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ABSTRACT

Finding the informative subspaces of high-dimensional ordered datasets is at the
core of numerous applications in computer vision, where spectral-based subspace
clustering is arguably the most commonly studied method due to its solid empiri-
cal performance. Such algorithms compute an affinity matrix to construct a self-
representation for each sample utilizing other samples as a dictionary, and spectral
clustering is employed to identify the clustering structure based on the affinity ma-
trix. The affinity matrix is shown in a block-diagonal form due to the nature of the
ordered dataset. However, almost all the works focus on self-representation ma-
trix construction with block diagonal prior, and none resort to the block diagonal
partition of the self-representation matrix. Despite the fact that the block-diagonal
structure learning embedded in self-representation plays a vital role in effective or-
dered subspace clustering, direct optimization with block-diagonal priors is chal-
lenging due to the sparsity and connectivity of self-representation. In this paper,
we propose a technique, namely block-diagonal structure representation learning,
to directly identify the optimal clustering structure of an ordered dataset instead
of employing spectral clustering based on a given graph. The proposed algorithm
can theoretically achieve the globally optimal solution to the proposed discrete
block-diagonal partition problem. We test the proposed clustering method on sev-
eral types of ordered databases, such as human face recognization, video scene
clip partition, motion tracking, and dynamic 3-D facial expression cutting. The
experiments illustrate that the proposed method can improve the performance of
all of the state-of-the-art subspace clustering methods by roughly 30% 40% on the
ordered dataset.

1 INTRODUCTION

High-dimensional data has widely emerged in the areas of image processing, computer vision, pat-
tern recognition, bioinformatics, etc. The foundation of subspace clustering is that most data often
have intrinsic subspace structures and can be regarded as samples drawn from multiple subspaces.
For example, face images under varying illumination and multiple instances of handwritten digits
with different translations can be approximately represented by subspaces, with each subspace cor-
responding to a category. Recovering the low-dimensional subspace of data is not only beneficial to
the storage and management of data but also reduces the impact of high dimensionality for pattern
recognition, thereby improving the performance of the algorithm. Also, it is well known that recov-
ering low-dimensional subspaces of data plays a vital role in subspace clustering. Subspace clus-
tering groups data into clusters to which each subspace belongs according to the low-dimensional
subspace structure of data.

With excellent performance and simplicity, spectral-based subspace clustering algorithms have
shown great success in recent years. This type of method first learns the representation coeffi-
cient matrix of the input data and constructs a similarity matrix by the coefficient matrix. Then, the
clustering structure is identified by spectral clustering such as Ncut (Normalized cut). Obviously,
the essential step of this subspace clustering algorithm is to seek a suitable representation coefficient
matrix for data. However, the existing general subspace clustering methods show poor performance
on the ordered dataset, even with different priors, e.g., block-diagonal Lu et al. (2018), sparse Xu
et al. (2015), low-rank Liu et al. (2012).
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Figure 1: The framework of the proposed approach. We first extract frame-level features from the
ordered dataset (e.g., video sequence) and learn the representation coding. Then, the block-diagonal
structure of the self-representation is learned by the proposed partition method, and the clustering
structure is identified simultaneously in the form of generating multiple temporal segments.

In addition, the works designed with an ordered prior show a little better performance than the gen-
eral subspace clustering approaches. However, all the works focus on utilizing the order information
embedded in sequential data by complicating the affinity matrix optimization problem. For example,
the work Tierney et al. (2014) segments data drawn from a sequentially ordered union of subspaces
and finds a sparse representation but includes a new penalty term to take care of sequential data.
The work Li et al. (2015) exploits temporal information for time series data (e.g., human motion)
and designs a temporal Laplacian regularization, which encodes the sequential relationships in time
series data. The work Guo et al. (2014) focuses on the hyperspectral data taken from a drill hole
and produces stable and continuous segments. The works Wang et al. (2018) propose a graph reg-
ularizer to incorporate temporal information to preserve more sequence knowledge into the learned
representation. The work Wu et al. (2015) adopts a quadratic normalizer for the data sparse represen-
tation to model the correlation among the sparse data coefficients. The work Dimiccoli et al. (2021)
introduces a regularization term for this auxiliary data matrix that preserves the local geometrical
structure present in the high-dimensional space. The work Wang et al. (2022) learns the support
structure representation of sequence, which can extract sufficient information about instances and
get the compact structure of sequential data.

We found that the self-representation of the ordered dataset is shown in a block-diagonal form.
If each subspace is independent and noise-free, the coefficient matrix Z learned by spectral-based
subspace methods often exhibits a K-block diagonal structure, and K denotes that data is grouped
into K classes, i.e.,

Z =

 Z1 · · · 0
...

. . .
...

0 · · · ZK

 ,Zk ∈ Rnk×nk . (1)

The above Z reveals the true membership of data X. If we apply spectral clustering on the affinity
matrix defined as (|Z|+ |ZT|)/2, then we may get correct clustering. So the block diagonal matrix
plays a central role in the analysis of subspace clustering, though there has no “ground-truth” Z (or
it is not necessary). We formally give the following definition.

Definition 1.1 (Block Diagonal Property). Given a set of sample vectors X = [X1, ...,XK ] =
[x1, ...,xN ] ∈ RD×N drawn from a union of K subspaces, where Xk ∈ RD×nk is a collection of
nk samples drawn from the k-th subspace, and N =

∑K
k=1 nk. We say that Z obeys the Block

Diagonal Property if Z is K-block diagonal as in (1), where the nonzero entries Zk correspond to
only Xk.

Although the ordered subspace clustering methods maintain the successive property of sequential
data well, redundant connections exist in the intersection of two subsequences, which will destroy
the integrity of a cluster and easily result in the chained partition of the sequence. In addition, when
the independent subspace assumption does not hold, the fragile block diagonal structure will be
destroyed. The performance of subspace segmentation may be severely degraded. So it is necessary
to learn a more specific and direct structure representation (block-diagonal) of a sequence to preserve
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both sequential information and efficient connections. Besides, it is significant to learn the block-
diagonal composition of the self-representation and identify the clustering structure simultaneously.

In this paper, we propose an effective approach to learning the block-diagonal structure of the self-
representation of an ordered dataset. As shown in Figure 1, the proposed method is adopted as
a substitute for the second stage of the spectral-based subspace clustering method to improve the
performance of all subspace clustering methods on the ordered dataset. In summary, the main con-
tributions of this paper are threefold.

1) We are the first to learn the block-diagonal composition of the self-representation and identify
the clustering structure simultaneously and directly. Under the block-diagonal assumption of self-
representation, we propose a block-diagonal partition problem with a given affinity matrix.

2) We proposed two partition problems for the uniform and non-uniform density cases. Based on
theoretical analysis, an effective method is developed to compute the solution of the proposed two
partition problems, and the global optimality will be given by the approach theoretically.

3) We test our method on seven challenging clustering tasks, including face recognization, car de-
tection, motion capture, and video segmentation. The proposed method can be applied to any self-
representation given by the existing subspace clustering method, thus improving their performance
on the ordered dataset. Experimental result shows that our method can improve 30%∼40% perfor-
mance on clustering accuracy over the state-of-the-art methods.

2 REVIEW OF SPECTRAL CLUSTERING

A weighted undirected complete graph G (i.e., fully connected graph) can be written as an ordered
pair G := (V, E ,W), where V is a set of vertices or nodes, E is a set of pairs (unordered) of distinct
vertices, called edges or lines, and W is aN ×N adjacency matrix (also similarity matrix or weight
matrix) of the finite undirected graph G on N vertices, where the non-diagonal entry wij is the
number of edges from vertex i to vertex j, and the diagonal entry wii is either twice the number of
loops at vertex i or just the number of loops (usages differ, depending on the mathematical needs;
this report is not concerned with reflexive connections). The adjacency matrix is symmetric for
undirected graphs. In the following, we assume wij = wji ≥ 0.

Given A ⊂ V , its complement, V\A will be denoted as Ā. Intuitively, the subset A is connected,
if paths between any two points in A need only points in A. A is called connected component
with respect to Ā, if A is connected, and there are no edges between vertices in A and Ā. Sub-
sets A1,A2, ...,AK represent a partitioning of V , if, for all i, j ∈ [1, 2, ...,K], Ai ∩ Aj = ∅,
and ∪Kk=1Ak = V . Generally speaking, clustering means partitioning a graph so that the edges
between different groups have low similarity (long distance) and the edges within a group have
high weight (short distance). The first requirement for the partitioning can be stated as the mini-
cut criterion, which has to be minimized: cut(A1,A2, ...,AK) =

∑K
k=1 cut(Ak, Āk), where

cut(Ak, Āk) =
∑
i∈Ak,j∈Āk

wij . Following the mini-cut requirement, usually, only a small
group of points is isolated. For this reason, the famous cutting methods, which are widely used
in spectral clustering, are introduced: RadioCut({Ak}Kk=1) =

∑K
k=1

cut(Ak,Āk)
|Ak| Hagen & Kahng

(1992), and Ncut({Ak}Kk=1) =
∑K
k=1

cut(Ak,Āk)
vol(Ak) Shi & Malik (2000), where |A| denotes the

number of vertices in A, and vol(A) measures the size of A by the weights of its edges, i.e.
vol(Ak) =

∑
i∈Ak

∑
j∈V wij . As for the second requirement, within-cluster similarity means

optimizing
∑K
k=1

∑
i,j∈Ak

wij . Within-cluster similarity is maximized if cut(Ak, Āk) is small and
vol(Ak) is big. Therefore, Ncut implements the second criterion. Ncut can be interpreted as cutting
through edges rarely transitioned by a random walk. RadioCut maximizes |Ak| which does not im-
plement this requirement, as the within-cluster similarity is not related to the number of vertices in
Ak.

3 BLOCK-DIAGONAL STRUCTURE LEARNING

For good performance in dealing with complex local correlation and high-dimensional structure of
sequential data, representation-based methods have become one of the hot topics for sequential data
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clustering, in which subspace clustering is a representative tool. However, instead of using spec-
tral clustering to identify the clustering structure based on the given affinity matrix, we propose a
graph partition method, which can not only learn the block-diagonal structure of the affinity matrix
but also identify the clustering structure directly. Specifically, a set of K − 1 indexes is denoted
by a calligraphic letter: T = {t1, t2, ..., tK−1} ⊂ {1, 2, ..., N}, and its cardinal is |T |. We as-
sume that the partition indexes are ordered and there is at least one sample in each cluster such that
tk−1 < tk. The dummy indexes t0 := 0 and tK := N are implicitly available. Suppose that the data
are segmented by K − 1 indexes in T . Ideally, the weight matrix W of the ordered graph should
be in a block-diagonal form. Firstly, due to the ordered nature of the data, we only need to care
about the relationship between adjacent clusters, i.e., maximizing the sum of the adjacent clusters’
self association sasso(Ak) + sasso(Ak+1), where sasso(Ak) = vol(Ak)− cut(Ak, Āk). Due to
the partition nature, the self association can be expressed as sasso(Ak) =

∑
i,j∈[tk−1+1,tk] wij .

Secondly, following the maxi-cut requirement, usually only a little group of points is isolated.
Thus, an average item is needed to balance the sample number in each cluster. Finally, we find
that, for most existing clustering datasets, the density of each cluster is uniform, so, we pro-
pose uniform block average cut (UBAcut): UBAcut({Ak}Kk=1) =

∑K
k=1 sasso(Ak)∑K

k=1 |Ak|2
. For datasets

with different intra-cluster densities, we also propose non-uniform block average cut (NUBAcut):
NUBAcut({Ak}Kk=1) =

∑K
k=1

sasso(Ak)
|Ak| . We propose two new graph cut methods instead of

using the famous Ncut and RadioCut. The reason will be given in Section 4.1.

Then, the proposed UBAcut problem, and NUBAcut problem are given by

maximize
t1<t2<...<tK−1

K∑
k=1

f(tk−1, tk) =

K∑
k=1

∑
i,j∈[tk−1+1,tk] wij

tk − tk−1
(2)

and

maximize
t1<t2<...<tK−1

h(t1, t2, ..., tK−1) =

∑K
k=1

∑
i,j∈[tk−1+1,tk] wij∑K

k=1(tk − tk−1)2
(3)

3.1 NON-UNIFORM BLOCK AVERAGE CUT

Since there areNK−1 combinations ofK − 1 unknown variables {tk}K−1
k=1 , the global optimal solu-

tion of Problem (2) can be searched exhaustively with aO(NK−1) complexity. In order to explore a
low-complexity approach to solve the problem (2), we give the following theoretical analysis. Con-
sider partitioning a K-component graph matrix into a two-block-diagonal form. Problem (2) can be
written as

maximize
t

∑
i,j∈[1,t] wij

t
+

∑
i,j∈[t+1,N ] wij

N − t
(4)

Given a K-component self-representation with K − 1 partition indexes {ck}K−1
k=1 , we suppose the

within-cluster weight wij , i, j ∈ [ck−1 + 1, ck] follow the Gaussian distribution N (µk, σ
2), where

µk is the average within-cluster weight of the k-th cluster measuring the k-th within-cluster density,
and σ2 is the variance of the noise simulating the uncertainty of the similarity between points. In
addition, suppose the without-cluster weight wij , i ∈ [ck−1 + 1, ck], j /∈ [ck−1 + 1, ck] follow the
zero means Gaussian distribution N (0, σ2). In order to remove the effect of the random noise on
the data, expectation operation is used in the theoretical Analysis. Denote the expectation of the
objective function of the problem (4) as F (t). We have the following observations:

Theorem 3.1. The function F (t) has the following property:

1) If K = 1, then F (t) = Nµ1.

2) If K ≥ 2, then F (t) increase for t ≤ c1 and decrease for t > cK−1.
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3) If K ≥ 3, then for the interval [ck−1 + 1, ck], k = 2, ...,K − 1, there are existing α and β
to make F (t) decrease for t ∈ (ck, t̂) and increase for t ∈ (t̂, ck+1), where t̂ = Nα+N

√
αβ

(α−β) or

t̂ = Nα−N
√
αβ

(α−β) .

Proof. See Appendix A

Theorem 3.1 illustrate that one of the true partition {ck}K−1
k=1 will maximize F (t). Denote the

bounded function as FB(ti, t, tj) = E [f(ti, t) + f(t, tj)], 0 < ti < tj < N . Obviously,
FB(0, t, N) = F (t). Then, we also have the following corollary.
Corollary 3.1.1. For any interval (ti, tj ] ⊆ (0, N ], the function FB(ti, t, tj) has the same property
as the function F (t):

1) If none ck in (ti + 1, tj), then FB(ti, t, tj) = (tj − ti)µ, where µ is the mean of weight wij ,
i, j ∈ [ti + 1, tj ].

2) If there existing partition indexes cp, cp+1, ..., cq , 1 ≤ p ≤ q ≤ K − 1 in (ti + 1, tj), then one of
them will maximize FB(ti, t, tj).

Denote the binary paritition loss function as
Φ(ti, tj) = max

t∈(ti+1,tj)
FB(ti, t, tj)− E{f(ti, tj)}

Corollary 3.1.1 indicates that Φ(τ1, τ2) > Φ(τ3, τ4) if there existing ck in (τ1 + 1, τ2), and there
are none ck in (τ3 + 1, τ4). In addition, one of {cK}K−1

k=1 in the interval (τ1 + 1, τ2) will maximize
Φ(τ1, τ2) for any τ1, and τ2.

Corollary 3.1.2. Given an ordered partition index set {tk}K−1
k=1 , if any tm, m ∈ [1,K − 1],

satisfies m = argmax
k∈[1,K−1]

Φ(Tk−1, Tk), and tm = argmax
t1∈(Tm−1+1,Tm)

FB(Tk−1, t, Tk), where T =

{0, {tk}K−1
k=1,t6=m, N}, then we can say {tk}K−1

k=1 maximize F (t1, t2, ..., tK−1), and {tk}K−1
k=1 =

{ck}K−1
k=1 .

Corollary 3.1.1 illustrates that only one of {ck}K−1
k=1 can satisfies the condition in Corollary 3.1.2.

Thus, given any {tk}K−1
k=1 , if each item in {tk}K−1

k=1 satisfies the condition in Corollary 3.1.2, we can
say {tk}K−1

k=1 = {ck}K−1
k=1 .

The expectation analysis of the objective function gives us the intuation to design an alternative
partition updating algorithm in order to obtain the solution of the problem (2). We first remove tm in
{tk}K−1

k=1 , and assign the ordered {tk}K−1
k=1 to {τk}K−2

k=1 . We hope to inset one index into {τk}K−2
k=1 to

make the objective function value of the problem (2) becoming become larger. Since the additional
structure of the problem (2), we only need to consider inserting the partition index in each interval
(τk−1 + 1, τk), k ∈ [1,K − 1]. The vector g is defined to save the optimal insert partition index
for each interval (τk−1 + 1, τk), then the global optimal partition index is picked, and replace tm
in {tk}K−1

k=1 . Alg. 1 shows the detail of the proposed scheme. The whole updating process will be
terminated until satisfying Corollary 3.1.2, which illustrates the condition of reaching the optimal
partition.

Alg.1 will converge to the true partition index {ck}K−1
k=1 if each cluster is far away from its adjacent

two clusters, the density of each cluster is uniform and the noise is negligible. As we all know, severe
noise can lead to the situation that the true partition index {ck}K−1

k=1 can not maximize the objective
function. Although exhaustive searching or dynamic programming-based searching can obtain the
solution which can maximize the objective function, the complexity is too high, e.g., exhaustive
searching needsO(NK−1), and dynamic programming-based searching needsO(KN2). However,
our proposed method only need O(KN), and converge to {ck}K−1

k=1 with a high probability.

3.2 UNIFORM BLOCK AVERAGE CUT

Given a K-component self-representation with K − 1 partition indexes {ck}K−1
k=1 , we suppose the

within-block weight wij , i, j ∈ [tk−1 + 1, tk], ∀ k ∈ [1,K], follow Gaussian distribution, i.e.,
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N(µ, σ2), and the without-block weight wij , i ∈ [tk−1 + 1, tk], j /∈ [tk−1 + 1, tk], ∀k ∈ [1,K], fol-
low zero means Gaussian distribution, i.e., N(0, σ2), we have the following observation. Denote the
expectation of the objective function of problem (3) as H(t1, t2, ..., tK−1) = E[h(t1, t2, ..., tK−1)].

Theorem 3.2. Given K − 2 ordered partition index {τk}K−2
k=1 , τ0 = 0, and τK−1 = N , for any

interval (τm−1 + 1, τm), m ∈ [1,K − 1], one of the true partition index {ck}K−1
k=1 in the interval

(τm−1 + 1, τm) will maximizing H(τ1, τ2, ..., τm−1, t, τm, ..., τK−2).

Proof. See Appendix B

Corollary 3.2.1. Given an ordered partition index set {tk}K−1
k=1 , if any tm, m ∈ [1,K − 1], satisfies

m = argmax
k∈[1,K−1]

{
max

t∈(Tk+1,Tk+1)
H(T2, T3, ..., Tk, t, Tk+1, ..., TK−2)

}
,

tm = argmax
t∈(Tm+1,Tm+1)

H(T2, T3, ..., Tk, t, Tk+1, ..., TK−2)

where T = {0, {tk}K−1
k=1,t6=m, N}, then we can say {tk}K−1

k=1 maximize H(t1, t2, ..., tK−1), and
{tk}K−1

k=1 = {ck}K−1
k=1 .

Theorem 3.2 illustrates that only one of {ck}K−1
k=1 can satisfies the condition in Corollary (3.2.1).

Thus, given any {tk}K−1
k=1 , if each item in {tk}K−1

k=1 satisfies the condition in Corollary (3.2.1), we
can say {tk}K−1

k=1 = {ck}K−1
k=1 .

Algorithm 1 Partition Index Optimization.

Input: the graph W, and an initial partition index set {tk}K−1
k=1

Repeat
for m = 1 : K − 1 do

Sort the elements {tk}K−1
k=1,t6=m in ascending order, and

assign to {τk}K−2
k=1 . Initialize two (K − 1)-length empty

vector l and g. τ0 = 0, and τK−1 = N
for k = 1 : K − 1 do

if NUBAcut
lk = argmax

t1∈(τk−1+1,τk)

f(τk−1, t) + f(t, τk)

gk = f(τk−1, lk) + f(lk, τk)− f(τk−1, τk)
else if UBAcut

lk = argmax
t∈(τk−1+1,τk)

h(τ1, τ2, ..., τk−1, t, τk, ..., τK−2)

gk = h(τ1, τ2, ..., τk−1, lk, τk, ..., τK−2)
end if

end for
k̂ = argmin

k
gk

tm = lk̂
end for

until {tk}K−1
k=1 is unchanged

Output: {tk}K−1
k=1

We use the updating
progress, which is the
same as NUBAcut. The
only difference is the up-
dating of tm in {tk}K−1

k=1 .
The convergence is still
guaranteed by Corollary
3.2.1.

4 EXPERIMENTS

In this section, extensive
experiments are performed
on different types of
datasets to demonstrate
the effectiveness and su-
periority of the proposed
method in comparison
with the state-of-the-art
clustering methods. First,
several synthetic graphs
with different clustering
densities and noise levels
are generated to evaluate
the proposed method
for the block-diagonal
partition task. Secondly,
utilizing six famous or-
dered clustering datasets,
we replace the spectral
clustering operation of the famous state-of-the-art subspace clustering methods with our proposed
BDSL algorithm to show the effectiveness of BDSL.
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Figure 2: Example synthetic graphs.

Cluster Density
[µ1, µ2, µ3, µ4]

Noise
Variance σ2

RadioCut
(Spectral)

NCut
(Spectral)

RadioCut
(BDSL)

NCut
(BDSL)

NUBAcut UBAcut

[1, 1, 1, 1]

1 82.53 100 100 100 100 100
25 24.61 27.63 74.82 78.92 99.24 100

100 25.65 26.65 45.20 73.50 98.79 99.80
400 24.42 27.42 45.10 52.00 97.90 99.60

[0.1, 0.9, 0.5, 0.7]

1 72.25 80.25 55.14 68.71 100 100
25 21.67 26.76 50.52 54.60 99.80 99.87

100 23.12 27.19 46.70 52.30 99.80 99.83
400 22.87 26.82 45.10 50.10 98.50 98.54

[0.01, 0.9, 0.05, 0.2]

1 57.73 63.76 45.95 91.24 100 72.71
25 24.58 26.54 45.10 73.80 99.90 69.90

100 21.54 26.59 45.30 54.80 99.70 68.25
400 23.15 26.13 45.60 52.50 65.80 65.20

Table 1: Clustering Accuracy Rate [%] on the synthetic graph.

4.1 SYNTHETIC EXPERIMENT

In order to verify the validity of the algorithm and the correctness of the theory, we gener-
ate the graphs with different clustering densities and noise levels. As shown in Figure 2, we
consider four clusters with different cluster number (i.e., 100, 200, 450, 250), cluster densities
(e.g., [µ1, µ2, µ3, µ4] = [1, 1, 1, 1], [0.1, 0.9, 0.5, 0.7], [0.01, 0.9, 0.05, 0.2]), and noise levels (e.g.,
σ2 = 1, 25, 100, 400). At the same time, the value in the graph is linearly normalized to [0, 1]. As
shown in Figure 2, the partition task becomes more and more difficult with the increase of the noise
variance.

We compare the proposed NUBAcut and UBAcut with RadioCutHagen & Kahng
(1992) and NcutShi & Malik (2000). Since NCut can be written as K −∑K
k=1

∑
i,j∈[tk−1+1,tk] wij∑

i∈[tk−1+1,tk],j∈[1,N] wij
, minimizing Ncut(A1,A2, ...,AK) is equivalent to maxi-

mizing
∑K
k=1

∑
i,j∈[tk−1+1,tk] wij∑

i∈[tk1+1,tk],j∈[1,N] wij
with fixed K. Since RadioCut can be expressed as∑K

k=1

∑
i∈[tk−1+1,tk],j∈[1,N],j /∈[tk−1+1,tk] wij

tk−tk−1
, minimizing RadioCut(A1,A2, ...,AK) is equivalent

to maximizing −
∑K
k=1

∑
i∈[tk−1+1,tk],j∈[1,N],j /∈[tk−1+1,tk] wij

tk−tk−1
. Thus, if we define f(tk−1, tk) in

problem (2) as
∑

i,j∈[tk−1+1,tk] wij∑
i∈[tk−1+1,tk],j∈[1,N] wij

for Ncut, or −
∑

i∈[tk−1+1,tk],j∈[1,N],j /∈[tk−1+1,tk] wij

tk−tk−1
for

RadioCut, the NCut and RadioCut can also be used in the proposed BDSL algorithm. These two
methods are named as RadioCut (BDSL) and NCut (BDSL). In addition, in order to show the poor
performance of the traditional spectral clustering methods, we also use RadioCut (Spectral) and
NCut (Spectral) as the baseline. Table 1 illustrates the performance of the above methods on the
synthetic graph. We have the following observation:

1) Comparing NUBAcut, UBAcut, RadioCut (BDSL) and NCut (BDSL) with RadioCut (Spectral)
and NCut (Spectral), we found that the proposed BDSL algorithm is more effective on the ordered
dataset than the traditional spectral clustering methods. In addition, the performance of NCut is
always better than that of RadioCut. Even for the graph with uniform density and low-level noise,
the RadioCut only has an 82.53% clustering accuracy.
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MAD Dataset Keck Dataset Weizmann Dataset Animation Dataset Ballet Dataset BU-4DFE Dataset
Method Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Approaches Designed for General Dataset
LRR 0.2397 0.2249 0.4297 0.4862 0.3638 0.4382 0.7855 0.7632 0.6799 0.7123 0.6467 0.6723

LRR+BDSL 0.5834 0.6843 0.6042 0.6643 0.5432 0.5042 0.9321 0.9423 0.9142 0.9024 0.8953 0.8842
PSCN 0.3208 0.3412 0.4192 0.3245 0.5321 0.5125 0.8241 0.8624 0.6210 0.6732 0.7224 0.7032

PSCN+BDSL 0.6234 0.6743 0.6245 0.6024 0.6783 0.6642 0.9742 0.9623 0.9221 0.9053 0.9153 0.9035
SSC 0.3817 0.4758 0.3137 0.3858 0.4576 0.6009 0.8842 0.8324 0.6042 0.6242 0.6723 0.6523

SSC+BDSL 0.6632 0.6924 0.6023 0.5923 0.6208 0.6342 0.9642 0.9742 0.9421 0.9253 0.9362 0.9143
LSR 0.3979 0.3667 0.4894 0.4548 0.5091 0.5093 0.7632 0.7842 0.5973 0.6412 0.6611 0.7214

LSR+BDSL 0.6345 0.6324 0.6734 0.6412 0.6453 0.6542 0.9735 0.9643 0.9042 0.9142 0.9053 0.8953
L2-Graph 0.4124 0.5214 0.4432 0.4102 0.5232 0.6232 0.7198 0.7412 0.7244 0.7132 0.7122 0.7232

L2-Graph+BDSL 0.6743 0.7142 0.6834 0.6724 0.6743 0.6632 0.8935 0.9042 0.9242 0.9157 0.8953 0.8853
iPursuit 0.5211 0.5124 0.4623 0.4353 0.5324 0.6421 0.8932 0.8832 0.7823 0.8044 0.8314 0.8512

iPursuit+BDSL 0.7142 0.7435 0.6724 0.6642 0.6245 0.6324 0.9424 0.9353 0.9425 0.9253 0.9255 0.9015
FGNSC 0.4825 0.5924 0.5124 0.4824 0.5488 0.6524 0.9211 0.9324 0.8242 0.8421 0.8721 0.8424

FGNSC+BDSL 0.6824 0.7943 0.6933 0.7024 0.6943 0.7042 0.9743 0.9543 0.9521 0.9527 0.9415 0.9253
BDRZ 0.6042 0.5624 0.5024 0.4531 0.5201 0.6297 0.9053 0.9252 0.8421 0.8632 0.8912 0.8843

BDRZ+BDSL 0.7142 0.7842 0.6534 0.6724 0.6843 0.6921 0.9663 0.9732 0.9532 0.9461 0.9462 0.9515
ORGEN 0.5925 0.5543 0.4822 0.4721 0.5823 0.6832 0.8842 0.8932 0.8632 0.8432 0.8814 0.9043

ORGEN+BDSL 0.7534 0.8142 0.6843 0.6425 0.7144 0.7242 0.9643 0.9532 0.9632 0.9572 0.9735 0.9621
RSSC 0.5204 0.4756 0.4324 0.4098 0.5053 0.6424 0.7832 0.7932 0.7823 0.8124 0.8215 0.8034

RSSC+BDSL 0.7842 0.7942 0.6234 0.6742 0.7043 0.7344 0.9242 0.9351 0.9234 0.9066 0.8924 0.9015
Approaches Designed for Ordered Dataset

OSC 0.4327 0.5589 0.4393 0.4931 0.5216 0.5047 0.8923 0.9042 0.8724 0.8842 0.9244 0.9214
OSC+BDSL 0.6842 0.8433 0.6943 0.7242 0.7435 0.7742 0.9423 0.9622 0.9714 0.9653 0.9526 0.9416

TSC 0.5556 0.7721 0.4781 0.5329 0.6111 0.6199 0.9142 0.8823 0.9022 0.8924 0.9024 0.9043
TSC+BDSL 0.7342 0.8843 0.7042 0.6842 0.7743 0.8123 0.9633 0.9523 0.9623 0.9469 0.9242 0.9316

LTS 0.5736 0.8202 0.5395 0.5049 0.6208 0.6509 0.9233 0.9023 0.9142 0.9124 0.9453 0.8943
LTS+BDSL 0.7623 0.8934 0.7345 0.7524 0.8134 0.7942 0.9653 0.9525 0.9623 0.9528 0.9526 0.9616

QOSC 0.5234 0.7834 0.4923 0.4833 0.5832 0.6242 0.9043 0.8924 0.9412 0.9246 0.9124 0.9231
QOSC+BDSL 0.6932 0.8764 0.6843 0.6942 0.7932 0.7824 0.9653 0.9345 0.9773 0.9617 0.9267 0.9415

SpatSC 0.5034 0.7134 0.4421 0.4023 0.5432 0.5024 0.8924 0.9042 0.9024 0.8546 0.9354 0.9052
SpatSC+BDSL 0.7142 0.8244 0.6712 0.6642 0.7742 0.7242 0.9253 0.9353 0.9456 0.9278 0.9563 0.9416

GCRL 0.5732 0.7421 0.4723 0.4524 0.6124 0.5823 0.8832 0.8934 0.9242 0.8954 0.8734 0.9104
GCRL+BDSL 0.7743 0.8934 0.6942 0.6242 0.7824 0.8142 0.9035 0.9152 0.9742 0.9628 0.9435 0.9318

SSRC 0.4732 0.6923 0.5012 0.4823 0.6431 0.5621 0.8924 0.9143 0.8924 0.9255 0.8943 0.8521
SSRC+BDSL 0.7242 0.8452 0.6624 0.6542 0.8042 0.7624 0.9134 0.9273 0.9853 0.9793 0.9627 0.9571

Table 2: Quantitative (the clustering accuracies and NMI) comparisons with state-of-the-art methods
on the six ordered datasets.

2) Comparing NUBAcut and UBAcut with RadioCut (BDSL) and NCut (BDSL), although they all
run based on the proposed BDSL algorithm, the proposed two graph cutting methods show better
performance on the noisy graph.

3) Comparing NUBAcut with UBAcut, UBAcut is a little better than NUBAcut on the uni-
form density graph, i.e., [µ1, µ2, µ3, µ4] = [1, 1, 1, 1]. On the little bit non-uniform density
graph, i.e., [µ1, µ2, µ3, µ4] = [0.1, 0.9, 0.5, 0.7], their performances are similar. However, UBA-
cut performs worse than NUBAcut for severe non-uniform density graph, i.e., [µ1, µ2, µ3, µ4] =
[0.01, 0.9, 0.05, 0.2].

4.2 EXPERIMENTS ON SEQUENTIAL HIGH-DIMENSIONAL DATASETS

There are many subspace clustering methods designed for the ordered dataset, including
OSCTierney et al. (2014), submoTSCLi et al. (2015), LTSWang et al. (2018), QOSCWu et al.
(2015), SpatSCGuo et al. (2014), GCRLDimiccoli et al. (2021), and SSRCWang et al. (2022). How-
ever, all of these methods focus on the construction of the self-representation matrix, and we are the
first to learn the block-diagonal structure of the self-representation directly. In order to evaluate
the fact that our proposed strategy can improve the performance of the existing subspace clustering
method on the ordered dataset. We use the state-of-the-arts to generate the self-represented affin-
ity matrix, and then, apply the proposed BDSL on them. In another word, we replace the spectral
clustering with proposed BDSL. We compare the traditional version of these state-of-the-arts with
the improved version. In addition, our proposed BDSL is also effective on the subspace clustering
methods designed for general datasets. In order to prove this, we also apply the proposed BDSL al-
gorithm on the method which is designed for the general dataset clustering task, including LRRLiu
et al. (2012), PSCNCui et al. (2021), SSCXu et al. (2015), LSRLu et al. (2012), L2-GraphPeng
et al. (2016), iPursuitRahmani & Atia (2017), FGNSCYang et al. (2019), BDRZLu et al. (2018),
ORGENYou et al. (2016), and RSSCXu et al. (2015).
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(a) Weizmann Dataset (b) MAD Dataset (c) Keck Dataset 

(d) Animation Dataset (e) Ballet  Dataset (f) BU-4DFE  Dataset 

Figure 3: Example frames of six high-dimensional datasets.

We conduct the experiments on the famous video segmentation or motion segmentation dataset,
including MAD DatasetHuang et al. (2014), Keck DatasetJiang et al. (2012), Weizmann
DatasetGorelick et al. (2007), Animation DatasetTierney et al. (2014), Ballet DatasetFathi & Mori
(2008), and BU-4DFE DatasetZhang et al. (2013). Figure ?? shows the frame samples of these
datasets. The detail of these datasets is introduced as follows: 1) The Weizmann dataset contains 90
video sequences include 10 different actions performed by nine subjects in outdoor environments.
The resolution is 180×144 with the frame rate of 50 fps. The subjects preform ten regular actions
including run, walk, skip and so on. 2) The MAD dataset contains multi-modal actions of 20 sub-
jects recorded by Microsoft Kinect in three formats. First is regular RGB image in resolution of
640×480. Second is 3D depth image. The third is human skeleton information. Each subject per-
forms 35 actions in two different indoor environments. 3) The Keck dataset consists of 14 different
actions from military signals. The resolution is 640×480. Three subjects preforms the 14 gestures
and each action is repeatedly preformed 3 times by each subject. Thus, 3×3×14 = 126 human action
videos are obtained. 4) The animation sequences are around 10 seconds in length (approximately
300 frames) containing three scenes each. There are 24 sequences from the video. The scenes
to be segmented can contain significant translation and morphing of objects within the scene and
sometimes camera or perspective changes. Scene changes (or keyframes) were collected manually
to form ground truth data. 5) The Ballet dataset used here contains 44 videos collected from an
instructional ballet digital video disk Fathi & Mori (2008). The data set consists of eight complex
action patterns performed by three subjects. These actions include: “ left-to-right hand opening”,
“ right-to-left hand opening”, “ standing hand opening”, “ leg swinging”, “ jumping”,“ turning”, “
hopping”, and “ standing still”. 6) The BU-4DFE database consists of 101 subjects (58 female and
43 male) with a variety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-East
Asian, Indian, and Hispanic/Latino. Each subject was requested to perform six basic expressions
(anger, disgust, happiness, fear, sadness and surprise) and its face image sequences and dynamic
3-D face shapes are captured simultaneously by a specific device.

We tune the parameters for the comparison methods to achieve the best results. The experiments
are repeated ten times, and the mean clustering accuracy and NMI are computed to show the per-
formance. There is no parameter in our proposed BDSL algorithm. Since the graph given by the
comparisons is almost density uniform, we just use UBAcut to identify the clustering structure. The
experimental result is shown in Table 2. Each traditional method’s performance can be improved by
our BDSL, and the clustering accuracy is improved by roughly 30% 40%.

5 CONCLUSIONS

In this work, we proposed an effective graph partition method that can be applied to each spectral-
based subspace clustering method and improve their performance on the ordered dataset. Our pro-
posed method can also be applied to the non-ordered clustering job, which can be achieved by
using an ordering pre-processing method (e.g., DBSCAN Ester et al. (1996), OPTICSAnkerst et al.
(1999)) to make the data ordered. In addition, our method is not limited to the subspace clustering
task because the common distance measurement can also generate the block-diagonal form graph.
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6 APPENDIX

6.1 A PROOF OF THEOREM 3.1

Case 1: K = 1, we have F (t) = t2µ1

t + (N−t)2µ1

N−t = Nµ1.

Case 2: K ≥ 2. Consider t ∈ [1, c1], the F (t) is given by

F (t) =
t2µ1

t
+

(c1 − t)2µ1 + (c2 − c1)2µ2 + ...+ (N − cK−1)2µK
N − t

(5)

= tµ1 +
(c1 − t)2µ1 + (N − c1)2b(2,K)

N − t

=
(N − 2c1)tµ1 + c21µ1 + (N − c1)2b(2,K)

N − t
where the mean weight of the ith, i ∈ {2, 3, ...,K} cluster with zero covariance is b(2,K) =
(c2−c1)2µ2+...+(N−cK−1)2µK

(N−c1)2 . Since F
′
(t) =

(N−2c1)µ1N+c21µ1+(N−c1)2b(2,K)
(N−t)2 > 0, F (t) will in-

crease with the increase of t ∈ (0, c1]. For the symmetric case t ∈ (cK−1, N ], F (t) will decrease
with the increase of t ∈ (cK−1, N ].

Case 2: K ≥ 3. Consider t ∈ (ck−1, ck], k = 2, ...,K − 1.

F (t) =
c21µ1 + ...,+ (ck−1 − ck−2)

2
µk−1 + (t− ck−1)2µk

t

+
(cl+2 − ck)

2
µl+2 + ...,+ (N − cK−1)

2
µK + (ck − t)2µk

N − t
Then

F
′
(t) =

At2 +Bt+ C

C0

where A = α − β, B = −2Nα, C0 > 0, C = N2α, α = c21µ1 + ...,+ (ck−1 − ck−2)
2
µk−1 +

c2k−1µk, and β = (N − ck)2µk + (ck+1 − ck)
2
µk+1 + ...,+ (N − cK−1)

2
µK .

If α < β, then ck < Nα+N
√
αβ

(α−β) , and F (t) decrease in (ck−1, t0), and increase in (t0, ck), where

t0 = Nα−N
√
αβ

(α−β) . If α > β, then ck−1 >
Nα−N

√
αβ

(α−β) , and F (t) decrease in (ck−1, t0), and increase

in (t0, ck), where t0 = Nα+N
√
αβ

(α−β) . Thus, t = Nα+N
√
αβ

(α−β) or t = Nα−N
√
αβ

(α−β) will minimize F (t) for
t ∈ (ck−1, ck].

A Proof of Theorem 3.2

Consider the true partition index {ck}K−1
k=1 , c0 = 0, and cK = N . Fix K − 2 partition index

{τk}K−2
k=1 , τ0 = 0, and τK−1 = N , for the interval (τm−1, τm), m ∈ [1,K − 1].

Case 1: suppose there are no ck in (τm−1, τm), suppose cl−1 < τm−1, τm < cl, l ∈ [1,K], we have

F (t) =
(t− τm−1)2µ+ (τm − t)2µ+ L1

(t− τm−1)2 + (τm − t)2 + L2

Then

F
′
(t) =

Bt+ C

[(t− τm−1)2 + (τm − t)2 + L2]
2

where B = L2µ− L1, and C = τm−1+τm
2 (L1 − L2µ). Since L1

L2
< µ, we have B > 0. Thus, F (t)

decrease in (τm−1, t0), and increase in (t0, τm), where t0 = τm−1+τm
2 .
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Case 2: suppose there are at least one ck in (τm−1, τm), e.g., τm−1 < cl < ... < cr < τm, r− l ≥ 0.
Consider the interval (τm−1, cl), (cl+1, cl+2),...,(cr, τm).

1) For the interval t ∈ (τm−1, cl)

F (t) =
(t− τm−1)2µ+ (cl − t)2µ+ L1

(t− τm−1)2 + (τm − t)2 + L2

Then

F
′
(t) =

At2 +Bt+ C

[(t− τm−1)2 + (τm − t)2 + L2]
2

where A = (cl − τm)µ < 0, B = (L2 − L1/µ − c2l + τ2
m)µ, and C =

1
2µ
[
(L1/µ+ τ2

m−1 + c2l )(τm−1 + τm)− (L2 + τ2
m−1 + τ2

m)(τm−1 + cl)
]
. Since cl <

−B−
√
B2−4AC
2A , F (t) decrease in (τm−1, t0), and increase in (t0, cl), F (cl) > F (τm−1),

where t0 = −B−
√
B2−4AC
2A .

2) For the interval t ∈ (cr, τm)

F (t) =
(t− cr)2µ+ (τm − t)2µ+ L1

(t− τm−1)2 + (τm − t)2 + L2

Then

F
′
(t) =

At2 +Bt+ C

[(t− cr)2 + (τm − t)2 + L2]
2

where A = (cl − τm−1)µ > 0, B = (L2 − L1/µ − c2r + τ2
m−1)µ, and C =

1
2µ
[
(L1/µ+ τ2

m + c2r)(τm−1 + τm)− (L2 + τ2
m−1 + τ2

m)(τm + cr)
]
. Since cr > −B+

√
B2−4AC
2A ,

F (t) decrease in (cr, t0), and increase in (t0, τm), F (cr) > F (τm), where t0 = −B+
√
B2−4AC
2A .

3) For the middle interval (cl+1, cl+2),

F (t) =
(t− cl+1)2µ+ (cl+2 − t)2µ+ L1

(t− τm−1)2 + (τm − t)2 + L2

Then

F
′
(t) =

At2 +Bt+ C

[(t− cr)2 + (τm − t)2 + L2]
2

where A = (cl+1 + cl+2 − τm−1 − τm)µ, B = (L2 − L1/µ − c2l+1 − c2l+2 + τ2
m−1 + τ2

m)µ,
and C = 1

2µ
[
(L1/µ+ c2l+1 + c2l+2)(τm−1 + τm)− (L2 + τ2

m−1 + τ2
m)(cl+1 + cl+2)

]
. If A < 0,

then cl+2 < −B+
√
B2−4AC
2A , and F (t) decrease in (cr, t0), and increase in (t0, τm), where t0 =

−B−
√
B2−4AC
2A . If A > 0, then cl+1 >

−B−
√
B2−4AC
2A , and F (t) decrease in (cr, t0), and increase

in (t0, τm), where t0 = −B+
√
B2−4AC
2A .

Thus, there is always existing a ck, k = [1,K − 1], minimizing F (t) with any {τm}K−2
m=1.
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