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Abstract

In this work, we propose Retentive Network (RETNET) as a foundation architecture1

for large language models, simultaneously achieving training parallelism, low-cost2

inference, and good performance. We theoretically derive the connection between3

recurrence and attention. Then we propose the retention mechanism for sequence4

modeling, which supports three computation paradigms, i.e., parallel, recurrent,5

and chunkwise recurrent. Specifically, the parallel representation allows for training6

parallelism. The recurrent representation enables low-cost O(1) inference, which7

improves decoding throughput, latency, and GPU memory without sacrificing8

performance. The chunkwise recurrent representation facilitates efficient long-9

sequence modeling with linear complexity, where each chunk is encoded parallelly10

while recurrently summarizing the chunks. Experimental results on language11

modeling show that RETNET achieves favorable scaling results, parallel training,12

low-cost deployment, and efficient inference.13

1 Introduction14

Transformer [51] has become the de facto architecture for large language models, which was initially15

proposed to overcome the sequential training issue of recurrent models [25]. However, training16

parallelism of Transformers is at the cost of inefficient inference, because of the O(N) complexity per17

step and memory-bound key-value cache [42], which renders Transformers unfriendly to deployment.18

The growing sequence length increases GPU memory consumption as well as latency and reduces19

inference speed. Numerous efforts have continued to develop the next-generation architecture, aiming20

at retaining training parallelism and competitive performance as Transformers while having efficient21

O(1) inference. It is challenging to achieve the above goals simultaneously.22

There have been three main strands of research. First, linearized attention [27, 37] approximates23

standard attention scores exp(q · k) with kernels ϕ(q) · ϕ(k), so that autoregressive inference can24

be rewritten in a recurrent form. However, the modeling capability and performance are worse than25

Transformers, which hinders the method’s popularity. The second strand returns to recurrent models26

for efficient inference while sacrificing training parallelism. As a remedy, element-wise operators [36]27

are used for acceleration, however, representation capacity and performance are harmed. The third28

line explores replacing attention with other mechanisms, such as S4 [20], and its variants [11, 38].29

None of the previous work can achieve strong performance and efficient inference at the same time30

compared to Transformers.31

In this work, we propose retentive networks (RetNet), achieving low-cost inference, efficient long-32

sequence modeling, Transformer-comparable performance, and parallel model training simultane-33

ously. Specifically, we introduce a multi-scale retention mechanism to substitute multi-head attention,34

which has three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent repre-35

sentations. First, the parallel representation empowers training parallelism to utilize GPU devices36

fully. Second, the recurrent representation enables efficient O(1) inference in terms of memory37

and computation. The deployment cost and latency can be significantly reduced. Moreover, the38

implementation is greatly simplified without key-value cache tricks. Third, the chunkwise recurrent39
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representation can perform efficient long-sequence modeling. We parallelly encode each local block40

for computation speed while recurrently encoding the global blocks to save GPU memory.41

We compare RetNet with Transformer and its variants. Experimental results on language modeling42

show that RetNet is consistently competitive in terms of both scaling curves and in-context learning.43

Moreover, the inference cost of RetNet is length-invariant. For a 7B model and 8k sequence44

length, RetNet decodes 8.4× faster and saves 70% of memory than Transformers with key-value45

caches. During training, RetNet also achieves 3× acceleration than standard Transformer with46

highly-optimized FlashAttention-2 [10]. Besides, RetNet’s inference latency is insensitive to batch47

size, allowing enormous throughput. The intriguing properties make RetNet a potential candidate to48

replace Transformer for large language models.49

2 Retentive Network50

Retentive network (RetNet) is stacked with L identical blocks, which follows a similar layout (i.e.,51

residual connection, and pre-LayerNorm) as in Transformer [51]. Each RetNet block contains two52

modules: a multi-scale retention (MSR) module, and a feed-forward network (FFN) module. We53

introduce the MSR module in the following sections. Given an input sequence x = x1 · · ·x|x|,54

RetNet encodes the sequence in an autoregressive way. The input vectors {xi}|x|i=1 is first packed55

into X0 = [x1, · · · ,x|x|] ∈ R|x|×dmodel , where dmodel is hidden dimension. Then we compute56

contextualized vector representations X l = RetNetl(X
l−1), l ∈ [1, L].57

2.1 Retention58

In this section, we introduce the retention mechanism that has a dual form of recurrence and59

parallelism. So we can train the models in a parallel way while recurrently conducting inference.60

Consider a sequence modeling problem that maps v(n) 7→ o(n) through states sn. Let vn, on denote61

v(n), o(n) for simplicity. We formulate the mapping in a recurrent manner:62

sn = Asn−1 +K⊺
nvn, A ∈ Rd×d, Kn ∈ R1×d

on = Qnsn =

n∑
m=1

QnA
n−mK⊺

mvm, Qn ∈ R1×d (1)

where we map vn to the state vector sn, and then implement a linear transform to encode sequence63

information recurrently. Next, we make the projection Qn,Kn content-aware:64

Q = XWQ, K = XWK (2)

where WQ,WK ∈ Rd×d are learnable matrices.65

We diagonalize the matrix A = Λ(γeiθ)Λ−1, where γ, θ ∈ Rd. Then we obtain An−m =66

Λ(γeiθ)n−mΛ−1. By absorbing Λ into WQ and WK , we can rewrite Equation (1) as:67

on =

n∑
m=1

Qn(γe
iθ)n−mK⊺

mvm

=

n∑
m=1

(Qn(γe
iθ)n)(Km(γeiθ)−m)⊺vm

(3)

where Qn(γe
iθ)n,Km(γeiθ)−m is known as xPos [45], i.e., a relative position embedding proposed68

for Transformer. We further simplify γ as a scalar, Equation (3) becomes:69

on =

n∑
m=1

γn−m(Qne
inθ)(Kmeimθ)†vm (4)

where † is the conjugate transpose. The formulation is easily parallelizable within training instances.70

In summary, we start with recurrent modeling as shown in Equation (1), and then derive its parallel71

formulation in Equation (4). We consider the original mapping v(n) 7→ o(n) as vectors and obtain72

the retention mechanism as follows.73
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Figure 1: RetNet has three equivalent computation paradigms, i.e., parallel, recurrent, and chunkwise
recurrent representations. Given the same input, three paradigms obtain the same output. “GN” is
short for GroupNorm.

The Parallel Representation of Retention As shown in Figure 1a, the retention layer is defined as:74

Q = (XWQ)⊙Θ, K = (XWK)⊙Θ, V = XWV

Θn = einθ, Dnm =

{
γn−m, n ≥ m

0, n < m

Retention(X) = (QK⊺ ⊙D)V

(5)

where D ∈ R|x|×|x| combines causal masking and exponential decay along relative distance as one75

matrix, and Θ is the complex conjugate of Θ. In practice, we map Q,K ∈ Rd → Cd/2, add the76

complex position embedding Θ, then map them back to Rd, following the implementation trick as in77

LLaMA [48, 44]. Similar to self-attention, the parallel representation enables us to train the models78

with GPUs efficiently.79

The Recurrent Representation of Retention As shown in Figure 1b, the proposed mechanism can80

also be written as recurrent neural networks (RNNs), which is favorable for inference. For the n-th81

timestep, we recurrently obtain the output as:82

Sn = γSn−1 +K⊺
nVn

Retention(Xn) = QnSn, n = 1, · · · , |x| (6)

where Q,K, V, γ are the same as in Equation (5).83

The Chunkwise Recurrent Representation of Retention A hybrid form of parallel representation84

and recurrent representation is available to accelerate training, especially for long sequences. We85

divide the input sequences into chunks. Within each chunk, we follow the parallel representation86

(Equation (5)) to conduct computation. In contrast, cross-chunk information is passed following the87

recurrent representation (Equation (6)). Specifically, let B denote the chunk length. We compute the88

retention output of the i-th chunk via:89

Q[i] = QBi:B(i+1), K[i] = KBi:B(i+1), V[i] = VBi:B(i+1)

Ri = K⊺
[i](V[i] ⊙ ζ) + γBRi−1, ζij = γB−i−1

Retention(X[i]) = (Q[i]K
⊺
[i] ⊙D)V[i]︸ ︷︷ ︸

Inner-Chunk

+(Q[i]Ri−1)⊙ ξ︸ ︷︷ ︸
Cross-Chunk

, ξij = γi+1
(7)

where [i] indicates the i-th chunk, i.e., x[i] = [x(i−1)B+1, · · · , xiB ]. The proof of the equivalence90

between recurrent representation and chunkwise recurrent representation is described in Appendix B.91

2.2 Gated Multi-Scale Retention92

We use h = dmodel/d retention heads in each layer, where d is the head dimension. The heads use93

different parameter matrices WQ,WK ,WV ∈ Rd×d. Moreover, multi-scale retention (MSR) assigns94
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def ParallelRetention(
q, k, v, # bsz ∗ num_head ∗ len ∗ qkv_dim
decay_mask): # num_head ∗ len ∗ len
retention = q @ k.transpose(−1, −2)
retention = retention ∗ decay_mask
output = retention @ v
output = group_norm(output)
return output

def RecurrentRetention(
q, k, v, # bsz ∗ num_head ∗ qkv_dim
past_kv, # bsz ∗ num_head ∗ qk_dim ∗ v_dim
decay): # num_head ∗ 1 ∗ 1
current_kv = decay ∗ past_kv + k.unsqueeze(−1) ∗ v.

unsqueeze(−2)
output = torch.sum(q.unsqueeze(−1) ∗ current_kv,

dim=−2)
output = group_norm(output)
return output, current_kv

def ChunkwiseRetention(
q, k, v, # bsz ∗ num_head ∗ chunk_size ∗

qkv_dim
past_kv, # bsz ∗ num_head ∗ qk_dim ∗

v_dim
decay_mask, # num_head ∗ chunk_size ∗

chunk_size
chunk_decay, # num_head ∗ 1 ∗ 1
inner_decay): # num_head ∗ chunk_size
retention = q @ k.transpose(−1, −2)
retention = retention ∗ decay_mask
inner_retention = retention @ v
cross_retention = (q @ past_kv) ∗

inner_decay
retention = inner_retention +

cross_retention
output = group_norm(retention)
current_kv = chunk_decay ∗ past_kv + k.

transpose(−1, −2) @ v
return output, current_kv

Figure 2: Pseudocode for the three computation paradigms of retention. Parallel implementation
enables training parallelism to fully utilize GPUs. Recurrent paradigm enables low-cost inference.
Chunkwise retention combines the above advantages (i.e., parallel within each chunk and recurrent
across chunks), which has linear memory complexity for long sequences.

different γ for each head. For simplicity, we set γ identical among different layers and keep them95

fixed. In addition, we add a swish gate [23, 40] to increase the non-linearity of retention layers.96

Formally, given input X , we define the layer as:97

γ = 1− 2−5−arange(0,h) ∈ Rh

headi = Retention(X, γi)

Y = GroupNormh(Concat(head1, · · · ,headh))
MSR(X) = (swish(XWG)⊙ Y )WO

(8)

where WG,WO ∈ Rdmodel×dmodel are learnable parameters, and GroupNorm [53] normalizes the98

output of each head, following SubLN proposed in [43]. Notice that the heads use multiple γ scales,99

which results in different variance statistics. So we normalize the head outputs separately.100

The pseudocode of retention is summarized in Figure 2.101

Retention Score Normalization We utilize the scale-invariant nature of GroupNorm to improve the102

numerical precision of retention layers. Specifically, multiplying a scalar value within GroupNorm103

does not affect outputs and backward gradients, i.e., GroupNorm(α∗headi) = GroupNorm(headi).104

We implement three normalization factors in Equation (5). First, we normalize QK⊺ as QK⊺
/
√
d.105

Second, we replace D with D̃nm = Dnm/
√∑n

i=1 Dni. Third, let R denote the retention scores106

R = QK⊺ ⊙ D, we normalize it as R̃nm = Rnm/max(
∑n

i=1 |Rni|,1). Then the retention output107

becomes Retention(X) = R̃V . The above tricks do not affect the final results while stabilizing the108

numerical flow of both forward and backward passes, because of the scale-invariant property.109

2.3 Overall Architecture of Retention Networks110

For an L-layer retention network, we stack multi-scale retention (MSR) and feed-forward network111

(FFN) to build the model. Formally, the input sequence {xi}|x|i=1 is transformed into vectors by a112

word embedding layer. We use the packed embeddings X0 = [x1, · · · ,x|x|] ∈ R|x|×dmodel as the113

input and compute the model output XL:114

Y l = MSR(LN(X l)) +X l

X l+1 = FFN(LN(Y l)) + Y l
(9)

where LN(·) is LayerNorm [3]. The FFN part is computed as FFN(X) = gelu(XW1)W2, where115

W1,W2 are parameter matrices.116
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Training We use the parallel (Equation (5)) and chunkwise recurrent (Equation (7)) representations117

during the training process. The parallelization within sequences or chunks efficiently utilizes118

GPUs to accelerate computation. More favorably, chunkwise recurrence is especially useful for119

long-sequence training, which is efficient in terms of both FLOPs and memory consumption.120

Inference The recurrent representation (Equation (6)) is employed during inference, which nicely121

fits autoregressive decoding. The O(1) complexity reduces memory and inference latency while122

achieving equivalent results.123

3 Experiments124

We perform language modeling experiments to evaluate RetNet. First, we present the scaling curves125

of Transformer and RetNet. Second, we follow the training settings of StableLM-4E1T [50] to126

compare with open-source Transformer models in downstream benchmarks. Moreover, for training127

and inference, we compare speed, memory consumption, and latency. The training corpus is a curated128

compilation of The Pile [16], C4 [14], and The Stack [29].129

3.1 Comparison with Transformer Variants130

We compare RetNet with various efficient Transformer variants, including RWKV [36], H3 [11],131

Hyena [38], and Mamba [19]. We use LLaMA [48] architecture, including RMSNorm [59] and132

SwiGLU [40, 7] module, as the Transformer backbone, which shows better performance and stability.133

Consequently, other variants follow these settings. Specifically, Mamba does not have FFN layers so134

we only implement RMSNorm. For RetNet, the FFN intermediate dimension is 5
3d and the value135

dimensions in WG,WV ,WO are also 5
3d, where the overall parameters are still 12d2. All models136

have 400M parameters with 24 layers and a hidden dimension of 1024. For H3, we set the head137

dimension to 8. For RWKV, we use the TimeMix module to substitute self-attention layers while138

keeping FFN layers consistent with other models for fair comparisons. We train the models with 40k139

steps with a batch size of 0.25M tokens.140

Fine-Grained Language Modeling Evaluation As shown in Table 1, we first report the language141

modeling perplexity of validation sets. Besides the overall validation set, following [2], we divide142

perplexity into “AR-Hit” and “First Occur”. Specifically, AR-Hit contains the predicted tokens that143

are previously seen bigrams in the previous context, which evaluates the associative recall ability.144

“First Occur” has the predicted tokens that can not be recalled from the context. Among various145

Transformer variants, RetNet outperforms previous methods on both “AR-Hit” and “First Occur”146

splits, which is important for real-world use cases.147

Knowledge-Intensive Tasks We also evaluate Massive Multitask Language Understanding148

(MMLU; [24]) answer perplexity to evaluate models on knowledge-intensive tasks. We report149

the average perplexity of the correct answers, i.e., given input [Question, “Answer:”, Correct150

Answer], we calculate the perplexity of the “Correct Answer” part. RetNet achieves competitive151

results among the architectures.152

Language Modeling MMLU
Valid. Set AR-Hit First-Occur STEMs Humanites Social-Sci. Others Avg

Transformer [51] 3.320 1.118 3.826 0.584 0.229 0.279 0.402 0.356

Transformer Variants
Hyena [38] 3.545 1.799 3.947 1.125 0.576 0.654 0.819 0.767
RWKV [36] 3.497 1.706 3.910 1.156 0.609 0.617 0.781 0.768
Mamba [19] 3.379 1.322 3.852 0.668 0.288 0.300 0.425 0.403
H3 [11] 3.563 1.722 3.986 1.169 0.532 0.637 0.792 0.752
RetNet 3.360 1.264 3.843 0.577 0.263 0.280 0.384 0.362

Table 1: Perplexity results on language modeling and MMLU [24] answers. We use the augmented
Transformer architecture proposed in LLaMA [48] for reference. For language modeling, we
report perplexity on both the overall validation set and fine-grained diagnosis sets [2], i.e., “AR-Hit”
evaluates the associative recall capability, and “First-Occur” indicates the regular language modeling
performance. Besides, we evaluate the answer perplexity of MMLU subsets.
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3.2 Language Modeling Evaluation with Various Model Sizes153
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Figure 3: Validation perplexity (PPL) de-
creases along with scaling up the model
size.

We train language models with various sizes (i.e., 1.3B,154

2.7B, and 6.7B) from scratch. The training batch size155

is 4M tokens with 2048 maximal length. We train the156

models with 25k steps. The detailed hyper-parameters are157

described in Appendix E. We train the models with 512158

AMD MI200 GPUs.159

Figure 3 reports perplexity on the validation set for the160

language models based on Transformer and RetNet. We161

present the scaling curves with three model sizes, i.e.,162

1.3B, 2.7B, and 6.7B. RetNet achieves comparable results163

with Transformers. More importantly, the results indicate164

that RetNet is favorable in terms of size scaling. In addi-165

tion to performance, RetNet training is quite stable in our166

experiments. Experimental results show that RetNet is a167

strong competitor to Transformer for large language mod-168

els. Empirically, we find that RetNet starts to outperform169

Transformer when the model size is larger than 2B.170

3.3 Long-Context Evaluation171

We evaluate long-context modeling on the ZeroSCROLLS [41] benchmark. We train a hybrid model172

of size 2.7B, RetNet+, which stacks the attention and retention layers. Specifically, we insert one173

attention layer after every 3 retention layers. We follow most configurations of the 2.7B model as in174

Section 3.2. We scale the number of training tokens to 420B tokens. The batch size is 4M tokens.175

We first train the model with 4K length and then extend the sequence length to 16K for the last 50B176

training tokens. The rotation base scaling [55] is used for length extension.177

Figure 4 reports the answer perplexity given various lengths of input document. It shows that both178

Transformer and RetNet+ perform better with longer input documents. The results indicate that the179

language models successfully utilize the long-distance context. Notice that the 12K and 16K results180

in Qasper are similar because the lengths of most documents are shorter than 16K. Moreover, RetNet+181

obtains competitive results compared with Transformer for long-context modeling. Meanwhile,182

retention has better training and inference efficiency.183
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Figure 4: Answer perplexity decreases along with longer input documents. Transformer and RetNet+
obtain comparable performance for long-context modeling on the ZeroSCROLLS [41] benchmark.

3.4 Inference Cost184

As shown in Figure 5, we compare memory cost, throughput, and latency of Transformer and RetNet185

during inference. Transformers reuse KV caches of previously decoded tokens. RetNet uses the186

recurrent representation as described in Equation (6). We evaluate the 6.7B model on the A100-80GB187

GPU. Figure 5 shows that RetNet outperforms Transformer in terms of inference cost.188

Memory As shown in Figure 5a, the memory cost of Transformer increases linearly due to KV189

caches. In contrast, the memory consumption of RetNet remains consistent even for long sequences,190
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Figure 5: Inference cost of Transformer and RetNet with a model size of 6.7B. RetNet outperforms
Transformers in terms of memory consumption, throughput, and latency.

requiring much less GPU memory to host RetNet. The additional memory consumption of RetNet is191

almost negligible (i.e., about 3%) while the model weights occupy 97%.192

Throughput As presented in Figure 5b, the throughput of Transformer drops along with the193

decoding length increases. In comparison, RetNet has higher and length-invariant throughput during194

decoding, by utilizing the recurrent representation of retention.195

Latency Latency is an important metric in deployment that greatly affects the user experience.196

We report the decoding latency in Figure 5c. Experimental results show that increasing batch size197

renders the Transformer’s latency larger. Moreover, the latency of Transformers grows faster with198

longer input. In order to make latency acceptable, we have to restrict the batch size, which harms the199

overall inference throughput of Transformers. By contrast, RetNet’s decoding latency outperforms200

Transformers and stays almost the same across different batch sizes and input lengths.201

3.5 Training Throughput202
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Figure 6: Training throughput (word
per second; wps) of Transformer with
FlashAttention-2 [10] and RetNet.

Figure 6 compares the training throughput of Trans-203

former and RetNet, where the training sequence lengths204

range from 8192 to 65536. The model size is 3.5B,205

where the hidden dimension is 3072 and the layer size206

is 28. We use highly optimized FlashAttention-2 [10]207

for Transformers. In comparison, we implement chunk208

recurrent representation (Equation (7)) using Triton [46],209

where the computation is both memory-friendly and210

computationally efficient. The chunk size is set to 256.211

We evaluate the results with eight Nvidia H100-80GB212

GPUs because FlashAttention-2 is highly optimized for213

H100 cards.214

Experimental results show that RetNet has higher train-215

ing throughput than Transformers. The acceleration ratio increases as the sequence length is longer.216

When the training length is 64k, RetNet’s throughput is about 3 times than Transformer’s.217

3.6 Zero-Shot and Few-Shot Evaluation on Downstream Tasks218

We also compare the language models on a wide range of downstream tasks. We evaluate zero-shot219

and 4-shot learning with the 6.7B models. As shown in Table 2, the datasets include HellaSwag220

(HS; [57]), BoolQ [8], COPA [52], PIQA [6], Winograd, Winogrande [30], and StoryCloze (SC; [34]).221

The accuracy numbers are consistent with language modeling perplexity presented in Figure 3. RetNet222

achieves comparable performance with Transformer on zero-shot and in-context learning settings.223

3.7 Ablation Studies224

We ablate various design choices of RetNet and report the language modeling results in Table 3. The225

evaluation settings and metrics are the same as in Section 3.1.226
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HS BoolQ COPA PIQA Winograd Winogrande SC Avg
Zero-Shot Performance

Transformer 55.9 62.0 69.0 74.6 69.5 56.5 75.0 66.07
RetNet 60.7 62.2 77.0 75.4 77.2 58.1 76.0 69.51

Few-shot Performance (4-Shot)
Transformer 55.8 58.7 71.0 75.0 71.9 57.3 75.4 66.44
RetNet 60.5 60.1 78.0 76.0 77.9 59.9 75.9 69.76

Table 2: Zero-shot and few-shot learning performance. The language model size is 6.7B.

Architecture We ablate the swish gate and GroupNorm as described in Equation (8). Table 3227

shows that the above two components improve performance. First, the gating module is essential228

for enhancing non-linearity and improving model capability. Notice that we use the same parameter229

allocation as in Transformers after removing the gate. Second, group normalization in retention230

balances the variances of multi-head outputs, which improves training stability and language modeling231

results.232

Multi-Scale Decay Equation (8) shows that we use different γ as the decay rates for the retention233

heads. In the ablation studies, we examine removing γ decay (i.e., “− γ decay”) and applying the234

same decay rate across heads (i.e., “− multi-scale decay”). Specifically, ablating γ decay is equivalent235

to γ = 1. In the second setting, we set γ = 1− 2−6.5 for all heads. Table 3 indicates that both the236

decay mechanism and using multiple decay rates can improve the language modeling performance.237

Head Dimension As indicated by the recurrent perspective of Equation (1), the head dimension238

implies the memory capacity of hidden states. In ablation, we reduce the default head dimension from239

256 to 64, i.e., 64 for queries and keys, and ⌊ 5
3×64⌋ ≈ 108 for values. We keep the hidden dimension240

dmodel the same. Accordingly, we adjust the multi-scale decay as γ = 1− 2−5−arange(0,h)/4 to keep241

the same decay range. Table 3 shows that the larger head dimension achieves better performance.242

Language Modeling MMLU
Valid. Set AR-Hit First-Occur STEMs Humanites Social-Sci. Others Avg

RetNet 3.360 1.264 3.843 0.577 0.263 0.280 0.384 0.362
− swish gate 3.509 1.366 4.002 0.599 0.285 0.315 0.421 0.390
− GroupNorm 3.367 1.302 3.843 0.630 0.295 0.327 0.438 0.406
− γ decay 3.920 2.122 4.334 0.958 0.566 0.571 0.694 0.681
− multi-scale decay 3.524 1.768 3.928 0.921 0.433 0.471 0.590 0.582
Reduce head dim. 3.397 1.331 3.872 0.637 0.272 0.294 0.393 0.384

Table 3: Perplexity results on language modeling and MMLU [24] answers. For language modeling,
we report perplexity on both the overall validation set and fine-grained diagnosis sets [2], i.e., “AR-Hit”
evaluates the associative recall capability, and “First-Occur” indicates the regular language modeling
performance. Besides, we evaluate the answer perplexity of the MMLU subsets.

3.8 Results on Vision Tasks243

We also compare RetNet with vision Transformers [15, 47] in Table 4, where bidirectional en-244

coders are evaluated. Unlike causal language models, the vision encoders do not require recurrent245

representations. Specifically, we use retention as follows:246

Q = (XWQ)⊙Θ, K = (XWK)⊙Θ, V = XWV

Retention(X) = (QK⊺)V = Q(K⊺V )

where multi-scale decay is removed in bidirectional computation. Notice that we can compute247

retention in different orders. Similar to linear attention [27], the Q(K⊺V ) paradigm is an efficient248

operator in bidirectional settings, especially for high-resolution images.249

We perform experiments on ImageNet-1K classification [13], COCO object detection [32], and250

ADE20K semantic segmentation [60]. We compare RetNet with DeiT [47] which is a well-tuned251

vision Transformer. Besides, we follow [21] and plug in a depth-wise convolution in experiments.252

We adopt the DeiT-M size, which has about 38M parameters. For ImageNet-1K image classification,253
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ImageNet COCO ADE20K
Acc APb APb

50 APb
75 mIoU mAcc

DeiT [47] 80.76 0.458 0.678 0.502 43.52 55.08
RetNet 81.57 0.457 0.669 0.488 44.13 56.12

Table 4: Results on vision tasks, i.e., image classification (ImageNet), object detection (COCO), and
semantic segmentation (ADE20K). RetNet achieves competitive performance with DeiT, which is a
well-tuned vision Transformer.

we use AdamW [33] for 300 epochs, and 20 epochs of linear warm-up. The learning rate is 1× 10−3,254

the batch size is 1024, and the weight decay is 0.05. For COCO object detection, we use Mask255

R-CNN [22] as the task head, and the above models pre-trained on ImageNet as the backbone with256

3x schedules. In ADE20K experiments, we use UperNet [54] as the segmentation head. The detailed257

configuration can be found in Appendix H.258

Table 4 shows the results across various vision tasks. RetNet is competitive compared with DeiT.259

For classification and segmentation, RetNet is slightly better than DeiT, where RetNet achieves260

0.81% accuracy improvement on ImageNet and 0.61% mIoU improvement on ADE20K. For object261

detection, the results are comparable.262

4 Related Work263

Numerous efforts are focused on reducing the quadratic complexity of attention mechanisms. Linear264

attention [27] uses various kernels ϕ(qi)ϕ(kj)/
∑|x|

n=1 ϕ(qi)ϕ(kn) to replace the softmax function. In265

contrast, we reexamine sequence modeling from scratch, rather than aiming at approximating266

softmax. AFT [58] simplifies dot-product attention to element-wise and moves softmax to key267

vectors. RWKV [36] replaces AFT’s position embeddings with exponential decay and runs the268

models recurrently for training and inference. In comparison, retention preserves high-dimensional269

states to encode sequence information, which contributes to expressive ability and better performance.270

S4 [20] unifies convolution and recurrence format and achieves O(N logN) training complexity271

leveraging the FFT kernel. Unlike Equation (2), if Qn and Kn are content-unaware, the formulation272

can be degenerated to S4 [20]. Hyena [38] generates the convolution kernels, achieving sub-quadratic273

training efficiency but keeping O(N) complexity in single-step inference. Recently, most related274

work has focused on modifying γ in Equation (6) as a data-dependent variable, such as Mamba [19],275

GLA [56], Gateloop [28], and xLSTM [4]. Another strand explores hybrid architectures [31, 12] that276

interleave the above components with attention layers.277

In addition, we discuss the training and inference efficiency of some related methods. Let D denote278

the hidden dimension, H the head dimension, and N the sequence length. For training, RWKV’s279

token-mixing complexity is O(DN), and Mamba’s complexity is O(DHN) with optimized CUDA280

kernels. Hyena’s is O(DN logN) with Fast Fourier Transform acceleration. In comparison, the281

chunk-wise recurrent representation is O(DN(B +H)), where B is the chunk size, and we usually282

set H = 256, B ≤ 512. However, chunk-wise computation is highly parallelized, enabling efficient283

hardware usage. For large model size (i.e., larger D) or sequence length, the additional b + h has284

negligible effects. For inference, among the efficient architectures compared, Hyena has the same285

complexity (i.e., O(N) per step) as Transformer, while the others can perform O(1) decoding.286

5 Conclusion287

We propose retentive networks (RetNet) for sequence modeling, which enables various representa-288

tions, i.e., parallel, recurrent, and chunkwise recurrent. RetNet achieves significantly better inference289

efficiency (in terms of memory, speed, and latency), favorable training parallelization, and competitive290

performance compared with Transformers. The above advantages make RetNet an ideal successor to291

Transformers for large language models, especially considering the deployment benefits brought by292

the O(1) inference complexity. In the future, we are interested in deploying RetNet on various edge293

devices, such as mobile phones.294
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A Scaling Up Number of Training Tokens464

We scale up the number of training tokens to 350B for the 3B-size models. We compare with strong465

Transformer checkpoints including OpenLLaMA [18] and StableLM [50]. Moreover, we reproduce a466

Transformer language model (named TransformerRepro) for apple-to-apple comparison.467

Our model RetNet+ follows the same configuration as in Section 3.3, which is a hybrid model. The468

model’s hidden size is 3072, and the number of layers is 28. Without vocabulary embedding, the total469

number of parameters is 3.17B, which is between StableLM-3B-4E1T (2.7B) and OpenLLaMA-3B-470

v1 (3.19B). The batch size is 4M tokens. The training length is 4k. The learning rate is 3.2× 10−4471

with 1000 warm-up steps and linear learning rate decay. The training corpus includes The Pile [16]472

and RedPajama [9]. TransformerRepro follows the exact same setting.473

Table 5 reports accuracy numbers on the Harness-Eval benchmark [17]. We directly follow the evalua-474

tion protocol. The results show that RetNet+ achieves a performance comparable to TransformerRepro475

on language tasks. Notice that OpenLLaMA-3B-v1 and StableLM-3B use different learning rate476

schedules. The results of these two models are used for reference purposes.477

Model ARC-C ARC-Cnorm ARC-E ARC-Enorm Hellaswag Hellaswagnorm

OpenLLaMA-3B-v1 0.303 0.323 0.641 0.599 0.449 0.608
StableLM-3B — — 0.649 0.610 — —
TransformerRepro 0.322 0.354 0.668 0.633 0.476 0.633
RetNet+ 0.321 0.347 0.675 0.613 0.478 0.639

Model OBQA OBQAnorm PIQA PIQAnorm Winogrande Avg
OpenLLaMA-3B-v1 0.222 0.348 0.713 0.724 0.594 0.502
StableLM-3B — — 0.759 0.763 0.608 —
TransformerRepro 0.258 0.358 0.746 0.755 0.612 0.529
RetNet+ 0.258 0.362 0.750 0.763 0.614 0.529

Table 5: Accuracy on the Harness-Eval benchmark. All models are trained with 350B tokens with a
batch size of 4M tokens. The results of OpenLLaMA-3B-v1 are taken from their official repository
(https://bit.ly/openllama-350b-results), and StableLM-3B from their technical report
(https://bit.ly/StableLM-3B-4E1T).

B Equivalence Between Chunk-wise Recurrent Representation and478

Recurrent Representation479

We illustrate the equivalence between the recurrent representation and the chunk-wise recurrent480

representation. Specifically, let B denote the chunk length. For the output On, n can be divided as481

n = kB + r where B is the chunk size. Following Equation 6, we have:482

On =

n∑
m=1

γn−mQnK
⊺
mVm

= (QnK
⊺
kB+1:n ⊙ Γ)VkB+1:n + (Qnγ

r)

k−1∑
c=0

B∑
m=1

(K⊺
m+cBVm+cBγ

B−m)γ(k−1−c)B

= (QnK
⊺
kB+1:n ⊙ Γ)VkB+1:n + (Qnγ

r)

k∑
c=1

(K⊺
[c](V[c] ⊙ ζ))γ(k−c)B

= (QnK
⊺
kB+1:n ⊙ Γ)VkB+1:n + (Qnγ

r)Ri−1

(10)

where Γi = γn−i, ζij = γB−m, and [i] indicates the i-th chunk, i.e., x[i] = [x(i−1)B+1, · · · , xiB ].483

Then we write Rn as a recurrent function and compute the retention output of the i-th chunk via:484

Ri =K⊺
[i](V[i] ⊙ ζ) + γBRi−1

ζij = γB−i, ξij = γi

Retention(X[i]) = (Q[i]K
⊺
[i] ⊙D)V[i]︸ ︷︷ ︸

Inner-Chunk

+(Q[i] ⊙ ξ)Ri−1︸ ︷︷ ︸
Cross-Chunk

(11)
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Finally, we show that the chunkwise recurrent representation is equivalent to the other representations.485

C Results with Different Context Lengths486

As shown in Table 6, we report the results of language modeling with different context lengths. In487

order to make the numbers comparable, we use 2048 text chunks as evaluation data and only compute488

the perplexity for the last 128 tokens. Experimental results show that RetNet performs comparably489

with Transformer in different context lengths.490

Model 512 1024 2048
Transformer 13.55 12.56 12.35
RetNet 13.09 12.14 11.98

Table 6: Language modeling perplexity of RetNet and Transformer with different context length. The
results show that RetNet has a consistent advantage across sequence length.

D Hyperparameters Used in Section 3.1491

We use LLaMA [48] architecture, including RMSNorm [59] and SwiGLU [40, 7] module, as492

the Transformer backbone, which shows better performance and stability. The weights of word493

embedding and softmax projection are shared. Consequently, other variants follow these settings.494

For RetNet, the FFN intermediate dimension is 5
3d and the value dimensions in WG,WV ,WO are495

also 5
3d, where the overall parameters are still 12d2.496

For H3, we set the head dimension to 8. For RWKV, we use the TimeMix module to substitute497

self-attention layers while keeping FFN layers consistent with other models for fair comparisons.498

For Mamba, we follow all the details in the paper [19], where double-SSM layers are implemented499

instead of “SSM + SwiGLU”. In addition to RetNet and Mamba, the FFN intermediate dimension is500

all 8
3d. All models have 400M parameters, 24 layers, and a hidden dimension of 1024. We train the501

models with 40k steps and a batch size of 0.25M tokens.502

Params Values
Layers 24
Hidden size 1024
Vocab size 100,288
Heads 24
Adam β (0.9, 0.98)
LR 1.5× 10−4

Batch size 0.25M
Warmup steps 375
Weight decay 0.05
Dropout 0.0

Table 7: Hyperparamters used for the architecture comparison in Section 3.1.

E Hyperparameters Used in Section 3.2503

We re-allocate the parameters in MSR and FFN for fair comparisons. Let d denote dmodel for simplicity504

here. In Transformers, there are about 4d2 parameters in self-attention where WQ,WK ,WV ,WO ∈505

Rd×d, and 8d2 parameters in FFN where the intermediate dimension is 4d. In comparison, RetNet506

has 8d2 parameters in retention, where WQ,WK ∈ Rd×d,WG,WV ∈ Rd×2d,WO ∈ R2d×d. Notice507

that the head dimension of V is twice Q,K, similar to GAU [26]. The widened dimension is508

projected back to d by WO. In order to keep the parameter number the same as Transformer, the FFN509

intermediate dimension in RetNet is 2d. Meanwhile, we set the head dimension to 256, i.e., 256 for510
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queries and keys, and 512 for values. For fair comparison, we keep γ identical among different model511

sizes, where γ = 1− elinspace(log 1/32,log 1/512,h) ∈ Rh instead of the default value in Equation (8).512

Hyperparameters 1.3B 2.7B 6.7B
Layers 24 32 32
Hidden size 2048 2560 4096
FFN size 4096 5120 8192
Heads 8 10 16

Learning rate 6× 10−4 3× 10−4 3× 10−4

LR scheduler Linear decay
Warm-up steps 375
Tokens per batch 4M
Adam β (0.9, 0.98)
Training steps 25,000

Gradient clipping 2.0
Dropout 0.1
Weight decay 0.05

Table 8: Hyperparamters used for language modeling in Section 3.2.

F Results on Open-Ended Generation Tasks513

Table 9 presents one-shot performance on two open-ended question-answering tasks, including514

SQUAD [39] and WebQS [5], with 6.7B models as follows. We report the recall metric in the table,515

i.e., whether the answers are contained in the generated response.516

Dataset SQUAD WebQS
Transformer 67.7 36.4
RetNet 72.7 40.4

Table 9: Answer recall of RetNet and Transformer on open-ended question answering.

G Inference Cost of Grouped-Query Retention517

We compare with grouped-query attention [1] and evaluate the method in the context of RetNet.518

Grouped-query attention makes a trade-off between performance and efficiency, which has been519

successfully verified in LLaMA2 34B/70B [49]. The method reduces the overhead of key/value cache520

during inference. Moreover, the performance of grouped-query attention is better than multi-query521

attention [42], overcoming the quality degradation brought by using one-head key value.522

As shown in Table 10, we compare the inference cost with grouped-query attention and apply the523

method for RetNet. For the LLaMA2 70B model, the number of key/value heads is reduced by 8×,524

where the query head number is 64 while the key/value head number is 8. For RetNet-70B, the525

parameter allocation is identical to LLaMA [48], where the dimension is 8192, and the head number526

is 32 for RetNet. For RetNet-70B-GQ2, the key-value head number is 16, where grouped-query527

retention is applied. We run the inference with four A100 GPUs without quantization.528

When the batch size is 256, LLaMA2 runs out of memory while RetNet without group query still529

has a high throughput. When equipped with grouped-query retention, RetNet-70B achieves 38%530

acceleration and saves 30% memory.531

We evaluate LLaMA2 under 2k and 8k lengths separately. The batch size is reduced to 8 so that532

LLaMA2 can run without out of memory. Table 10 shows that the inference cost of Transformers533

increases with the sequence length. In contrast, RetNet is length-invariant. Moreover, RetNet-70B-534

GQ2 achieves better latency, throughput, and GPU memory than LLaMA2-70B-2k/8k equipped535

16



with grouped-query attention. Notice that the evaluation metrics are averaged over positions of536

different sequence lengths for a fair comparison, rather than only considering the inference cost of537

the maximum length.538

Model Batch Size Latency (ms)↓ Throughput (wps)↑ Memory (GB)↓
LLaMA2-70B-2k 256 — — OOM
LLaMA2-70B-8k 256 — — OOM
RetNet-70B 256 639.1 410.19 72.469
RetNet-70B-GQ2 256 461.8 567.66 52.726

LLaMA2-70B-2k 8 184.5 44.42 33.374
LLaMA2-70B-8k 8 277.7 29.50 37.386
RetNet-70B-GQ2 8 106.2 77.02 32.301

Table 10: Inference cost of RetNet and LLaMA2-70B with difference batch size and length. LLaMA2-
70B is equipped with grouped-query attention, reducing key/value heads by 8×. “-GQ2” means
grouped-query retention, which reduces half of key/value heads. “-2k” and “-8k” indicate sequence
length for LLaMA2, while RetNet is length-invariant. RetNet is capable of large-batch inference and
is favourable in terms of latency, throughput, and GPU memory.

H Hyperparameters Used in Section 3.8539

Hyperparameters DeiT RetNet
Layers 12 12
Hidden size 512 512
Patch size 16 16
FFN size 2048 1024
Heads 8 2

Learning rate 1× 10−3

LR scheduler Cosine decay
Batch size 1024
Epochs 300
Warmup epochs 5
Smoothing 0.1
Weight decay 0.05
Drop path 0.3

Table 11: Hyperparamters used for the ImageNet experiments in Section 3.8.
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NeurIPS Paper Checklist540

1. Claims541

Question: Do the main claims made in the abstract and introduction accurately reflect the542

paper’s contributions and scope?543

Answer: [Yes]544

Justification: The abstract and introduction is carefully written.545

Guidelines:546

• The answer NA means that the abstract and introduction do not include the claims547

made in the paper.548

• The abstract and/or introduction should clearly state the claims made, including the549

contributions made in the paper and important assumptions and limitations. A No or550

NA answer to this question will not be perceived well by the reviewers.551

• The claims made should match theoretical and experimental results, and reflect how552

much the results can be expected to generalize to other settings.553

• It is fine to include aspirational goals as motivation as long as it is clear that these goals554

are not attained by the paper.555

2. Limitations556

Question: Does the paper discuss the limitations of the work performed by the authors?557

Answer: [Yes]558

Justification: Limitations are discussed in the paper.559

Guidelines:560

• The answer NA means that the paper has no limitation while the answer No means that561

the paper has limitations, but those are not discussed in the paper.562

• The authors are encouraged to create a separate "Limitations" section in their paper.563

• The paper should point out any strong assumptions and how robust the results are to564

violations of these assumptions (e.g., independence assumptions, noiseless settings,565

model well-specification, asymptotic approximations only holding locally). The authors566

should reflect on how these assumptions might be violated in practice and what the567

implications would be.568

• The authors should reflect on the scope of the claims made, e.g., if the approach was569

only tested on a few datasets or with a few runs. In general, empirical results often570

depend on implicit assumptions, which should be articulated.571

• The authors should reflect on the factors that influence the performance of the approach.572

For example, a facial recognition algorithm may perform poorly when image resolution573

is low or images are taken in low lighting. Or a speech-to-text system might not be574

used reliably to provide closed captions for online lectures because it fails to handle575

technical jargon.576

• The authors should discuss the computational efficiency of the proposed algorithms577

and how they scale with dataset size.578

• If applicable, the authors should discuss possible limitations of their approach to579

address problems of privacy and fairness.580

• While the authors might fear that complete honesty about limitations might be used by581

reviewers as grounds for rejection, a worse outcome might be that reviewers discover582

limitations that aren’t acknowledged in the paper. The authors should use their best583

judgment and recognize that individual actions in favor of transparency play an impor-584

tant role in developing norms that preserve the integrity of the community. Reviewers585

will be specifically instructed to not penalize honesty concerning limitations.586

3. Theory Assumptions and Proofs587

Question: For each theoretical result, does the paper provide the full set of assumptions and588

a complete (and correct) proof?589

Answer: [NA]590
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Justification: There is no theoretical result in this paper.591

Guidelines:592

• The answer NA means that the paper does not include theoretical results.593

• All the theorems, formulas, and proofs in the paper should be numbered and cross-594

referenced.595

• All assumptions should be clearly stated or referenced in the statement of any theorems.596

• The proofs can either appear in the main paper or the supplemental material, but if597

they appear in the supplemental material, the authors are encouraged to provide a short598

proof sketch to provide intuition.599

• Inversely, any informal proof provided in the core of the paper should be complemented600

by formal proofs provided in appendix or supplemental material.601

• Theorems and Lemmas that the proof relies upon should be properly referenced.602

4. Experimental Result Reproducibility603

Question: Does the paper fully disclose all the information needed to reproduce the main ex-604

perimental results of the paper to the extent that it affects the main claims and/or conclusions605

of the paper (regardless of whether the code and data are provided or not)?606

Answer: [Yes]607

Justification: The experiment can be easily reproduced based on the model description,608

hyperparameter, and any well-known pre-training corpus.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• If the paper includes experiments, a No answer to this question will not be perceived612

well by the reviewers: Making the paper reproducible is important, regardless of613

whether the code and data are provided or not.614

• If the contribution is a dataset and/or model, the authors should describe the steps taken615

to make their results reproducible or verifiable.616

• Depending on the contribution, reproducibility can be accomplished in various ways.617

For example, if the contribution is a novel architecture, describing the architecture fully618

might suffice, or if the contribution is a specific model and empirical evaluation, it may619

be necessary to either make it possible for others to replicate the model with the same620

dataset, or provide access to the model. In general. releasing code and data is often621

one good way to accomplish this, but reproducibility can also be provided via detailed622

instructions for how to replicate the results, access to a hosted model (e.g., in the case623

of a large language model), releasing of a model checkpoint, or other means that are624

appropriate to the research performed.625

• While NeurIPS does not require releasing code, the conference does require all submis-626

sions to provide some reasonable avenue for reproducibility, which may depend on the627

nature of the contribution. For example628

(a) If the contribution is primarily a new algorithm, the paper should make it clear how629

to reproduce that algorithm.630

(b) If the contribution is primarily a new model architecture, the paper should describe631

the architecture clearly and fully.632

(c) If the contribution is a new model (e.g., a large language model), then there should633

either be a way to access this model for reproducing the results or a way to reproduce634

the model (e.g., with an open-source dataset or instructions for how to construct635

the dataset).636

(d) We recognize that reproducibility may be tricky in some cases, in which case637

authors are welcome to describe the particular way they provide for reproducibility.638

In the case of closed-source models, it may be that access to the model is limited in639

some way (e.g., to registered users), but it should be possible for other researchers640

to have some path to reproducing or verifying the results.641

5. Open access to data and code642

Question: Does the paper provide open access to the data and code, with sufficient instruc-643

tions to faithfully reproduce the main experimental results, as described in supplemental644

material?645
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Answer: [Yes]646

Justification: Code will be released in camera-ready version. All of the data we use is647

public-available.648

Guidelines:649

• The answer NA means that paper does not include experiments requiring code.650

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/651

public/guides/CodeSubmissionPolicy) for more details.652

• While we encourage the release of code and data, we understand that this might not be653

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not654

including code, unless this is central to the contribution (e.g., for a new open-source655

benchmark).656

• The instructions should contain the exact command and environment needed to run to657

reproduce the results. See the NeurIPS code and data submission guidelines (https:658

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.659

• The authors should provide instructions on data access and preparation, including how660

to access the raw data, preprocessed data, intermediate data, and generated data, etc.661

• The authors should provide scripts to reproduce all experimental results for the new662

proposed method and baselines. If only a subset of experiments are reproducible, they663

should state which ones are omitted from the script and why.664

• At submission time, to preserve anonymity, the authors should release anonymized665

versions (if applicable).666

• Providing as much information as possible in supplemental material (appended to the667

paper) is recommended, but including URLs to data and code is permitted.668

6. Experimental Setting/Details669

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-670

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the671

results?672

Answer: [Yes]673

Justification: Hyperparameters are attached in the appendix.674

Guidelines:675

• The answer NA means that the paper does not include experiments.676

• The experimental setting should be presented in the core of the paper to a level of detail677

that is necessary to appreciate the results and make sense of them.678

• The full details can be provided either with the code, in appendix, or as supplemental679

material.680

7. Experiment Statistical Significance681

Question: Does the paper report error bars suitably and correctly defined or other appropriate682

information about the statistical significance of the experiments?683

Answer: [No]684

Justification: For large language models, the variance between different runs is negligible.685

Moreover, the evaluation pipeline is deterministic.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The authors should answer "Yes" if the results are accompanied by error bars, confi-689

dence intervals, or statistical significance tests, at least for the experiments that support690

the main claims of the paper.691

• The factors of variability that the error bars are capturing should be clearly stated (for692

example, train/test split, initialization, random drawing of some parameter, or overall693

run with given experimental conditions).694

• The method for calculating the error bars should be explained (closed form formula,695

call to a library function, bootstrap, etc.)696

• The assumptions made should be given (e.g., Normally distributed errors).697
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• It should be clear whether the error bar is the standard deviation or the standard error698

of the mean.699

• It is OK to report 1-sigma error bars, but one should state it. The authors should700

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis701

of Normality of errors is not verified.702

• For asymmetric distributions, the authors should be careful not to show in tables or703

figures symmetric error bars that would yield results that are out of range (e.g. negative704

error rates).705

• If error bars are reported in tables or plots, The authors should explain in the text how706

they were calculated and reference the corresponding figures or tables in the text.707

8. Experiments Compute Resources708

Question: For each experiment, does the paper provide sufficient information on the com-709

puter resources (type of compute workers, memory, time of execution) needed to reproduce710

the experiments?711

Answer: [Yes]712

Justification: The corresponding resources are stated in the paper.713

Guidelines:714

• The answer NA means that the paper does not include experiments.715

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,716

or cloud provider, including relevant memory and storage.717

• The paper should provide the amount of compute required for each of the individual718

experimental runs as well as estimate the total compute.719

• The paper should disclose whether the full research project required more compute720

than the experiments reported in the paper (e.g., preliminary or failed experiments that721

didn’t make it into the paper).722

9. Code Of Ethics723

Question: Does the research conducted in the paper conform, in every respect, with the724

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?725

Answer: [Yes]726

Justification: We follow the NeurIPS Code of Ethics in the research.727

Guidelines:728

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.729

• If the authors answer No, they should explain the special circumstances that require a730

deviation from the Code of Ethics.731

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-732

eration due to laws or regulations in their jurisdiction).733

10. Broader Impacts734

Question: Does the paper discuss both potential positive societal impacts and negative735

societal impacts of the work performed?736

Answer: [NA]737

Justification: We work on fundamental research that has no direct societal impact.738

Guidelines:739

• The answer NA means that there is no societal impact of the work performed.740

• If the authors answer NA or No, they should explain why their work has no societal741

impact or why the paper does not address societal impact.742

• Examples of negative societal impacts include potential malicious or unintended uses743

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations744

(e.g., deployment of technologies that could make decisions that unfairly impact specific745

groups), privacy considerations, and security considerations.746
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• The conference expects that many papers will be foundational research and not tied747

to particular applications, let alone deployments. However, if there is a direct path to748

any negative applications, the authors should point it out. For example, it is legitimate749

to point out that an improvement in the quality of generative models could be used to750

generate deepfakes for disinformation. On the other hand, it is not needed to point out751

that a generic algorithm for optimizing neural networks could enable people to train752

models that generate Deepfakes faster.753

• The authors should consider possible harms that could arise when the technology is754

being used as intended and functioning correctly, harms that could arise when the755

technology is being used as intended but gives incorrect results, and harms following756

from (intentional or unintentional) misuse of the technology.757

• If there are negative societal impacts, the authors could also discuss possible mitigation758

strategies (e.g., gated release of models, providing defenses in addition to attacks,759

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from760

feedback over time, improving the efficiency and accessibility of ML).761

11. Safeguards762

Question: Does the paper describe safeguards that have been put in place for responsible763

release of data or models that have a high risk for misuse (e.g., pretrained language models,764

image generators, or scraped datasets)?765

Answer: [NA]766

Justification: The paper does not pose safety risks.767

Guidelines:768

• The answer NA means that the paper poses no such risks.769

• Released models that have a high risk for misuse or dual-use should be released with770

necessary safeguards to allow for controlled use of the model, for example by requiring771

that users adhere to usage guidelines or restrictions to access the model or implementing772

safety filters.773

• Datasets that have been scraped from the Internet could pose safety risks. The authors774

should describe how they avoided releasing unsafe images.775

• We recognize that providing effective safeguards is challenging, and many papers do776

not require this, but we encourage authors to take this into account and make a best777

faith effort.778

12. Licenses for existing assets779

Question: Are the creators or original owners of assets (e.g., code, data, models), used in780

the paper, properly credited and are the license and terms of use explicitly mentioned and781

properly respected?782

Answer: [Yes]783

Justification: We carefully follow the licenses of open-source code, data, and models.784

Guidelines:785

• The answer NA means that the paper does not use existing assets.786

• The authors should cite the original paper that produced the code package or dataset.787

• The authors should state which version of the asset is used and, if possible, include a788

URL.789

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.790

• For scraped data from a particular source (e.g., website), the copyright and terms of791

service of that source should be provided.792

• If assets are released, the license, copyright information, and terms of use in the793

package should be provided. For popular datasets, paperswithcode.com/datasets794

has curated licenses for some datasets. Their licensing guide can help determine the795

license of a dataset.796

• For existing datasets that are re-packaged, both the original license and the license of797

the derived asset (if it has changed) should be provided.798
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• If this information is not available online, the authors are encouraged to reach out to799

the asset’s creators.800

13. New Assets801

Question: Are new assets introduced in the paper well documented and is the documentation802

provided alongside the assets?803

Answer: [NA]804

Justification: The paper does not release new assets.805

Guidelines:806

• The answer NA means that the paper does not release new assets.807

• Researchers should communicate the details of the dataset/code/model as part of their808
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limitations, etc.810

• The paper should discuss whether and how consent was obtained from people whose811

asset is used.812

• At submission time, remember to anonymize your assets (if applicable). You can either813

create an anonymized URL or include an anonymized zip file.814

14. Crowdsourcing and Research with Human Subjects815

Question: For crowdsourcing experiments and research with human subjects, does the paper816

include the full text of instructions given to participants and screenshots, if applicable, as817

well as details about compensation (if any)?818

Answer: [NA]819

Justification: The paper does not involve crowdsourcing nor research with human subjects.820

Guidelines:821

• The answer NA means that the paper does not involve crowdsourcing nor research with822

human subjects.823

• Including this information in the supplemental material is fine, but if the main contribu-824

tion of the paper involves human subjects, then as much detail as possible should be825

included in the main paper.826

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,827

or other labor should be paid at least the minimum wage in the country of the data828

collector.829

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human830

Subjects831

Question: Does the paper describe potential risks incurred by study participants, whether832

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)833

approvals (or an equivalent approval/review based on the requirements of your country or834
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Answer: [NA]836

Justification: The paper does not involve crowdsourcing nor research with human subjects.837
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• The answer NA means that the paper does not involve crowdsourcing nor research with839

human subjects.840

• Depending on the country in which research is conducted, IRB approval (or equivalent)841

may be required for any human subjects research. If you obtained IRB approval, you842

should clearly state this in the paper.843

• We recognize that the procedures for this may vary significantly between institutions844

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the845

guidelines for their institution.846

• For initial submissions, do not include any information that would break anonymity (if847

applicable), such as the institution conducting the review.848
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