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ABSTRACT

Recent advances in large language models (LLMs) have achieved remarkable per-
formance across diverse tasks, yet their increasing size poses significant stor-
age and computational challenges. Model compression, particularly pruning,
has emerged as a crucial strategy to reduce memory footprint and computation
while preserving predictive performance. In this work, we present LASP, a Loss-
Aligned Structured Pruning method that evaluates the contribution of individual
model units, such as neurons and attention heads, to the overall performance, sub-
sequently removing those deemed to be of low importance. By combining the
activation magnitudes of model units with their gradients with respect to the loss,
LASP defines an importance metric that is directly aligned with the model’s ob-
jective, thereby ensuring the preservation of performance. To mitigate uncertainty
caused by the limited calibration dataset used for importance estimation, LASP
incorporates the Upper Confidence Bound (UCB) strategy, refining the selection
of low-importance units. In implementation, LASP leverages a moving average to
maintain running statistics and reduce storage overhead. Empirical results across
diverse LLMs and benchmarks demonstrate that LASP outperforms state-of-the-
art baselines, effectively balancing efficiency and performance, thus enabling the
practical deployment of LLMs.

1 INTRODUCTION

Recent advances in large language models (LLMs) (Touvron et al., 2023a;b; OpenAI, 2023) have
demonstrated remarkable capabilities in language understanding, reasoning, and problem-solving.
With increasing model size, their performance continues to improve (Kaplan et al., 2020) highlight-
ing the benefits of scaling. However, this rapid growth in parameter count also leads to substantial
demands on storage and computational resources. As a result, reducing the memory footprint and
computational cost of LLMs has become a central research focus. A variety of approaches have
been explored to compress LLMs, such as pruning (Cheng et al., 2023), quantization (Gholami
et al., 2021) and knowledge distillation (Goulami et al., 2021).

In this work, we focus on pruning, a widely used model compression technique that removes internal
redundancies in neural networks while preserving predictive performance, ideally without requiring
costly recovery fine-tuning. Pruning reduces the number of parameters and computational opera-
tions, which can significantly lower memory footprint and inference latency, making it particularly
important for deploying LLMs in resource-constrained environments.

Existing pruning approaches for LLMs can be broadly categorized into two types: unstructured
and structured. Unstructured methods (Sun et al., 2024), such as the one illustrated in Fig. 1 (left),
sparsify weight matrices by zeroing individual elements, producing generally sparse matrices; vari-
ants like 2:4 or 4:8 sparsity patterns are also employed to leverage GPU sparse acceleration units
for faster inference. Structured methods (Ma et al., 2023; Ashkboos et al., 2024), shown in Fig. 1
(middle and right), remove entire rows, columns, or higher-level structures such as attention heads.
By pruning these contiguous blocks, structured methods yield models that are naturally compatible
with hardware accelerators, enabling reductions in both memory and computation while maintaining
alignment with the network architecture.

However, existing pruning techniques face several limitations. Unstructured pruning can yield
highly sparse weight matrices, yet it fails to deliver actual storage reduction because the zeroed-out
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Neuron-level pruning

Figure 1: Comparison of representative pruning methods applied to two consecutive weight matri-
ces, W1 and W2, within a neural network. White grids indicate pruned parameters. Unstructured
sparsity removes individual weights, producing irregular sparsity patterns, but does not reduce stor-
age requirements. Slicing removes contiguous blocks of weights, partially reducing the matrix
dimensions. Neuron-level pruning removes entire units, corresponding to full columns in W1 and
full rows in W2. Both slicing and neuron-level pruning effectively reduce storage requirements.

parameters must still be stored within the original dense tensor format. Given the critical demand
for low memory footprint in practical deployment, we steer clear of this approach, and instead focus
on structured pruning, which is inherently more hardware-friendly. Nevertheless, current structured
pruning methods have their own drawbacks. Many gradient-based approaches, though hardware-
compatible, often rely on computationally expensive operations such as estimating second-order
Hessian information (Ma et al., 2023). Meanwhile, other prominent methods prune based on weight
matrices, typically seeking to reconstruct them via low-rank decomposition (Ashkboos et al., 2024).
While effective in practice, these methods primarily target the reconstruction of intermediate weight
matrices, lacking an explicit alignment with the model’s optimization objective, making it difficult
to guarantee performance preservation.

Addressing the aforementioned challenges, we introduce LASP, a first-order loss-aligned structured
pruning method. Unlike existing approaches that primarily assess the importance of individual pa-
rameters, LASP evaluates the significance of model units, such as neurons and attention heads, by
combining their activation magnitudes with gradients with respect to the model loss, thus defining a
unit-level pruning metric directly aligned with the optimization objective. Units deemed unimpor-
tant are pruned together with all associated parameters, enabling the effective removal of redundancy
while preserving model performance. To mitigate uncertainty arising from the limited calibration
dataset used to estimate activations and gradients, LASP incorporates the Upper Confidence Bound
(UCB) strategy (Auer et al., 2002), ensuring that low-importance units are pruned with high confi-
dence. Moreover, in practical implementation, LASP leverages a simple moving average to maintain
running statistics, thereby reducing storage overhead during pruning.

Extensive experiments across diverse LLMs and benchmarks demonstrate the effectiveness of our
approach. At a 20% pruning ratio, the pruned models achieve lower loss on the calibration dataset
than the original models, indicating that LASP effectively aligns pruning decisions with the opti-
mization objective. Across multiple benchmarks, the pruned models maintain strong performance,
preserving 93.5% of the original capability at a 25% pruning ratio and 90% at a 30% pruning ratio,
while outperforming the state-of-the-art baseline.

In summary, our contributions are threefold:

• Loss-Aligned Importance Metric: LASP introduces an innovative metric that evaluates the im-
portance of model units, allowing for the pruning of parameters associated with low-importance
units. It ensures that pruning decisions are aligned with the model’s objective.

• Uncertainty-Aware Pruning: LASP employs the UCB strategy to handle uncertainty in the
limited calibration dataset, ensuring high-confidence selection of low-importance units.

• Comprehensive Experimental Validation: We conduct extensive experiments across diverse
LLMs, i.e., the Llama (Touvron et al., 2023a), Llama2 (Touvron et al., 2023b), and Vicuna-v1.5
(Zheng et al., 2023) model series, to validate LASP. Our results show that LASP can efficiently
compress LLMs while effectively preserving their performance.
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2 RELATED WORK

Pruning with Limited Data. A recent line of research, closely related to our approach, focuses on
the challenging task of pruning with limited data (Hubara et al., 2021; Frantar et al., 2022; Frantar &
Alistarh, 2022; Kwon et al., 2022). These methods are highly desirable because they don’t require
any changes to the original training process and eliminate the need for computationally expensive
retraining on the full dataset. To achieve this, their primary aim is to preserve model performance
by leveraging a small amount of data, often called calibration data. They do this by solving a layer-
wise reconstruction problem (Hubara et al., 2021) to mitigate the inevitable accuracy drop, which
aims to minimize the change in a layer’s output with respect to the calibration data. However,
a key limitation of existing solvers is their reliance on the computationally heavy calculation of
second-order Hessian inverses (Singh & Alistarh, 2020; Frantar et al., 2022), which makes them
impractical and difficult to scale to the large hidden state sizes of modern Large Language Models
(LLMs). The SparseGPT method (Frantar & Alistarh, 2023) offers a solution by developing a more
efficient weight update procedure for LLMs, which uses synchronized second-order Hessian updates
to circumvent this computational bottleneck.

Structured Pruning Structured pruning approaches aim to identify and remove less important
neurons or components while maintaining model performance. SliceGPT (Ashkboos et al., 2024)
leverages PCA on weight matrices to selects the most informative subspaces for pruning and min-
imize reconstruction error. LLM-Pruner (Ma et al., 2023), on the other hand, evaluates the impor-
tance of each parameter using gradient and second-order information, aggregates these scores at the
channel or neuron level, and prunes accordingly to enable efficient deployment of large models.

3 METHODOLOGY

In this section, we first formulate the problem, then introduce the loss-aligned importance metric and
the uncertainty-aware unit selection strategy. Afterwards, we outline the implementation of LASP.

3.1 PROBLEM FORMULATION

Given a pre-trained LLM f , a target pruning ratio α, and a calibration dataset Dcal containing se-
quences x, our goal is to conduct structured pruning by identifying a subset of units Uprune ⊂ U
whose removal minimizes the degradation in model performance. Model performance is measured
by a negative log-likelihood loss function L, and the pruning objective is formally expressed as:

U∗
prune = arg min

Uprune⊂U

1

|Dcal|
∑

x∈Dcal

(
L
(
fpruned(x)

)
− L

(
f(x)

))
;

where fpruned denotes the model after removing the units in Uprune.

Model pruning can be performed either globally or layer-wise. Global pruning ranks all units across
the model and removes the least important ones. Although theoretically effective, it often leads
to uneven pruning, with some layers excessively pruned while others remain largely intact. Such
imbalance can degrade model performance and complicate hardware deployment, making global
pruning less common in practice, especially for large models with highly varying layer sensitivities.

Consequently, in this work we adopt a layer-wise pruning strategy, commonly used in prior work
(Sun et al., 2024; Ma et al., 2023; Ashkboos et al., 2024), and begin by examining how units within
each individual layer contribute to the loss function.

3.2 LOSS-ALIGNED IMPORTANCE METRIC

Consider a pretrained model f with L layers, represented as the composition of layer-wise functions
f1, f2, . . . , fL. Once the model parameters are fixed, each fl becomes a deterministic nonlinear
mapping. Consequently, the entire network can be viewed as a fixed composition of such mappings.

Focusing on a particular layer l, the prediction ypred for an input x can be expressed as:
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ypred = f(x) = (fL ◦ · · · ◦ fl+1)︸ ︷︷ ︸
Subsequent sub-network gl

◦ (fl ◦ · · · ◦ f1)(x)︸ ︷︷ ︸
Output of layer l as hl

= gl(hl); (1)

where hl ∈ Rd is the activation vector of layer l, and gl encapsulates the computation from layer
l + 1 to the output layer L. Let Ul denote the set of units in layer l, such as neurons or attention
heads, and let zu represent the contribution of unit u ∈ Ul to the layer’s activation vector, then the
layer activation can be expressed as hl =

∑
u∈Ul

zu.

For a single input x, the training loss can be expressed as a function of hl as Eq. 2.

L(ypred) = L(gl(hl)) ≡ L(hl) (2)

Removing a subset of units Uprune ⊆ Ul from layer l is equivalent to perturbing its activation vector
by ∆hl = −

∑
u∈Uprune

zu. Evaluating the impact of this perturbation on the loss of a single sample,
we expand L(hl) around the original activation using a second-order Taylor series:

∆L(x) = L(hl +∆hl)− L(hl) ≈ (∇hl
L)⊤∆hl +O

(
∥∆hl∥2

)
; (3)

where ∇hl
L denotes the gradient of the loss with respect to hl. Although higher-order terms exist,

they are intractable to compute and introduce complex cross-unit interactions that make the loss
change non-additive. Hence, we restrict our analysis to the first-order approximation as Eq. 4.

∆L(x) ≈ (∇hl
L)⊤∆hl =

∑
u∈Uprune

(
−(∇hl

L)⊤zu
)

(4)

For a single unit u, the induced loss change can be written as:

∆Lu(x) ≈ −(∇hl
L)⊤zu = − ∂L

∂zu
· zu; (5)

where ∆Lu(x) represents the loss change caused by removing a single unit u and ∂L
∂zu

is the gradient
of the loss with respect to the unit’s output vector. Eq. 5 highlights that the importance of a unit
depends jointly on its output magnitude and the sensitivity of the loss to that output.

By aggregating ∆Lu(x) for unit u over samples in the calibration set, we obtain the expected change
in loss upon removing u, which defines the unit’s importance metric for guiding pruning decisions,
as formalized in Eq. 9.

µu =
1

|Dcal|
∑

x∈Dcal

∆Lu(x) (6)

3.3 UNCERTAINTY-AWARE PRUNING

In practice, the loss change ∆Lu(x) can exhibit highly skewed or heavy-tailed behavior, as detailed
in Appendix D. In such cases, the empirical mean µu may underestimate the importance of the
individual unit u. For instance, µu can be close to zero even when u makes substantial contributions
under rare but critical inputs. Moreover, the calibration dataset Dcal is typically limited in size, e.g.,
only hundreds of sequences, further limiting the confidence in the estimated importance.

Considering these issues, we adopt the UCB strategy (Auer et al., 2002). UCB balances exploitation
of high-reward options with exploration of uncertain ones by augmenting the mean estimate with
an uncertainty-dependent bonus. A natural correspondence exists between this and the pruning
problem: each unit can be treated as an option, where the expected loss reduction µu corresponds
to its average reward, and the standard deviation of ∆Lu(x) over inputs captures the uncertainty in
that estimated reward.

Consequently, the UCB enhanced importance score for neuron u on sequence x is then given by:
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su(x) = µu(x) + α · σu(x); (7)

where σu is the standard deviation of ∆Lu over the calibration dataset, and α ≥ 0 is a tunable pa-
rameter that controls the emphasis on uncertainty. A larger α leads to a more conservative criterion,
retaining neurons that may have low average contribution but high variability within the sequence,
thereby ensuring high confidence when identifying low-importance units.

3.4 IMPLEMENTATION WORKFLOW

LASP proceeds sequentially over layers 1, 2, . . . , l, . . . , L. For each layer l, the pruning process
involves three main steps: selecting the pruning granularity, computing the importance scores, and
removing the units chosen for pruning.

Pruning Granularity Selection. For MLP layers, a unit is an individual neuron. For attention
layers, the granularity can be more varied, ranging from individual weights within the projection
matrices, specific dimensions of queries, keys, or values, to entire attention heads. In this work, for
both efficiency and simplicity, we define a unit as an entire attention head, which entails pruning the
complete set of query, key, and value projections associated with it.

Importance Score Computation. In practice, the loss for each sequence can be decomposed into
token-level contributions, allowing a hierarchical formulation of unit importance. For a unit u, we
compute its mean and standard deviation on a single sequence x as:

µu(x) =
1

|x|

|x|∑
i=1

(
− ∂L(xi)

∂zu(xi)
· zu(xi)

)

σu(x) =

√√√√ 1

|x|

|x|∑
i=1

(− ∂L(xi)

∂zu(xi)
· zu(xi)− µu(x))2

(8)

The overall importance score Su of unit u over the calibration dataset Dcal is then obtained by
averaging sequence-level scores over all sequences:

Su =
1

|Dcal|
∑

x∈Dcal

su(x) (9)

This computation can be efficiently implemented using a moving average over the dataset, yielding
stable estimates of both the mean and variance for each unit. These estimates are subsequently used
to rank units within each layer and guide the pruning process.

Pruned Unit Selection. For both MLP and attention layers, units are ranked according to their
importance scores within each layer. Based on the desired pruning ratio, the units with the low-
est scores are selected and removed. Pruning an MLP neuron corresponds to removing the entire
associated row or column from the weight matrix, while pruning an attention unit corresponds to
removing the entire attention head.

Algorithm 1 summarize the pruning procedure. As we can see, the above three steps are applied in-
dependently to each layer, ensuring that pruning respects the model’s structure and avoids excessive
degradation concentrated in a few critical layers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Foundation Large Language Model. To showcase the effectiveness and versatility of our
method, we test it over three open-source large language model families that are widely used, includ-
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Algorithm 1: Loss-Aligned Structured Pruning
Input: Pretrained model f , calibration set Dcal, pruning ratio r, coefficient α
Output: Pruned model fpruned
for each target layer l in f do

Initialize score Su = 0 for each unit u ∈ Ul;
Initialize counter n = 0;
for each sequence x ∈ Dcal do

Forward x through f and compute activations at layer l;
Backward on f to obtain the activation gradients of layer l;
Increment counter: n← n+ 1;
for each unit u ∈ Ul do

Calculate sequence-level mean and standard deviation on ∆Lu(x) to get su(x);
Update score using running average: Su ← Su + 1

n (su(x)− Su);

Rank units according to Su, u ∈ Ul and prune the lowest ⌊r × |Ul|⌋ units;

ing LLaMA model family (Touvron et al., 2023a), Vicuna-v1.5 model family (Zheng et al., 2023),
and LLaMA2 model family (Touvron et al., 2023b).

Evaluation Datasets. To assess the model performance in the task-agnostic setting, we perform
a zero-shot task on common sense reasoning datasets: BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy and
ARC-challenge (Clark et al., 2018). All these tasks are evaluated with the lm-eval-harness library
(Gao et al., 2021). Additionally, we complement our evaluation with a perplexity (PPL) analysis on
WikiText2 validation set.

Calibration Dataset. Follow the settings from SliceGPT, our calibration dataset contains 128
sequences of length 2048 sampled from the first shard of the WikiText-2 training set (Merity et al.,
2016). To ensure consistency, we utilize the same calibration data for all pruning algorithms.

Baseline Setup. We compare our method with two variants of SliceGPT (Ashkboos et al., 2024):
the first is the original SliceGPT, which applies PCA-based structured pruning on the weight matri-
ces, representing a typical structured pruning approach; the second is a version of SliceGPT fine-
tuned with LoRA (Hu et al., 2022) on 4,000 sequences from the Alpaca training set (Taori et al.,
2023), each with a length of 1,024 tokens. To eliminate potential external factors—such as vary-
ing pruning ratios across layers with different sensitivities—all methods adopt a uniform pruning
strategy, ensuring a fair and consistent comparison.

Table 1: LLaMA-1, LLaMA-2, and Vicuna perplexity results on WikiText2 test set. The calibration
set size and sequence length are 128 and 2048, respectively.

Ratio Method LLaMA-1 LLaMA-2 Vicuna-v1.5

7B 13B 30B 65B 7B 13B 7B 13B

- Dense 5.47 4.88 4.10 3.53 5.47 4.88 6.78 5.95

20%
SliceGPT (w/o FT) 7.00 6.13 5.27 4.59 6.86 6.04 8.13 7.84
LASP 6.18 5.38 4.54 3.98 6.16 5.38 6.86 5.91

25%
SliceGPT (w/o FT) 7.67 6.64 5.70 4.99 7.56 6.61 8.84 8.99
LASP 6.75 5.72 4.83 4.23 6.73 5.72 7.46 6.95

30%
SliceGPT (w/o FT) 8.70 7.35 6.32 5.49 8.64 7.44 9.94 11.33
LASP 7.28 6.18 5.14 4.54 7.29 6.16 7.98 6.86
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Figure 2: Average accuracy comparison of SliceGPT (w/ FT) and our method across different prun-
ing ratios (20%, 25%, 30%) on LLaMA-2 7B and 13B models.

4.2 LANGUAGE MODELING

In this subsection, we present results on WikiText-2 using LLaMA-1, LLaMA-2, and Vicuna-v1.5
models. Table 1 reports the perplexity under different pruning ratios, i.e., 20%, 25%, 30%. LASP
consistently achieves lower perplexity than SliceGPT at the same pruning ratio across all models.
These results demonstrate that LASP maintains higher accuracy under structured pruning across
different model families.

4.3 ZERO-SHOT PERFORMANCE

Table 2: Evaluation results on multiple benchmarks.

Model Ratio Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

LLaMA-2
7B

- Dense 43.34 76.39 77.74 75.98 78.07 69.22 70.12

20%
SliceGPT (w/o FT) 32.84 60.81 48.77 58.98 69.31 64.48 55.86

LASP 40.70 73.32 70.15 71.36 76.93 65.35 66.30

25%
SliceGPT (w/o FT) 32.25 61.23 51.52 54.31 66.21 62.90 54.73

LASP 39.08 70.45 67.40 66.62 75.30 61.09 63.32

30%
SliceGPT (w/o FT) 29.01 55.93 38.59 49.10 63.32 62.66 49.76

LASP 36.18 69.78 64.34 63.90 73.45 59.35 61.16

LLaMA-2
13B

- Dense 48.29 79.42 80.58 79.37 79.16 72.14 73.16

20%
SliceGPT (w/o FT) 38.65 71.25 44.95 62.79 70.78 67.56 59.33

LASP 41.72 73.74 70.34 75.95 77.58 68.67 67.93

25%
SliceGPT (w/o FT) 35.83 65.69 40.88 57.39 68.00 68.19 56.00

LASP 41.72 74.62 75.96 74.22 76.82 66.85 68.37

30%
SliceGPT (w/o FT) 32.50 59.42 38.74 52.16 64.47 65.58 52.15

LASP 38.74 72.69 72.26 70.52 74.76 63.61 65.43

Table 2 presents the results of LLaMA-2 7B and 13B models on zero-shot tasks under different prun-
ing ratios, i.e., 20%, 25%, 30%. Across all tasks and pruning ratios, LASP consistently outperforms
SliceGPT. While the performance of both methods improves with model size, LASP maintains a
clear advantage. Notably, the 7B model pruned by 25% and the 13B model pruned by 30% still
retain around 90% of the original dense model’s average accuracy. Moreover, for both model sizes,
LASP at 30% pruning ratio surpasses SliceGPT at 20%, highlighting its ability to preserve model
quality even under aggressive pruning.

Furthermore, Figure 2 presents a direct comparison between our method and the fine-tuned
SliceGPT. For the LLaMA-2 7B model, our method consistently outperforms SliceGPT across
all pruning ratios. For the LLaMA-2 13B model, it performs slightly worse than the fine-tuned

7
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SliceGPT at 20% and 30% pruning, but surpasses it at 25% pruning. Overall, across both model
scales, our method is comparable to or slightly better than the fine-tuned SliceGPT.

4.4 ABLATION STUDY

In this subsection, we conduct an ablation study on the hyperparameter α. As shown in Figure 3, the
perplexity curves for both LLaMA-2 7B and 13B models exhibit a clear U-shape, confirming that
an optimal balance is essential for performance.
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Figure 3: Ablation study of the hyperparameter α on
WikiText-2 perplexity. The figure illustrates how perfor-
mance varies with different values of α for both LLaMA-2
7B and 13B models, highlighting the importance of balanc-
ing the first-order loss approximation with the confidence in
neuron contributions.

When α is small, e.g., α = 0.01, unit
selection relies almost entirely on the
average of the first-order loss change
approximation. Although this cap-
tures the unit’s mean contribution, it
tends to favor neurons whose true im-
pact is uncertain, resulting in higher
perplexity. As α increases, the stan-
dard deviation term is gradually in-
corporated, reflecting the confidence
in each neuron’s loss contribution and
improving performance, which peaks
when this confidence is appropriately
weighted for optimal neuron selec-
tion. Beyond this point, further in-
creasing α can degrade performance
due to the numerical scale: as shown
in Appendix D, the standard devia-
tion is much larger than the average
loss, so when α becomes sufficiently
large (e.g., 0.5), the importance score
is dominated by the variance and the mean contribution is effectively ignored, which harms fluency
and increases perplexity. These observations highlight that a carefully chosen α is critical for bal-
ancing average loss contribution and confidence. Ideally, α should be set such that the mean and
standard deviation terms can cooperate effectively, with their scales roughly comparable, so that
neither term completely dominates the importance score and both contribute meaningfully.

4.5 MORE ANALYSIS

16 32 64 128 256 512 1024
Calibration set size

6.5

7.0

W
ik

iT
ex

t2
 P

PL

128 256 512 1024 2048 4096
Calibration sequence length

6

8

10

12

LLaMA-2 13B
LLaMA-2 7B

Figure 4: The effect of the calibration set size and sequence length on perplexity of WikiText2.

Data sensitivity. We investigate the effect of calibration data size and sequence length on pruning
performance, as shown in Figure 4. When fixing the sequence length to 2048, increasing the calibra-
tion set size generally reduces perplexity. This improvement can be attributed to the more accurate
estimation of both the mean of the first-order loss and the standard deviation, as observing more
samples allows these statistics to better reflect the true distribution, thereby enhancing performance;
as the number of samples grows, the PPL curve appears to converge, suggesting that these statistics
have become sufficiently reliable. When fixing the number of samples to 128 and varying sequence
length, perplexity also decreases. This improvement is not only because longer contexts naturally
benefit language modeling, but also because longer sequences effectively provide more token-level
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observations within each sample, making the sample-level importance estimation more precise and
thus further reducing perplexity. Overall, both trends indicate that richer calibration data can lead to
more stable pruning decisions and lower perplexity.

Pruning dynamics. To better understand how our method works on each layer, we analyze the
pruning dynamics of LLaMA2-7B under different pruning ratios.
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Baseline Loss: 1.7083

Figure 5: Pruning dynamics of LLaMA-7B under different
pruning ratios. The x-axis denotes the layer index (0–31),
where each index corresponds to the average loss measured
before pruning the respective layer. The y-axis shows the
average loss value. Curves with different colors represent
different pruning ratios.

Figure 5 illustrates the layer-wise im-
pact of varying pruning ratios on the
model’s average loss. A key ob-
servation is that the effect of prun-
ing varies significantly across the net-
work’s depth. For the early lay-
ers (approximately layers 1–5), prun-
ing consistently reduces the loss, in-
dicating a high degree of parame-
ter redundancy. In these layers, a
pruning ratio of 0.20 achieves a no-
ticeable reduction in loss, suggest-
ing that removing redundant neu-
rons can act as a beneficial regular-
izer and improve generalization. In
contrast, the middle layers (approxi-
mately layers 8–18) exhibit minimal
redundancy and are strongly corre-
lated with the model’s predictive per-
formance. Even moderate pruning
in this region leads to an increase
in loss, highlighting these layers as
a critical bottleneck. For the later
layers (approximately layers 18–32),
some redundancy is again present,
allowing moderate pruning without
severely affecting performance. Overall, the redundancy profile across the network follows a clear
pattern: early layers are most redundant, middle layers are the least, and later layers are intermediate.

Another key observation relates to the redundancy of information processed by the model. While
pruning the first few layers produces similar loss values across different pruning ratios, continued
pruning reveals a nuanced pattern. For example, applying a 0.20 pruning ratio to up to 10 layers
achieves lower loss than pruning only five or six layers at higher ratios (0.25 or 0.30), suggesting
that the model’s information processing has an optimal capacity. Exceeding this capacity through
over-pruning can diminish the effective information available to subsequent layers, limiting further
pruning benefits and potentially degrading performance. This highlights the critical balance between
structural redundancy and information capacity, indicating that effective pruning must account not
only for neuron count but also for the sufficiency of information propagation throughout the network.

5 CONCLUSION

In this work, we have proposed LASP, a loss-aligned structured pruning method for LLMs that
directly evaluates the contribution of model units to overall performance. By integrating activa-
tion magnitudes with gradients and leveraging the UCB strategy, LASP effectively identifies and
removes low-importance units while mitigating uncertainty from limited calibration data. Our im-
plementation further reduces storage overhead through running statistics. Extensive experiments
across multiple LLMs and benchmarks demonstrate that LASP consistently outperforms state-of-
the-art pruning methods, achieving a favorable trade-off between efficiency and model performance.
These results highlight the potential of LASP for enabling the practical deployment of LLMs with-
out significant loss in predictive capability. Beyond empirical effectiveness, our approach provides a
new perspective by modeling the loss directly at the unit-output level. We hope that this formulation
will inspire further theoretical insights into LLM pruning.
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A LLM USAGE

In this work, large language models are mainly used as research assistants to support literature
exploration and text refinement. Specifically, we leverage LLMs to (i) improve the clarity and
conciseness of our writing, and (ii) assist in locating relevant conference papers on pruning methods,
including both unstructured and structured approaches, and locating key survey articles concerning
the broader topics of model compression, pruning, and quantization.

B IMPLEMENTATION OF USING SELF-SUPERVISED LOSS

B.1 THEORY ANALYSIS

We aim to evaluate the change in loss ∆L caused by pruning a unit across the entire calibration
dataset Dcal. Formally, this is defined as the average change over all sequences in Dcal:

∆Lu =
1

|Dcal|
∑

x∈Dcal

∆Lu(x). (10)

To understand this average, we first analyze the loss on a single sequence x. In maximum likelihood
training, the loss on a sequence x = (x1, x2, . . . , x|x|) is defined as the negative log-likelihood,
which can be expressed as the average of token-level losses:

L(x) = − 1

|x|

|x|∑
i=1

log p(xi | x<i), (11)

where |x| is the length of the sequence.

Accordingly, the loss change on x caused by pruning a unit is

∆Lu(x) =
1

|x|

|x|∑
i=1

∆
(
− log p(xi | x<i)

)
. (12)

≈ 1

|x|

|x|∑
i=1

(
− ∂ log p(xi | x<i)

∂zu(xi)
· zu(xi)

)
, (13)

To account for the variability in unit contributions, we apply the UCB algorithm to obtain a more
robust importance metric. Specifically, for unit u the importance score within a sequence is defined
as

su(x) = µu(x) + α · σu(x), (14)

where µu(x) and σu(x) are defined as the mean and standard deviation of token-level first-order
loss changes within sequence x, and α is a hyperparameter controlling the trade-off in UCB:

µu(x) ≈
1

|x|

|x|∑
i=1

(
− ∂ log p(xi | x<i)

∂zu(xi)
· zu(xi)

)
, (15)

σu(x) ≈

√√√√ 1

|x|

|x|∑
i=1

((
− ∂ log p(xi | x<i)

∂zu(xi)
· zu(xi)

)
− µu(x)

)2

. (16)

By aggregating over all sequences in the calibration dataset Dcal, we obtain the overall importance
score Su, which is:

Su =
1

|Dcal|
∑

x∈Dcal

su(x). (17)

For each layer, after obtaining the overall scores {Su}, we sort all units in ascending order according
to Su, and then prune the lowest-ranked units according to the target pruning ratio r.
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Table 3: coefficient α settings for different models under various pruning ratios.

Model 20% 25% 30%

llama2-7b 0.03 0.03 0.03
llama2-13b 0.03 0.03 0.04
llama-7b 0.03 0.05 0.03
llama-13b 0.03 0.03 0.03
llama-30b 0.07 0.07 0.07
llama-65b 0.12 0.10 0.12
vicuna-v1.5-7b 0.03 0.03 0.03
vicuna-v1.5-13b 0.03 0.0117 0.0175

B.2 IMPLEMENTATION DETAILS

In practice, for the mean term in the significance score, we directly take the empirical average
over the calibration dataset. For the σ term, since it is simultaneously affected by both the sample
length (which is fixed across all pruning samples) and the hyperparameter α, we merge these two
factors into a single adjustable coefficient α for simplicity. This treatment keeps the implementation
convenient while retaining the flexibility of controlling the variance penalty. For our approach, the
best coefficient α under different pruning ratios can be seen in Table 3.

Moreover, for finetuning the SliceGPT-pruned LLaMA-2 model, we employ LoRA for efficient
adaptation. Specifically, we set the training batch size to 3, with LoRA-α = 10, rank r = 32, and a
dropout rate of 0.05. LoRA modules are injected into both attention heads and MLP layers, enabling
parameter-efficient fine-tuning while maintaining the performance of the pruned model.

C EFFICIENCY ANALYSIS.

Table 4 reports the efficiency statistics of the pruned LLaMA2-13B models under different pruning
ratios (PR), including the number of multiply–accumulate operations (MACs), runtime peak mem-
ory consumption, inference latency, and model load memory. The reported MACs correspond to the
prefill stage, while memory and latency are measured during the generation of 1024 tokens. As the
pruning ratio increases, both the computational requirements and memory footprint decrease consis-
tently. For example, at a pruning ratio of 20%, MACs are reduced from 822.64G to 660.25G, runtime
memory drops from 25.7 GiB to 20.7 GiB, and inference latency improves from 32.75s to 27.73s.
At 25% pruning, further efficiency gains are observed, with memory usage reduced to 19.5 GiB
and latency to 26.10s. When the pruning ratio reaches 30%, latency remains stable at 25.89s, while
both MACs and memory continue to decline, with runtime memory reduced to 18.2 GiB. These
results show that structured pruning substantially reduces computation and memory costs while de-
livering more efficient inference without introducing instability in runtime behavior. (All results are
measured on the WikiText2 test set using a single NVIDIA RTX 4090 48G GPU.)

Table 4: Efficiency statistics of the pruned models under different pruning ratios (PR).

PR (%) MACs (G) Runtime Memory (MiB) Latency (s) Model Load Memory (MiB)
0% 822.644 25748.890 32.753 24826.792

20% 660.254 20726.856 27.727 19994.854
25% 619.618 19470.430 26.100 18783.917
30% 579.020 18215.437 25.891 17574.151

D FIRST-ORDER LOSS VALUE VISUALIZATION

As Figure 6 and Figure 7 show, the first-order loss approximation exhibits a heavy-tailed distribution:
for more than 50% of the tokens within a sequence, the value is close to zero, while in a few cases a
neuron plays a critical role and yields a large loss change.
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Figure 6: Distribution of −GA values for the 4-th neuron in the first MLP layer. Most values
concentrate near zero, while a few significant deviations highlight the necessity of incorporating
uncertainty into the pruning criterion.
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Figure 7: Distribution of |GA| values for the 4-th neuron in the first MLP layer. The distribution in
the figure clearly shows a long-tail distribution.

Therefore, relying solely on the empirical mean of ∆Lu(x) observed on a calibration set Dcal to
estimate a unit’s importance is therefore risky. On the one hand, the limited size of Dcal introduces
uncertainty into the estimation; on the other hand, the heavy-tailed nature of ∆Lu means that the
mean is often dominated by near-zero values, overlooking the substantial influence a neuron may
exert on a small subset of critical tokens. To address this, we introduce UCB, which explicitly
accounts for rare but significant variations and improves confidence in assessing a unit’s influence,
thereby enabling more accurate selection.
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