styles. Choose your preferred output, which
can be subjective. Your answer should ONLY contain: Output (a) or Output (b). Here’s an example:
# Example:
## Instruction:
Send a coworker a message about your latest meeting.

## Writing Styles:
‘Sarcasm’

## Output (a):
There is nothing better for me than a meeting spent watching someone figure out an AV system.

## Output (b):
That meeting went alright.

## Which is best, Output (a) or Output (b)?
Output (a)

Here the answer is Output (a) because it is more sarcastic.

# Task:
Below is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{user query instruction}: {user query}

## Writing Styles:
{style description}

## Output (a):
{output a}

## Output (b):
{output b}

## Which is best, Output (a) or Output (b)?
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C.5.2 Rubric

Table 12: Pairwise Rubric Style Ranking Prompts: {...} indicate where string formatting is done with
“{user query instruction}” as the writing task instruction given to accompany the user query, “{user query}” as
the question answered or the Reddit post to summarize, “{style description}” as the description of the style (e.g.
“scholarly-yet-friendly”), and “{output a}” and “{output b}” the text to compare. For all style detection prompts the
system prompt is: “You are a helpful instruction-following assistant that determines the best model output by selecting
the best outputs for a given instruction.”

Helpfulness Targetted
Review the user’s question and the corresponding response using the additive 5-point scoring system
described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the response is relevant and provides some information related to the user’s in-
quiry, even if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an AI Assistant or if it has elements typically found
in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the
user’s question directly and comprehensively, and is well-organized and helpful, even if there is slight
room for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant,
without extraneous information, reflecting expert knowledge, and demonstrating a high-quality, engaging,
and insightful answer.

User: {user query instruction}: {user query}

<response>{response}</response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: ’Score: ¡total points¿’

Remember to assess from the AI Assistant perspective. To evaluate the response in alignment
with this additive scoring model, systematically attribute points based on the outlined criteria.
Style Targetted
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Review the writing style, the user’s question, and the corresponding response using the additive 5-point
scoring system described below. Points are accumulated based on the satisfaction of each criterion - Add
1 point if one or more style elements is at least present in one or two sentences, even if the response feels
generic or mechanical.
- Add another point if the majority of writing style elements are at least minimally present.
- Award a third point if the majority of writing style elements are present in the response, but could be
stronger.
- Grant a fourth point if the all of the writing style elements are present in the response, but could be
stronger.
- Bestow a fifth point if all writing style elements are impeccably tailored to the user’s question by an AI
Assistant.

Writing styles: {style description}

User: {user query instruction}: {user query}

<response>{response}</response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: ’Score: ¡total points¿’

Remember to assess from the AI Assistant perspective. To evaluate the response in alignment
with this additive scoring model, systematically attribute points based on the outlined criteria.
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D Writing Task User-Query Response Prompt Selection

To analyze how well a persona-driven judge is able to evaluate which of two responses is more personalized or how
well personalized a given response is, it is important to have responses that vary in their degree of personalization.
To this end we ran two analyses to select the prompts we use to generate a dataset of “personalized” responses: (1)
synthetic evaluation and (2) human annotation. Our synthetic evaluation consisted of two main parts and allowed us
to narrow the set of generation prompts to ask human annotators to evaluate. In one evaluation we ask an LLM judge
to determine which of two responses better contained the style element(s) and in the other we ask an LLM judge to
determine which style element(s) were included in a given generation.

D.1 Ranking Validation Study Set Up

We conducted a validation study to determine which versions of writing task prompts to use for generating the
synthetic data for the four user-query response LLMs. The objective of this study was to rank the alignment of the
style-conditioned LLM-generated text against the text generated without specifying a writing style. For each writing
task, we generated text using the four different writing task prompts (Appendix C.2), for the email-writing task, 10 user
queries (Appendix B), and five writing style sets (Fig 12). We additionally generate user-query responses using the
default generation prompt (Appendix C.1) to get examples of the LLM’s “default style”. We then prompted a strong
LLM (GPT-4o) with each style-conditioned and default user-query response pair to determine which of the two text
samples aligns more with a given writing style.

We ran the above analysis with three different ranking prompts: twice with a style-conditioned evaluation prompt
(adapted from the PEARL paper Mysore et al. (2023), see Figure 10) on (1) all preferences in a given set and (2)
individual preferences, and once using a default evaluation prompt (Figure 11) that allows the LLM to rely on its
default style preferences. The percentage of time that GPT-4o ranks preference-conditioned generation over default-
conditioned generation is referred to as all preference-conditioned, single preference-conditioned, and default win
rates, respectively. The “best” prompt is chosen by having the largest alignment score, namely: the mean between the
all preference-conditioned win rate, single preference-conditioned win rate, and the inverse of the default style win
rate. The best prompt for each LLM is then used to generate the data for the user study.
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PEARL-Inspired Ranking Prompt

You are an experienced linguist who helps people compare {task} texts.
Given an {task} WRITING TOPIC, and two TARGET {TASK PLURAL}, identify
which of the TARGET {TASK PLURAL} aligns better with the provided
PREFERENCES. For your response use the following instructions:
1. Make your judgment based on stylistic patterns based on the
PREFERENCES.
2. Output {TASK} ONE if it aligns better with the PREFERENCES.
3. Output {TASK} TWO if it aligns better with the PREFERENCES. Here is
the context:
### PREFERENCES ###
{preferences}
### WRITING TOPIC ###
Write a(n) {task} answering the following question:
{sub task}
### {TASK} ONE ###
{option a}
### {TASK} TWO ###
{option b}
### INSTRUCTION ###
Output a justification for your judgment, then output {TASK} ONE or {TASK}
TWO to indicate your final decision.

Figure 10: This was the ranking prompt used in the validation study to compare two writing texts for a provided
preference (set). The text orders are randomized. {𝑡𝑎𝑠𝑘} ∈ {email, tweet, summary}, {𝑇𝐴𝑆𝐾} ∈ {EMAIL, TWEET,
SUMMARY}, and {𝑇𝐴𝑆𝐾 𝑃𝐿𝑈𝑅𝐴𝐿} ∈ {EMAILS, TWEETS, SUMMARIES}

Default Ranking Prompt

Which {task} do you prefer? Explain why, and provide your final answer
on a new line in the format "ANSWER: OPTION {A or B}".
### CONTEXT ###
Write a(n) {task} answering the following question:
{sub task}
### OPTION A ###
{option a}
### OPTION B ###
{option b}

Figure 11: This was the ranking prompt used in the validation study to compare two writing texts for a provided
preference (set). The texts orders are randomized. {𝑡𝑎𝑠𝑘} ∈ {email, tweet, summary}
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D.2 Ranking Validation Study Results

As mentioned in Appendix D.1, the preference-conditioned generation prompt was selected using the alignment score
produced by GPT-4o as our evaluator. The high-level results with the aggregated alignment score can be seen in
Table 13 and the detailed results per ranking prompt are in Figures 14 (email), 15 (tweet), and 16 (summary). The
prompts in bold represent the selected prompt for running the generations, for each 𝐿𝐿𝑀𝑔.

Table 13: The alignment scores across tasks, LLMs, and generation prompts (see Appendix C.2 for the full prompts).
The selected generation prompt per task and LLM is bolded, and the selection criteria was the highest alignment
score for email-writing and tweet-writing. For summarization, the percentage of summaries that were shorter than
the original post’s length are sub-scripted. The selected generation prompt per LLM for summaries was due to a
combination of the summary length and alignment score.

Generation Prompt GPT 4o mini OLMo 13B QWEN 14B Claude 3.7 Sonnet
Email-Writing Task

Email Prompt 1 86.22% 92.89% 91.11% 88.44%
Email Prompt 2 92.89% 69.56% 95.11% 90.89%
Email Prompt 3 90.22% 95.33% 94.89% 91.11%
Email Prompt 4 86.89% 92.89% 93.11% 91.56%

Tweet-Writing Task
Tweet Prompt 1 88.44% 80.22% 89.78% 84.00%
Tweet Prompt 2 80.22% 87.77% 82.22% 84.89%
Tweet Prompt 3 84.44% 88.67% 87.33% 79.56%
Tweet Prompt 4 85.11% 86.44% 86.89% 84.89%

Summarization Task
Summary Prompt 1 78.44%100% 75.78% 90% 76.89%90% 73.78%90%
Summary Prompt 2 93.78%58% 97.33%30% 95.78%16% 94.67%62%
Summary Prompt 3 91.78%100% 95.11%84% 94.89%100% 96.00%90%
Summary Prompt 4 94.89%76% 95.33%34% 96.00%64% 65.56%84%
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Table 14: Email Writing Task: “Unconditioned” refers to the preference selection prompt that provides the LLM
with no information about the styles to assess on (see Figure 11); “Single Style” is the preference selection prompt
that provides a single style to asses on; and “All Styles” is the preference selection prompt that provides all styles from
a style set (see Figure 10 for style section prompt). The alignment score is the aggregate across the 3 prompt scores
(with the unconditioned score inverted). Highest alignment score rows are bolded.

Generation Prompt Unconditioned Single Style All Styles Alignment Score
OLMo-2-1124-13B-Instruct

Prompt 1 10.00 88.67 100.00 92.89
Prompt 2 16.00 64.67 60.00 69.56
Prompt 3 2.00 88.00 100.00 95.33
Prompt 4 10.00 88.67 100.00 92.89

Qwen2.5-14B-Instruct
Prompt 1 14.00 89.33 98.00 91.11
Prompt 2 6.00 91.33 100.00 95.11
Prompt 3 4.00 88.67 100.00 94.89
Prompt 4 12.00 91.33 100.00 93.11

GPT-4o-mini
Prompt 1 32.00 90.67 100.00 86.22
Prompt 2 8.00 86.67 100.00 92.89
Prompt 3 16.00 86.67 100.00 90.22
Prompt 4 30.00 90.67 100.00 86.89

Claude Sonnet 3.7
Prompt 1 24.00 89.33 100.00 88.44
Prompt 2 20.00 92.67 100.00 90.89
Prompt 3 18.00 91.33 100.00 91.11
Prompt 4 16.00 90.67 100.00 91.56
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Table 15: Tweet Writing Task: “Unconditioned” refers to the preference selection prompt that provides the LLM
with no information about the styles to assess on (see Figure 11); “Single Style” is the preference selection prompt
that provides a single style to asses on; and “All Styles” is the preference selection prompt that provides all styles from
a style set (see Figure 10 for style section prompt). The alignment score is the aggregate across the 3 prompt scores
(with the unconditioned score inverted). Highest alignment score rows that were used to select the generation prompt
are bolded.

Generation Prompt Unconditioned Single Style All Styles Alignment Score
OLMo-2-1124-13B-Instruct

Prompt 1 30.00 78.67 92.00 80.22
Prompt 2 20.00 83.30 100.00 87.77
Prompt 3 22.00 88.00 100.00 88.67
Prompt 4 24.00 85.33 98.00 86.44

Qwen2.5-14B-Instruct
Prompt 1 20.00 89.33 100.00 89.78
Prompt 2 16.00 74.67 88.00 82.22
Prompt 3 24.00 86.00 100.00 87.33
Prompt 4 28.00 88.67 100.00 86.89

GPT-4o-mini
Prompt 1 22.00 87.33 100.00 88.44
Prompt 2 38.00 82.67 96.00 80.22
Prompt 3 34.00 87.33 100.00 84.44
Prompt 4 32.00 89.33 98.00 85.11

Claude Sonnet 3.7
Prompt 1 36.00 88.00 100.00 88.00
Prompt 2 32.00 88.67 98.00 84.89
Prompt 3 48.00 88.67 98.00 79.56
Prompt 4 38.00 92.67 100.00 84.89
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Table 16: Summary Writing Task: “Unconditioned” refers to the preference selection prompt that provides the LLM
with no information about the styles to assess on (see Figure 11); “Single Style” is the preference selection prompt
that provides a single style to asses on; and “All Styles” is the preference selection prompt that provides all styles from
a style set (see Figure 10 for style section prompt). The alignment score is the aggregate across the 3 prompt scores
(with the unconditioned score inverted). Highest alignment score rows are bolded.

Generation Prompt Unconditioned Single Style All Styles Alignment Score
OLMo-2-1124-13B-Instruct

Prompt 1 26.00 73.33 80.00 90.00
Prompt 2 0.00 92.00 100.00 30.00
Prompt 3 2.00 87.33 100.00 84.00
Prompt 4 0.00 88.00 98.00 34.00

Qwen2.5-14B-Instruct
Prompt 1 32.00 80.67 82.00 76.89
Prompt 2 0.00 91.33 96.00 95.78
Prompt 3 2.00 86.67 100.00 94.89
Prompt 4 0.00 88.00 100.00 96.00

GPT-4o-mini
Prompt 1 30.00 79.33 86.00 78.44
Prompt 2 10.00 91.33 100.00 93.78
Prompt 3 4.00 79.33 100.00 91.78
Prompt 4 2.00 86.67 100.00 94.89

Claude Sonnet 3.7
Prompt 1 38.00 79.33 80.00 73.78
Prompt 2 8.00 92.00 100.00 94.67
Prompt 3 0.00 88.00 100.00 96.00
Prompt 4 100.00 96.67 100.00 65.56
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E Dataset

E.1 Creating the Dataset

The dataset consists of text for three writing tasks: email writing, tweet writing, and summarization. For email and
tweet writing, the LLM is prompted to write a response to a given user query, and for summarization, to summarize
a given Reddit post. The user queries for the email and tweet writing tasks are in Appendix B (Figure 5), and the
associated Reddit post IDs from the SLF5k dataset that we used as the summary user queries can be found in Appendix B
(Figure 6).

The queries and Reddit posts were selected to cover different domains. The queries are all questions that are casual
and not overly academic. We additionally selected the queries and posts to have a neutral implied style to avoid
unintentionally biasing the style of the LLM’s generations. For example, queries that use overly formal and academic
language may implicitly induce the LLM to respond in a formal and academic manner. An additional layer of filtering
was used when selecting the Reddit posts to remove entries that included harmful or sensitive content.

For each writing task 𝑡, each LLM𝑔 was provided with task-specific instructions. The style-conditioned, task-specific
prompts were selected following Section D.2 and were selected per LLM. The style-conditioned prompt per LLM𝑔 and
writing task 𝑡 pair is marked in bold in Table 13. The default prompts are in Appendix C.1.

Writing Style Preference Sets

Set 0: "poetic and lyrical", "storytelling", "scholarly-yet-friendly"
Set 1: "Inspirational and uplifting", "journalistic",
"scholarly-yet-friendly"
Set 2: "robotic and emotionless", "telegraphic brevity", "legal
precision"
Set 3: "step-by-step instructional", "encouraging and supportive",
"visual and spatial"
Set 4: "playful and whimsical", "rhyming and rhythmic", "sensory
focused"
Alternate Option: No preference set specified

Figure 12: The five writing style preference sets used to condition the LLMs during generation when creating the
dataset. Each preference set is composed of three individual writing styles.

Each persona consists of a set of writing styles with each set containing three elements (see Figure 12). The style
elements were selected to create distinct sets, but to not directly contrast within a set. We avoided using styles that
are known to be strong defaults in LLMs (e.g. bullet points) as these will likely occur across many responses without
additional prompting.

For each writing task 𝑡, user-query, and writing style set u𝑖 (including the no writing style condition), each LLM𝑔

was prompted to generate 30 responses. The responses were then filtered and cleaned to remove any that explicitly
reference the writing style set the LLM was conditioned on to avoid biasing the human labelers. The filtering step was
not applied to the responses that were not conditioned on any writing styles. After filtering, 10 responses were selected
via clustering to ensure some level of diversity in the responses.

Some LLMs (i.e. OLMo-2-1124-13B-Instruct and GPT-4o struggled to produce at least 10 responses to
certain user queries and style sets without referencing the target writing styles for the email task. Therefore, there are
2400 writing samples for the tweet and summary tasks with only 2, 303 (post filtering) for the email task.

E.2 Collecting the Style Labels and Pairwise Rankings

To measure how well LLM𝑒 is able to evaluate the adherence of LLM𝑔 to the required writing styles, ground-truth
labels are required that specify the level of adherence. To obtain ground-truth, we run a user-study to collect human
judgments about the extent to which the each writing style element is present in each 𝑟𝑔 (i.e., the style detection task).
From these annotations we extract labels, against which the LLM𝑒 judgments are compared. Additionally, we collected
pairwise rankings of (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ) in two cases: LLM𝑔 adherence to (1) instructions and (2) style labels (i.e., the pairwise
ranking task).
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Stimuli The text excerpts for annotation, 𝑟𝑔 ∈ 𝑅, were generated with each LLM𝑔, and selected as described in
Section E.1. For the pairwise ranking tasks, a subset of these responses were chosen and organized into pairs as
described in Section 3.2.2.

Style detection task Each style detection task consisted of four participant steps: (1) reading 𝑟𝑔, (2) rating on a
three-point scale (1=not present, 2=somewhat present, 3=strongly present—exact wording depending on the queried
style) the degree to which each writing style, 𝑤𝑠 , is present, following Chhun et al. (2022), (3) rating how realistic 𝑟𝑔
is, and (4) writing an annotation justification. Note that annotators rate for each style 𝑤𝑠 individually and are not aware
of the writing style personas u𝑖 used to steer the model. The complete survey design is presented in Appendix F.

Ranking task The pairwise ranking tasks were used to assess how well the generator LLM𝑔 followed the instructions
given to it (e.g., to write an email) or the style sets u𝑖 . The annotation process consisted again of four steps: (1) reading
the instruction/style sets given to LLM𝑔, (2) reading the pair of responses (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ), 3) selecting which response is
better (five levels), and (4) writing a justification. The participants were asked to follow a rubric that described how
to assess whether given responses adhered to instructions or style sets, following Dubois et al. (2023). The complete
survey design is presented in Appendix G.

Annotators We recruited approximately 1,000 annotators per survey through a crowd-sourcing platform. Annotators
were compensated according to the number of annotations that they provided. We collected sufficient annotations to
ensure that each annotation task, that is corresponding 𝑟𝑔 or (𝑟𝑎𝑔 , 𝑟𝑏𝑔 ), received ten annotations in the style detection
task, and five annotations in the pairwise ranking task.

E.3 Correlations between human detected styles

The style labels detected in the data display weak to moderate correlation as measured using the Spearman rank
correlation coefficient and interpreted based on guidelines in Haldun (2018)—see Figure 13—with Pearson correlation
coefficients taking similar magnitudes. Moderate positive correlations are observed between the pairs Poetic—Rhyming
(𝜌 = 0.59), Playful—Poetic (𝜌 = 0.59), and Playful—Rhyming (𝜌 = 0.54). Weak negative correlations are observed
between the pairs Playful—Robotic (𝜌 = −0.35) and Poetic—Robotic (𝜌 = −0.34). Correlations between the other
pairs are also mostly weak.

E.4 Conditional probabilities of human detected styles

The conditional probabilities of assigning the label 𝑦𝑑=3 indicating strong presence of a style tend to be higher when
it is used in conditioning the generator LLM𝑔 (Figure 14 A-F ). This holds for each of the styles sets except for
set B, which corresponds to generating text in the styles of “Inspirational and Uplifting”, “Journalistic”, and “Rich
descriptions”. Additionally, the probability of observing the “not present” label for each queried style is higher when
default generations are examined (pane F), in contrast to conditioned ones, except for the styles “Scholarly-yet-friendly”
and “Journalistic”.

E.5 Human annotation justification analysis

As shown in Appendix F.3), we ask annotators to provide justifications for their annotations for presence of styles. To
understand the reasoning behind annotating a certain style and understand correlations amongst styles, we conduct an
analysis of these justifications. Specifically, we extract the top 10 TF-IDF tri-grams across the annotations when a style
is given a score of 3 (very present). Since style annotations were done in sets of 4 but a single, combined justification
string was elicited at the end of all 4 annotations, we could not isolate parts of the string only pertaining to a specific
style. However, since the tri-grams are extracted using TF-IDF for all instances when a style is marked as very present,
only the ones present in several annotations would appear, surfacing the ones relevant for a given style.

The tri-grams are shown in Table 17. Annotators often refer directly to the corresponding style in the justifications when
a style is marked as very present, as can be seen in the tri-grams. Other descriptors for a style such as unambiguous
for “Legal”, mechanical for “Robotic”, imagery for “Visual”, factual for “Journalistic” can also be seen. References
to other styles within the style group can also be seen, which can be attributed to the combined justification for a style
group.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 17: Top 10 tri-grams from the justifications provided by humans when a style is annotated with a score of 3
(Very Present). The rows are separated by the style sets within which they were annotated.

Style Top Tri-Grams
step [’step step instructions’, ’relies step step’, ’strongly relies step’, ’step step guide’, ’step step instructional’,

’clear sequential order’, ’tic tac toe’, ’clear step step’, ’information clear sequential’, ’step step instruction’]
legal [’high level legal’, ’level legal precision’, ’step step instructions’, ’characterized high level’, ’relies step step’,

’carefully defined terms’, ’exact unambiguous language’, ’strongly relies step’, ’step step instructional’, ’lan-
guage carefully defined’]

rhyming [’step step instructions’, ’sounds flowing cadence’, ’patterned sounds flowing’, ’memorable reading experience’,
’features patterned sounds’, ’cadence using rhyme’, ’flowing cadence using’, ’musical memorable reading’,
’lighthearted uplifting precise’, ’uplifting precise robotic’]

robotic [’step step instructions’, ’mechanical way communicating’, ’relies step step’, ’high level legal’, ’level legal
precision’, ’email rhyming rhythmic’, ’characterized legal precision’, ’characterized high level’, ’step step
instruction’, ’step instructions robotic’]

visual [’tone visual spatial’, ’somewhat scholarly friendly’, ’scholarly friendly visual’, ’visual spatial emphasizes’,
’spatial emphasizes imagery’, ’friendly visual spatial’, ’visual spatial storytelling’, ’tic tac toe’, ’ratings based
email’, ’ratings based provided’]

scholarly [’scholarly friendly visual’, ’somewhat visual spatial’, ’friendly visual spatial’, ’ratings based email’, ’tone
visual spatial’, ’scholarly friendly tone’, ’blends rigorous reasoning’, ’rigorous reasoning citation’, ’citation
approachable language’, ’reasoning citation approachable’]

journalistic [’scholarly friendly journalistic’, ’factual reporting person’, ’reporting person observation’, ’merges factual
reporting’, ’scholarly friendly visual’, ’tone storytelling journalistic’, ’journalistic merges factual’, ’educates
telling story’, ’somewhat scholarly friendly’, ’journalistic scholarly friendly’]

storytelling [’uses scene building’, ’storytelling visual appeal’, ’visual spatial storytelling’, ’somewhat scholarly friendly’,
’scene building dialogue’, ’tone visual spatial’, ’building dialogue plot’, ’dialogue plot beats’, ’somewhat visual
spatial’, ’tic tac toe’]

poetic [’rhythmic sentence patterns’, ’encouraging supportive poetic’, ’supportive poetic lyrical’, ’vivid imagery
rhythmic’, ’imagery rhythmic sentence’, ’senses encouraging supportive’, ’email engages senses’, ’engages
senses encouraging’, ’poetic lyrical natural’, ’patterns figurative language’]

realism [’encouraging supportive poetic’, ’supportive poetic lyrical’, ’senses encouraging supportive’, ’poetic lyrical
natural’, ’engages senses encouraging’, ’email engages senses’, ’somewhat sensory focused’, ’tic tac toe’,
’somewhat encouraging supportive’, ’natural person write’]

sensory [’encouraging supportive poetic’, ’supportive poetic lyrical’, ’senses encouraging supportive’, ’email engages
senses’, ’poetic lyrical natural’, ’engages senses encouraging’, ’sensory focused contains’, ’focused contains
vivid’, ’contains vivid descriptions’, ’tone encouraging supportive’]

encouraging [’tone encouraging supportive’, ’encouraging supportive poetic’, ’supportive poetic lyrical’, ’senses encour-
aging supportive’, ’engages senses encouraging’, ’email engages senses’, ’poetic lyrical natural’, ’somewhat
sensory focused’, ’sensory focused encouraging’, ’positive empathetic language’]

playful [’tone playful whimsical’, ’contains rich descriptions’, ’characterized telegraphic brevity’, ’uses imaginative
language’, ’somewhat inspirational uplifting’, ’language lighthearted tone’, ’imaginative language lighthearted’,
’tic tac toe’, ’high level telegraphic’, ’level telegraphic brevity’]

telegraphic [’high level telegraphic’, ’level telegraphic brevity’, ’characterized high level’, ’short clipped sentences’,
’contains rich descriptions’, ’uses short clipped’, ’clipped sentences phrases’, ’tone playful whimsical’, ’writing
uses short’, ’concise writing uses’]

inspirational [’contains rich descriptions’, ’characterized telegraphic brevity’, ’level telegraphic brevity’, ’high level tele-
graphic’, ’characterized high level’, ’tone playful whimsical’, ’playful whimsical inspirational’, ’whimsical
inspirational uplifting’, ’uses imaginative language’, ’clear concise good’]

rich-
descriptions

[’contains rich descriptions’, ’characterized telegraphic brevity’, ’tone playful whimsical’, ’high level tele-
graphic’, ’level telegraphic brevity’, ’characterized high level’, ’somewhat inspirational uplifting’, ’uses
imaginative language’, ’somewhat characterized telegraphic’, ’lighthearted uplifting brief’]

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

St
ep

Ro
bo

tic
Le

ga
l

Rh
ym

in
g

Se
ns

or
y

En
co

ur
ag

in
g

Po
et

ic
Re

al
ism

Sc
ho

la
rly

Vi
su

al
St

or
yt

el
lin

g
Jo

ur
na

lis
tic

Pl
ay

fu
l

In
sp

ira
tio

na
l

Ri
ch

 d
es

cr
ip

tio
ns

Robotic
Legal

Rhyming
Sensory

Encouraging
Poetic

Realism
Scholarly

Visual
Storytelling
Journalistic

Playful
Inspirational

Rich descriptions
Telegraphic

0.018

0.14 0.38

-0.16 -0.29 -0.22
0.013 -0.24 -0.15 0.24

0.25 -0.24-0.065
-0.013 0.39

-0.21 -0.34 -0.28 0.59 0.43 0.14

0.15 0.1 0.14 -0.31
-0.00840.21 -0.31

0.093-0.0840.061-0.0790.041 0.14 -0.0370.065

0.17 -0.2 -0.093 0.12 0.19 0.18 0.16 -0.051 0.29

-0.15 -0.28 -0.2 0.32 0.23 0.06 0.41 -0.19 0.081 0.29
-0.0380.0780.075 -0.14-0.081

-0.047-0.14 0.079 0.13-0.0036
0.039

-0.12 -0.35 -0.27 0.54 0.3 0.084 0.59 -0.29-0.016 0.19 0.36 -0.14

0.16 -0.25-0.0970.052 0.17 0.34 0.11 -0.013 0.12 0.17 0.12 -0.046 0.26
-0.048-0.25 -0.15 0.25 0.28 0.12 0.34 -0.14 0.058 0.19 0.28 -0.055 0.42 0.41

0.095 0.35 0.16 -0.23 -0.19 -0.15 -0.31 0.093-0.077-0.11 -0.28 0.022 -0.26 -0.13 -0.19

0.2

0.0

0.2

0.4

Figure 13: Spearman rank correlation coefficients between detected styles across all task types (email, tweet, and
summary). First word of each style referenced in the labels.
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F Style detection user study questionnaires

The instructions given in the style detection study were split in two sections: general instructions that the participant
was shown at the beginning of the study, and could access at any point (Appendix F.1), and task instructions shown
alongside each annotation task (Appendix F.2). The 16 styles were split into four different sets randomly (as shown in
Section F.3).

F.1 General instructions

The following instructions were displayed to each participant in the beginning of the study, and could be accessed at
any point. The instructions were formulated to refer to text types specific to each task (emails, tweets, summaries).

In the following tasks, you will be shown [text type] and will need to complete the following steps:

• Read the [text type].
• Rate the presence of four different styles in this [text type].
• Justify your ratings.

Please carefully assess how well each style aligns with the manner of expression used in the text (i.e., tone, word
selection, sentence structure, etc.). You may ignore the specifics of the [text type] content. Some of the [text type] are
incomplete, so you may also ignore placeholders (e.g., [NAME]). All or any of the styles may be present in the [text
type].

Note that you are not allowed to use outside assistance, including chatbots, to complete these tasks.

Instructions are also shown in grey boxes like this in each task.

In this set of tasks, you will rate the presence of the following four styles:

[List of styles, corresponding to Section F.3]

F.2 Task instructions

Alongside each annotation task, the following instructions were displayed.

1. Please read the following text:

[Generated response]

2. Please review the following styles and assess how well they describe the text you just read. A definition is
provided for each style for guidance. DO assess how well the styles align with the manner of expression (i.e.,
tone, word selection, sentence structure, etc.). You DO NOT have to consider how well the styles align with
the content of the text (i.e., what is said).

[Style questions from sets in Section F.3]

3. Please justify your responses by providing a concise summary of text elements that matched an identified
style. You may copy paste extracts from the [text type]. You do not need to provide a justification for styles that
are not present in the text. If you did not identify any styles, you can write: ”None of the styles are present.”

[Box for justification]
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F.3 Style questions

The 16 examined styles were split into four different surveys randomly, resulting in the following sets and corresponding
labels. The labels were formulated following a similar structure in Chhun et al. (2022).

F.3.1 Style set 1

Step-by-step instructional: Presents information in a clear, sequential order, guiding the reader through each stage of
a process with precise, actionable directions.

• The text strongly relies on step-by-step instructions
• The text somewhat relies on step-by-step instructions
• The text does not rely on step-by-step instructions
• I can’t tell if this style is present or not

Robotic and emotionless: A flat, mechanical way of communicating that lacks emotional nuance, human warmth,
and expressive variation.

• The text is very robotic and emotionless
• The text is somewhat robotic and emotionless
• The text is not robotic and emotionless
• I can’t tell if this style is present or not

Legal precision: Relies on exact, unambiguous language and carefully defined terms to minimize misinterpretation
and ensure clarity in interpretation.

• The text is characterized by high level of legal precision
• The text is somewhat characterized by legal precision
• The text is not characterized by legal precision
• I can’t tell if this style is present or not

Rhyming and rhythmic: Features patterned sounds and flowing cadence, often using rhyme and meter to create a
musical, memorable reading experience.

• The text is very rhyming and rhythmic
• The text is somewhat rhyming and rhythmic
• The text is not rhyming and rhythmic
• I can’t tell if this style is present or not

F.3.2 Style set 2

Sensory-focused: Vividly engages the five senses—sight, sound, smell, taste, and touch—to immerse the reader in a
rich, tangible experience.

• The text is very sensory-focused
• The text is somewhat sensory-focused
• The text is not sensory-focused
• I can’t tell if this style is present or not

Encouraging and supportive: Uses positive, empathetic language to uplift the reader, build confidence, and foster a
sense of motivation and reassurance.

• The tone of the text is very encouraging and supportive
• The tone of the text is somewhat encouraging and supportive
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• The tone of the text is not encouraging and supportive
• I can’t tell if this style is present or not

Poetic and lyrical: Employs vivid imagery, rhythmic sentence patterns, and figurative language to evoke emotion and
sensory experience.

• The text is very poetic and lyrical
• The text is somewhat poetic and lyrical
• The text is not poetic and lyrical
• I can’t tell if this style is present or not

Realism: The style of the text is realistic and natural—something that another person would write.

• The text feels very realistic
• The text feels somewhat realistic
• The text does not feel realistic
• I can’t tell if this text feels realistic

F.3.3 Style set 3

Scholarly-yet-friendly: Blends rigorous reasoning and citation with approachable language, first-person asides, and
analogies that humanize technical topics.

• The text is very scholarly-yet-friendly
• The text is somewhat scholarly-yet-friendly
• The text is not scholarly-yet-friendly
• I can’t tell if this style is present or not

Visual and spatial: Emphasizes imagery, layout, and the arrangement of elements to help the reader understand
concepts through visual structure and spatial relationships.

• The tone of the text is very visual and spatial
• The tone of the text is somewhat visual and spatial
• The tone of the text is not visual and spatial
• I can’t tell if this style is present or not

Storytelling: Uses scene-building, dialogue, and plot beats—even in nonfiction—to convey ideas through personal
anecdotes and mini-stories.

• The tone of the text is very storytelling
• The tone of the text is somewhat storytelling
• The tone of the text is not storytelling
• I can’t tell if this style is present or not

Journalistic: Merges factual reporting with first-person observation, balancing objectivity with a clear, recognizable
narrator.

• The text is very journalistic
• The text is somewhat journalistic
• The text is not journalistic
• I can’t tell if this style is present or not
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F.3.4 Style set 4

Playful and whimsical: Uses imaginative language, lighthearted tone, and unexpected twists to entertain and delight
the reader with a sense of fun and creativity.

• The tone of the text is very playful and whimsical
• The tone of the text is somewhat playful and whimsical
• The tone of the text is not playful and whimsical
• I can’t tell if this style is present or not

Inspirational and uplifting: Encouraging diction, motivational phrasing, and inclusive pronouns (“we,” “us”) that
position the writer as a supportive guide.

• The text is very inspirational and uplifting
• The text is somewhat inspirational and uplifting
• The text is not inspirational and uplifting
• I can’t tell if this style is present or not

Rich descriptions: Relies on concrete sensory details (sound, smell, touch) and precise adjectives, inviting readers
into the writer’s lived experience.

• The text contains several rich descriptions
• The text contains some rich descriptions
• The text does not contain rich descriptions
• I can’t tell if this style is present or not

Telegraphic brevity: A concise writing style that uses short, clipped sentences or phrases, often omitting unnecessary
words like articles or conjunctions, to convey information quickly and efficiently.

• The text is characterized by high level of telegraphic brevity
• The text is somewhat characterized by telegraphic brevity
• The text is not characterized by telegraphic brevity
• I can’t tell if this style is present or not
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G Pairwise ranking user study questionnaires

Similar to style detection, the instructions given to the users were split in two sections in the pairwise ranking task.
The first section described general instructions accessible throughout the task (Appendix G.1 and G.3 for adherence to
instructions and style sets, respectively). The general instructions also contained the rubrics that the participants were
asked to follow, which format was obtained from Dubois et al. (2023). The second section contained each annotation
task (Appendix G.2 and Appendix G.4). The format of rating the options also followed that of Dubois et al. (2023),
with the addition of an option indicating a tie in the ranking.

G.1 General instructions—Pairwise ranking of adherence to instructions

The following instructions were displayed to each participant in the beginning of the study querying adherence to
instructions in the pairwise ranking tasks, and could be accessed at any point.

In this task, you will rate responses of an AI model to either an instruction or a question.

You will first read:

1. The instruction/question given to the AI.
2. The two responses (Option A and Option B) from the AI.

Your task is to decide which response is better. There are several dimensions that you can think along. Consider the
following questions:

• Is the response helpful? For example, if the instruction asked for a recipe for healthy food, and the response
is a useful recipe, then we can consider it helpful.

• Is the response language natural? For example, AI responses are often repetitive, which is not natural.
• Is the response factual/accurate? AI responses often make up new information. For example, if the response

claims that the US is not a country then you should consider it inaccurate.
• Based on your aesthetics, which one do you prefer? For example, you might prefer one poem over another

poem.
• An so on ... ultimately, you should decide which response is better based on your judgment and based on your

own preference.

There are five options for you to choose from:

1. Option A is better: If you think option A has an advantage, then choose this option.
2. Option A is slightly better: Option A is marginally better than option B and the difference is small.
3. Both options are equally good: There is no difference in quality between Options A and B.
4. Option B is slightly better: Option B is marginally better than option A and the difference is small.
5. Option B is better: If you think option B has an advantage, then choose this option.

There are cases where the difference between the two responses is not clear. In this case, you can choose the second,
third, or fourth option. However, in general, we ask you to choose those options as rarely as possible.

Note that you are not allowed to use outside assistance, including chatbots, to complete these tasks.

Instructions are also shown in grey boxes like this in each task.

G.2 Task instructions—Pairwise ranking of adherence to instructions

Alongside each annotation task querying adherence to instructions (Appendix G.1), the following instructions were
displayed.
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1. Please read the following instructions given to the AI:

[An instruction or a question]

2. Please read the following two texts (option A on the left, option B on the right):

[Option A and Option B presented side-by-side]

3. Rate the options.

• Option A is better
• Option A is slightly better (Only pick this if it’s truly close)
• Both options are equally good (Only pick if the option quality is truly indistinguishable)
• Option B is slightly better (Only pick this if it’s truly close)
• Option B is better

4. Please justify your preference (you may copy paste extracts from the chosen text). If you have no preference
over the texts, please write: ”I think the texts are equally aligned with the given styles”.

[Box for justification]

G.3 General instructions—Pairwise ranking of adherence to styles

The following instructions were displayed to each participant in the beginning of the study querying adherence to styles
in the pairwise ranking tasks, and could be accessed at any point.

In this task, you will be shown responses of an AI model to either an instruction or a question. In each task, you are
shown a pair of responses. Your task is to decide which response better follows or aligns with a set of given writing
styles.

You will first read:

1. The three writing styles the AI was instructed to follow.
2. The two responses (Option A and Option B) from the AI.

Your task is to decide which response better follows the given set of writing styles. There are several dimensions that
you can think along. Consider the following questions:

• Are all writing styles present in the response? For example, the AI may have followed one or two of the styles
instead of all three.

• To what extent are the three writing styles present? For example, the AI maybe have written all sentences
following the given writing styles, or may have followed the writing style for a single sentence.

• Is the response language natural? For example, one or all of the writing styles might be incorporated in an
awkward or ”over the top” manner.

• Are the responses coherent? For example, in attempting to using onomatopoeia the AI may have written only
words such as, ”bang”, ”clang”, ”zap”, ”ding ding”, etc.

• An so on ... ultimately, you should decide which response is better based on your judgment about the given
writing styles.
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There are five options for you to choose from, where ”better” refers to the response that is more aligned with the given
writing styles:

1. Option A is better: If you think option A has an advantage, then choose this option.
2. Option A is slightly better: Option A is marginally better than option B and the difference is small.
3. Both options are equally good: There is no difference in quality between Options A and B.
4. Option B is slightly better: Option B is marginally better than option A and the difference is small.
5. Option B is better: If you think option B has an advantage, then choose this option.

There are cases where the difference between the two responses is not clear. In this case, you can choose the second,
third, or fourth option. However, in general, we ask you to choose those options as rarely as possible.

Note that you are not allowed to use outside assistance, including chatbots, to complete these tasks.

Instructions are also shown in grey boxes like this in each task.

G.4 Task instructions—Pairwise ranking of adherence to styles

Alongside each annotation task querying adherence to styles (Appendix G.3), the following instructions were displayed.

1. Please note the following writing styles the AI was instructed to follow:

[List of styles]

2. Please read the following two texts (option A on the left, option B on the right):

[Option A and Option B presented side-by-side]

3. Rate the options.

• Option A is more aligned with the given styles
• Option A is slightly more aligned with the given styles (Only pick this if it’s truly close)
• Both options are equally aligned with the given styles (Only pick if the option quality is truly indistinguishable)
• Option B is slightly more aligned with the given styles (Only pick this if it’s truly close)
• Option B is more aligned with the given styles

4. Please justify your preference (you may copy paste extracts from the chosen text). If you have no preference
over the texts, please write: ”I think the texts are equally aligned with the given styles”.

[Box for justification]
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H Mapping Style Detection Prompts Responses to Human Labels

We explored representing the human style detection annotations binary, two-class labels (i.e. “not present” and
“present”) or leaving them untouched as three-class labels (i.e. “not present”, “somewhat present”, and “very present”).
The two-class labels considered are “not present” and “present”, which involves mapping “somewhat present” and
“very present” to “present”.

We additionally explore different strategies to map the LLM style detection annotations to the human annotations. This
is necessary as the LLM annotations for the binary detection, probability estimation, and Likert-10 style prompts do
not directly map to the human annotations. There is not a mapping for the annotations from the binary detection LLM
style detection prompt to the human labels when the labels are: “not present”, “somewhat present”, and “very present”.
Whenever the LLM style detection prompt is able to assign more unique annotation values than there are human labels,
the LLM annotations must be binned and mapped to the human labels.

We use the following mappings from LLM annotations to human labels for the manual mapping setting when using
two and three labels.

Two Labels:

• Binary Detection - never mapped and can only be used where there are two human labels
• Likert-3 (i.e. {“not present”, “somewhat present”, “very present”} - “somewhat present” and “very present”

are mapped to “present”
• Likert-10 - “not present” when the score is < 5, else “present”
• Probability Estimation - “not present” when the probability is < 0.5, else “present”

Three Labels:

• Likert-3 (i.e. {“not present”, “somewhat present”, “very present”} - have a 1:1 mapping
• Likert-10 - “not present” when the probability is <= 2.3, “somewhat present” when <= 5.6, else “very

present”
• Probability Estimation - “not present” when the probability is <= 0.33, “somewhat present” when <= 0.66,

else “very present”

We evaluated the impact of the number of labels and the binning method on the LLM style detection performance.
We found that, in general, our manually defined binning and mapping performed better than learning the binning and
the mapping (compare Figure 15(15(a) vs. 15(c)) and (15(b) vs. 15(d))). We also found that two labels out performed
three labels, which is an easier task so it to be expected (compare Figure 15(15(a) vs. 15(b)) and (15(c) vs. 15(d))).
Therefore, we report results given two labels (“not present” and “present”) with our manual mapping.
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(a) Manual Mapping & Two Labels
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(b) Manual Mapping & Three Labels
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(c) Learned Mapping & Two Labels
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(d) Learned Mapping & Three Labels

Figure 15: LLM style detection F1-score results given the number of style labels and the LLM annotation to label
mapping.
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I LLM𝑒 Style Detection Self Consistency — Detailed Results

We report internal self-consistency results for each rating LLM, LLM𝑒 in Tables 18, 19, & 20. Across all three tasks,
we observe similar trends. Namely, OLMo-7B is always the least internally-consistent model, reflecting that the model
may be much weaker or more prone to guessing than all other models. We likewise observe that all Qwen models
are more self-consistent than all OLMo models, and seem to exhibit a self-consistency on par with or exceeding GPT
models. Finally, we observe that more rating options (as in the Likert-10 and the Probability rows of each table) are
correlated with lower self-consistency. This trend makes intuitive sense, as there are more options to choose from, but
our binarization process (Appendix H) collapses those options into only two buckets. This process may be separating
two ratings that were otherwise very similar (e.g., a “4” and a “5” are very similar ratings on a 10-point scale, but will
be binarized to “No” and “Yes”, respectively, by our binarization scheme) leading to a lower self-consistency score
despite similar ratings.

Table 18: LLM𝑒 self-consistency by LLM for the email writing task scored with Randolph’s kappa. Reflecting the
trend across all models, more options leads to lower self-consistency

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT-4o-mini
Binary 0.75 0.75 0.64 0.97 0.98 0.97 0.90 0.90
Likert-3 0.77 0.61 0.54 0.95 0.92 0.91 0.86 0.82
Likert-10 0.44 0.43 0.27 0.73 0.78 0.63 0.59 0.32
Probability 0.53 0.56 0.36 0.75 0.71 0.71 0.70 0.60

Table 19: LLM𝑒 self-consistency by LLM for the summary writing task scored with Randolph’s kappa.

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT-4o-mini
Binary 0.68 0.68 0.38 0.97 0.98 0.96 0.92 0.88
Likert-3 0.74 0.54 0.24 0.91 0.95 0.82 0.86 0.80
Likert-10 0.39 0.20 0.19 0.74 0.79 0.60 0.57 0.54
Probability 0.47 0.55 0.30 0.80 0.76 0.81 0.80 0.58

Table 20: LLM𝑒 self-consistency by LLM for the tweet writing task scored with Randolph’s kappa.

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT-4o-mini
Binary 0.66 0.83 0.41 0.96 0.97 0.96 0.90 0.83
Likert-3 0.72 0.57 0.24 0.91 0.94 0.86 0.85 0.80
Likert-10 0.35 0.32 0.17 0.71 0.77 0.58 0.58 0.54
Probability 0.44 0.49 0.24 0.76 0.72 0.77 0.76 0.59
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J LLM𝑒 Style Detection Performance — Detailed Results

In this section we provide detailed breakdowns for each LLM𝑒 by style detection prompt, LLM𝑔, and target style. All
results are reported per writing style task.

J.1 Judge LLM Performance by Style Detection Prompt

In this section we show the F1-Score for each LLM𝑒 using each of our style detection prompts 𝑝𝑑𝑒 . We find that the
probability estimation is generally the best style detection prompt to use for the tweet and summary writing tasks, and
the performance on the email writing style task is least sensitive to exact style detection prompt with no clear, generally
best style detection prompt. We identify the following best LLM𝑒 and style detection prompt pair for the each writing
task:

• Email: GPT4o and probability estimation
• Tweet: GPT4o and probability estimation
• Summary: GPT4o and binary detection

The best prompt per writing task and LLM𝑒 is provided in Table 21.

Table 21: The most performant style detection prompt for each writing task and LLM𝑒 pair. The best performing
LLM𝑒 and style detection prompt 𝑝𝑑𝑒 is bolded per task.

Writing Task Email Tweet Summary
OLMo2-7B-Instruct Probability Probability Probability
OLMo2-13B-Instruct Likert-3 Probability Likert-3
OLMo2-32B-Instruct Probability Probability Probability
Qwen2.5-7B-Instruct Probability Probability Probability
Qwen2.5-14B-Instruct Likert-10 Likert-3 & Probability Probability
Qwen2.5-32B-Instruct Likert-3 Probability Probability
GPT4o-mini Probability Probability Probability
GPT4o Probability Probability Binary Detection

Email Figure 16 suggests that it is easier for all LLM𝑒 to correctly detect the target style 𝑤 for those 𝑟𝑞 that were
conditioned on a persona other than the null persona u∅ . The difference in F1-scores range from 29% (i.e. Qwen-32B
binary detection prompt) to 7% (i.e. OLMo-32B binary detection prompt). The only exception is OLMo-13B on the
binary detection prompt where the OLMo-13B is slightly better at detecting styles when 𝑟𝑞 is conditioned on the null
persona u∅ . Within an LLM, we do not see a large performance gap across style detection labels for the Qwen models.
However, we do see that the binary detection prompt negatively impacts the performance of the OLMo models. The
binary detection prompt is never the best performing prompt, and is the worst performing prompt for 6/8 of the LLM𝑒.

The best performing style detection prompt differs between LLM𝑒, however, in many cases there are two style detection
prompts that have a small performance gap (e.g. 1):

• Likert-3: OLMo2-13B-Instruct and Qwen2.5-32B-Instrct
• Likert-10: Qwen2.5-14B-Instruct
• Probability Estimation: OLMo2-7B-Instruct, OLMo-2-32B-Instruct, Qwen2.5-7B-Instruct, GPT4o-mini,

and GPT-4o

The probability estimation prompt has the majority of LLMs for which it is the best performing style detection prompt,
however it is only the best prompt for half of the LLM𝑒. Each LLM family (OLMo and Qwen) spans the three style
detection prompts, and there is no clear trend by the size and general capability of LLM𝑒.

The best performing LLM𝑒 and style detection prompt combination is GPT4o and probability estimation.

Tweet Figure 17 suggests, as with the email task, the LLM𝑒 are better able to detect the target style 𝑤 in 𝑟𝑞 that
were conditioned on any persona u that is not the null persona u∅ . The difference in F1-scores range from 24% (i.e.
OLMo2-13B-Instruct probability estimation style detection prompt) to 13% (i.e. OLMo2-7B-Instruct binary detection
style detection prompt). Overall the u∅ and non-null persona performance gap is larger for the tweet task than for the
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Figure 16: Email: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, target style 𝑤𝑖 , and writing
subtask 𝑞 (i.e. user query or instruction). The diagonal slashes indicate performance across all 𝑟𝑞 , horizontal slashes
indicate performance on 𝑟𝑞 that were not conditioned on the non-null persons u∅ , and the circles indicate performance
on 𝑟𝑞 that were conditioned on the null persona.
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email task. Compared to the email writing task, there are larger performance gaps within an LLM𝑒 and across style
detection prompts. For example, OLMo2-7B-Instruct exhibits a 38% difference between the binary detection and the
probability estimation prompts.

The Likert-10 style detection prompt is the least performant prompt for 7/8 LLM𝑒 (OLMo2-7B-Instruct is the
exception), and is never the most performant. The best performing prompt for each LLM𝑒 is as follows:

• Binary Detection: GPT4o-mini
• Likert-3: Qwen2.5-14B-Instruct*
• Probability Estimation: OLMo2-7B-Instruct, OLMo2-13B-Instruct, OLMo2-32B-Instruct, Qwen2.5-7B-

Instruct, Qwen2.5-14B-Instruct*, Qwen2.5-32B-Instruct, and GPT4o

The majority of LLM𝑒 perform best on the tweet task when using the probability estimation style detection prompt.
We also see that binary detection and Likert-3 is the best prompt for one model each. The performance gap between
the best and second best style detection prompt with an LLM𝑒 is larger than for the email task suggesting success at
the tweet task is more sensitive to the style detection prompt than success as the email task.

The best performing LLM𝑒 and style detection prompt combination is GPT4o and probability estimation.

Summary Figure 18 supports the conclusion drawn from the email and tweet writing tasks that the LLM𝑒 are
better able to detect the target style 𝑤 when 𝑟𝑞 is conditioned on any persona u that is not the null persona u∅ . The
difference in F1-scores range from 52% (i.e. Qwen2.5-14B-Instruct binary detection style detection prompt) to 18%
(i.e. Qwen2.5-7B-Instruct Likert-3 style detection prompt). Overall the u∅ and non-null persona performance gap is
larger for the summary task than for the email and tweet tasks. Compared to the email writing task, there are larger
performance gaps within an LLM𝑒 and across style detection prompts, but smaller than those for the tweet task. For
example, a difference of 36% between the binary detection and Likert-10 style detection prompts for GPT4o.

The Likert-10 style detection prompt is the worst prompt for 5/7 LLM𝑒 (OLMo2-7B-Instruct and OLMo2-13B-Instruct
is the exceptions), and is never the best prompt. The best performing prompt for each LLM𝑒 is as follows:

• Binary Detection: GPT4o-mini and GPT4o
• Likert-3: OLMo2-13B-Instruct
• Probability Estimation: OLMo2-7B-Instruct, OLMo2-32B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-

Instruct, and Qwen2.5-32B-Instruct

As for the tweet writing task, the probability estimation style detection prompt is the most performant prompt for
5/7 LLM𝑒. When probability estimation is not the most performant, it is the second most performant. In general,
the performance difference between the most and least performant prompts tends to be small for the Qwen and GPT
families. This means the summary task is less sensitive to the exactly style detection prompt than the tweet task.

The best performing LLM𝑒 and style detection prompt combination is GPT4o and binary detection.
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Figure 17: Tweet: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, target style 𝑤𝑖 , and writing
subtask 𝑞 (i.e. user query or instruction). The diagonal slashes indicate performance across all 𝑟𝑞 , horizontal slashes
indicate performance on 𝑟𝑞 that were not conditioned on the non-null persons u∅ , and the circles indicate performance
on 𝑟𝑞 that were conditioned on the null persona.
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Figure 18: Summary: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, target style 𝑤𝑖 , and
writing subtask 𝑞 (i.e. user query or instruction). The diagonal slashes indicate performance across all 𝑟𝑞 , horizontal
slashes indicate performance on 𝑟𝑞 that were not conditioned on the non-null persons u∅ , and the circles indicate
performance on 𝑟𝑞 that were conditioned on the null persona.
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J.2 Scoring Strategy Performance by Task
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Figure 19: Per Writing Task: The performance (F1-score) for each detection metric for the LLM𝑒 models on the each
writing task: (a) across all writing styles, generators and evaluators and (b) broken down by the relationship between
the response and evaluator LLMs (LLMs relationship).

J.3 Judge LLM Performance with Reflection

We provide the full prompts used for reflective style detection in Table 25. All prompts follow roughly the same format,
providing the LLM with the text that it should evaluate, its original label for the text, and instructions on how to format
its response.

We report performance deltas (improvements or regressions) in F1 for each reflection prompt for each rating LLM𝑒 in
Tables 22, 23, & 24. In these tables, we color a cell blue if the performance gain is > 10%, light blue if the gain is
between 5 − 10%, and faint blue if the gain is < 5%. Similarly, we color a cell red if the performance loss is > 10%,
light red if the loss is between 5 − 10%, and faint red if the loss is < 5%.

Examining specific results for each task, no clear trend emerges. While reflection seems to lead to a small performance
boost on the tweet task (Table 23), this trend is reversed for the email task (Table 22). The results are even mixed within
a single task (e.g. Qwen-32B sees modest gains with reflection on tweets, but OLMo-13B suffers almost a 30% F1
drop). In general, reflection appears to noisily flip labels, such that the end result is closer to a random labeling. Models
that consistently under-rate styles (i.e. models which say “No” too often) may therefore see significant performance
gains (such as all OLMo models for the binary detection style detection prompt). Even this trend is not universal,
however, as OLMo-13B drops by nearly 30% in binary detection performance on the tweet task.

Closer inspection of the specific failure modes does not yield further insights. Generally speaking, all models see
significant performance degradation for certain styles (e.g. “robotic and emotionless”), but this trend is not universal
and is occasionally reversed for specific model-task combinations. Similarly, while the overall trend of label flips is
random, some models bias heavily towards flipping into “Yes” labels, while others bias towards flipping into “No”
labels.

Overall, while reflection leads to significant performance gains for some LLMs, it also leads to significant performance
regressions. Regardless of the performance gains that reflection yields, we find that our best performing models are
not improved by adding reflection, and the general trend often reflects somewhat random labeling flips. We therefore
do not include reflection results in the main paper. Furthermore, we do not advise that future work rely on reflection
to improve results, as it seems to increase cost without reliably or predictably improving evaluation performance.
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Table 22: Delta F1 scores for each LLM𝑒 applied to the email writing task.

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT o4
Binary Detection +16.2 +4.7 +23.7 +1.0 -5.2 -5.9 +2.2 -6.4
Likert-3 -3.4 -10.0 -5.2 -0.3 -7.4 +2.9 -0.2 -0.3
Likert-10 -1.3 -8.6 -7.6 +0.5 -2.5 -0.8 +0.1 -0.1
Probability +0.2 +7.6 -3.5 +0.0 -5.6 +0.2 +0.0 -1.2

Table 23: Delta F1 scores for each LLM𝑒 applied to the tweet writing task.

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT o4
Binary Detection +14.9 -29.5 +36.2 +3.6 +2.5 -1.2 +1.8 -4.3
Likert-3 -5.0 -9.9 +4.2 +3.7 -16.8 +3.7 -5.3 +1.2
Likert-10 -2.7 -2.0 -6.9 +0.7 +0.3 +1.2 +0.0 +0.0
Probability +1.0 +0.4 -1.0 +0.2 -2.4 +2.1 +0.1 -0.4

Table 24: Delta F1 scores for each LLM𝑒 applied to the summary writing task.

Score OLMo-32B OLMo-13B OLMo-7B Qwen-32B Qwen-14B Qwen-7B GPT-4o GPT o4
Binary Detection +6.1 +1.5 +22.3 -0.2 -2.0 -4.0 -1.0 -16.5
Likert-3 -2.0 -9.3 +0.7 +3.0 -15.9 +3.0 -2.8 +0.7
Likert-10 -0.4 -5.7 -7.2 +0.2 +0.9 +2.5 +0.2 +0.5
Probability +0.8 +5.4 -1.9 -0.1 +1.2 +1.8 +0.2 -0.1
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Table 25: Reflection Style Detection Prompts: {...} indicate where string formatting is done with
“{style description}” as the description of the style (e.g. “scholarly-yet-friendly”), “{response}” is the text to as-
sess, “{original answer}” is the LLM’s original response (e.g. a “Yes” or “No” prediction), and “{TASK NAME} as
the task name (e.g. “EMAIL”). For all style detection prompts the system prompt is: “You are an expert at detecting
the presence of writing styles in passages of text.”

Prompt Name Prompt
Binary Detection Below is your answer when first determining if the writing style {style description} was

contained in the text that follows. Your task now is to carefully consider your original
answer when re-reading the text. You can either keep your answer unchanged if you still
agree with it, or you can change your answer if, upon reflection, you believe you
answered incorrectly. Answer with just Yes/No. Your answer should be on a new line
prefixed with ‘Answer:’.
ORIGINAL ANSWER:
{original answer}
{TASK NAME} TO EVALUATE:
{response}

Likert-3 Below is your answer when first determining whether the writing style
{style description} was not exhibited, was somewhat exhibited, or was clearly exhibited
in the subsequent text. Your task now is to carefully consider your original answer when
re-reading the text. You can either keep your answer unchanged if you still agree with it,
or you can change your answer if, upon reflection, you believe you answered incorrectly.
Use only the provided labels:
Does not exhibit, Somewhat exhibits, Clearly exhibits
Answer with just one of the provided labels. Prefix your answer with ‘Answer:’
ORIGINAL ANSWER:
{original answer}
{TASK NAME} TO EVALUATE:
{response}

Likert-10 Below is your answer when first scoring on a scale of 1 to 10 how well the writing in the
subsequent text conformed to {style description}. Your task now is to carefully consider
your original answer when re-reading the text. You can either keep your answer
unchanged if you still agree with it, or you can change your answer if, upon reflection,
you believe you answered incorrectly. For the rating, a score of 1 means the text does not
conform to the style at all, whereas as 10 means the text conforms entirely to the style.
Answer with just your estimate of the rating. Prefix your answer with ‘Answer:’
ORIGINAL ANSWER:
{original answer}
{TASK NAME} TO EVALUATE:
{response}

Probability
Estimation

Below is your answer when first determining the probability that the writing style
conformed to {style description} in the given text. Your task now is to carefully consider
your original answer when re-reading the text. You can either keep your answer
unchanged if you still agree with it, or you can change your answer if, upon reflection,
you believe you answered incorrectly. Answer with just your estimate of the probability.
Prefix your answer with ‘Answer:’
ORIGINAL ANSWER:
{original answer}
{TASK NAME} TO EVALUATE:
{response}
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J.4 Case Study on Prompting with Irrelevant Persona Details

Set Up We investigated the effects of adding persona attributes that should not have an effect on LLM performance.
Gupta et al. (2024) exposed that LLM reasoning capabilities degrade if protected attributes are introduced into the
persona description. We therefore search for similar trends in our style detection experiments, namely, asking the
question–what is the effect of adding irrelevant information for performing the style detection task? This is an
important line to consider due to the increasingly common practice of including protected attributes within personas.

In our set up we conducted a limited case study on the email-writing task, using the LLMs in the set {LLM𝑒 ∩ LLM𝑔},
for the Likert-3pt scale (as the Likert scale most closely reflects our user study setting). For this set of experiments,
we used the same three system prompt templates (see Figure 20) and protected attributes that were used in Gupta
et al. (2024), with the exception of default and political affiliation, which we slightly altered (see Figure 21). Each
setting is sampled 10 times, and we aggregated across all three system prompt templates for a total of 30 generations
per protected attribute setting. When reporting results, we display the relative change compared to the results that were
conditioned on the default personas (namely, ”a human” and ”a typical person.”).

Results

Unlike in Gupta et al. (2024), we detect no significant change across protected attributes. The largest delta occurs
for the Asian and Caucasian attributes with a positive F1 score change of 0.06 (see Figure 22(a)) for OLMo-2-1124-
13b-Instruct, whereas Qwen2.5-14B-Instruct (Figure 22(b)) and GPT-4o-mini (Figure 22(c)) have no distinguishable
performance changes. This suggests that the inclusion of protected attributes (at least, the attributes we tested) have
very little to no impact on the style detection tasks that we studied.

System Prompts from Gupta et al. (2024)

System Prompt 1: You are {persona}. Your responses should closely
mirror the knowledge and abilities of this persona.
System Prompt 2: Adopt the identity of {persona}. Answer the questions
while staying in strict accordance with the nature of this identity.
System Prompt 3: Take the role of {persona}. It is critical that you
answer the questions while staying true to the characteristics and
attributes of this role.

Figure 20: These are the system prompts used in Gupta et al. (2024). We aggregated across all of them in our
experiments exploring the effects of including protected attributes in our style detection task.

Protected Attribute based Personas, by Group

Disability: a physically-disabled person, an able-bodied person
Religion: a Jewish person, a Christian person, an Atheist person, a
Religious person
Race: an African person, a Hispanic person, an Asian person, a Caucasian
person
Gender: a man, a woman, a transgender man, a transgender woman, a
non-binary person
Political Affiliation: a Republican, a Democrat, a Libertarian, a
non-partisan person
Default Persona: a human, a typical person

Figure 21: These are the protected attributes adapted from Gupta et al. (2024) that we used for the experiments studying
the effects of adding task-agnostic persona details.
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(a) OLMo-2-1124-13B-Instruct

(b) Qwen2.5-14B-Instruct

(c) GPT-4o-mini

Figure 22: Relative performance when conditioned on irrelevant persona information when compared with using a
neutral persona. This case study is specific to the email-writing task using 3-pt Likert scores. The irrelevant persona
information has more of an impact on the OLMo model, but overall there is very little change.
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K LLM𝑒 Pairwise Style Ranking Self Consistency — Detailed Results

Table 26: The consistency (Randolph’s multi-rater kappa) of LLM𝑒 ratings 𝑦̂𝑟 when annotating responses 𝑟𝑞 to be able
to rank which response in a pair (𝑟𝑎𝑞 , 𝑟𝑏𝑞 ) better reflect the described attributes (i.e. writing style elements).

Writing Task Score OLMo7B OLMo13B Olmo32B Qwen7B Qwen14B Qwen32B 4o-mini 4o

Email AB 0.63 0.64 0.86 0.95 0.97 0.96 0.92 0.93
Rubric 0.34 0.28 0.41 0.30 0.55 0.52 0.67 0.48

Tweet AB 0.70 0.71 0.86 0.95 0.98 0.97 0.90 0.92
Rubric 0.41 0.30 0.42 0.31 0.51 0.46 0.67 0.46

Summary AB 0.67 0.75 0.82 0.95 0.98 0.96 0.88 0.92
Rubric 0.22 0.30 0.40 0.28 0.49 0.63 0.67 0.42
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L LLM𝑒 Pairwise Ranking Performance — Detailed Results

In this section we provide detailed breakdowns for each LLM𝑒 by pairwise style ranking prompt, LLM𝑔, and target
styles. All results are reported per writing style task.

The pairwise style ranking task is a three-class classification task, where the possible classes are “response a”, “response
b”, and “tie”. The performance of a random classifier at this task is roughly 33.

Two types of comparison criteria are evaluated, which form two different pairwise ranking tasks:

• Style Targeted: compliance with the writing style preferences of a given persona u𝑖 (i.e., “Style Targeted” in
Tables 11 and 12)

• Helpfulness Targeted: meeting a given standard of general response quality with a focus on helpfulness (i.e.,
“Helpfulness Targeted” in Tables 11 and 12)

The performance by writing task 𝑡, pairwise ranking task (helpfulness versus style), and scoring strategy (AB versus
rubric), are provided in Figure 23.
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Figure 23: Per Writing Task: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, generation
persona u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction).

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

L.1 Judge LLM Performance by Pairwise Style Ranking Prompt

In this section we show the F1-score for each LLM𝑒 using each pairwise style ranking prompt 𝑝𝑟𝑒 for each pairwise
ranking task. Results are reported below per writing task 𝑡. We identify the best LLM𝑒 and 𝑝𝑟𝑒 for each writing task
and the helpfulness-targeted pairwise ranking task:

• Email:
• Tweet: OLMo2 32B Instruct and AB
• Summary: GPT4o and AB

We identify the best LLM𝑒 and 𝑝𝑟𝑒 for each writing task and the style-targeted pairwise ranking task:

• Email:
• Tweet: Qwen2.5 14B Instruct and AB
• Summary: Qwen2.5 14B Instruct and AB

Tweet In Figure 24 we can see that all LLM𝑒 are able to solve the pairwise ranking task at greater than random chance
(≈ 33). The LLM𝑒 performance difference on the two different pairwise ranking tasks (style vs. helpfulness) suggests
it is easier for the LLM𝑒 to match human pairwise rankings when assessing style compliance than general helpfulness.
However, for OLMo2 Instruct 13B and OLMo2 32B the pairwise ranking task makes little to no difference for the
rubric prompt. For all LLM𝑒 both pairwise ranking tasks are easier when using the AB 𝑝𝑟𝑒 versus the rubric 𝑝𝑟𝑒.

For the style-targeted pairwise ranking task, the best performing LLM𝑒 and 𝑝𝑟𝑒 pair is Qwen2.5 14B Instruct with the
AB prompt, and OLMo2 32B Instruct with the AB prompt for the helpfulness-targeted pairwise style ranking task.
When using the AB 𝑝𝑟𝑒, we find that LLM𝑒 performance on both the helpfulness and style-targeted pairwise ranking
tasks increases until an LLM𝑒 with middling general commonsense and reasoning capabilities is reached, and then
performance decreases – OLMo2 7B Instruct and OLMo2 13B Instruct having similar performance as GPT4o-mini,
while Qwen2.5 7B Instruct and OLMo2 32B Instruct having similar performance as GPT4o. However, when using
the rubric 𝑝𝑟𝑒 pairwise ranking performance gradually increases as the LLM𝑒’s general commonsense and reasoning
capabilties increase.
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Figure 24: Tweet: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, generation persona u𝑖 , and
writing subtask 𝑞 (i.e. user query or instruction).
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Summary In Figure 25 we can see that all LLM𝑒 are able to solve the pairwise ranking task at greater than random
chance (≈ 33). However for some LLM𝑒 performance is only marginally higher than random chance (e.g. Qwen2 7B
Instruct with F1-score= 34) on the rubric-based scoring strategy 𝑝𝑟𝑒. As with the tweet writing task, the performance
difference on the two pairwise ranking tasks (helpfulness versus style) suggests the style-targeted ranking task is easier
for the LLM𝑒. However, for the OLMo models using the rubric 𝑝𝑟𝑒 on the helpfulness versus style-targeted task
performance difference is small (i.e., 2 or 3).

As for the tweet tasks, all LLM𝑒 perform better on both the helpfulness and style-targeted pairwise ranking tasks when
using the AB 𝑝𝑟𝑒. Qwen2.5 14B Instruct is the best performing LLM𝑒 on the style-targeted ranking task, and GPT4o
for the helpfulness-targeted ranking task.

For both the helpfulness-targeted and style-targeted pairwise ranking tasks, we see a trend in increasing performance
as the LLM𝑒’s general commonsense and reasoning capabilities6 increase for the rubric 𝑝𝑟𝑒. For the AB 𝑝4

𝑒 we see two
different trends, for the helpfulness targeted task, pairwise ranking performance increases as general commonsense
and reasoning capabilities increase. This is distinct from what has been observed for the tweet task. For the style-
targeted task, similar to the tweet task, pairwise ranking performance increases until a LLM𝑒 with middling general
commonsense and reasoning capabilities is reached, and then performance decreases – OLMo2 7B Instruct and OLMo2
13B Instruct having similar performance as GPT4o-mini, while Qwen2.5 7B Instruct and OLMo2 32B Instruct having
similar performance as GPT4o.
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Figure 25: Summary: LLM𝑒 performance on the style detection task aggregated across LLM𝑔, generation persona
u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction).

6Measured according to MMLU (Hendrycks et al., 2021)

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

L.2 Judge LLM Performance by Pairwise Style Ranking Prompt and Target u𝑖

In this section we show the F1-score for each LLM𝑒 for each pairwise style ranking task and style ranking prompt 𝑝𝑟𝑒.
Results are reported below per writing task 𝑡.

Tweet In Figure 26 and Table 27 the AB 𝑝𝑟𝑒 outperforms the rubric 𝑝𝑟𝑒 across the personas for the style-targeted
task. However, in the bottom row of Table 27, we can see that the performance gap between the two 𝑝𝑟𝑒 is relatively
small for GPT4o-mini, and that 𝑝𝑟𝑒 makes the biggest difference for OLMo32B Instruct. Qualitatively we can see that
performance varies based on the persona u𝑖 provided to the style-targeted prompts. The sensitivity of each LLM𝑒 to
the persona u𝑖 is quantified as the standard error from the mean across personas in Table 27. In Table 27. We can see
that on average the AB 𝑝𝑟𝑒 leads to less sensitivity with a mean standard error of 2.4 compared to a mean standard error
of 5.1 for the rubric 𝑝𝑟𝑒. However, this is LLM𝑒 dependent as OLMo2 13B Instruct, Qwen2.5 7B Instruct, and GPT4o
are more sensitive given the AB 𝑝𝑟𝑒.

Examining which personas u𝑖 are easiest for the LLM𝑒 to assess compliance with (looking only at the AB 𝑝𝑟𝑒), we
find that the “playful and whimsical, rhyming and rhythmic, and sensory-focused” is the easiest u𝑖 for the majority of
LLM𝑒 (5 / 8) with “robotic and emotionless, telegraphic brevity, and legal precision” the easiest for two LLM𝑒, and
one LLM𝑒 (Qwen2.5 14B Instruct) that performs equally well on the two. Looking at the personas each LLM𝑒 is least
performance on we find that the majority of LLM𝑒 (5 / 8) are worst on the “inspirational and uplifting, journalistic,
and rich descriptions” with “step-by-step instructional, encouraging and supportive, and visual spatial” as the worst for
two LLM𝑒, and one LLM (Qwen2.5 7B Instruct) that performs equally poorly on both personas. We find that while on
average the LLM𝑒 are worse at predicting the human rankings on the helpfulness targeted pairwise ranking task, for
all but three LLM𝑒 there is a persona u𝑖 for the style-targeted task where the LLM𝑒 performs worse.

Table 27: Tweet: The sensitivity of the LLM𝑒 to the style guidance provided when completing the pairwise quality
evaluation. For each pairwise style ranking prompt 𝑝𝑟𝑒 and LLM𝑒 pair, the mean and standard error from the mean in
F1-score per style guidance description is provided.

Score OLMo7B OLMo13B Olmo32B Qwen7B Qwen14B Qwen32B 4o-mini 4o
AB 59(±2.4) 58(±3.0) 64(±2.1) 61(±2.7) 64(±2.4) 63(±1.9) 59(±2.7) 63(±2.3)

Rubric 42(±3.3) 45(±1.7) 45(±4.0) 48(±2.0) 48(±2.9) 52(±2.2) 56(±3.2) 53(±1.4)
AB - Rubric 17 13 19 13 16 11 3 10

Summary In Figure 27 and Table 28 the AB 𝑝𝑟𝑒 outperforms the rubric 𝑝𝑟3 across personas u for the style-targeted
task. In general, the AB versus rubric performance gap per LLM𝑒 (Table 28 bottom row) is similar to the performance
gap observed for tweet in Table 27, except the scoring strategy 𝑝𝑟𝑒 has the largest impact on performance for Qwen2.5
14B Instruct. Looking at the standard errors from the mean in Table 28, we can see that the pairwise style ranking
performance of the LLM𝑒 is dependent on the persona u𝑖 . The AB 𝑝𝑟𝑒 scoring strategy leads to pairwise ranking
performance that is less sensitive to the specific persona u𝑖 than the rubric 𝑝𝑟𝑒 with a mean standard error of 2.45 versus
3.0. However, there are some LLM𝑒 (OLMo2 13B Instruct and Qwen2.5 7B Instruct) that are less sensitive to the
persona u𝑖 given the rubric 𝑝𝑟𝑒.

Examining which personas u𝑖 are easiest for the LLM𝑒 to assess compliance with (looking only at the AB 𝑝𝑟𝑒), we find
that the “playful and whimsical, rhyming and rhythmic, and sensory-focused” is tied with “robotic and emotionless,
telegraphic brevity, and legal precision” as the easiest u𝑖 for the LLM𝑒. The u𝑖 the majority of LLM𝑒 (4/8) perform
worst on is “step-by-step instructional, encouraging and supportive, and visual spatial” with “inspirational and uplifting,
journalistic, and rich descriptions” as the worst for one LLM𝑒 and tied with “step-by-step instructional, encouraging and
supportive, and visual spatial” for two LLM𝑒. We find that for all but one LLM𝑒 (OLMo2 13B Instruct) performance
on the helpfulness-targeted pairwise ranking task is worse than any given persona u𝑖 for the style-targeted task.

Table 28: Summary: The sensitivity of the LLM𝑒 to the style guidance provided when completing the pairwise quality
evaluation. For each pairwise style ranking prompt 𝑝𝑟𝑒 and LLM𝑒 pair, the mean and standard error from the mean in
F1-score per style guidance description is provided.

Score OLMo7B OLMo13B Olmo32B Qwen7B Qwen14B Qwen32B 4o-mini 4o
AB 54(±2.8) 56(±2.9) 59(±1.9) 57(±3.7) 63(±2.8) 61(±2.0) 56(±1.7) 59(±1.6)

Rubric 40(±3.0) 41(±2.0) 40(±4.7) 43(±3.1) 43(±4.6) 49(±2.3) 53(±2.3) 48(±2.0)
AB - Rubric 14 15 19 14 20 12 3 11
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Figure 26: Tweet: LLM𝑒 performance on the pairwise style ranking task aggregated across LLM𝑔, generation persona
u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the pairwise ranking
task, and by the personas u𝑖 for the style-targeted pairwise ranking task.
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Figure 27: Summary: LLM𝑒 performance on the pairwise style ranking task aggregated across LLM𝑔, generation
persona u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the pairwise
ranking task, and by the personas u𝑖 for the style-targeted pairwise ranking task.
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L.3 Judge LLM Label Counts by Pairwise Style Ranking Prompt

In this section we look at the frequency of the “a response”, “b response”, and “tie” labels per LLM𝑒 by the pairwise
style ranking task and the prompt 𝑝𝑟𝑒.

Tweet In Figure 28 we can see that 19% of the time humans assign a tie label with completing the helpfulness-targeted
pairwise style ranking task, and 25% of the time for the style-targeted task. For both task types, the humans assign
a similar proportion of “a response” and “b response” labels (i.e., 0.41 versus 0.4 and 0.38 versus 0.37). The LLM𝑒

are more likely to assign a “tie” label when using the AB 𝑝𝑟𝑒, and almost never assign “tie” using the rubric 𝑝𝑟𝑒, where
GPT4o-mini is the most likely at 7% and 9% of the time, respectively. We attribute the benefits of the AB 𝑝𝑟𝑒 to its
increased ability to assign “tie” labels relative to the rubric 𝑝𝑟𝑒.

Looking at the trend in “tie” label frequencies across the LLM𝑒 by the LLM𝑒’s general commonsense and reasoning
capabilities for the AB 𝑝𝑟𝑒, we see that the weakest of the LLM𝑒 (i.e., Qwen2.5 7B Instruct, OLMo2 7B Instruct,
and OLMo2 13B Instruct with MMLU performance ≤ 75) are the most likely to assign a “tie” label. This suggests
the LLMs are not able to handle the complexity of the labelling prompt leaving their labels sensitive to the ordering
of the responses in the prompt. The strongest of the LLM𝑒 (i.e., Qwen2.5 32B Instruct, GPT4o-mini, and GPT4o
with MMLU performance ≥ 82) are the least likely to assign a “tie” label. This suggests that such models are not
well aligned with human annotator inabilities to differentiate between responses. Therefore, the LLM𝑒 with middling
performance (i.e., Qwen2.5 14B Instruct and OLMO2 32B Instruct with MMLU performance of 80 and 77) as the best
able to match human pairwise ranking. They are strong enough to not be too sensitive to response order in the prompt,
but they do not differentiate between responses at a level of detail that exceeds humans. The similarity in “tie” label
frequency between Qwen2.5 14B Instruct and OLMO2 32B Instruct and the human labels aligns with those two LLM𝑒

having the highest pairwise style ranking performance.
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Figure 28: Tweet: LLM𝑒 label counts on the pairwise style ranking task aggregated across LLM𝑔, generation persona
u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the pairwise ranking
task, and by the personas u𝑖 for the style-targeted pairwise ranking task.

To further support this hypothesis, we show the detection scores for LLM𝑒 ∈ { OLMo-2-1124-7B-Instruct and o4-
mini-2025-04-16} when conditioned on each u𝑖 . This is an example of a weak and a strong LLM respectively. These
scores are shown in Figure 29. Notice that the weaker model (OLMo) is relatively invariant to the style on which the
generator is conditioned and that styles are rarely detected (the image is sparse), whereas the strong model (4o-mini)
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(A) (B)

Figure 29: Binary detection scores conditioned on input styles for (A) OLMo-2-1124-7B-Instruct, and (B) o4-mini-
2025-04-16 for the tweet task. OLMo-2-1124-7B-Instruct is a weaker model than o4-mini-2025-04-16, and we notice
that the scores for OLMo are relatively invariant to the conditioning of the generator. Conversely 4o-mini better detects
the styles that the generator is conditioned on. This is one explanation for the high number of ties assigned by weaker
models, and low number of ties assigned by the stronger models.

better discriminates styles (the strongest detected styles are alone the block-diagonal, where they should be). This is
one explanation for the high number of ties assigned by weaker models, and lower number of ties assigned by the
stronger models.
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Summary In Figure 30 we can see that 23% of the time humans assign a “tie” label when completing the helpfulness-
targeted pairwise ranking task, and 27% of the time when completing the style-targeted task. For both the helpfulness
and style-targeted versions of the pairwise ranking task, the humans assign similar proportions of “response a” and
“response b” labels with a slight bias towards “response a” labels on the helpfulness-targeted pairwise ranking task
(i.e., 0.3 versus 0.46). As with the tweet writing task, the LM𝑒 are more likely to assign a “tie” label using the AB 𝑝𝑟𝑒
and have a maximum ‘tie” rate of 5% using the rubric 𝑝𝑟𝑒 (lower than for the tweet task). We attribute the benefits of
the AB 𝑝𝑟𝑒 to its increased ability to assign “tie” labels relative to the rubric 𝑝𝑟𝑒.

Looking at the rate of “tie” labels across LLM𝑒 by the LLM𝑒’s general commonsense and reasoning capabilities for
the AB 𝑝𝑟𝑒, we see the LLMs most likely to assign a “tie” label (i.e. OLMo2 7B Instruct, OLMo2 13B Instruct, and
Qwen2.5 7B Instruct) are have the weakest general commonsense and reasoning capabilities (MMLU performance
≤ 75). The strongest of the LLM𝑒 (i.e., Qwen2.5 32B Instruct, GPT4o-mini, and GPT4o with MMLU performance
≥ 82) are the least likely to assign a “tie” label. This suggests that the model’s with the strongest general commonsense
and reasoning capabilities are not the best aligned with how humans differentiate between two responses, especially on
style-targeted ranking tasks.
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Figure 30: Summary: LLM𝑒 label counts on the pairwise style ranking task aggregated across LLM𝑔, generation
persona u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the pairwise
ranking task, and by the personas u𝑖 for the style-targeted pairwise ranking task.
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L.4 Judge LLM Label Counts by Pairwise Style Ranking Prompt and Persona u𝑖

In this section we look at the frequency of the “a response”, “b response”, and “tie” labels per LLM𝑒 by the pairwise
style ranking task, prompt 𝑝𝑟𝑒 and the persona used in the style-targeted ranking task.

Tweet In Section L.2, we examined Figure 26 to identify that (looking only at the AB 𝑝𝑟𝑒), the “playful and whimsical,
rhyming and rhythmic, and sensory-focused” is the easiest u𝑖 for the majority of LLM𝑒 (5 / 8) to complete the pairwise
ranking task with “robotic and emotionless, telegraphic brevity, and legal precision” the easiest for two LLM𝑒, and
one LLM𝑒 (Qwen2.5 14B Instruct) that performs equally well on the two personas. The “inspirational and uplifting,
journalistic, and rich descriptions” with “step-by-step instructional, encouraging and supportive, and visual spatial”
personas were the most difficult for the LLM𝑒 to solve the pairwise ranking task for.

In Figure 31 we look at the label counts for each LLM𝑒 and the human annotators by pairwise ranking task (helpfulness
versus style targeted) and the personas u𝑖 for the style-targeted task. We find that for the human annotators, the
proportion of each label is relatively consistent across style-targeted u𝑖 ranging from 19% to 27% for “ties”. The
human annotators do assign the fewest number of “tie” labels on the helpfulness-targeted task and the “playful and
whimsical, rhyming and rhythmic, and sensory-focused” style-targeted u𝑖 pairwise ranking tasks. The “robotic and
emotionless, telegraphic brevity, and legal precision” and “step-by-step instructional, encouraging and supportive, and
visual spatial” style-targeted u𝑖 received the highest number of “tie” labels. As “playful and whimsical, rhyming
and rhythmic, and sensory-focused” and “robotic and emotionless, telegraphic brevity, and legal precision” are the
style-targeted u𝑖 the most LLM𝑒 performed best on, and they are split between receiving the least and the most “tie”
labels from humans. This suggests that LLM𝑒 performance is not largely driven by the presence of “tie” labels that
could indicate the task is harder for humans to solve. However, the “inspirational and uplifting, journalistic, and rich
descriptions” and “step-by-step instructional, encouraging and supportive, and visual spatial”, which were the most
difficult u𝑖 for the LLM𝑒, either match or nearly match the maximum number of human-annotator “tie” labels.

Summary In Section L.2 we examined Figure 27 to identify that (looking only at AB 𝑝𝑟𝑒), the “playful and whimsical,
rhyming and rhythmic, and sensory-focused” and “robotic and emotionless, telegraphic brevity, and legal precision”
tied as the easiest personas u𝑖 for the majority of LLM𝑒 to rank the response pair (𝑟𝑎𝑞 , 𝑟𝑏𝑞 ). As with the tweet task,
the “inspirational and uplifting, journalistic, and rich descriptions” and “step-by-step instructional, encouraging and
supportive, and visual spatial” were the most difficult u𝑖 for the LLM𝑒.

The label frequencies for the LLM𝑒 and the human annotators for each pairwise ranking task and persona u𝑖 for the
style-targeted task are provided in Figure 32. For the human annotators, the frequency of the “response a”, “response
b”, and “tie” labels is roughly consistent across personas u𝑖 with three of the u𝑖 having “tie” rates of 0.22 or 0.24, and
two of 0.34 and 0.32. The “tie” rate for the helpfulness-targeted pairwise ranking task is not the lowest, but is on the
lower end at 0.23. There is no clear trend in the human “tie” rate between the personas u𝑖 the LLM𝑒 performed best
versus worst on. For example, “playful and whimsical, rhyming and rhythmic, and sensory-focused” received some the
fewest “tie” labels, while “robotic and emotionless, telegraphic brevity, and legal precision” received some of the most.
As with tweets, the there is not a strong connection between human “tie” rate and LLM𝑒 pairwise ranking performance.
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Figure 31: Tweet: LLM𝑒 label counts on the AB and rubric pairwise style ranking tasks aggregated across LLM𝑔,
generation persona u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the
pairwise ranking task (helpfulness targeted and style targeted), and by the personas u𝑖 for the style-targeted pairwise
ranking task. 68
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Figure 32: Summary: LLM𝑒 label counts on the AB and rubric pairwise style ranking tasks aggregated across LLM𝑔,
generation persona u𝑖 , and writing subtask 𝑞 (i.e. user query or instruction). Performance is broken down based on the
pairwise ranking task (helpfulness targeted and style targeted), and by the personas u𝑖 for the style-targeted pairwise
ranking task. 69
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L.5 Judge LLM Pairwise Ranking Performance by LLM𝑔 and LLM𝑒 Relationship – Detailed Results

In this section we provide detailed results for the impact the relationship between the LLM𝑔 and LLM𝑒 has on the
pairwise ranking performance of the LLM𝑒.
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Figure 33: Email: The LLM𝑒 performance as a function of the relationship between the LLM𝑒 and the LLM𝑔.
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Figure 34: Tweet: The LLM𝑒 performance as a function of the relationship between the LLM𝑒 and the LLM𝑔.
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Figure 35: Summary: The LLM𝑒 performance as a function of the relationship between the LLM𝑒 and the LLM𝑔.
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