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Abstract—In this paper, we introduce a method for unifying
language, action, and state information in a shared embedding
space to facilitate a range of downstream tasks in robot learning.
Our method, Contrastive Language, Action, and State Pre-
training (CLASP), extends the CLIP formulation by incorporat-
ing distributional learning, capturing the inherent complexities
and one-to-many relationships in behaviour-text alignment. By
employing distributional outputs for both text and behaviour en-
coders, our model effectively associates diverse textual commands
with a single behaviour and vice-versa. We demonstrate the
utility of our method for the following downstream tasks: zero-
shot text-behaviour retrieval, captioning unseen robot behaviours,
and learning a behaviour prior for language-conditioned rein-
forcement learning. Our distributional encoders exhibit superior
retrieval and captioning performance on unseen datasets, and
the ability to generate meaningful exploratory behaviours from
textual commands, capturing the intricate relationships between
language, action, and state. This work represents an initial step
towards developing a unified pre-trained model for robotics, with
the potential to generalise to a broad range of downstream tasks.

Index Terms—robot learning, natural language, contrastive
learning, behaviour captioning, behaviour generation

I. INTRODUCTION

Recent advancements in the fields of natural language pro-
cessing and computer vision have demonstrated the potential
of large-scale pre-trained models in learning general represen-
tations for a wide range of downstream tasks [1, 2, 3, 4].
However, the robotics community is yet to develop a uni-
fied representation that can encapsulate the rich and diverse
information inherent in robotic systems, spanning language,
action, and state. Such a unified representation could signif-
icantly improve the performance and generalization of robot
learning algorithms, enabling seamless integration of language
understanding and high-level task execution.

Multi-modal contrastive models such as CLIP [1] have
demonstrated the ability to develop these desired intricate
relationships between text and images, by learning shared
representations that facilitate a wide range of downstream
tasks including text-to-image generation [5], image captioning
[6, 7], image classification [1] and segmentation [8, 9]. In
this work, we explore what it takes to extend this idea to the
robotics domain, where the alignment of language, states and
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Fig. 1. We propose distributional encoders for both robot behaviour tra-
jectories and textual descriptions and align the embedding space using a
contrastive loss via the reparameterisation trick. We additionally regularise
this space using two additional loss terms which encourage the embeddings
to better align with the desired downstream tasks for behaviour captioning
and generation.

actions can play a critical role in learning representations that
can facilitate various downstream robot learning applications.

The direct application of the CLIP architecture to con-
necting language and behaviours in robotics raises several
challenges. Unlike the image-text pairing in CLIP, where static
images are matched with their corresponding descriptions, the
robotics domain deals with continuous, dynamic sequences
of state-action pairs and their varying textual representations,
making the one-to-one mapping between modalities more
complex. Inherently these modalities exhibit one-to-many re-
lationships where a single textual command can correspond to
multiple valid robot trajectories, and conversely, a single robot
trajectory could be accurately described by multiple textual
commands. This relationship demands an alternative learning
approach that can capture the variability and nuances of such
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connections.
In this paper, we adapt the standard CLIP architecture

to the domain of robotics with the aim of establishing a
unified embedding space for language, actions, and states
through contrastive pre-training. To tackle the inherent bidi-
rectional one-to-many mapping between robot behaviours and
textual descriptions, we propose to model the encoders as
distributions from which we sample via reparameterisation
[10]. The sampled embeddings are then aligned using the
symmetric cross-entropy contrastive loss employed by CLIP.
Furthermore, we encourage the model to learn generalizable
and useful representations by regularizing the embedding
space with two interconnected auxiliary downstream tasks:
behaviour captioning and behaviour reconstruction.

Our proposed approach, known as CLASP (Contrastive
Language, Actions, and State Pretraining), demonstrates su-
perior retrieval performance compared to the traditional CLIP
formulation when extended to the behaviour-text setting. Pre-
liminary results additionally indicate the potential of the shared
representation to facilitate downstream robot learning applica-
tions including robot behaviour captioning, text-conditioned
behaviour generation and learning behaviour priors for rein-
forcement learning.

II. RELATED WORK

In recent years, the pursuit of a shared representation for
language, states, and actions has garnered significant interest
in the robotics research community, aiming to develop more
intuitive and versatile robotic systems. This endeavor involves
the grounding of language in robotic actions and states, with
various related works exploring different methodologies to
achieve this goal.

1) Language-Conditioned Robot Learning: One prominent
approach to grounding natural language in robot states and ac-
tions involves conditioning robot learning policies on language
instructions [11, 12, 13, 14, 15]. This approach is based on
the premise that an effective connection between language,
actions, and states can be established via the task-centric
loss function. However, applying these techniques in isolation
frequently results in overfitting to initial object scenes, yielding
suboptimal embeddings and limited task generalisation [16].
To mitigate these issues, prior research has explored the use
of auxiliary multi-modal alignment losses [13, 16, 17, 18] in
conjunction with standard imitation or reinforcement learning
objectives. These studies have demonstrated that integrating
appropriate regularisation with these objectives fosters the
development of a more structured and coherent embedding
space [16], substantially accelerating learning and improving
the generalisation capabilities of the learned policy. In this
work, we examine the multi-modal model alignment module
in greater detail and investigate the requirements for learning
an effective representation that can facilitate a variety of robot
learning applications.

2) Pretraining for Robot Learning: In the domain of pre-
training for robot learning, several studies have focused on the

development of versatile shared embedding spaces using large-
scale pre-training on video and language data. Nair et al.[19]
use this to learn a general visual representation that could be
used across a wide range of robot learning tasks. Fan et al.[20]
build on this idea to train a similar shared embedding space
and utilise the cosine similarity between text and video embed-
dings as a reward for downstream RL. Xiao et al.[21] finetune
the CLIP model to align start-end images of a robot trajectory
with textual descriptions in order to relabel new datasets. All
these ideas demonstrate the versatility of a shared embedding
space for different components of the robot learning pipeline.
In our work, we extend these ideas to include robot actions
within the multi-modal embedding space and explore the
applicability of the shared representation to facilitate other
downstream tasks including behaviour captioning as well as
behaviour generation.

III. MOTIVATION

The growing interest in developing shared representations
across various modalities, such as text, images, and audio, has
led to significant advancements in natural language processing
and computer vision [1, 3, 22]. However, the robotics domain,
which encompasses language, states, and actions, has yet to
witness a dedicated effort to create a unified representation
that can facilitate more natural and versatile robotic systems.
The potential benefits of such a representation include the
seamless integration of language understanding with high-level
task execution within the robot learning pipeline, including
text-guided exploration for reinforcement learning or hindsight
instruction relabelling [23] for effective behaviour reuse. Al-
though some works have indirectly addressed this challenge,
a focused approach to establishing a shared representation for
the complex robotics domain is still lacking. Unique chal-
lenges arise from the continuous and dynamic nature of state-
action pairs, the diverse textual representations, and the in-
herent one-to-many relationships between language and robot
behaviours. To tackle these complexities, innovative learning
approaches capable of effectively capturing the intricacies of
the relationships between language, actions, and states are
needed, thus motivating the pursuit of novel methodologies
in this research area.

IV. PROBLEM FORMULATION

In this section, we formally define the problem of learning
a shared embedding space for language, actions and states in
the context of robotics.

Let L denote the language modality, where each element
l ∈ L represents a natural language description or command.
Similarly, let B denote the behavior modality, where each
element b ∈ B represents a robot behavior, consisting of a
sequence of state-action pairs (s1, a1, s2, . . . , sT , aT ), with T
denoting the length of the sequence. The objective is to learn
a shared embedding space Z , where the elements zl ∈ Z
and zb ∈ Z correspond to the embeddings of language
and behaviours, respectively. This space should capture the
complex relationships between these modalities and enable



efficient transfer learning across various robot learning tasks.
To achieve this, we propose a multi-modal contrastive learning
framework, which consists of two encoder networks, ϕl : L →
Z and ϕb : B → Z . These encoders are designed to project the
elements of each modality into the shared embedding space
Z , preserving the rich relationships between language and
behaviours. The learning objective is to minimize a contrastive
loss function that encourages the alignment of corresponding
language and behaviour embeddings while pushing apart non-
matching pairs. The proposed framework should also take
into account the inherent bidirectional one-to-many mappings
between robot behaviours and textual descriptions, as well as
the temporal dependencies between state-action sequences.

V. METHODOLOGY

In this section, we present our methodology for learning
a shared embedding space for language and behaviours in
the context of robotics. We leverage contrastive learning, with
distributional encoders to facilitate the learning of one-to-many
mappings between text and behaviours and vice versa. Addi-
tionally, we incorporate two auxiliary tasks for regularising
the model and improving generalisation. Full implementation
details are provided in the Appendix section.

A. Distributional Encoders and Sampling

We utilise two distributional encoders, one for language (ϕl)
and one for behaviours (ϕb), that output the parameters of a
Gaussian distribution in the shared embedding space. For each
language description l and behaviour b, we compute the mean
(µ) and variance (σ2) of the corresponding embeddings using
the respective encoders:

µl, σ
2
l = ϕl(l), µb, σ

2
b = ϕb(b) (1)

To obtain the required embeddings for alignment, we sample
from these distributions using the reparameterisation trick
[10], commonly used when training variational auto-encoder
networks:

zb = µb + ϵb ⊙
√
σ2
b , zl = µl + ϵl ⊙

√
σ2
l

(2)

where ϵb and ϵl are random noise vectors drawn from a
standard normal distribution (ϵ ∼ N (0, 1)) and ⊙ denotes
element-wise multiplication.

B. Behaviour-Language Alignment Loss

To align the embeddings of behaviours and their corre-
sponding textual descriptions, we utilise the same contrastive
objective used for pairing images and captions in CLIP [1]
which is based on the symmetric cross-entropy loss. Given a
mini-batch of N samples, the loss function for our behaviour-
text alignment is given by:

Lalign = − 1

2N

N∑
i=1

[
log

exp ⟨zbi , zli⟩ /τ∑N
j=1 exp

〈
zbi , zlj

〉
/τ

+

log
exp ⟨zli , zbi⟩ /τ∑N

j=1 exp
〈
zli , zbj

〉
/τ

]
(3)

Here, ⟨·, ·⟩ denotes the inner product between two vectors,
zbi is the behaviour embedding for the i-th sample, zti is
the corresponding text embedding, and τ is a temperature
hyperparameter. This loss encourages the model to align
behaviour and text embeddings for each sample while pushing
them away from the embeddings of other samples in the batch.
Similar to the original CLIP model, the loss is computed for
both behaviour-to-text and text-to-behaviour directions, and
their average is used for optimization.

C. Auxiliary Tasks

To regularise the model and improve generalisation, we
introduce two interconnected auxiliary tasks: behaviour cap-
tioning and behaviour generation.

1) Behaviour Captioning: The goal of this task is to
predict the natural language description l of a given behaviour
sequence b. Following from the CLIPCap model presented
by Mokady et al.[6], we assume that all the necessary in-
formation for captioning a behaviour b is present in the
sampled embedding zb, given its alignment with text in the
shared embedding space. This in essence should allow us to
predict the corresponding caption directly from the behaviour
embedding:

max
θ

N∑
i=1

log pθ
(
li1, . . . , l

i
n | zib

)
, (4)

where we refer to the captions as a sequence of tokens
l = l1, . . . , ln padded to a maximum length n. Similar to
[6], we focus on prefix fine-tuning [24] as a sample efficient
strategy for training our captioning network. We utilise a pre-
trained GPT-2 [25] model as the backbone of the captioning
network and solely train a mapping network ψ which projects
our behaviour embedding zb to k embedding vectors suitable
as input to the large language model:

pi1, . . . , p
i
k = ψ (zb) (5)

The final objective for training the mapping component ψ
is to predict the caption tokens conditioned on the prefix in
an auto-regressive fashion using the cross-entropy loss:

Lcaption = −
N∑
i=1

n∑
j=1

log pθ
(
lij | pi1, . . . , pik, li1, . . . , lij−1

)
(6)



2) Behavior Generation: In the behaviour generation task,
we aim to reconstruct the encoded action sequence a, that
is processed by the behaviour encoder, from the sampled
language embedding zl. Given that robot environments can
be dynamic, we model the behaviour generator π as a closed-
loop policy that conditions on both the text embedding and the
current state st in order to generate the corresponding action
a′t [26, 27]. This network is trained using the mean squared
error (MSE) loss, which measures the difference between
the predicted action sequence and the ground truth action
sequence:

Lπ =
1

N

N∑
n=1

1

T

T∑
t=1

||at − π(a′t|zl, st)||
2
2 , (7)

where at denotes the t-th ground truth action in the sequence,
π(a′t|zl, st) denotes the predicted action given the text embed-
ding zl and state st, and T is the total number of actions in
the sequence.

D. Total Loss

The total loss for our model is a combination of the three
loss terms, weighted by their respective hyperparameters β:

LCLASP = β1Lalign + β2Lcaption + β3Lπ (8)

Our model is trained by minimizing this loss, which en-
courages the learned shared embedding space to structure
itself such that it can effectively align language, actions,
and states. By striking a balance between these objectives,
the model learns to capture the intricacies and nuances of
the relationships between these modalities, leading to better
generalisation and performance on downstream applications.

VI. EVALUATION

A. Training Dataset

Our method is trained and evaluated using the Language-
Table manipulation dataset [12]. This dataset focuses on a
robotic arm that manipulates blocks on a tabletop, with tasks
guided by natural language instructions. The dataset contains a
mix of real-world and simulated demonstration data, featuring
a variety of robot state-action trajectories, each paired with a
natural language description of the corresponding behaviour.
The test environment consists of a xArm5 robot, constrained
to move in a 2D plane, with a cylindrical end-effector, in
front of a smooth wooden board with a fixed set of 8 plastic
blocks, comprising 4 colours and 6 shapes. Actions are 2D
delta Cartesian setpoints, from the previous setpoint to the new
one. State information consists of RGB third-person images of
the robot and board as shown in Figure 2.

B. Alignment Evaluation

We evaluate the zero-shot retrieval accuracy of our model
against a non-distributional variant on a held-out dataset from
the Language-Table suite, comparing their top-1 and top-5
retrieval accuracies for both text and behaviour. We summarise
the results in Table I.

TABLE I
ZERO-SHOT RETRIEVAL ON AN UNSEEN DATASET

Text Retrieval Behaviour Retrieval

CLASP CLASP
(Distributional) CLASP CLASP

(Distributional)
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

40.0 73.3 73.3 93.3 86.7 100 66.7 100

TABLE II
BEHAVIOUR-TO-DESCRIPTION TRANSLATION ACCURACY

CLASP (Distributional) CLASP Seq2Seq

46.6% 40.0% 26.6%

Our distributional encoders demonstrate improved general-
ization, with a 33.3% increase in top-1 text retrieval accuracy
and a 20.0% increase in top-5 accuracy. Although top-5
behaviour retrieval accuracy remains at 100% for both variants,
the distributional approach shows a drop in top-1 accuracy.

This discrepancy could be due to the distributional encoders
capturing a broader range of behaviour representations, which
enhances text retrieval performance but makes it harder to
pinpoint the exact behaviour in top-1 results. Nevertheless, the
distributional variant effectively identifies relevant behaviours
within the top-5 results, suggesting that it is sensitive to
subtle behaviour differences and could excel in fine-grained
retrieval tasks. Further investigation is needed to confirm
this hypothesis and understand the trade-offs between the
distributional and non-distributional CLASP variants.

C. Behaviour Captioning

We further evaluate our model’s ability to caption unseen
behaviour trajectories by comparing its performance with a
non-distributional variant (CLASP) and a Seq2Seq baseline
that does not utilise the aligned representation space for
captioning. The results are summarised in Table II.

Our model achieves a 46.6% translation accuracy, sur-
passing both alternatives. This improved performance can be
attributed to the aligned embedding space, which enables
effective information transfer between behaviour sequences
and text captions, leading to increased captioning accuracy.
The Seq2Seq baseline, without the shared space, only attains
26.6% accuracy, while the non-distributional CLASP variant
reaches 40.0% accuracy. These findings suggest that incor-
porating distributional encoders allows our model to capture
the nuanced behaviour-text relationships, resulting in better
captioning performance.

We present qualitative captioning examples of our approach
in Figure 2. Additionally, we provide the ground truth lan-
guage descriptions from the dataset to emphasise the one-to-
many mapping nature of behaviours-to-textual descriptions.

It is worth noting that a significant number of captioning
failures stem from the visual model’s inability to distinguish
subtle object differences in our dataset, such as ”yellow pen-



CLASP: “slide the red pentagon close to the blue moon”

CLASP: “push the yellow pentagon next to the green cube”

CLASP: “separate the yellow hexagon from the yellow heart and blue cube”

CLASP: “move green circle to the bottom of green star diagonally”

Ground Truth: “form a diagonal line with yellow heart and blue blocks”

Ground Truth: “move the green blocks to the right”

Ground Truth: “slide the red pentagon next to the red moon“

Ground Truth: “separate the blue moon from the yellow pentagon”

Fig. 2. Captioning unseen robot trajectories using our trained model on both real and simulation environments. Note the significant discrepancy between the
labelled ground truth description and the generated description. This highlights the one-to-many relationship between the behaviours and textual descriptions.

tagon” from ”yellow star” or ”green cube” from ”green star.”
In our experiments, we used a frozen CLIP visual encoder to
process these images, which is not specifically designed for
fine-grained object-level feature extraction. We believe that
using a fine-tuned or alternative model would yield better
results.

D. Behaviour Generation

In our final evaluation, we investigate the effectiveness of
the shared embedding space for meaningful behaviour gener-
ation. The ability to generate useful behaviours from either
a sampling space or textual descriptions is crucial for various
robotic learning applications, such as facilitating exploration in
reinforcement learning [26, 27, 28], model predictive control
[29], or dataset generation for imitation learning. We assess
the behaviour generator’s capacity to produce meaningful
behaviours in the context of the Language-Table envi-
ronment. Here, useful behaviours are defined as trajectory
sequences that result in block rearrangements constrained to
the board region. We evaluate our skill generator based on
this criterion and compare its performance against random ex-
ploration. We additionally learn a state-conditioned behaviour
prior over this embedding space using the approach proposed
in [27]. The results, presented in Table III, demonstrate that
both methods leveraging the distributional embedding space

TABLE III
PERCENTAGE OF USEFUL TRAJECTORIES GENERATED DURING

EXPLORATION

CLASP

Method Behaviour Prior Text Encoding Random Exploration

Useful Trajectories 87.7% 60.0% 27.7%

induced by CLASP can produce a high proportion of useful
behaviours in the environment, outperforming random explo-
ration alone.

VII. CONCLUSIONS

This body of work represents an initial step towards de-
veloping a shared embedding space for language, states, and
actions in robotics. Preliminary results indicate that accounting
for the bidirectional one-to-many nature of the text-behaviour
relationship is essential when constructing this shared repre-
sentation, especially for downstream tasks involving generative
modeling. Our approach demonstrates improved retrieval per-
formance compared to non-distributional methods and show-
cases the applicability of the shared embedding space across
two distinct downstream tasks. It is important to note that
the evaluation conducted in this study focused on a single
robot domain, and further assessments across larger and more



diverse datasets are necessary to establish the viability of the
approach. We encourage continued research in this area as
more extensive and varied datasets become available to the
robot learning community.
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APPENDIX

IMPLEMENTATION DETAILS

A. Behaviour Encoder

Each training example consists of (s, a, l) ∼ D, where
s ∈ RT×320×180×3 is the RGB observation history with
varying sequence length T for the behaviour trajectory, a ∈ R2

is the delta Cartesian action of the robot arm, and l is the
natural language instruction carried out by the robot. Each
image frame is passed through a pre-trained CLIP image
encoder to obtain a visual feature representation fs ∈ R512

before concatenating it with the normalized robot action. We
prepend a [CLS] token to this sequence, which will later
serve as the final representation for the behaviour sequence.
The sequence of state-action pairs, including the [CLS] token,
is processed by an MLP to obtain the shape [T +1,dmodel],
and 2D position-encoded before being passed through a stan-
dard transformer encoder model [30]. Our behaviour encoder
transformer has 2 layers, with dmodel = 512, 2 heads, a feed-
forward width of 128, and a dropout rate of 0.1. The [CLS]
token is then processed by a 3-layer MLP, which outputs the
desired mean and sigma for the encoder distribution, both of
dimension 512.

B. Text Encoder

We employ a pre-trained CLIP text encoder [1] for pro-
cessing the input instruction text. The text is preprocessed
by removing punctuation and extra spaces and is fed into
a pre-trained CLIP text encoder, which produces a textual
feature representation fl ∈ R512. Subsequently, the textual
representation is passed through a 3-layer MLP projector head,
which generates the 512-dimensional mean and sigma for the
desired distributional output of the textual encoder.

C. Behaviour Generator

The role of the behaviour generator is to take an embedding
z from the shared latent space and map it to a sequence
of meaningful actions captured by the behaviour dataset.
Due to the dynamic nature of robot environments, we make
this generation process closed-loop by conditioning it on the
current state. As a result, the behaviour generator can be
viewed as a closed-loop policy:

at = π(z, st) (9)

We model the policy π as a 6-layer MLP, which takes
the sampled embedding z and the current state st as inputs
and outputs the corresponding 2-dimensional action at. The
embedding space encapsulates a diverse range of behaviours,
and selecting an appropriate z for sampling can be challenging.
In this work, we describe two strategies used for evaluation:

1) Text-Conditioned Generation: In this approach, we
leverage the shared embedding space and distributional nature
of our encoders to sample from the embedding space during
inference. Given the alignment between text and behaviours,
we can map textual commands to a distribution over z, from
which we can sample an appropriate z for decoding into
a behaviour sequence. By doing so, we effectively utilize
the learned connections between language and behaviour to
generate meaningful action sequences based on the input
textual commands.

2) State-Conditioned Behaviour Prior: We additionally ex-
plore the ability to utilise this shared embedding space to learn
a state-conditioned behaviour prior. In this case the prior is
task agnostic and captures the entire range of state-relevant
behaviours in the embedding space. Such a prior has been
shown to be useful for accelerating RL exploration [26, 27].
We follow the same strategy used in [27] to learn a state
conditioned prior over an existing embedding space using
normalising flows. The network parameterising the behaviour
prior f : Z × S → G is a conditional real NVP [31] which
consists of four affine coupling layers, where each coupling
layer takes as input the output of the previous coupling layer,
and the robot state vector s0 from the start of the behaviour
sequence. We use a standard Gaussian pG(g) ∼ N (0, I) as
our base distribution for our generative model. We refer the
reader to [27] for a more detailed treatment of this model. The
loss function for a single example is given by:

Lprior = log pG(f(z, s0)) + log

∣∣∣∣det ∂f

∂z⊤

∣∣∣∣ . (10)

Once trained, the flow model allows us to sample an appro-
priate z from the embedding space via the bijective mapping
function f−1(g, s) ∼ p(z|s), where g is sampled from a simple
Gaussian distrbution N (0, I).

D. Behaviour Captioner

As previously mentioned, the captioning network comprises
a trainable mapping network and a frozen GPT-2 decoder
network. The mapping network’s purpose is to project a



sampled behaviour embedding zb into K token embeddings,
which can then be passed as input to the GPT model.
Our mapping network consists of 8 multi-head self-attention
layers, each with 8 heads. We set the prefix length K to
10. Once trained, the decoding process is performed through
beam search to obtain the natural language description of a
behaviour. Considering the one-to-many mapping from be-
haviours to text, we evaluate captioning performance manually
via visual inspection, assessing the quality and relevance of the
generated captions to the behaviour video stream.
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