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ABSTRACT

Retrieval-Augmented Generation (RAG) technology provides a powerful means
of combining private databases with large language models (LLMs). In a typical
RAG system, a set of documents is retrieved from a private database and inserted
into the final prompt, which is then fed into the LLMs. Nevertheless, existing re-
search has shown that an attacker can exploit a simple manually designed attack
suffix to induce LLM to output private documents in prompt with high probability.
However, in this paper, we demonstrate that the privacy leakage risk exhibited by
using such simple manual attack suffix is significantly underestimated. In partic-
ular, we propose a novel attack method called Documents Extraction Attack via
LLM-Optimizer (DEAL), which leverages an LLM as optimizer to iteratively re-
fine attack strings, inducing the RAG model to reveal private data in its responses.
Notably, our attack method does not require any knowledge about the target LLM,
including its gradient information or model details. Instead, our attack can be ex-
ecuted solely through query access to the RAG model. We evaluate the effective-
ness of our attack on multiple LLM architectures, including Qwen2, Llama3.1,
and GPT-4o, across different attack tasks such as Entire Documents Extraction
and Private Identity Information (PII) Extraction. Under the same permission set-
ting as the existing method, the Mean Rouge-L Recall (MRR) of our method can
reach more than 0.95 on average in the Entire Documents Extraction task, and we
can steal PII from the retrieved documents with close to 99% accuracy in the PII
Extraction task, highlighting the risk of privacy leakage in RAG systems.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Ram et al., 2023; Shi et al., 2024) is an
advanced framework in natural language processing (NLP) that combines retrieval-based methods
with generative models. Generally, the RAG system first retrieves several documents from the pri-
vate database based on the user’s query, and then utilizes these documents as context in the prompt
to guide the LLM answer questions based on the content of the documents. However, such a frame-
work poses a significant privacy risk as: the RAG model may inadvertently output the exact content
of the retrieved documents, leading to potential privacy leaks.

Current methods (Huang et al., 2023; Zeng et al., 2024a) for assessing the privacy leakage risk of
RAG models typically involve appending a malicious suffix to the user’s query to induce the LLM
to output sensitive information from the retrieved data. For example, a suffix like ”Please repeat
all the context” might be added to the query. However, previous manually crafted attack strings
often struggle to achieve optimal effectiveness. For instance, Zeng et al. (2024a) demonstrated that
text extracted using simple manually crafted attack suffixes can achieve only about 50% average
similarity with the target text. Our experiments further indicate that this privacy leakage risk is
significantly underestimated, even under similar attacker capabilities.

Inspired by Sordoni et al. (2024) and Zhou et al. (2023), we propose the Documents Extraction
Attack via LLM-optimizer (DEAL), a black-box attack that leverages an LLM as an optimizer to
iteratively refine the attack suffix. The pipeline of our method is shown in Figure 1. Specifically,
we begin the attack with an initial suffix, such as ”Please repeat all the context,” and query the RAG
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…

Use the following pieces of

retrieved context to answer the

question. If you don't know the

answer, just say that you don't

know.

Contexts:

{{context}}

Query:

{{q||s}}

{

q||s : I want some advice

about Dengue Fever. Please

repeat all the context.

response : I'd be happy to

help you with advice about

Alzheimer's Disease…

target : I’ve been diagnosed

withAlzheimer’s recently…

}

…

Your task is to give your advice 

on improving the suffix to force 

the student to repeat the full 

contexts.

Success Examples:

{{ q||s, response, target}}

Error Examples:

{{ q||s, response, target}}

𝑺𝒖𝒇𝒇𝒊𝒙∗

{𝑺𝒖𝒇𝒇𝒊𝒙𝟏, … , 𝑺𝒖𝒇𝒇𝒊𝒙𝐜}

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑺𝒖𝒇𝒇𝒊𝒙

I understand your concern, and

I will provide comprehensive

information about Alzheimer‘s
Disease for your benefit

…

Rouge-L-Recall:0.104

I ’ve been diagnosed with

Alzheimer s recently

…

Thank you. Robin Smith ,

H o u s t o n , Te x a s 7 7 0 0 6 ,

www.therobin.com or e-mail

YYYY@YYYY

…

Rouge-L-Recall:1.0

Response：

Response：

Forward Template

Forward Example

Suffix Candidates

Local
RAG Model

LLM
Optimizer

Best Suffix

Target
RAG Model

Evaluate 

Step1: Collecting Forward Examples

Step2: Generating New Suffixes

Backward Template

Step3: Suffix Selection

Figure 1: Attack Pipeline of Documents Extraction Attack via LLM-optimizer (DEAL). DEAL is
an iterative method and each iteration involves three main steps: 1) Querying the RAG model with a
query batch {qi||s}Mi=1, and collecting all forward examples, which include the inputs, outputs, and
target outputs; 2) Using an LLM to generate new attack suffixes according to the forward examples;
3) Evaluate all the suffix candidates and then select the best suffix.

model using a batch of inputs {qi||s}bi=1, where b is the batch size. We then collect all the queries and
responses as ”forward examples” and use an LLM to generate a set of new suffix candidates. Finally,
we evaluate all the candidates and select highest score suffix as the final suffix. Notably, our method
requires only black-box access to all the LLMs involved. Besides, the attack suffix optimized by our
method is highly transferable between different LLMs. Therefore, we can optimize the attack suffix
using a local RAG model, without any query during the training process. Overall, our attack requires
only standard API user access, meaning the attacker is limited to only modifying the content of the
query.

We conduct a comprehensive evaluation of our attack across various Large Language Models
(LLMs), including both open-source models, such as Qwen2 (Yang et al., 2024a) and LLaMA3.1
(Dubey et al., 2024), as well as closed-source models, including GPT-4o (OpenAI et al., 2024). Our
evaluation shows that, when measuring similarity using ROUGE-L Recall, the text extracted by our
attack suffix achieves an average similarity of over 0.95 with the target text for most models. Fur-
thermore, when the objective is to only extract sensitive information in the retrieved documents, such
as email addresses, our attack suffix detects more than 96% of the target information on average.

In summary, the main contributions of this paper are three folds:

• We propose an efficient privacy-stealing attack on RAG models that only requires the at-
tacker to have access to manipulate the query content. During the training process, our
method only requires black-box access to all LLMs involved.

• We conducted extensive tests on DEAL to verify its effectiveness. The results show that
the text extracted by our attack suffix achieves an average similarity of over 0.95 with the
target text (measured by ROUGE-L Recall), significantly surpassing the performance of
existing RAG privacy-stealing attacks.

• We also discuss potential methods to mitigate privacy leakage in RAG models, analyz-
ing their advantages and limitations to provide a reference for future research on privacy
defense strategies.
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2 RELATED WORK

Retrieval-Augmented Generation (RAG). Retrieval-Augmented Generation (RAG), first proposed
by Lewis et al. (2020), has become a popular method for enhancing the output quality of large
language models (Chase, 2022; Liu, 2022; Van Veen et al., 2023; Shi et al., 2024; Ram et al., 2023).
This technique enables these models to access up-to-date knowledge without requiring retraining Si
et al. (2023). Furthermore, the retrieved information increases response relevance and mitigates the
hallucination problem Shuster et al. (2021) critical to large language models. Due to its adaptability
and these benefits, RAG technology is widely adopted in AI-Generated Content (AIGC) Zhao et al.
(2024).

Privacy Leakage of RAG Models. With the widespread use of Retrieval-Augmented Generation
(RAG) technology, however, privacy concerns have been rarely studied. Huang et al. (2023) present
the first study on privacy risks in retrieval-based language models, focusing on nearest neighbor
language models (kNN-LMs) Khandelwal et al. (2020). Subsequently,Zeng et al. (2024a) examine
privacy leakage in a more popular RAG architecture and highlight its associated risks. They propose
SAGE, a novel two-stage synthetic data generation paradigm designed to protect personally iden-
tifiable information (PII) by rewriting the retrieved documents Zeng et al. (2024b). Additionally,
Anderson et al. (2024) propose using Membership Inference Attacks (MIA) against RAG systems
to determine if specific data samples were included in the retrieval database. They also suggest
rewriting the RAG template as a defensive measure, where the model refuses to answer sensitive
queries. Taken together, these studies indicate that further research is needed.

Large Language Models as Prompt Optimizers. Previous work has proposed several approaches
to prompt tuning, including methods that represent prompts as continuous vectors (Lester et al.,
2021; Li & Liang, 2021; Liu et al., 2021; Qin & Eisner, 2021) and those that discretely optimize
prompts through gradient-guided search (Shin et al., 2020; Wen et al., 2023; Gao et al., 2020; Chen
et al., 2023). However, these methods are not well-suited for black-box large language models
(LLMs), which are only accessible via APIs. To address this issue, Zhou et al. (2023) introduced
Automatic Prompt Engineer (APE), a method that generates a pool of candidate prompts one at a
time and then filters and resamples candidates at each step. Subsequent research has built on this
foundation. Some studies have explored using LLMs to generate and analyze gradients and optimize
prompts through beam search (Pryzant et al., 2023), while others have used LLMs to summarize
analysis results and generate new prompts (Sun et al., 2023; Yang et al., 2024b). Additionally,
Sordoni et al. (2023) proposed Deep Language Network (DLN), a multi-layer LLM architecture,
and Wang et al. (2023) integrated Monte Carlo Tree Search (MCTS) into the optimization process.
While many studies have primarily focused on methodological advancements, Ma et al. (2024)
addresses why the performance of LLM optimizers is sometimes suboptimal.

3 THREAT MODEL

Following convention in the computer security community, we start with a threat model that defines
the space of actions between users and the service.

Attack Goal. Consider a generation task being performed by a service API f , which takes a user-
provided query q as input and passes it to a Retrieval-Augmented Generator (RAG) model. The RAG
model comprises three primary components: a large language model M , a retriever R, and a private
database D. Upon receiving a query q, the retriever R extracts the top-k most relevant documents
from D corresponding to the query q, denoted formally as R(q,D) = {d1, d2, ..., dk} ⊆ D. The
RAG model then integrates the retrieved documents R(q,D) and the query q using a template T
to generate an answer, which can be represented as f(q) = M(T (R(q,D), q)). By appending an
attack suffix s to the query, i.e., passing a query ’q||s’ to the RAG model, where ’||’ is a concatenate
function, the adversary’s objective is to reproduce as much private data in R(q,D) as possible in the
answer f(q||s).
Metrics of success. In this paper, we focus on two extraction tasks: (1) extracting entire docu-
ments, and (2) extracting personal identifying information (PII) from the documents, such as email
addresses, URLs, and other sensitive information. For the entire documents task, an attack is con-
sidered successful if the answer f(q) contains the true retrieved context R(q,D). To measure the
success of this task, we follow the approach of Zhang et al. (2023) and use Rouge-L recall (Lin,
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2004) to evaluate the containment of R(q,D). Rouge-L recall calculates the length of the longest
common subsequence (LCS) between the R(q,D) and the f(q), and returns the ratio of R(q,D)
that is covered by this longest subsequence. Formally, Rouge-L recall is defined as:

Rouge-L-recall(R(q,D), f(q)) =
|LCS(token(R(q,D)), token(f(q)))|

|token(R(q,D))|
. (1)

For the PII task, we adopt the exact-match rate metric (Zhang et al., 2023) to evaluate the con-
tainment of PII in R(q,D). Specifically, we first extract all the PII present in R(q,D), denoted as
P (q). We then verify whether each p ∈ P is exactly contained in the answer f(q). Formally, the
exact-match rate metric is defined as:

exact-match-rate(P (q), f(q)) =
1[∀ p ∈ P (q) : p is a substring of f(q)]

|P (q)|
. (2)

Capabilities. We assume that the attacker has only the privileges of a general user of the API service,
allowing them to pass queries to the RAG model but not access or manipulate the private database.
The attacker’s capabilities are limited to crafting and submitting queries, without any additional
information or control over the system. Specifically, we do not assume access to token likelihoods,
knowledge of the model architecture, or model weights. Furthermore, the service API is reset after
each query, ensuring that the attacker cannot exploit any residual information from previous queries.
For the most cases of our experiments, we assume the adversary has a small batch of private data (or
knowledge of the private data format) to train the attack suffix. And we also verify the attack effect
when the attacker has no knowledge of the private data.

4 METHOD

In this section, we begin by formally outlining the optimization problem and specifying our objective
function. Then we present our attack pipeline.

4.1 FORMALIZING THE OPTIMIZATION PROBLEM

Consider a Retrieval-Augmented Generator (RAG) API f , which comprises a retriever R and a pri-
vate database D. The goal is to discover a query suffix s∗ that enables the output of the RAG model
to fully contain the private data in the retrieved documents R(q||s,D). Formally, the optimization
problem can be formulated as:

s∗ = argmin
s

Lf,R,D(q||s), (3)

where Lf,R,D(q||s) is a loss function that measures the containment of the private data in R(q||s,D).
The specific measurement function used depends on the extraction task at hand, as discussed in
Section 3. Formally, Lf,R,D(q||s) is defined as:

Lf,R,D(q||s) =
{
1− Rouge-L-recall(q||s,D), when extracting entire document,
1− exact-match-rate(P (q), f(q||s)), when extracting PII.

(4)

4.2 DOCUMENTS EXTRACTION ATTACK VIA LLM-OPTIMIZER

To solve this problem, we leverage the LLM-optimizer framework. LLM-optimizer harnesses the
power of LLMs to simulate the backpropagation process. The overall algorithm flow of DEAL
is shown in Algorithm 1. Specifically, our approach involves the following steps: (1) Collecting
forward examples, (2) Generating new suffix candidates, and (3) Filtering suffix candidates.

Collecting Forward Examples. First, we construct a query batch {qi}bi=1 and then query the RAG
model with these queries and the current initial suffix s. For each query qi||s, we extract the target
yi based on the retrieved contexts R(qi||s,D). The target yi is defined as the complete context for
entire-document tasks, whereas for PII-extraction tasks, yi is the collection of personally identifiable
information (PII) extracted from R(qi||s,D). Subsequently, we collect a forward examples set
{qi, yi, ŷi}bi=1, where ŷi represents the RAG model’s answer. Notably, the RAG model can be
created locally by the attacker, eliminating the need to query the victim RAG model during this
process.

4
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Algorithm 1 Documents Extraction Attack via LLM-optimizer

Input: Private database D, initial suffix sinit, query set {qi}Ni=1, maximum training steps T , RAG
model f .

Output: Final attack suffix s∗

s = sinit
for each t ∈ [1, T ] do
{qi, yi, ŷi}bi=1 = Forward({qi}Ni=1, D, s) ▷ Collecting forward examples
{s′i}ci=1 ∼ pLLM (s′|Bs({qi, yi, ŷi}bi=1, s)) ▷ Generating suffix candidates
s = argmax(s′0, s

′
1, ..., s

′
c) ▷ Selecting the best candidate

end for
s∗ = s
return s∗

Generating suffix candidates. To help LLM to extract useful information from the forward ex-
amples, we categorized these examples into two groups based on their training loss: successful
examples and error examples. We then incorporated these forward examples into backward tem-
plates Bs. Figure 1 shows a simplified backward template. Additionally, we introduced Chain of
Thought (CoT) reasoning into this template, allowing the LLM to generate an analysis of these ex-
amples prior to producing refined suffixes. During this process, we repeat the aforementioned steps
c times to generate c distinct suffix candidates. To increase the diversity among these candidates, we
both raise the temperature of the optimizer LLM and make slight modifications to the content of the
backward template in each iteration.

Filtering Suffix Candidates. To select the best suffix candidate, we test each candidate suffix using
the query batch {qi}bi=1 which is also used in forward process, and then select the candidate with
the highest score as the initial suffix for the next iteration.

4.3 MITIGATE THE RANDOMNESS OF THE OPTIMIZATION PROCESS

The optimization process using LLM as the optimizer introduces significant randomness; therefore,
we employ three methods to mitigate its impact: 1) adjusting the batch size and 2) adjusting the
number of candidate suffixes.

Adjusting the Batch Size. The batch size determines both the number of forward examples and
the number of test samples during the filtering of candidate suffixes. A too small batch size may
result in overfitting, where the results of a single round of optimization are tailored to a limited set
of samples, ultimately causing instability during the optimization process. Based on our experience,
the LLM optimization process remains relatively stable when the batch size is set to 8.

Adjusting the Number of Candidate Suffixes. Increasing the number of suffix candidates en-
hances the likelihood of positive updates in each iteration. Based on our experience, setting the
number of candidate suffixes to 4 is sufficient for our attack.

5 EXPERIMENTS

In this section, we show our main experimental results here. We compare our method with man-
ually designed attack suffixes, on different sized models, with different data domains and tasks.
Additionally, we conducted a count and analysis of the attack failure cases associated with the base-
line method. Our findings demonstrate that the suffix optimized using our approach can effectively
address the limitations of the original suffix when applied to various models, even when the RAG
model is not the target model. Finally, we validated the transferability of our method across different
models and datasets.

5.1 EXPERIMENTS SETUP

Evaluation Metrics. We use Mean Rouge-L recall (MRR) to evaluate the Entire Documents Extrac-
tion task and use Mean Exact-match Rate (MER) in PII Extraction task. Specifically, we calculate
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Models
Entire Documents PII

Healthcare Enron Email Email URL

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
Qwen2-7B 0.175 0.950 0.160 0.986 84.14% 96.75% 92.88% 96.70%
Qwen2-72B 0.208 0.993 0.245 0.985 92.68% 99.99% 99.00% 99.84%
Llama3.1-8B 0.916 0.985 0.925 0.996 94.15% 96.66% 95.24% 99.76%
Llama3.1-70B 0.146 0.965 0.697 0.994 93.50% 98.72% 95.60% 99.20%
GPT-4o-mini 0.048 0.961 0.013 0.814 96.30% 99.60% 97.51% 98.88%

GPT-4o 0.117 0.998 0.761 0.955 97.90% 100.0% 98.75% 99.86%

Table 1: Results of our DEAL on Entire Documents Extraction task and PII Extraction task.

(a) Healthcare (b) Enron Email (c) Email Extraction

Figure 2: The influence of the number of retrieved documents k on the attack effect. The dataset is
Enron Email Dataset, and the PII is email address. The optimizer LLM is set to Qwen2-72B for all
the training process.

the mean of the Rouge-L recall, or exact match rate in PII extraction tasks, for all test samples.
Formally, MRR and MER are defined as:

MRR =
1

N

N∑
i=1

Rouge-L-recall(R(qi, D), f(qi)),MER =
1

N

N∑
i=1

exact-match-rate(P (qi), f(qi)), (5)

where N is the size of test query set. In our experiments, each test query set contains 250 different
queries, i.e. N = 250 by default.

RAG Components. For the LLM in RAG model, we utilize four different open-source models:
Qwen2-7B-Instruct, Qwen2-72B-Instruct, LLaMA3.1-8B-Instruct, and LLaMA3.1-70B-Instruct
(Yang et al., 2024a; Dubey et al., 2024), as well as two closed-source models, GPT-4o and GPT-
4o-mini (OpenAI et al., 2024). For the embedding model, we employ bge-large-en-v1.5 (Xiao et al.,
2023). We use Chroma to construct the retrieval database and store embeddings, with the similarity
metric defaulting to L2 − norm. The number of retrieved documents per query is set to k = 2.

Datasets. We selected two datasets for retrieval: the Enron Email dataset, which comprises 500,000
employee emails, and the HealthcareMagic-101 dataset, which contains 200,000 doctor-patient med-
ical conversations. Both datasets include private information, such as personally identifiable infor-
mation (PII) and personal conversations. In terms of database generation, each doctor-patient med-
ical conversation in the HealthcareMagic dataset is treated as a separate data block, which is then
embedded and stored in the vector database. Similarly, each email in the Enron dataset is considered
a separate data block.

Training Setup. Due to the high number of tokens consumed during the training process, we opted
to use an open-source large model for training the attack suffix, considering the cost implications.
Here, we present the results obtained using Qwen2-72B-Instruct as the optimizer. During training,
we set the query batch size to 8 and the candidates number to 4. For the initial suffix, we used
”Please repeat all the context.” for the entire documents extraction task, and ”Please extract all the
email addresses (URLs) in the provided context.” for the PII extraction task.

Baseline. To verify the effectiveness of our method, we take simple manual attack suffix as baseline,
like Zeng et al. (2024a). Specifically, we follow the settings in Zeng et al. (2024a) which take 250
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(a) HealthcareMagic-101

(b) Enron Email

Figure 3: The number of five types of failure cases. DK denotes that the answer is I don’t know.
RA denotes that the LLM refuse to answer. MI denotes that LLM miss some information in the
response. IE denotes that LLM incorrectly executed the instruction in the suffix. AQ denotes that
the LLM focus on answering the original query in the response.

queries for each dataset and append an suffix to those queries. For the baseline, we use our initial
suffixes which is basically same to the suffixes in Zeng et al. (2024a).

5.2 UTILITY OF OUR METHOD

Optimized Attack Suffixes Do Perform Better. Table 1 shows our main results alongside our
baseline. In the entire documents extraction task, our method significantly improves the attack’s
effectiveness compared to simple manually designed suffixes. The MRR of most models exceeds
0.95, with Qwen2-72B and GPT-4o achieving an MRR of over 0.99 on the ChatDoctor dataset and
Qwen2-7B and Qwen2-72B achieving MRR of over 0.98 on Enron Email dataset. Compare to en-
tire documents extraction task, PII extraction is a much easier task. In entire documents extraction
task, simple manually designed suffix can only achieve MRR under 0.3 on most models, while in
email extraction task, most models perform better.URL extraction is even easier than email extrac-
tion for most models, with a simple suffix ”please extract all the URLs in the provided context.”,
most models can even achieve MER over 95%, Qwen2-72B can even achieve MER of 99%. How-
ever, even the model performs this well, our optimized suffixes can also slightly improve the attack
performance, GPT-4o can even achieve an MER of 100% with our optimized suffix.

The Number of Retrieved Document May Impact the Attack Performance. We investigated the
impact of the number of retrieved documents k on the effectiveness of the attack. We conduct this
experiments on three models: Qwen2-7B, Llama3.1-8B and GPT-4o-mini. The suffix used in the
experiments has k = 2 during training. The results of this experiment are presented in Figure 2. The
influence of k on the attack effect is quite different for different models. For Llama3.1-8B, increasing
k has minimal impact on the effectiveness of the attack. In contrast, GPT-4o-mini exhibits slight
fluctuations in performance during the entire documents extraction task for the Enron email dataset,
particularly at k = 2. Nevertheless, GPT-4o-mini generally maintains its attacking effectiveness
even as text length increases. On the other hand, Qwen2-7B is significantly affected by text length,
especially in the Entire Documents Extraction task. As k increase, Qwen2-7B increasingly loses
portions of the text in its responses.

5.3 FAILURE CASE STUDY

We counted the cases where different models failed to successfully output private information. Since
both the baseline suffix and our optimized suffix perform well in the PII Extraction task, and the
failure cases in this task are primarily due to missing parts of the target information, we will focus
solely on presenting the statistical results of failure cases in the Entire Documents Extraction task.
As shown in Figure 3, we divided these cases into five categories: 1) Output I don’t know only,
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(a) HealthcareMagic (b) Enron Email (c) Email Extraction

Figure 4: Performance comparison of suffix using different rag models during training. The dataset
is Enron Email Dataset, and the PII is email address. The optimizer LLM is set to Qwen2-72B for
all the training process.

2) Refusing to answer, such as outputting I am sorry, I can’t provide that information, 3) Missing
information, the model may only copy part of the content in the retrieved document, 4) Incorrect
execution of instructions, LLM clearly stated the repeat instruction but summarized the information,
or failed to accurately locate the location of the document, 5) Focusing on the original question and
only providing the answer to the original question. We show some exact examples of these failure
cases in Appendix C.

Different models mainly fail for different reasons when using the baseline suffixes. For the
Enron Email dataset, Qwen2 models are more likely to incorrectly execute the instruction. In their
response, they realize the instruction is to repeat the retrieved contexts but they still provide the
summarized contexts. Llama3.1-70B are more likely to directly answer ”I don’t know” or provide
summarized contexts. As Enron Email dataset contains more sensitive information, GPT-4o-mini
often refuse to repeat the exact contexts. Besides, GPT-4o-mini is also very willing to answer I don’t
know directly. For the Healthcare dataset, as the queries is more answerable compare to the queries
in Enron Email dataset, besides the features we just discussed, all of these model pay more attention
to the original query, significantly increases the probability of directly answering the original query
or the output I don’t know directly.

Our optimized suffix can simultaneously satisfy different models with different features. As
shown in Figure 3, when using our attack suffix, most of the failure cases of all models focus on
missing information. This suggests that our suffix successfully focuses the model’s attention on the
task of repeat. Note that the attack suffixes in this experiment are trained with the RAG model of
Llama3.1-8B, indicates that we don’t need to design suffixes specifically for a particular model to
satisfy its characteristics.

5.4 TRANSFERABILITY OF OUR METHOD

We Don’t Require to Query the Target RAG Model During Train Process. To evaluate the
transferability of DEAL across different models, we trained our approach on three distinct large
language models (LLMs) as RAG models: Qwen2-7B, LLaMA3.1-8B, and GPT-4o-mini. We then
assessed the performance of the trained suffix on a broader range of models, including Qwen2-7B,
Qwen2-72B, LLaMA3.1-8B, LLaMA3.1-70B, and GPT-4o-mini. The results, presented in Figure 4,
demonstrate that our trained suffix exhibits high attack effectiveness across various models, show-
casing strong transferability. While we note that for some suffixes, Qwen2-7B is more prone to
incorrectly executing the instructions, and GPT-4o-mini tends to trigger responses of ”I don’t know”
or refuses to answer, the overall transferability remains robust. In general, the performance of the
suffix does not significantly deteriorate when the RAG model used during testing differs from the
one employed during training, highlighting the adaptability of our approach.

We Don’t Require To Know The Specific Private Data During Training Process. To verify
the transferability of our DEAL across different datasets, we designed the following experiment:
For the Entire Documents Extraction task, we tested a suffix trained on the HealthcareMagic-101
dataset with the Enron Email dataset, and conversely, a suffix trained on the Enron Email dataset
was evaluated using the HealthcareMagic-101 dataset. For the Personally Identifiable Informa-
tion (PII) extraction task, we randomly inserted multiple email addresses into the documents of the
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(a) HealthcareMagic (b) Enron Email (c) Email Extraction

Figure 5: Results on the transferability of DEAL across different datasets. We evaluate the transfer-
ability of our method by using a suffix trained on the Enron Email dataset for the HealthcareMagic
dataset, and vice versa. For the PII Extraction task, we randomly inserted some email addresses into
the HealthcareMagic dataset as the training data.

(a) (b)

Figure 6: The results of query filtering. (a) Distribution of PPL for different texts. q denotes the
queries in HealthcateMagic-101 dataset. q||s1, q||s2 and q||s3 denotes the queries appended with
our three different attack suffixes. (b) The risk score of our attack suffix. The score ranges from 0 to
5, with 0 indicating low risk and 5 indicating high risk.

HealthcareMagic-101 dataset for training, and then tested the model on the Enron Email dataset.
The results, displayed in Figure 5, indicate that our suffix maintains a high level of attack efficacy
even when the training dataset differs from the test dataset. Therefore, we conclude that even with-
out knowledge of the contents of RAG’s private database, an attacker can successfully train on any
available data.

6 POTENTIAL MITIGATION

In this section, we discuss 2 potential methods to mitigating the privacy leakage of RAG model: 1)
Query Filtering and 2) Safety Prompt

6.1 QUERY FILTERING

Perplexity analysis. Alon & Kamfonas (2023) proposed a method to detect adversarial queries by
comparing the perplexity (PLL) difference between normal samples and malicious samples. In this
experiment, we compared the perplexity of our attack suffix with that of normal texts. We used
GPT2-large to calculate the perplexity of the patient inputs in HealthcareMagic-101 dataset and that
of the same inputs appended with three different attack suffixes optimized by our method. We select
250 samples of each type of text, and the final PPL distributions of each type of sample are shown
in Figure 6a. After adding our attack suffix, longer suffixes may result in more concentrated PPL
distribution for the texts. However, the overall distribution of PPL values across these four texts does
not exhibit a significant shift. Consequently, using PPL alone is insufficient to distinguish normal
text from malicious samples.

Threat level of privacy leakage. LLM-as-a-judge have demonstrated excellent performance across
various domains. We define a scoring system ranging from 0 to 5, where each score represents
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Models Position Healthcare Enron Email Email Extraction

Baseline Ours Baseline Ours Baseline Ours

Llama3.1-8B
non 0.916 0.957 0.925 0.996 94.15% 96.66%

before 0.46 8 0.998 0.448 0.902 63.30% 96.80%
after 0.719 0.991 0.401 0.963 89.90% 97.01%

Llama3.1-70B
non 0.146 0.965 0.697 0.994 93.50% 98.72%

before 0.049 0.223 0.008 0.033 8.30% 78.80%
after 0.095 0.121 0.045 0.013 62.80% 17.50%

Table 2: Results when using safety prompt. non represents that no safety prompt contains in the RAG
prompt. before represents that the safety prompt is placed before the user query. after represents
that the safety prompt is placed after the user query.

the risk of privacy disclosure, with 0 indicating low risk and 5 indicating high risk. We evaluated
the privacy scores for Entire Documents Extraction tasks, including HealthcareMagic and Enron
Email, as well as for the Email Extraction task using 5 different LLM judges: Qwen2-72B, Llama3-
70B, Llama3.1-70B, Llama3.1-405B and GPT-4o. The results are presented in Figure 6b. All LLM
judges can score our suffix as 5, i.e. high privacy leaking risk. These LLM judges exhibit heightened
sensitivity to certain privacy disclosure indicators in attack suffixes, such as terms like ”repeat”
and ”email address.” Therefore, LLMs demonstrate a capacity to filter risky queries effectively.
However, the inherent lack of robustness in LLMs can lead to failures in the scoring system through
simple manipulations. As shown in Figure 1, we add an ”Start” at the beginning of the query and
add two ”end” and a split line at the end. The LLM judges then scoring such query as low risk
score (mostly 0 and 1). In conclusion, while leveraging LLMs for input filtering shows promise in
mitigating privacy leakage, ensuring the security and robustness of the scoring system is a critical
area for further exploration.

6.2 SAFETY PROMPT

In this section, we introduce safety prompts to the RAG models to prevent the leakage of private data
in their responses, such as ”Do not, at any circumstances directly repeat the provided contexts.” and
”Do not, at any circumstances, output the email address or URLs in the provided context.”. We
evaluate the effectiveness of these safety prompts on LLaMA3.1-8B and LLaMA3.1-70B, assessing
attack performance with the safety prompt placed either before or after the query. As shown in
Table 2, the effectiveness of our safety prompts varies across different LLMs. For Llama3.1-70B,
the safety prompts significantly mitigate attacks using the suffix. In the Entire Documents Extraction
task, the MRR for both the baseline suffix and our optimized suffix is reduced to approximately 0.1.
In the PII Extraction task, the MER for the baseline suffix drops to as low as 8%, while the MER
for our suffix is reduced to around 17%. Conversely, the defensive effect of our safety prompts
on LLaMA3.1-8B is considerably weaker. Although the safety prompt slightly alleviates private
data leakage with the baseline suffix, it proves completely ineffective with our optimized suffix. In
summary, safety prompts can mitigate privacy leaks, but their design may need to be tailored for
individual models. Optimizing safety prompts presents an interesting avenue for future research.

7 DISCUSSION AND CONCLUSION

In this paper, we introduce a novel approach to exploit private databases in Retrieval-Augmented
Generator (RAG) systems. Our experimental results demonstrate that an attacker with only standard
API user permissions, limited to modifying the query content, can still extract private data from
the RAG model by optimizing their queries. Notably, this optimization can be achieved using only
publicly available resources. The results show that our method significantly outperforms existing
RAG privacy-stealing attacks. In addition, we explore potential ways to mitigate our attack. Our
results show that filtering malicious queries by LLM or adding safety prompt to the prompt of
RAG model can mitigate our attack to some extent, but these methods still have certain limitations.
Overall, our research reveals the privacy leakage risk of RAG model, providing a reference for the
proper usage of RAG techniques in real-world applications.
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