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Abstract
Large language models (LLMs) have exhibited
impressive performance and surprising emer-
gent properties. However, their effectiveness re-
mains limited by the fixed context window of
the transformer architecture, posing challenges
for long-context modeling. Among these chal-
lenges, length generalization—the ability to gen-
eralize to sequences longer than those seen dur-
ing training—is a classical and fundamental prob-
lem. In this work, we propose a fresh perspec-
tive on length generalization, shifting the focus
from the conventional emphasis on input features
such as positional encodings or data structures
to the output distribution of the model. Specif-
ically, through case studies on synthetic tasks,
we highlight the critical role of long-short align-
ment—the consistency of output distributions
across sequences of varying lengths. Extending
this insight to natural language tasks, we pro-
pose a metric called Long-Short Misalignment
to quantify this phenomenon, uncovering a strong
correlation between the metric and length gen-
eralization performance. Building on these find-
ings, we develop a regularization term that pro-
motes long-short alignment during training. Ex-
tensive experiments validate the effectiveness of
our approach, offering new insights for achieving
more effective long-context modeling in LLMs.
Code is available at https://github.com/
PKU-ML/LongShortAlignment.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive abilities in various tasks such as natural language gen-
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eration, reading comprehension, code synthesis, instruction-
following, and commonsense reasoning (Radford et al.,
2019; Brown et al., 2020; Chowdhery et al., 2023; Tou-
vron et al., 2023). Their performance has consistently im-
proved by scaling both model and dataset sizes (Kaplan
et al., 2020). However, the effectiveness of LLMs remains
limited by the fixed context window of the Transformer
architecture, posing significant challenges for long-context
modeling. With larger context sizes, a model can benefit
from more in-context learning examples, a greater number
of reasoning steps, or the ability to generate longer coherent
texts (Li et al., 2024; Huang & Chang, 2023; Wang et al.,
2024b). Nevertheless, training a Transformer with long
input sequences is often prohibitively slow and memory-
intensive, making it crucial to understand and improve how
LLMs generalize to longer contexts.

A classical and foundational subproblem within long-
context modeling is length generalization—the ability to
generalize from shorter training sequences to longer test
sequences (Anil et al., 2022). This remains a major chal-
lenge even for large-scale Transformers (Liu et al., 2024).
Understanding the mechanisms of length generalization is
thus an essential step toward achieving robust and efficient
long-context modeling.

There exist two dominant approaches to understanding and
improving length generalization. The first is to design bet-
ter positional encodings (PE) (Press et al., 2021; Su et al.,
2024; Kazemnejad et al., 2023; Peng et al., 2024; Chen
et al., 2024; Yang, 2023; Zhang et al., 2024b), which help
the model systematically encode tokens across a wide range
of positions. By reducing the inductive gap between short
training sequences and long test sequences, these encodings
can partially improve generalization (Kazemnejad et al.,
2023). The second is to analyze the underlying mechanisms
of Transformer models (Zhou et al., 2024; Lee et al., 2023;
Veličković & Blundell, 2021; Nogueira et al., 2021; Dele-
tang et al., 2022), such as what algorithms they can simulate
or how task design affects generalization. However, we ob-
serve that one key aspect has been largely overlooked: the
output space of the model. In this work, we argue that output
behavior plays a central role in determining generalization
quality across context lengths.

We begin our analysis with synthetic tasks involving length
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generalization: predicting the mean value and the length
of binary sequences. Both empirical and theoretical results
reveal a stark contrast—Transformers generalize well on
the mean prediction task but struggle on the length predic-
tion task. The key difference lies in the support set of the
output distribution: in the mean prediction task, it remains
stable across input lengths, while in the length prediction
task, it varies with the sequence length. We hypothesize
that this misalignment in the output distribution leads to
poor generalization in the latter task. To verify this, we
propose a reparameterization technique named OutRep that
explicitly aligns the output distributions across lengths. Our
analyses confirm that this approach significantly improves
generalization, supporting our hypothesis.

Building on this insight, we extend our findings to natu-
ral language tasks. Although natural language outputs are
vector-valued and more complex than scalar outputs in syn-
thetic tasks, similar misalignment phenomena arise. For
instance, two sequences with the same ending but slightly
different lengths should ideally produce similar output dis-
tributions. However, models that generalize poorly often
produce divergent outputs for such inputs. To quantify this
phenomenon, we introduce a metric called long-short mis-
alignment, which measures the divergence in output distri-
butions via symmetric cross-entropy. Both empirical and
theoretical analyses show that this metric correlates strongly
with long-context performance—more so than traditional
training loss—making it a reliable indicator of generaliza-
tion. Motivated by this, we incorporate the long-short mis-
alignment metric as a regularization term during training.
Extensive experiments across both synthetic and natural
language tasks validate the effectiveness of this approach.

The main contributions of this work are as follows:

• We identify the crucial role of output behavior in long-
context modeling, with a focus on length generaliza-
tion. Both empirical and theoretical evidence shows
that misalignment in output distributions across input
lengths leads to poor generalization.

• We introduce the long-short misalignment metric to
quantify this output discrepancy and demonstrate its
strong correlation with length generalization ability.

• We incorporate this metric into a novel regularization
term. Extensive experiments validate the effectiveness
of this approach in boosting long-context modeling
performance.

2. Related Work
Length Generalization on Synthetic Tasks. Our paper
is related to the line of work that seeks to understand the
capabilities and limitations of Transformer models when

it comes to algorithmic reasoning (Veličković & Blundell,
2021). Specifically, we focus on simple tasks and study
length generalization on the standard Transformer archi-
tecture with causal structure. Related to this, Lee et al.
(2023) study how well transformers trained from scratch
can learn simple arithmetic tasks, and find that no length
generalization is observed. Nogueira et al. (2021) find that
partial length generalization on addition is observed only
when models reach 3B parameters and when the addition
questions are presented in reverse order. Zhou et al. (2024)
proposes the RASP Generalization Conjecture that Trans-
formers tend to learn a length-generalizing solution if there
exists a short RASP-L program that works for all input
lengths. Liu et al. (2023) discovers that the Transformer
will learn shortcuts through the study of various synthetic
tasks. Besides these explorations on specific tasks, some
works study the impact of different positional encodings
on the length generalization of math reasoning tasks (Press
et al., 2021; Ontanon et al., 2022; Kazemnejad et al., 2023;
Ruoss et al., 2023). More details of these works can be
viewed in Appendix A.

Long-context Modeling on Natural Language Tasks. A
series of works (Sun et al., 2023; Chi et al., 2022; 2023;
Zhang et al., 2024b; Chen et al., 2024; Peng et al., 2024;
Yang, 2023; Chen et al., 2023a; Fang et al., 2025b) aim
to extend the context size of Transformer-based models
during fine-tuning, primarily by modifying positional en-
codings. For example, Zhang et al. (2024b) introduces a
novel extension to RoPE (Su et al., 2024) which combines
adjusting RoPE’s base frequency and scaling the attention
logits to help LLMs efficiently adapt to a larger context win-
dow. Chen et al. (2024) generalizes the positional encoding
scaling approaches to model the continuous dynamics by
ordinary differential equations over the length scaling factor.
Wang et al. (2024a) proposes a novel approach designed to
narrow the generalization gap and provides length extrapo-
lation analysis on the feature gap. Our approach, in contrast,
focuses on the model’s output space, which identifies the
crucial role of long-short alignment in length generalization.

3. A Case Study on Synthetic Tasks: How
Long-Short Alignment Affects Length
Generalization?

Long-context modeling aims to extend the reasoning and
generation capabilities of language models to longer input
sequences (Fang et al., 2025a; Wu et al., 2025; Kuratov et al.,
2024; Zhang et al., 2024b). One fundamental challenge in
this setting is length generalization—the ability to general-
ize from shorter training contexts to longer ones. Prior work
has identified several factors that influence length general-
ization, including the task type (Zhou et al., 2024; Jelassi
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Examples for Mean Prediction

1 0 0.5 1 0 0 1 1 0.6

(a) Length generalization in the mean pre-
diction task with different positional encod-
ings

Examples for Length Prediction

1 0 2 1 0 0 1 1 5

(b) Length generalization in the length pre-
diction task with different positional encod-
ings

(c) Length generalization in the length pre-
diction task with different reparameteriza-
tion function.

Figure 1: Comparison between the length generalization performance in the mean prediction task and the length prediction
task. The training sequence length is uniformly selected from [1, 10] (indicated by the light red area) while the test sequence
lengths (on the x-axis) can reach a maximum of 50. In the length prediction task (b), the model struggles with length
generalization. Conversely, the model demonstrates significantly better length generalization in the mean prediction task (a)
using NoPE (indicated by the orange line). Figure (c) shows the length generalization performance in the length prediction
task using different reparameterization functions f(x). All three reparameterized targets improve generalization compared
to the origin (blue) target. Among them, f(x) = 1/

√
x (red) performs exceptionally well.

et al., 2023; Nogueira et al., 2021) and the design of posi-
tional encodings (Ontanon et al., 2022; Kazemnejad et al.,
2023; Ruoss et al., 2023). In this work, we propose a fresh
perspective by examining the consistency of the model’s
output distribution across inputs of varying lengths, named
long-short alignment, identifying it as a crucial yet underex-
plored factor for effective long-context modeling.

Mean Prediction v.s. Length Prediction. We start from a
case study on synthetic tasks: in the mean prediction task,
the prediction target is the mean value of the sequence, while
in the length prediction task, the target is the length of the
sequence. We focus on binary input sequences, where each
position in the sequence is filled with 0 or 1 with the same
probability, and the decoder-only Transformer (Vaswani
et al., 2017), a model widely used in both synthetic tasks
(Zhou et al., 2024; Jelassi et al., 2023) and LLMs (Touvron
et al., 2023; Peng et al., 2024), which utilizes a causal mask
in the self-attention module to enable auto-regressive gen-
eration. More model details can be found in Appendix B.
We train the model on sequences with a maximum length
of ltrain = 10 and test it on sequences with a maximum
length of ltest = 50. Figure 1a and Figure 1b display the
test results for both tasks. We observe that regardless of the
positional embedding used, the test loss of the length pre-
diction task dramatically increases when the test sequence
length exceeds 10, the maximum training length. Further-
more, the test loss continues to rise as the test sequence
length grows, indicating that the model demonstrates very
low length generalization ability in the length prediction
task. In contrast, the model exhibits strong generalization

ability in the mean prediction task, as the test loss on
longer sequences remains nearly consistent with the loss on
shorter sequences. We now provide a theoretical analysis of
this observation.

Theorem 3.1. In the length prediction task, the length gen-
eralization loss Elength(·; ·) has a quadratic relationship
with the predicted length ltest, i.e.,

Elength(gltrainθ ; ltest)

= Extest∈{0,1}ltest

[∥∥∥gltrainθ (xtest)− y(xtest)
∥∥∥2
2

]
= O

(
(ltest − ltrain)

2
)
,

(1)

where gltrainθ is the model trained on sequences with max-
imum training length ltrain, xtest is the testing input with
length ltest.

However, in the mean prediction task, the length generaliza-
tion loss has a fixed upper bound:

Emean(g
ltrain
θ ; ltest) = O(1). (2)

The full statement and the proof are shown in Appendix
C.1. From both the empirical and theoretical results, it is
evident that while the mean and length of a sequence all con-
vey global information, the model’s length generalization
ability varies across these tasks. A key distinction lies in
the differences in output distribution for each task. In the
mean prediction task, where the model generalizes well, the
output remains within the fixed range of [0, 1], regardless
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of sequence length. However, in the length prediction task,
where generalization is poor, the support set of the output
distribution shifts to a single-point set {l} as the sequence
length increases to l. This distinction between the two types
of tasks motivates us to consider the importance of long-
short alignment for better length generalization ability.

Explicit long-short alignment helps length generaliza-
tion. We propose output reparameterization (OutRep), a
reparameterization technique to explicitly improve long-
short alignment in synthetic tasks, thereby enhancing the
model’s length generalization ability. In the length predic-
tion task, the output distribution for sequences of certain
lengths is known. Leveraging this prior knowledge, dur-
ing training, we apply a reversible function f : R → R to
map the support sets of output distributions for sequences
of varying lengths into more aligned sets. Instead of using
the original target y(x), we train the model on the trans-
formed target f(y(x)). At test time, we apply the reverse
function f−1 to the output to recover the original predic-
tion. This approach aligns the output distributions across
different lengths, which is expected to improve length gen-
eralization. We consider the following reparameterization
functions: f(x) =

√
x, f(x) = log(x) and f(x) = 1/

√
x.

We show the experiment results in Figure 1c. It can be
observed that all three reparameterization functions success-
fully relieve the poor length generalization ability in the
length prediction task. Specifically, the reparameterization
function f(x) = 1/

√
x has a nearly perfect generalization

ability when the length is no more than 35. The rising trend
when the test sequence length becomes longer is still slow.
These results verify our conjecture on the long-short align-
ment that better long-short alignment leads to improved
length generalization ability. We add more theoretical
results and discussions in Appendix C and Appendix D. In
the next section, we will extend these findings to the more
practical natural language tasks.

4. Long-Short Alignment in Natural Language
Tasks

In the previous section, we observed a positive correlation
between length generalization ability and long-short align-
ment in synthetic tasks. Motivated by this finding, in this sec-
tion, we aim to extend this investigation to natural language
tasks. First, we introduce a metric to quantify long-short
alignment in sequence modeling and demonstrate its strong
correlation with performance on long-context benchmarks.
Building on this insight, we propose incorporating this met-
ric as a regularization term during training to improve long-
short alignment, which can lead to the performance gains
detailed in Section 5.

4.1. Long-Short Misalignment: Quantifying the
Discrepancy of Output Distributions

In synthetic tasks, we measure the discrepancy between
the support sets of output distributions to capture the dif-
ferences in output across varying sequence lengths. How-
ever, in natural language tasks, the model output is a vector
gθ(x) ∈ R|V|, where the dimension is the size of the vocab-
ulary |V|. This makes it challenging to directly apply the
same analysis from synthetic tasks to natural language tasks.
Despite this, similar long-short misalignment issues can still
be observed in natural language tasks. Specifically, for a
sequence x and its suffixes x[−l1:] and x[−l2:], where l1 and
l2 are two lengths and x[−li:] means the last li tokens of x
(i = 1, 2), the model’s output is expected to remain con-
sistent when l1 and l2 are similar, because the two suffixes
share large overlap in tokens, resulting in similar contextual
information. However, we find that models with poor length
generalization tend to produce distant output distributions
when conditioned on these sequences.

4.1.1. METRIC

To quantitatively explore the relationship between long-
short alignment and length generalization ability, we want
to first design a metric to evaluate long-short alignment. We
propose to utilize symmetrical cross-entropy (SCE) loss
(Wang et al., 2019) to measure the divergence between
output distributions conditioned on two distinct sequences.
Consider two input sequences, x and x′ with corresponding
model predictions y = gθ(x) and y′ = gθ(x

′). The SCE
loss between these predictions is defined as:

LSCE(y,y
′) = − (⟨y′, log(y)⟩+ ⟨y, log(y′)⟩) , (3)

where ⟨·, ·⟩ denotes the inner product and the log function
is applied element wise. A lower SCE loss between the
two predictions indicates better alignment. To assess over-
all long-short alignment, we compute the expectation over
sequence lengths l1 and l2 for a given input x:

Lmisalign(gθ) = Ex,l1,l2

[
LSCE(gθ(x[−l1:]), gθ(x[−l2:]))

]
.

(4)
We refer to this metric as the long-short misalignment,
where a lower value signifies less discrepancy of output
distributions across different lengths. An illustration of this
metric is shown in Figure 2. In practice, we sample l1 and
l2 from the interval [ltrain/2, ltrain], where ltrain represents
the maximum context length used during training.

4.1.2. RESULTS

To evaluate the model’s length generalization ability, we
use the perplexity on long validation sets (16k length) and
the LongBench-E score (Bai et al., 2023b). For perplexity
evaluation, we select a subset from the RedPajama-Book
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Table 1: The proposed long-short misalignment metric Lmisalign of models, with their log of perplexity (PPL) on 16k-long
contexts and LongBench-E score. We also provide Ltrain as an additional metric in comparison. We find that Lmisalign

correlates better with the long-context benchmark performance.

Model Ltrain Lmisalign log(PPL) LongBench-E Score

GPT-J-6B (Wang, 2021) 2.1 3.4 9.5 7.8
GPT-NeoX-20B (Black et al., 2022) 2.3 3.2 9.4 9.7
Llama2-7B (Touvron et al., 2023) 1.9 3.4 9.4 8.9
RandomPos (Ruoss et al., 2023) 2.0 2.8 8.2 9.2
Yarn-Llama-2-7B-8k (Peng et al., 2024) 2.0 2.6 3.8 21.2
Qwen-7B-8k (Bai et al., 2023a) 1.7 2.8 3.2 24.2
CLEX-LLaMA-4K (Chen et al., 2024) 1.9 2.4 1.8 32.7

Metric Correlation Coefficient with Metric
Ltrain 0.62 -0.55
Lmisalign 0.85 -0.85

corpus (Computer, 2023), following the protocol in (Chen
et al., 2024). LongBench-E is a multitask benchmark that
comprehensively evaluates large language models’ ability
to understand long contexts, with task lengths averaging
between 5k and 32k tokens.

Empirical Results. Table 1 shows the long-short mis-
alignment metric Lmisalign for the models along with their
corresponding long-context evaluation results. Addition-
ally, we include the training loss Ltrain for each model
on the RedPajama-Book corpus, which reflects the per-
plexity on sequences with the maximum training length
ltrain. Interestingly, while the training loss (i.e., log of
perplexity on sequences of length ltrain) shows a moder-
ate correlation with long-context performance metrics—
indicating that lower training loss can contribute to im-
proved length generalization—the long-short misalignment
metric Lmisalign demonstrates a much stronger correlation
with long-context performance, as evidenced by its higher
absolute correlation coefficient. These findings suggest that
Lmisalign is a promising indicator of length generalization
ability. However, it is important to note that we do not claim
any causal relationship based solely on these observations.
We will elaborate more on this relationship in Section 5.

Additionally, we also provide theoretical support for this ob-
servation, extending previous work on autoregressive mod-
eling (Zhang et al., 2024a) with a theorem:

Theorem 4.1 (Generalization guarantees for the natural
language task). Under some model assumptions, the gen-
eralization error Egen(gθ; ltest) with testing length ltest is
upper bounded by the sum of training loss Ltrain(gθ) and
misalignment metric Lmisalign(gθ), i.e.,

Egen(gltrainθ ; ltest) ≤ C
(ltest)
1 Lmisalign + C

(ltest)
2 Ltrain

+ C
(ltest)
0 ,

(5)

where C
(ltest)
i (i = 0, 1, 2) are constants related to ltest.

Specifically, each C
(ltest)
i increases as ltest increases, and

the ratio C
(ltest)
1 /C

(ltest)
2 increases as ltest increases. This

indicates that as the testing length increases, the alignment
loss becomes increasingly significant.

Proof Sketch. We decompose the generalization error
Egen(gθ; ltest) of long sequence into the misalignment term
between this sequence and a set of shorter sequences, along
with the prediction error of the shortest sequence. The
prediction error of the shortest sequence is related to the
model’s training loss Ltrain, while the misalignment term
between long and short sequences increases significantly
as the testing length grows. This is mainly because the
model has a limited capacity to align sequences of differ-
ent lengths, so aligning longer test sequences requires more
intermediate-length sequences, resulting in higher alignment
loss. Therefore, reducing the alignment loss can effectively
lower the generalization error when testing with longer se-
quences. □

The full statement and the proof are shown in Appendix
C.2. This theorem highlights the importance of minimizing
both Lmisalign and Ltrain to achieve lower generalization er-
ror. Moreover, as the testing length ltest increases, reducing
Lmisalign plays a more critical role in improving general-
ization performance. The above empirical and theoretical
results motivate us to explicitly optimize the long-short mis-
alignment metric to enhance the model’s ability to handle
long-context sequences, which will be stated in the follow-
ing sections.

4.2. Long-Short Misalignment Metric as Regularization
Term

Since both empirical and theoretical results indicate a strong
correlation between the proposed long-short misalignment
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Figure 2: Illustration of long-short misalignment metric Lmisalign. Given two input sequences, where one is a truncated
version of the other, the long-short misalignment metric is computed by taking the expectation on Symmetrical Cross-Entropy
(SCE) loss (Wang et al., 2019) between the model’s predictions for these two sequences.

metric and long-context benchmark performance, we incor-
porate this metric as a regularization term into the training
loss, resulting in the new training loss defined as:

L∗
train(gθ) = Ltrain(gθ) + α · Lmisalign(gθ), (6)

where Ltrain is the original cross-entropy training loss and
α is the regularization coefficient. Calculating these two
losses separately during training can be time-consuming, as
the computation of Lmisalign requires forward propagation
through two distinct sequences. To address this, we propose
an efficient implementation for L∗

train. We first sample an
integer lextra from [1, ltrain/2] and then sample a sequence
of length ltrain + lextra. The first ltrain tokens form the first
input sequence, while the last ltrain tokens form the second
input sequence. Both sequences can be used to compute
Ltrain. The overlap between the two sequences starts at
token lextra + 1 and continues to token ltrain, resulting in
an overlap of ltrain − lextra tokens. We can calculate the
long-short misalignment loss in the overlapping positions.
This implementation requires only two forward propaga-
tions for the two sequences, resulting in minimal additional
time and resource costs compared to calculating the origi-
nal train loss Ltrain. A detailed Pytorch-like algorithm is
provided in Appendix E and an overall illustration can be
found in Figure 3. We will conduct experiments using the
proposed regularization term in the next section to show its
effectiveness.

5. Experiments on Natural Language Tasks
In this section, we conduct extensive experiments to verify
the effectiveness of our proposed length alignment loss. We

Table 2: Performance of the fine-tuned models using only
cross-entropy loss (baseline) and an additional long-short
misalignment loss on long-context modeling benchmark,
LongBench-E score (Bai et al., 2023b) and perplexity on the
8k-length validation set. The fine-tuning sequence length is
4k, exactly the same as the training sequence length. The
models finetuned with our proposed loss outperform the
baseline across different model adaption strategies.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50 100 200 50 100 200

RedPajama-Book
Ltrain (Baseline) 22.7 23.8 24.7 7.21 6.56 6.12
+0.1Lmisalign (Ours) 23.1 25.2 26.6 6.89 6.24 5.88
+0.5Lmisalign (Ours) 21.9 23.7 24.7 7.44 7.01 6.54

PG19
Ltrain (Baseline) 20.2 21.4 22.5 8.92 7.89 7.45
+0.1Lmisalign (Ours) 20.7 22.1 25.3 8.95 7.92 7.35
+0.5Lmisalign (Ours) 20.1 22.2 23.6 9.42 8.59 8.21

first examine our proposed training loss in Equation (6) on
length generalization tasks, where the model is trained on
short sequences and tested on longer ones. Additionally, we
explore its application in another common scenario: long-
context learning, where both training and testing involve
long sequences. Then we conduct analytical experiments
and ablation studies to further understand the impact of our
proposed loss.

5.1. Experiments with Training on Short Sequences

In this section, we consider the classical length generaliza-
tion setting, where the model is trained on short sequences

6



Long-Short Alignment for Effective Long-Context Modeling in LLMs

I think jogging toohe likes

I think he likes

jogging toohe likes

Sequence 1

Sequence 2

CE Loss

CE Loss

SCE LossModel

Next-token Prediction

Long-short
Misalignment

Figure 3: Illustration of efficiently calculating the total training loss L∗
train. This implementation requires only two forward

propagations for the two sequences, resulting in minimal additional time and resource costs

Table 3: Performance of the finetuned models using only
cross-entropy loss (baseline) and an additional long-short
misalignment loss on long-context modeling benchmark,
LongBench-E score (Bai et al., 2023b) and perplexity on the
8k-length validation set. The fine-tuning sequence length is
8k. The models finetuned with our proposed loss outperform
the baseline across different model adaption strategies.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50 100 200 50 100 200

LongQLora
Ltrain (Baseline) 21.9 22.1 23.4 6.82 6.41 5.82
+0.1Lmisalign (Ours) 21.8 23.3 25.8 6.72 6.39 5.77
+0.5Lmisalign (Ours) 21.4 23.9 25.1 7.07 6.62 5.92

EABF
Ltrain (Baseline) 22.1 22.9 23.6 6.89 6.52 6.01
+0.1Lmisalign (Ours) 23.2 24.0 24.8 6.92 6.43 5.91
+0.5Lmisalign (Ours) 22.5 23.2 23.9 7.14 6.78 6.34

(4k-long) and tested on longer sequences (at least 5k-long).
Due to the high computational cost of pre-training large
language models from scratch, most current methods fine-
tune open-sourced pre-trained models (Chen et al., 2024;
Yang, 2023; Peng et al., 2024). In our experiments, we use
Llama2-7b (Touvron et al., 2023) as the base model and
apply the CLEX (Chen et al., 2024) adjustment method. We
use two datasets: the RedPajama-Book corpus (Computer,
2023) and PG19 (Rae et al., 2019). The experiments are
conducted with a context length of 4,096, a batch size of 64,
and a maximum of 200 training steps. For the regularization
coefficient α, we test values of 0.1 and 0.5.

We evaluate performance using the LongBench-E score (Bai
et al., 2023b) and perplexity on validation sets made up of
sequences of length 8,192 from the corpus of the respective
training dataset. LongBench-E is a multitask benchmark
that comprehensively evaluates large language models’ abil-

ity to understand long contexts, with task lengths averaging
between 5k and 32k tokens, which has been adopted by
many previous works (Chen et al., 2024; Jin et al., 2024)
as an effective evaluation metric for long-context model-
ing. The results, shown in Table 2, indicate that the model
fine-tuned with our proposed loss consistently outperforms
the baseline model on the LongBench-E benchmark. The
fine-tuned model shows lower perplexity on RedPajama-
Book and similar perplexity on PG19. These results support
the effectiveness of our proposed loss and the intuition that
lower misalignment metric Lmisalign leads to better length
generalization ability. For the regularization coefficient α,
we find that larger values do not always improve perfor-
mance, as they may interfere with the model’s next-word
prediction.

5.2. Experiments with Training on Longer Sequences

In this section, we consider the scenario that the model
is finetuned on a longer sequence than the training length.
We use different model adjustment strategies during the
fine-tuning stage, to demonstrate that the proposed length
alignment loss can be applied to various long-context fine-
tuning methods. Our experiments use Llama2-7b as the
base model. For model adjustments, we consider two ap-
proaches: LongQLora (Yang, 2023) and EABF (Zhang et al.,
2024b). LongQLora leverages multiple techniques, includ-
ing Position Interpolation (Chen et al., 2023a), QLoRA
(Dettmers et al., 2024), and Shift Short Attention from Lon-
gLoRA (Chen et al., 2023b). Meanwhile, EABF introduces
a dynamic rescaling mechanism to the attention layers and
applies a higher base frequency for RoPE. The experiments
are conducted on the RedPajama-Book corpus (Computer,
2023), with a context length of 8,192, a batch size of 64,
and a maximum of 200 training steps. For the regularization
coefficient α, we test values of 0.1 and 0.5.
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Table 4: The overall evaluation results on BABILong (Kura-
tov et al., 2024) with sequence lengths of 4K, 8K, 16K.

Evaluation Length
Training Loss 4K 8K 16K

Ltrain (Baseline) 48.2 42.4 37.9
Ltrain + 0.1Lmisalign 49.1 44.4 40.1

Table 5: The evaluation results on BABILong with different
locations of the facts in the QA1 task. Input length is 16K.

Fact Depth (%)
Training Loss 0 25 50 75

Ltrain (Baseline) 75 64 30 69
Ltrain + 0.1Lmisalign 73 64 38 74

We evaluate performance using the LongBench-E score
and perplexity on validation sets composed of sequences of
length 8,192 from the RedPajama-Book corpus. The results
are shown in Table 3. Notably, our methods outperform the
baseline across both model adjustment strategies. Specifi-
cally, models trained with our proposed regularization term
achieve up to a 2.4% improvement in the LongBench-E
score. Similar to the previous experiments, we observe
that excessively large regularization coefficient values may
not consistently benefit long-context modeling, which is re-
flected in the slightly lower LongBench-E scores and higher
perplexity, indicating that overly strong regularization may
disrupt the model’s training process.

5.3. Experiments on BABILong

To further assess the ability to retrieve and utilize distant in-
formation, we conduct extensive experiments on BABILong
(Kuratov et al., 2024), a challenging reasoning-in-a-haystack
task specifically designed for evaluating long-context capa-
bilities. BABILong comprises question-answering tasks in
which the supporting facts for each question are situated
at specific positions within the context. Using the model
setup described in Section 5.1, which incorporates CLEX
as the adjustment method and RedPajama-Book as the train-
ing dataset, all models are fine-tuned for 200 steps. The
evaluation is performed on input sequences of lengths 4K,
8K, and 16K, with the overall results summarized in Table
4. The results indicate that our proposed method consis-
tently outperforms the baseline across all evaluated lengths.
Specifically, our method achieves a performance gain of
2.0% at length 8K and 2.2% at length 16K.

Additionally, we analyze the impact of the supporting fact’s
position within the input context using the BABILong QA1
task, where each question is associated with a single sup-
porting fact. The results of this analysis are presented in
Table 5, offering two key insights: (1) Performance with

Table 6: Ablation study on the regularization coefficient α.
The setting is the same as Table 2. We adopt RedPajama-
Book (Computer, 2023) as the training dataset. We find it
important to select a moderate value for α.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50 100 200 50 100 200

RedPajama-Book
Ltrain (Baseline) 22.7 23.8 24.7 7.21 6.56 6.12
+0.1Lmisalign 23.1 25.2 26.6 6.89 6.24 5.88
+0.3Lmisalign 23.4 25.8 27.1 6.95 6.35 5.98
+0.5Lmisalign 21.9 23.7 24.7 7.44 7.01 6.54
+1.0Lmisalign 18.2 19.4 19.9 16.21 14.12 12.92

Table 7: Ablation study on the sampling range. The setting
is the same as Table 3. We adopt RedPajama-Book (Com-
puter, 2023) as the training datasets and LongQLora (Yang,
2023) as the model adjustment method. We find it impor-
tant to carefully balance the sampling range to optimize the
model’s generalization to longer contexts.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50 100 200 50 100 200

Sampling range of lextra
(1) [1, ltrain/2] (Current) 21.8 23.3 25.8 6.72 6.39 5.77
(2) [1, ltrain/4] 21.5 23.2 25.7 6.77 6.29 5.81
(3) [ltrain/4, ltrain/2] 21.4 22.7 24.5 6.82 6.47 5.94
(4) [1, ltrain] 18.2 18.9 19.1 15.65 13.59 12.52

early-context facts: When the supporting fact is located
at the beginning of the input context (fact depth = 0), our
method achieves performance comparable to the baseline.
This suggests that despite the form of the regularization po-
tentially encouraging the model to neglect earlier contexts,
it does not lead to this behavior in practice. (2) Perfor-
mance with middle-context facts: When the supporting
fact is positioned in the middle of the context (fact depth
= 50 or 75), our method shows considerable improvement
over the baseline. This indicates that our approach effec-
tively mitigates the ”loss-in-the-middle” phenomenon (Liu
et al., 2024), a common challenge in large language models.
Together, these results strongly support the effectiveness of
our proposed regularization term in enhancing length gen-
eralization ability, particularly for tasks requiring attention
across diverse positions.

5.4. Ablation Studies

Since we incorporate several hyperparameters such as the
regularization coefficient α and the sampling range |l1 − l2|
in the misalignment metric, we conduct extensive exper-
iments to explore how these hyperparameters affect the
model performance.

Regularization coefficient α. In addition to the settings
already provided in the previous experiments (α = 0 as the
baseline, α = 0.1, and α = 0.5), we evaluated α = 0.3
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Table 8: Comparison between synthetic tasks and natural language tasks.

Synthetic Tasks Language Tasks

Output Space R L1 unit ball in R|V|

Specific Task Length/Sum prediction Next token prediction
Long-Short Misalignment Exist Exist
Priori on Output Distribution Explicit and predifined Implicit and task-dependent
Alignment Technique Explicit reparameterization Regularization term across lengths
Does the technique decrease

long-short misalignment? Yes (explicitly) Yes (implicitly through optimization)

Does the technique improve
length generalization? Yes Yes

and α = 1.0 under the same experimental conditions as
Table 2, using CLEX as the model adjustment. We still
adopt RedPajama-Book as the training dataset. The results
are shown in Table 6, which reveal the following trend: (1)
Performance peaks for α values in the range [0.1, 0.3] in
both evaluation metrics. (2) Larger values of α (e.g., α =
0.5 or α = 1.0) lead to a significant decline in performance,
confirming the risks of over-regularization. These findings
highlight the importance of selecting a moderate value for
α. We suggest using a coefficient α between 0.1 and 0.3 as
default to mitigate the risk of over-regularization.

Sampling range. In equation 4, we sample l1 and l2 from
[ltrain/2, ltrain] by default to avoid input sequence with sig-
nificantly different lengths. This is equivalent to sampling
lextra from [1, ltrain/2]. Here we conduct an ablation study
examining how different sampling strategies of lextra affect
performance. We consider four sampling configurations: (1)
The current strategy, sampling from [1, ltrain/2]; (2) Sam-
pling from a narrower range [1, ltrain/4]; (3) Sampling from
a narrower range [ltrain/4, ltrain/2]; (4) Sampling from a
broader range [1, ltrain] and remove the limit that l1 and
l2 should be in [ltrain/2, ltrain]. We conduct experiments
using the same setting as Table 3, using LongQLora for
model adjustments and a regularization coefficient of 0.1.
The results are shown in Table 7: (1) Setting 2 achieved
performance comparable to the current strategy, while Set-
ting 3 showed slightly inferior performance compared to
the current strategy. This suggests that aligning outputs
between sequences with moderate length discrepancies
effectively supports long-context modeling. (2) Setting
4 yielded significantly worse performance than the current
strategy, indicating that encouraging alignment between
sequences with large length differences adversely affects
the model’s long-context capabilities. These results un-
derscore the importance of carefully balancing the sampling
range in the proposed regularization.

We also compare our methods with baselines under the same
computational time in Appendix F.

6. Discussion
Since our work is initially motivated by phenomena ob-
served in synthetic tasks, we provide additional clarification
on the relationship between synthetic tasks and natural lan-
guage tasks by summarizing their key differences and simi-
larities in Table 8. While these two types of tasks differ sig-
nificantly in their specific forms and output space, they share
a common challenge: output distribution misalignment
across different input lengths. Our analysis highlights that
employing an alignment technique–whether explicit repa-
rameterization in synthetic tasks or regularization in natural
language tasks–can effectively mitigate this misalignment.
This mitigation directly enhances the model’s length gener-
alization ability, demonstrating the broader applicability of
our approach.

7. Conclusion
In this work, we investigated the challenges of long-context
modeling in large language models and introduced a fresh
perspective by examining the output behavior of models
across varying input lengths. We identified that misalign-
ment in output distributions across sequences of dif-
ferent lengths, which we term long-short misalignment,
plays a critical role in limiting length generalization—a
classical and foundational subproblem in long-context mod-
eling. Through both synthetic and natural language tasks,
we demonstrated that long-short misalignment is strongly
correlated with performance on long-context inputs. We
further proposed a regularization term based on this met-
ric to explicitly reduce output divergence during training.
Extensive experiments confirm that this approach not only
improves length generalization but also leads to more effec-
tive long-context modeling. Overall, our work highlights the
importance of considering the output space when designing
and analyzing models for long-context scenarios, offering a
new dimension for future research in scalable and effective
language modeling.
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A. Full Related Work
Length Generalization on Synthetic Tasks. Our paper is related to the line of work that seeks to understand the capabilities
and limitations of Transformer models when it comes to algorithmic reasoning (Veličković & Blundell, 2021). Specifically,
we focus on simple tasks and study length generalization on the standard Transformer architecture with causal structure.
Related to this, Lee et al. (2023) study how well transformers trained from scratch can learn simple arithmetic tasks, and find
that no length generalization is observed. Nogueira et al. (2021) find that partial length generalization on addition is observed
only when models reach 3B parameters and when the addition questions are presented in reverse order. Jelassi et al. (2023)
study models trained on addition and find strong generalization performance when using a few examples of longer sequences.
Zhou et al. (2024) proposes the RASP Generalization Conjecture that Transformers tend to learn a length-generalizing
solution if there exists a short RASP-L program that works for all input lengths. Liu et al. (2023) discovers that the
Transformer will learn shortcuts through the study of various synthetic tasks. Besides these explorations on specific tasks,
some works study the impact of different positional encodings on the length generalization of math reasoning tasks. Alibi
adds a linear bias on the attention score to achieve better length generalization performance (Press et al., 2021). Ontanon
et al. (2022) studies different settings of positional encodings and identifies Transformer configurations that generalize
compositionally significantly better in a diverse set of compositional tasks. Kazemnejad et al. (2023) systematically studies
the role of no positional encoding (NoPE) in Transformer with causal structure. Ruoss et al. (2023) proposes a randomized
positional encoding scheme that simulates the positions of longer sequences and randomly selects an ordered subset to fit
the sequence’s length.

Long-context Modeling on Natural Language Tasks. A series of works (Sun et al., 2023; Chi et al., 2022; 2023; Zhang
et al., 2024b; Chen et al., 2024; Peng et al., 2024; Yang, 2023; Chen et al., 2023a) aim to extend the context size of
Transformer-based models during fine-tuning, primarily by modifying positional encodings. For example, Zhang et al.
(2024b) introduces a novel extension to RoPE (Su et al., 2024) which combines adjusting RoPE’s base frequency and scaling
the attention logits to help LLMs efficiently adapt to a larger context window. Chen et al. (2024) generalizes the positional
encoding scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling
factor. (Chen et al., 2023a) proposes to extend the context length by slightly modifying RoPE via Position Interpolation (PI)
and fine-tuning on a small amount of data. Our approach, in contrast, focuses on the model’s output space, which identifies
the crucial role of long-short alignment in length generalization. Wang et al. (2024a) proposes a novel approach designed
to narrow the generalization gap by refining the interpolation of RoPE features for OOD positions and provides length
extrapolation analysis on the feature gap.

B. Model Details for Synthetic Tasks
We focus on the decoder-only Transformer (Vaswani et al., 2017), a model widely used in both synthetic tasks (Zhou
et al., 2024; Jelassi et al., 2023) and LLMs (Touvron et al., 2023; Peng et al., 2024) which utilizes a causal mask in the
self-attention module to enable auto-regressive generation. We consider several positional encodings: learnable positional
encoding (Radford et al., 2019), Alibi (Press et al., 2021), rotary positional encoding (Su et al., 2024) and no positional
encoding (NoPE). Since recent works found that by removing the positional encoding, Transformers can trained to be
well generalized on length (Deletang et al., 2022; Kazemnejad et al., 2023), we adopt this setting (i.e. NoPE) by default.
To provide a clear signal for the model to accomplish the tasks, we add both the begin-of-sentence (BOS) token and the
end-of-sentence (EOS) token in the sequence. We apply a feed-forward neural network on the hidden state of the last token
to generate an output of a real number. We train all of our models on the train distribution from scratch to convergence if
possible. For all tasks, the length of training examples is sampled uniformly from length 1 up to the max training length
ltrain. We select hyper-parameters such as the learning rate for each task based on what is required to fit the training set. At
test time, the length of the examples will traverse from 1 to the max testing length ltest.

C. Theorems and Proofs
C.1. Theoretical Analysis for Synthetic Tasks

Ahn et al. (2024) suggests that linear Transformers serve as realistic abstractions for understanding Transformer optimization
and generalization. Therefore, following (Ahn et al., 2024; Zhang et al., 2024a), our analysis is based on the linear attention
model. The general form of linear attention is given by:

Attn(x) = QK⊤V = xWQ(xWK)⊤xWV , (7)
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where WQ,WK ,WV are projections, and n is the length of input x. In all tasks, we will use a linear attention model with
a causal mask. Specifically, we normalize the output according to its position, which allows linear attention to perform
similarly to dot-product attention. For example, the k-th output will be normalized as follows:

1

k
QkK

⊤V =
1

k

k∑
i=1

QkK
⊤
i Vi. (8)

For the synthetic tasks, we add bias terms to Q,K, V to mitigate the impact of 0 in the input. The model based on linear
attention is defined as follows:

gθ(x[:k]) =
1

k

k∑
i=1

QkK
⊤
i Vi, (9)

and it is trained based on the following target function:

L(gθ; ltrain) = Ex∈{0,1}ltrain

[
1

ltrain

ltrain∑
i=1

∥∥gθ(x[:i])− y(x[:i])
∥∥2
2

]
, (10)

where x[:i] indicates the first i-tokens of input x. The optimal model trained on sequence with maximum length of ltrain is
denoted as gltrainθ . We have the following result:

Theorem C.1. In the length prediction task and the sum prediction, the length generalization loss has a quadratic
relationship with the predicted length, i.e.,

Elength(gltrainθ ; ltest) = Extest∈{0,1}ltest

[∥∥∥gltrainθ (xtest)− y(xtest)
∥∥∥2
2

]
= O

(
(ltest − ltrain)

2
)
, (11)

Esum(gltrainθ ; ltest) = O
(
(ltest − ltrain)

2
)
. (12)

However, in the mean prediction task, the length generalization loss has a fixed upper bound:

Emean(g
ltrain
θ ; ltest) = O(1). (13)

Proof. Since the input consists of 0 and 1, the Qk,Kk, Vk will each have only two possible values. Thus, we may assume
that when the input token is 1, the Qk,Kk, Vk are q′, k′, v′ respectively, and when the input token is 0, the Qk,Kk, Vk are
q′′, k′′, v′′ respectively. Furthermore, we note that in (9), Ki and Vi always share the same subscript. Therefore, we can
treat them as a single token and replace them with κ, where we define κ′ = k′v′ and κ′′ = k′′v′′. We can decompose (10)
into ltrain separate part:

L(gθ; ltrain) =
1

ltrain

ltrain∑
l=1

ℓ(gθ; l), ℓ(gθ; l) = Ex

[∥∥gθ(x[:l])− y(x[:l])
∥∥2
2

]
. (14)

Next, we consider each task individually.

(a) First, we study the length prediction task. In this case, y(x[:l]) = l. Expanding ℓ(gθ; l) we have:

ℓ(gθ; l) = Ex

[∥∥gθ(x[:l])− y(x[:l])
∥∥2
2

]
=

1

2l

l∑
i=0

Ci−1
l−1

(
1

l
(iq′κ′ + (l − i)q′κ′′)− l

)2

+ Ci
l−1

(
1

l
(iq′′κ′ + (l − i)q′′κ′′)− l

)2

.

It’s easy to find that ℓ(gθ, l) achieves its minimum 0 if and only if q′, q′′, κ′, κ′′ satisfy the following conditions:{
q′ = q′′ ̸= 0, κ′ = κ′′ ̸= 0,

q′κ′ = q′′κ′ = q′κ′′ = q′′κ′′ = l.
(15)
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These are also properties that the solution of ∂ℓ(gθ; l) = 0 holds. Note that the first property holds for any ℓ(gθ; l)
and is independent of l. Since L(gθ; ltrain) is composed of ℓ(gθ; l), and each optimal solution of ℓ(gθ; l) satisfying
q′ = q′′ ̸= 0, κ′ = κ′′ ̸= 0, then the global solution for ∂L(gθ; ltrain) = 0 should also have this property. Therefore, we
may assume that q′κ′ = q′′κ′ = q′κ′′ = q′′κ′′ = Γ, and our goal is to find the Γ that satisfying ∂L(gθ; ltrain)/∂Γ = 0,
which means that this Γ minimizes L(gθ; ltrain). In this case, it is easy to find that ℓ(gθ; l) = (Γ− l)2, which means
that ∂ℓ(gθ; l)/∂Γ = 2(Γ− l). Therefore, we have:

∂L(gθ; ltrain)
∂Γ

=
2

ltrain

ltrain∑
l=1

(Γ− l), (16)

solving ∂L(gθ; ltrain)/∂Γ = 0 and we have Γ = (ltrain + 1)/2, so the gltrainθ satisfying q′κ′ = q′′κ′ = q′κ′′ = q′′κ′′ =
(ltrain + 1)/2. Therefore, we have:

Elength(gltrainθ ; ltest) = ℓ(gltrainθ ; ltest) =

(
ltest −

ltrain + 1

2

)2

= O
(
(ltest − ltrain)

2
)
. (17)

(b) We now study the sum prediction task. In this case, y(x[:l]) =
∑l

i=1 xi. Expanding ℓ(gθ; l) we have:

ℓ(gθ; l) = Ex

[∥∥gθ(x[:l])− y(x[:l])
∥∥2
2

]
=

1

2l

l∑
i=0

Ci−1
l−1

(
1

l
(iq′κ′ + (l − i)q′κ′′)− i

)2

+ Ci
l−1

(
1

l
(iq′′κ′ + (l − i)q′′κ′′)− i

)2

.

It’s easy to find that ℓ(gθ, l) achieves its minimum 0 if and only if q′, q′′, κ′, κ′′ satisfy the following conditions:{
q′ = q′′ ̸= 0, κ′ ̸= 0, κ′′ = 0,

q′κ′ = q′′κ′ = l.
(18)

This is similar to the previous conditions (15). Thus, we can perform a similar analysis as above, and we similarly
assume that q′κ′ = q′′κ′ = Γ with κ′′ = 0. In this case, we have:

ℓ(gθ; l) =
1

2ll2

l∑
i=0

i2Ci
l (Γ− l)

2
=

l + 1

2l
(Γ− l)2. (19)

Thus we have:
∂ℓ(gθ; l)

∂Γ
=

l + 1

l
(Γ− l), (20)

which leads to:

∂L(gθ; ltrain)
∂Γ

=
1

ltrain

ltrain∑
l=1

∂ℓ(gθ; l)

∂Γ
=

1

ltrain
= (ltrain +Hltrain)Γ− ltrain(ltrain + 3)

2
, (21)

where Hn is the n-th harmonic number, i.e., Hn =
∑n

i=1 1/i. Solving ∂L(gθ; ltrain)/∂Γ = 0 and we have Γ =

ltrain(ltrain + 3)/2(ltrain + Hltrain), so the gltrainθ satisfying q′κ′ = q′′κ′ = ltrain(ltrain + 3)/2(ltrain + Hltrain).
Therefore, we have:

Esum(gltrainθ ; ltest) = ℓ(gltrainθ ; ltest) =
ltest + 1

2ltest

(
ltrain(ltrain + 3)

2(ltrain +Hltrain)
− ltest

)2

≈ 1

2

(
ltrain + 3

2 + const
− ltest

)2

= O
(
(ltest − ltrain)

2
)
.

(22)
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(c) Finally we study the mean prediction task. In this case, y(x[:l]) =
∑l

i=1 xi/l. Expanding ℓ(gθ; l) we have:

ℓ(gθ; l) = Ex

[∥∥gθ(x[:l])− y(x[:l])
∥∥2
2

]
=

1

2l

l∑
i=0

Ci−1
l−1

(
1

l
(iq′κ′ + (l − i)q′κ′′)− i

l

)2

+ Ci
l−1

(
1

l
(iq′′κ′ + (l − i)q′′κ′′)− i

l

)2

.

It’s easy to find that ℓ(gθ, l) achieves its minimum 0 if and only if q′, q′′, κ′, κ′′ satisfy the following conditions:{
q′ = q′′ ̸= 0, κ′ ̸= 0, κ′′ = 0,

q′κ′ = q′′κ′ = 1.
(23)

This is similar to the previous conditions (18). In fact, the above properties are irrelevant to l, so for all ℓ(gθ, l)
these properties hold. Therefore, in this case, the optimal solution of L(gθ; ltrain) will satisfy (23), which leads to
L(gθ; ltrain) = 0. Under this situation, the length generalization error is:

Esum(gltrainθ ; ltest) = ℓ(gltrainθ ; ltest) = 0. (24)

Consider the case where the solution is not optimal, i.e., when q′κ′ = q′′κ′′ = 1 + ε, where ε ̸= 0 is small, we can
similarly obtain:

Esum(gltrainθ ; ltest) = ℓ(gltrainθ ; ltest) =
(ltest + 1)ε2

2ltest
≤ ε2. (25)

In conclusion, we have:
Esum(gltrainθ ; ltest) = O(1), (26)

which completes the proof.

C.2. Theoretical Analysis for Natural Language Tasks

We now focus on natural language tasks. We make some changes to the model following (Zhang et al., 2024a). In natural
language tasks, the model requires an additional projection W to make the output a probability distribution. That is, the
model is modified as follows:

gθ(x[:k]) =
1

k

k∑
i=1

QkK
⊤
i ViW, (27)

In this case, each token xi, output gθ(x) and the objective function y(x) are normalized. Without loss of generality, we may
assume that the changes in the objective function after truncating the inputs are negligible, i.e.

Pr(y(x[:l1]) ̸= y(x[:l2])) = 0 (∀l1, l2). (28)

For simplicity, we use the L2-norm instead of SCE to measure misalignment, i.e.:

Lmisalign(gθ) = Ex,l1,l2

[
∥gθ(x[−l1:])− gθ(x[−l2:])∥

2
2

]
, (29)

and we use the L2-norm instead of the CE loss as the training loss function since these two functions differ only by a
constant when the output and target are regularized. Under these conditions, we have the following result:

Theorem C.2 (Generalization guarantees for the natural language task). Suppose that gltrainθ is the model trained on
sequences with maximum training length ltrain. When the testing length ltest satisfying ltest > ltrain, the generalization loss
Egen(gltrainθ ; ltest) has the following upper bound:

Egen(gltrainθ ; ltest) ≤ C
(ltest)
1 · Lmisalign(g

ltrain
θ ) + C

(ltest)
2 · Ltrain(g

ltrain
θ ) + C

(ltest)
0 , (30)

where C(ltest)
i (i = 0, 1, 2) are constants related to ltest. Specifically, the C(ltest)

i increase as the ltest increases and the ratio
C

(ltest)
1 /C

(ltest)
2 increases as ltest increases. This indicates that as the testing length increases, the alignment loss becomes

increasingly significant.
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Proof. Suppose that

lextra =


ltrain
2

− l, l <
ltrain
2

,

ltrain − l, l ≥ ltrain
2

.

(31)

where l ∈ [1, ltrain] is an arbitrary integer. Let l(k) = ltrain + k · lextra, (k = 0, 1, 2, · · · , Nl), where Nl =
⌊(ltest − ltrain)/lextra⌋, we have:∥∥∥gltrainθ (x[−ltest:])− y(x[−ltest:])

∥∥∥2
2
≤ (Nl + 2)

(∥∥∥gltrainθ (x[−ltest:])− gltrainθ (x[−l(Nl):])
∥∥∥2
2

+

Nl−1∑
k=0

∥∥∥gltrainθ (x[−l(k+1):])− gltrainθ (x[−l(k):])
∥∥∥2
2

+
∥∥∥gltrainθ (x[−ltrain:])− y(x[−ltest:])

∥∥∥2
2

)
.

(32)

For each k ∈ [0, Nl − 1], we have:∥∥∥gltrainθ (x[−l(k+1):])− gltrainθ (x[−l(k):])
∥∥∥2
2

=

∥∥∥∥ 1

l(k+1)
x0W

Q(WK)⊤x⊤
[−l(k+1):]x[−l(k+1):]W

V W − 1

l(k)
x0W

Q(WK)⊤x⊤
[−l(k):]x[−l(k):]W

V W

∥∥∥∥2
2

=

∥∥∥∥∥x0W
Q(WK)⊤

(
x⊤
[−l(k+1):]

x[−l(k+1):]

l(k+1)
−

x⊤
[−l(k):]

x[−l(k):]

l(k)

)
WV W

∥∥∥∥∥
2

2

≤
∥∥∥∥x0W

Q(WK)⊤x⊤
[−(l(k)−l):]x[−(l(k)−l):]

(
1

l(k+1)
− 1

l(k)

)
WV W

∥∥∥∥2
2

+

∥∥∥∥∥x0W
Q(WK)⊤

(
x⊤
[−l(k+1):(l(k)−l)]

x[−l(k+1):(l(k)−l)]

l(k+1)
−

x⊤
[−l(k):(l(k)−l)]

x[−l(k):(l(k)−l)]

l(k)

)
WV W

∥∥∥∥∥
2

2

≤ l2extra(l
(k) − l)2C2

0

(l(k+1)l(k))2

+

∥∥∥∥ l + lextra
l(k+1)

gltrainθ (x[−l(k+1):(l(k)−l)])−
l

l(k)
gltrainθ (x[−l(k):(l(k)−l)])

∥∥∥∥2
2

,

(33)

where C0 =
∥∥WQ(WK)⊤WV W

∥∥2
2

is a constant. The first term in (33) can be upper bounded by:

l2extra(l
(k) − l)2C2

0

(l(k+1)l(k))2
≤ l2testC

2
0

4l2train
, (34)

and for the second term in (33), we have:∥∥∥∥ l + lextra
l(k+1)

gltrainθ (x[−l(k+1):(l(k)−l)])−
l

l(k)
gltrainθ (x[−l(k):(l(k)−l)])

∥∥∥∥2
2

≤
∥∥∥∥ (l(k) − l)lextra

l(k+1)l(k)
gltrainθ (x[−l(k+1):(l(k)−l)])

∥∥∥∥2
2

+

(
l

l(k)

)2 ∥∥∥gltrainθ (x[−l(k+1):(l(k)−l)])− gltrainθ (x[−l(k):(l(k)−l)])
∥∥∥2
2

≤ l2test
4l2train

+
∥∥∥gltrainθ (x[−l(k+1):(l(k)−l)])− gltrainθ (x[−l(k):(l(k)−l)])

∥∥∥2
2
.

(35)

In fact, the second term above represents the alignment error between x[−l(k+1):(l(k)−l)] and x[−l(k):(l(k)−l)], where these
two sequences have a length difference of lextra.
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On the other hand, for the third term in (32), if l < ltrain/2, we have:∥∥∥gltrainθ (x[−ltrain:])− y(x[−ltest:])
∥∥∥2
2
≤
∥∥∥gltrainθ (x[−ltrain:])− gltrainθ (x[−(l+ltrain/2):])

∥∥∥2
2

+
∥∥∥gltrainθ (x[−(l+ltrain/2):])− gltrainθ (x[−l:])

∥∥∥2
2

+
∥∥∥gltrainθ (x[−l:])− y(x[−ltest:])

∥∥∥2
2
.

(36)

The first term above similarly represents the alignment error between two sequences with a length difference of lextra,
while the last term corresponds to the training error. Additionally, it is easy to derive an upper bound for the second term:∥∥∥gltrainθ (x[−(l+ltrain/2):])− gltrainθ (x[−l:])

∥∥∥2
2
≤ 2, and this upper bound also holds for the first term in (32). Meanwhile, if

l ≥ ltrain, we have: ∥∥∥gltrainθ (x[−ltrain:])− y(x[−ltest:])
∥∥∥2
2
≤
∥∥∥gltrainθ (x[−ltrain:])− gltrainθ (x[−l:])

∥∥∥2
2

+
∥∥∥gltrainθ (x[−l:])− y(x[−ltest:])

∥∥∥2
2
.

(37)

This result is similar to (36) except for lacking the second term in (36). Overall, we have:∥∥∥gltrainθ (x[−ltest:])− y(x[−ltest:])
∥∥∥2
2
≤ (Nl + 2)

(
Nl−1∑
k=0

∥∥∥gltrainθ (x[−l(k+1):(l(k)−l)])− gltrainθ (x[−l(k):(l(k)−l)])
∥∥∥2
2

+
∥∥∥gltrainθ (x[−ltrain:])− gltrainθ (x[−(l+ltrain/2):])

∥∥∥2
2

+
∥∥∥gltrainθ (x[−l:])− y(x[−ltest:])

∥∥∥2
2

+Nl
l2test(C

2
0 + 1)

4l2train
+ 4

)
(
l <

ltrain
2

)

(38)

or∥∥∥gltrainθ (x[−ltest:])− y(x[−ltest:])
∥∥∥2
2
≤ (Nl + 2)

(
Nl−1∑
k=0

∥∥∥gltrainθ (x[−l(k+1):(l(k)−l)])− gltrainθ (x[−l(k):(l(k)−l)])
∥∥∥2
2

+
∥∥∥gltrainθ (x[−l:])− y(x[−ltest:])

∥∥∥2
2

+Nl
l2test(C

2
0 + 1)

4l2train
+ 2

)
(
l ≥ ltrain

2

)
.

(39)

It’s easy to know that the probability of l < ltrain/2 and l ≥ ltrain/2 is ⌊(ltrain − 1)/2⌋/ltrain and ⌊(ltrain + 2)/2⌋/ltrain
respectively. Therefore, by taking the expectation over l and x on both sides of the inequality, we have:

Egen(gltrainθ ; ltest) ≤
(
C

(2)
ltest

+
1

ltrain
·
⌊
ltrain − 1

2

⌋)
Lmisalign(g

ltrain
θ ) + C

(1)
ltest

· Ltrain(g
ltrain
θ )

+ C
(2)
ltest

· l
2
test(C

2
0 + 1)

4l2train
+ C

(1)
ltest

· 6ltrain − 3− (−1)ltrain

2ltrain
,

(40)

where
C

(1)
ltest

= El[Nl + 2], C
(2)
ltest

= El[Nl(Nl + 2)]. (41)

It is easy to verify that C(i)
ltest

increases as ltest increases. Consequently, the constants C
(ltest)
1 = C

(2)
ltest

+ ⌊(ltrain −
1)/2⌋/ltrain, C(ltest)

2 = C
(1)
ltest

and C
(ltest)
0 = C

(2)
ltest

l2test(C
2
0 + 1)/(4l2train) + C

(1)
ltest

(6ltrain − 3 − (−1)ltrain)/(2ltrain) also

increases as ltest increases. Moreover, the ratio C
(ltest)
1 /C

(ltest)
2 increases as ltest increases since the ratio C

(2)
ltest

/C
(1)
ltest

increases as ltest increases, which is easy to verify.
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(a) Length generalization in sum prediction task with different
maximum training sequence lengths

(b) Length generalization in length prediction task with different
maximum training sequence lengths

Figure 4: Length generalization performance in the sum prediction and length prediction task with different maximum
training sequence lengths. Although increasing the training length helps reduce the generalization error, the overall trend of
increasing test loss remains unchanged.

D. Analysis on the Sum Prediction Task
We also examine the sum prediction task, where the label corresponds to the sum of the sequence. Similar to the
length prediction task, the output space shifts as the sequence length increases. As a result, models struggle with length
generalization in this task, as shown in Figure 5a. However, by applying the reparameterization technique proposed in
Section 3, we observe a significant improvement in length generalization, as shown in Figure 5b. These results demonstrate
the importance of long-short alignment in length generalization.

E. Pytorch-like Code for Implementation of L∗
train

1 # An efficient implementation for the total training loss.
2 import torch
3 import random
4

5 def SCE(output1_prob, output2_prob):
6 loss = torch.mean((torch.sum(- output1_prob * torch.exp(output2_prob) - output1_prob *

torch.exp(output1_prob), -1)))
7

8 extra_len = random.randint(1, max_len//2)
9 data = get_data(seq_len=max_len+extra_len)

10

11 output1 = model(data[:, :max_len])
12 output2 = model(data[:, -max_len:])
13 prob1 = torch.nn.functional.log_softmax(output1.logits)
14 prob2 = torch.nn.functional.log_softmax(output2.logits)
15

16 # Select the overlapped part to calculate the misalign loss
17 prob1 = prob1[:, max_len//2+extra_len:]
18 prob2 = prob2[:, max_len//2:max_len-extra_len]
19

20 loss_ce = (output1.loss + output2.loss) / 2
21 loss_misalign = SCE(prob1, prob2)
22

23 loss_total = loss_ce + alpha * loss_misalign
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(a) Length generalization in the sum prediction task (b) Reparameterization in the sum prediction task

Figure 5: Length generalization in the sum prediction task. Explicit alignment of output space boosts length generalization
performance.

Table 9: Performance of the fine-tuned models using only cross-entropy loss (baseline) and an additional long-short
misalignment loss on long-context modeling benchmark, LongBench-E score (Bai et al., 2023b) and perplexity on the
8k-length validation set. The fine-tuning sequence length is 4k, exactly the same as the training sequence length. We adopt
two datasets: RedPajama-Book (Computer, 2023) and PG19 (Rae et al., 2019). The models finetuned with our proposed
loss outperform the baseline across different model adaption strategies. The comparison is based on fixed total computation
time. (a/b) in the training steps mean a steps for the baseline and b steps for our method.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50/47 100/95 200/190 50/47 100/95 200/190

RedPajama-Book
Ltrain (Baseline) 22.7 23.8 24.7 7.21 6.56 6.12
Ltrain + 0.1Lmisalign (Ours) 23.1 25.1 26.4 6.92 6.27 5.91
Ltrain + 0.5Lmisalign (Ours) 21.7 23.4 24.5 7.62 7.16 6.61

PG19
Ltrain (Baseline) 20.2 21.4 22.5 8.92 7.89 7.45
Ltrain + 0.1Lmisalign (Ours) 20.7 22.0 25.1 9.02 8.01 7.39
Ltrain + 0.5Lmisalign (Ours) 19.6 22.0 23.3 9.82 8.62 8.29

F. Comparison Under Same Computation Time
To account for the additional computation time required to calculate Lmisalign we will compare our methods with the baseline
as in Table 2 and Table 3 based on total computation time. we compare our method with the baseline under equivalent total
computation costs. Our method introduces an additional computational overhead of approximately 3% to 5% per step. To
ensure fairness, we adjust the number of training steps proportionally. For example, when the baseline is trained for 50,
100, and 200 steps, our method is trained for 47, 95, and 190 steps, respectively, achieving comparable total computation
times. We observe that the performance trends remain consistent: our method continues to outperform the baseline under
equivalent computation time. This underscores the efficiency of our approach despite the minor additional cost.

G. Additional Experiment on Mean Prediction Task with a Different Dataset Setting
In the synthetic experiments in Section 3, 0 and 1 have an equal probability. The mean value of 50 such samples will nearly
obey the normal distribution N (0.5, 0.005). This means predicting 0.5 under a length of 50 would yield an approximate test
loss of 0.005. However, we would like to clarify that the test loss of NoPE remains around 1e-5 (indicated by the orange line
in Figure 1(a)), which is two orders of magnitude smaller than 0.005. This indicates that the model predicts the mean values

19



Long-Short Alignment for Effective Long-Context Modeling in LLMs

Table 10: Performance of the finetuned models using only cross-entropy loss (baseline) and an additional long-short
misalignment loss on long-context modeling benchmark, LongBench-E score (Bai et al., 2023b) and perplexity on the
8k-length validation set. The fine-tuning sequence length is 8k. We adopt two kinds of model adjustments: LongQLora
(Yang, 2023) and EABF (Zhang et al., 2024b). The models finetuned with our proposed loss outperform the baseline across
different model adaption strategies. The comparison is based on fixed total computation time. (a/b) in the training steps
mean a steps for the baseline and b steps for our method.

Benchmark LongBench-E (↑) Perplexity (↓)
Training steps 50/47 100/95 200/190 50/47 100/95 200/190

LongQLora
Ltrain (Baseline) 21.9 22.1 23.4 6.82 6.41 5.82
Ltrain + 0.1Lmisalign (Ours) 21.6 23.1 25.7 6.79 6.42 5.74
Ltrain + 0.5Lmisalign (Ours) 21.1 23.6 24.9 7.19 6.65 5.96

EABF
Ltrain (Baseline) 22.1 22.9 23.6 6.89 6.52 6.01
Ltrain + 0.1Lmisalign (Ours) 23.0 23.6 24.5 7.01 6.48 5.86
Ltrain + 0.5Lmisalign (Ours) 22.2 23.1 23.8 7.32 6.88 6.42

of the sequences with high precision, rather than simply guessing a fixed number. Therefore, the conclusion that the model
can have good length generalization ability in the mean prediction task is reasonable.

Besides, in order to avoid a trivial solution of predicting 0.5, we conduct an additional experiment on the mean prediction
task. To build the sample of length l, we first sample the number of 1 uniformly from [0, l] and then randomly build
the sequence. In this way, the mean value of the sequence uniformly spans from 0 to 1, avoiding trivial prediction. The
experimental results are shown in Figure 6, where the model can still achieve good length generalization, consistent with our
previous results.
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Figure 6: Length generalization in the mean prediction task with a different dataset setting. To build the sample of length l,
we first sample the number of 1 uniformly from [0, l] and then randomly build the sequence. In this way, the mean value of
the sequence uniformly spans from 0 to 1, avoiding trivial prediction. The model can still achieve good length generalization,
which is consistent with our previous results.
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