
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFERSPEC: ADAPTIVE INFERENCE-TIME COMPUTE
WITH ENSEMBLE VERIFIER-GUIDED SPECULATIVE
DECODING FOR EFFICIENT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are effective at multistep reasoning, but suffer
from high inference costs, making efficient deployment challenging. Although
speculative decoding (SD) offers latency reductions by letting a lightweight draft
propose tokens that a stronger target verifies, yet its token-centric nature admits
subtle flaws in intermediate steps to propagate, ultimately producing incorrect fi-
nal output. The existing literature, such as reward-guided SD, rely on external
pre-trained reward models, which increase latency and limit generalizability. To
overcome this limitation, we propose INFERSPEC, a mathematically grounded,
verification-aware framework for adaptive inference-time compute. At each step,
INFERSPEC samples multiple draft candidates and applies a self-consistency se-
lector to choose a representative one. It then evaluates the selected step using
two model-internal criteria: (i) Attention-Based Grounding Verification (ABGV),
which computes grounding scores from attention rollout matrices to ensure at-
tribution to inputs or prior steps, and (ii) Log-Probability-Based Verification
(LPBV), which bounds token-level confidence. These signals form a weighted
ensemble score with formal guarantees that only grounded, high-confidence steps
are accepted; uncertain steps escalate to the target model, allocating compute se-
lectively. Experiments on MATH500, GSM8K, Gaokao-2023-En, and Olympiad-
Bench show that INFERSPEC improves accuracy by 3.6% while reducing latency
by ∼11%, consistently outperforming both standard SD and reward-guided SD.

1 INTRODUCTION

Large language models (LLMs) have demonstrated a remarkable ability to solve complex multi-step
reasoning problems across domains such as mathematics and knowledge-intensive tasks Brown et al.
(2020); Team et al. (2024); Hurst et al. (2024). However, their practical deployment is constrained
by high inference costs, which limit scalability and real-time applicability Patterson et al. (2021).
Reducing inference overhead without sacrificing accuracy has therefore become a central research
challenge Frantar et al. (2023); Xu et al. (2024); Lin et al. (2024).

Speculative decoding (SD) Leviathan et al. (2023) has emerged as a promising solution to accelerate
inference, where a lightweight draft model generates candidate tokens, and a stronger target model
verifies them. By offloading much of the token generation process to the smaller draft model, SD
achieves significant latency reductions compared to decoding with the target model alone. Despite
these gains, SD remains inherently token-centric, leading to critical limitations in reasoning tasks.
Its strict unbiasedness requirement often rejects semantically correct draft tokens that have low prob-
ability under the target model, resulting in wasted computation and reduced efficiency Bachmann
et al. (2025); Holtzman et al. (2020). This rigidity limits speedups and makes it less effective for
multi-step tasks such as math and coding.

Recent extensions of SD attempt to address this limitation. For example, reward-guided speculative
decoding (RSD) Liao et al. (2025) introduces external pre-trained reward models (PRMs) to verify
the correctness of the draft output. Although effective in improving reliability, it incurs substantial
drawbacks. First, reliance on external verifiers significantly increases latency and compute overhead.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Second, pre-trained reward models are often specialized to specific domains or tasks, making them
difficult to generalize across diverse reasoning tasks.

This naturally leads to the central question driving our work: How can we design a speculative
decoding framework that maintains accuracy in multi-step reasoning tasks while remaining cost-
efficient and scalable, without relying on external verifier models?

In this paper, we present INFERSPEC, a mathematically grounded, verification-aware framework
for adaptive inference-time compute allocation. The key intuition behind INFERSPEC is:

• Accuracy preservation: Mitigate error propagation by ensuring that only trusted intermedi-
ate outputs are accepted, thereby safeguarding correctness throughout the reasoning chain.

• Efficiency: Enable lightweight, cost-effective verification without relying on large external
verifiers, thus reducing latency.

INFERSPEC integrates two lightweight verifiers derived directly from the model itself: (i) Attention-
based grounding verification, which checks whether the generated step is properly grounded in the
input context or previously validated steps, and (ii) Log-probability-based verification, which en-
sures confidence at the token level. These complementary signals are combined into an ensemble
verifier that adaptively decides whether to accept draft outputs or invoke the target model. Further-
more, we introduce a novel self-consistency selector that identifies the most semantically consistent
reasoning step from multiple sampled draft candidates. To summarize, our key contributions are:

1. We propose INFERSPEC, a novel framework that integrates model-internal verifiers with
adaptive inference-time compute allocation, improving reliability without the need for ex-
ternal reward models.

2. We introduce a novel self-consistency selector that identifies the most representative rea-
soning step from multiple sampled draft candidates.

3. Extensive experiments on various reasoning benchmarks show that INFERSPEC improves
accuracy by up to 3.6% while reducing latency by∼11% compared to state-of-the-art meth-
ods, establishing it as both effective and efficient for real-world LLM deployment.

2 RELATED WORK

Speculative Decoding. Speculative decoding accelerates inference by letting a lightweight draft
model propose tokens that a larger target model verifies in parallel Leviathan et al. (2023); Li et al.
(2024); Chen et al. (2024c; 2023); Zhang et al. (2024); Stern et al. (2018); Xia et al. (2024); Sun
et al. (2024). Variants include tree-based speculation Chen et al. (2024b); Sun et al. (2023); Fu et al.
(2024); Miao et al. (2024) to increase acceptance, self-speculative decoding that leverages parts of
the base model Zhang et al. (2024); Elhoushi et al. (2024), and CTC-based drafting Wen et al. (2024)
to improve sequence quality. Methods like LayerSkip Elhoushi et al. (2024) and Draft-on-the-Fly
Metel et al. (2024) further explore adaptive or early-exit strategies. SpecReason Pan et al. (2025)
performs speculative reasoning with the target model as a critic that scores semantic utility via a
single-token threshold rule. INFERSPEC, in contrast, combines multi-sample self-consistency with
an ensemble verifier, enabling stronger filtering of plausible-but-ungrounded steps. RSD Liao et al.
(2025) incorporates process reward models (PRMs) to guide speculative reasoning at the step level.
INFERSPEC differs by keeping the standard draft-target pipeline but replacing external verifiers with
lightweight, model-internal signals for step-level evaluation.

Reward Models on Reasoning. Reward models are used to provide feedback for choosing the cor-
rect reasoning path Zhou et al. (2025); Wang et al. (2024); Chen et al. (2024a). Outcome reward
models (ORMs) Dong et al. (2024); Yu et al. (2024) score final answers, while process reward mod-
els (PRMs) Lightman et al. (2023) assess intermediate steps. The advancement of reward models has
brought increasing attention to scaling test-time compute Snell et al. (2024). They enable strategies
like Best-of-N sampling Dong et al. (2023); Cobbe et al. (2021); Brown et al. (2024), tree search Yao
et al. (2023); Qi et al. (2024); Chen et al. (2024a), and reward-guided inference such as RSD Liao
et al. (2025) or SPECS Cemri et al. (2025). These improve reasoning quality but add latency and
reliance on external verifiers. In contrast, INFERSPEC leverages an ensemble of internal confidence
and grounding signals, avoiding external PRMs while improving multi-step reasoning accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Architectural overview of the INFERSPEC framework

3 OUR PROPOSED APPROACH

In this section, we present our proposed novel framework for speculative decoding with inference
time compute, in which we introduce an ensemble verifier that integrates attention-based ground-
ing verification (Section 3.1) with probability-based signals (Section 3.2). This formulation en-
ables efficient reasoning without reliance on external verifiers while maintaining interpretability
and robustness. We then describe how our approach combines the inference time compute with
the ensemble-guided acceptance criteria (Section 3.3)), resulting in a method we call INFERSPEC.
Figure 1 outlines the high-level architectural overview of our proposed framework.

3.1 ATTENTION-BASED GROUNDING VERIFICATION (ABGV)

We introduce Attention-Based Grounding Verification (ABGV) as a mechanism to assess whether
each output token (i.e. full reasoning step in our scenario) generated by a language model is suffi-
ciently grounded in the input context or the previously generated steps. Unlike approaches that rely
on external verifiers or auxiliary models, ABGV directly leverages the internal attention matrices
of the model itself, enabling efficient and scalable verification. The key intuition is that a correctly
grounded output should exhibit strong attention alignment with the most relevant input tokens or
validated prior steps, thereby reflecting faithful attribution rather than spurious correlations.

Let an input prompt be denoted as x, and the language model generates an output sequence yi =
(yi,1, yi,2, . . . , yi,T) at each step i. At each generation step, the model produces multilayer multihead
attention matrices for each layer l and head h: A(l,h) ∈ R(tinput+toutput)×(tinput+toutput).

To compute cumulative attribution from input tokens to an output token, we use the well-known at-
tention rollout mechanism, which recursively multiplies attention matrices across layers to show the
total influence of each input token on the final output. Formally, let A(l) denote the attention matrix
averaged over the heads in layer l. The rollout matrix R is computed as: R = A(L)A(L−1) · · ·A(1).

For each output token yi,t, the distribution over the input tokens is given by the row Ryi,t of the
rollout matrix, normalized to sum to 1. Let I denote the set of input tokens (including prior reasoning
steps). The grounding score for token yi,t is defined as:

G(yi,t) =
∑
j∈I

Ryi,t [j]

Here, Ryi,t [j] denotes the attention weight of the token yi,t to the input token j. A higher grounding
score indicates a stronger reliance on the input context. We adopt a stricter criterion by taking the
minimum token grounding score across the reasoning step yi: Gmin-step = mint G(yi,t),

which ensures that every token in the generated reasoning step yi is sufficiently grounded, thereby
preventing ungrounded tokens from being masked by averaging.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Memory-Efficient Design: A naive implementation would require storing attention matrices from
all layers, which could become memory-intensive for larger models and longer outputs. To ensure
practical scalability, ABGV employs two lightweight design choices:

• Layer subset: we store attention matrices from only the last 3 layers, which we find suffi-
cient for grounding quality (Figure 3(a) shows minimal loss in verification performance).

• Head sparsification: we discard entries below 0.01 in attention heads, significantly reduc-
ing memory footprint with negligible effect on grounding fidelity (see Figure 3(b)).

3.2 LOG PROBABILITY-BASED VERIFICATION (LPBV)

We introduce log-probability-based verification (LPBV) as a complementary mechanism to assess
the reliability of the full reasoning step generated by a language model. LPBV relies on the model’s
own predictive confidence, as reflected in the conditional logarithmic probability of the tokens gener-
ated. The key intuition is that faithfully generated and reliable output should be assigned a relatively
high logarithmic probability under the model’s next-token distribution, while ungrounded tokens are
often associated with predictions of low probability. For each token yi,t, of the reasoning step yi,
the model produces a conditional probability given the input x and the prior steps: p(yi,t | x, yi,<t),
from which we compute the logarithmic probability score:

L(yi,t) = log p(yi,t | x, yi,<t)

At each step level, a stricter criterion is applied by taking the minimum log probability across tokens,
ensuring that no token is assigned disproportionately low confidence: Lmin-step = mint L(yi,t) .

3.3 INFERSPEC: ADAPTIVE INFERENCE-TIME COMPUTE WITH ENSEMBLE
VERIFIER-GUIDED SPECULATIVE DECODING

We propose INFERSPEC, an ensemble verifier-guided speculative decoding framework that aug-
ments speculative decoding with principled verification at the step level. At each reasoning step, IN-
FERSPEC evaluates draft outputs using two lightweight, model-internal signals: (i) Log Probability-
Based Verification (LPBV), which enforces token-level confidence by measuring predictive likeli-
hoods, and (ii) Attention-Based Grounding Verification (ABGV), which ensures that every generated
token is properly attributed to the input or previously validated steps via attention rollout. These
complementary criteria are combined into a unified ensemble score that carries formal guarantees:
only steps that are simultaneously confident and grounded are accepted, while uncertain steps trigger
recomputation with the target model. In doing so, INFERSPEC mitigates error cascades (which is
common in speculative decoding), thus improving reasoning reliability while preserving efficiency.
In each reasoning step i, INFERSPEC proceeds as follows:

A. Generate Draft Step: The draft model m samples k candidate reasoning steps {ŷ(1)i , . . . , ŷ
(k)
i }

conditioned on the input prompt and previously accepted steps. To identify the most consistent can-
didate from these possibilities k, we propose the self-consistency selector (see Section 3.4 for more
details), which selects the step ŷj

∗

i that is maximally consistent with the other candidates k − 1.

B. Compute Verification Scores: For the selected step, the ensemble verifier computes both the
logarithmic probability-based score L(ŷj

∗

i) and the grounding score G(ŷj
∗

i). Before aggregation,
both scores are scaled to a comparable range using Min-Max normalization.

C. Apply Acceptance Criterion: The ensemble verifier combines normalized scores through a
weighted aggregation to determine acceptance. If the criterion is satisfied, ŷj

∗

i is accepted; other-
wise, the target model M is invoked to sample k candidate steps {y(1)i , . . . , y

(k)
i } to reduce stochastic

variance and improve reliability. Since even the target model may occasionally produce inconsistent
reasoning. Self-consistency selector is again applied to select the most consistent step yj

∗

i .

D. Repeat Until Termination: This process continues until the model generates an end-of-sequence
(EOS) token or the sequence reaches the maximum length N .
Algorithm 1 outlines the key steps involved in the proposed approach INFERSPEC.

Analysis of the computational complexity of INFERSPEC is provided in Appendix A.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: INFERSPEC

Input: Prompt x, draft model m, target model M , log prob function L(·), grounding score function G(·),
log prob range [ℓmin, ℓmax], grounding range [gmin, gmax], weight β, acceptance threshold τ , EOS
token s, max length N , samples per step k

Output: Response y1:i
1 Initialize y1:0 ← ””
2 for i← 1 to N − 1 do
3 Sample k draft candidates {ŷ(1)i , . . . , ŷ

(k)
i } ← m(x, y1:i−1)

4 Select draft step ŷj∗
i ← Self-Consistency Selector({ŷ(j)

i }
k
j=1)

5 Compute min log prob ℓi ← L(ŷj∗
i)

6 Compute min grounding score gi ← G(ŷj∗
i)

7 Normalize: ℓ̃i =
ℓi − ℓmin

ℓmax − ℓmin
, g̃i =

gi − gmin

gmax − gmin

8 Compute ensemble verifier score: ri ← β · ℓ̃i + (1− β) · g̃i
9 if ri ≥ τ then

10 Accept draft step yi ← ŷj∗
i

11 else
12 Sample k target candidates {y(1)

i , . . . , y
(k)
i } ←M(x, y1:i−1)

13 Select target step yj∗
i ← Self-Consistency Selector({y(j)

i }
k
j=1)

14 yi ← yj∗
i

15 if s ∈ yi then
16 break

3.4 SELF-CONSISTENCY SELECTOR TO IDENTIFY THE MOST CONSISTENT CANDIDATE

To identify the most consistent reasoning step among a set of k sampled candidates (either by draft
or target), we propose the self-consistency selector, based on Zhu et al. (2025). The underlying
intuition is that a consistent candidate should exhibit strong agreement with the other candidates,
rather than being an outlier. Formally, each candidate y(j) is encoded in a normalized embedding
e(j) using a pre-trained sentence transformer E . The (cosine) similarities are then calculated in
pairs between the candidates, yielding a similarity matrix S ∈ Rk×k, which is further normalized
row-wise using softmax to obtain S̃. For each candidate y(j), we calculate its self-alignment score
dj = S̃jj , which measures the degree to which the candidate aligns with itself relative to the others.
Candidates that are semantically consistent with the rest of the set distribute their similarity mass
across multiple peers, producing a low dj , while outliers or less consistent candidates concentrate the
similarity primarily on themselves, resulting in a high dj . Thus, candidates with lower dj are more
representative of the set, and our approach selects the candidate with the minimum self-alignment
score: j∗ ← argminj dj . Algorithm 2 describes our novel self-consistency selector.

3.5 FORMAL GUARANTEES

We now present formal guarantees for the proposed INFERSPEC algorithm.

Lemma 1 (Soundness Guarantee). Let C denote the set of correct reasoning steps, ℓ̃i be the logarith-
mic probability signal, and g̃i be the attention-grounding signal. For for any α ∈ [0, 1], ϵℓ ∈ [0, 1]

and ϵg ∈ [0, 1], assume that Pr
[
ℓ̃i ≥ α

∣∣∣ yi ∈ C] ≥ 1− ϵℓ, Pr[g̃i ≥ α | yi ∈ C] ≥ 1− ϵg. Then,

Pr[V (yi) = accept | yi ∈ C] ≥ 1− (ϵℓ + ϵg).

Proof. Both ℓ̃i and g̃i independently provide high probability acceptance for correct steps. Since
the ensemble score satisfies ri ≥ min(ℓ̃i, g̃i), the probability of rejection is bounded by the union
of individual error events. Then, the total error probability is at most ϵℓ + ϵg and thus the lemma
follows.

Lemma 2 (Efficiency Guarantee). Let πi = Pr[V (yi) = accept]. Then the expected no. of target
calls (call it CT) is E[CT] =

∑T
i=1(1− πi). If πi ≥ πmin for all i, then E[CT] ≤ T · (1− πmin).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2: Self-Consistency Selector

Input: Set of k candidates {y(1), . . . , y(k)}, sentence transformer model E
Output: Index j∗ of the selected candidate

1 Compute embeddings for all candidates: e(j) ← E(y(j)) for j = 1 . . . k

2 Normalize embeddings so that ∥e(j)∥2 = 1

3 Compute pairwise similarity matrix: Sij ← ⟨e(i), e(j)⟩ for i, j = 1 . . . k

4 Apply row-wise softmax: S̃ij =
exp(Sij)∑k
l=1 exp(Sil)

5 Extract diagonal scores: dj ← S̃jj for j = 1 . . . k
6 j∗ ← argminj dj ; // Select most semantically consistent candidate

Proof. At each step i, a target call is required if and only if V (yi) = reject. Thus, the expectation
is

∑
i(1 − πi). If πi ≥ πmin, the sum is bounded by T (1 − πmin). This formalizes that higher

acceptance rates directly reduce expected target calls.

Theorem 1 (Accuracy–Efficiency Trade-off). Suppose correct steps satisfy Lemma 1 and the incor-
rect steps are rejected with probability at least 1− δ. Then, for any sequence of length T ,

Pr[all accepted steps are correct] ≥ (1− ϵℓ − ϵg)
T · (1− δ)CT .

Proof. By Lemma 1, the probability of accepting only the correct steps is at least (1 − ϵℓ − ϵg)
T .

By assumption, incorrect steps are rejected with probability at least 1 − δ, and there are CT target
calls. Thus, the lower bound of the joint probability is (1− ϵℓ − ϵg)

T (1− δ)CT .

These results show that INFERSPEC provides multiplicative accuracy guarantees while bounding the
expected number of target calls.

4 EXPERIMENTS

Our experiments are designed to address the following research questions:
RQ I. Does INFERSPEC provide measurable accuracy improvements on multi-step reasoning bench-
marks compared to state-of-the-art methods, while mitigating error cascades?
RQ II. How does the number of sampled candidates per reasoning step influence both the reliability
and stability of INFERSPEC under the ensemble verification criterion?
RQ III. Can INFERSPEC reduce inference latency relative to reward-guided speculative decoding
(RSD) while preserving, or even enhancing, accuracy guarantees?

4.1 EXPERIMENTAL SETUP

Datasets and Metrics: We conduct extensive experiments on datasets that require complex rea-
soning, including MATH500 Hendrycks et al. (2021), GSM8K Cobbe et al. (2021), GaoKao-2023-
En Liao et al. (2024), and OlympiadBench He et al. (2024). For evaluation, we adopt the official
metrics, i.e., exact match (EM). Detailed descriptions of the datasets can be found in Appendix A.1.

Models: To evaluate the effectiveness of INFERSPEC, we consider both general-purpose and math-
focused LLMs as target and draft models, namely Qwen-2.5-Math Yang et al. (2024), Qwen-2.5
Qwen et al. (2025), and Llama-3 Dubey et al. (2024). For RSD, we adopt Skywork-o1-OpenPRM
o1 Team (2024) as the process reward model (PRM).

Baselines: We evaluate INFERSPEC against four categories of baselines: (1) Target model only: the
target model is used independently, which generally incurs a higher computational cost compared
to INFERSPEC. (2) Draft model with or without PRM: This group covers inference time compute
techniques that aim to maximize the performance of the draft model. Specifically, we evaluate
majority voting and Best-of-N (BoN) Brown et al. (2024); Cobbe et al. (2021), where BoN selects
the highest scoring response (last step) among N candidates using a PRM; beam search Chen et al.
(2024a), which employs a PRM to identify the optimal decoding trajectory; and we process Best-of-
N, which samples N candidate steps and chooses the one with the highest reward. (3) Speculative

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracy on reasoning benchmarks.

Method Target Model Draft Model MATH500 GSM8K Gaokao
2023 En

Olympiad
Bench

Math Model, Draft and Target: Qwen2.5-Math-Instruct
Target Model 7B - 83.0 94.7 66.8 40.6
Target-only Majority 7B - 84.9 95.2 68.8 41.0
Draft-only Majority - 1.5B 79.0 88.9 67.9 40.9
Best-of-N - 1.5B 82.2 93.3 67.4 40.7
SD 7B 1.5B 82.4 94.2 66.3 39.4
RSD 7B 1.5B 82.4 94.4 68.5 39.6
RSD Majority 7B 1.5B 78.0 88.7 64.9 38.7
SC + LPBV 7B 1.5B 83.2 94.5 67.5 39.7
INFERSPEC GREEDY 7B 1.5B 83.6 95.6 68.8 40.7
INFERSPEC 7B 1.5B 85.4 95.8 69.4 41.2

General Model, Draft and Target: Qwen2.5-Instruct
Target Model 7B - 74.8 91.7 64.9 38.8
Draft-only Majority - 1.5B 66.4 82.1 56.9 28.7
Best-of-N - 1.5B 73.4 89.7 60.5 32.7
SD 7B 1.5B 74.8 91.6 63.1 37.1
RSD 7B 1.5B 71.4 90.1 60.5 37.6
RSD Majority 7B 1.5B 60.6 77.0 55.3 31.7
INFERSPEC GREEDY 7B 1.5B 74.9 92.0 65.5 37.8
INFERSPEC 7B 1.5B 77.0 93.0 66.0 40.3

General Model, Draft: Llama-3.2-Instruct and Target: Llama-3.1-Instruct
Target Model 8B - 48.2 83.9 40.8 14.5
Draft-only Majority - 1B 38.0 60.2 32.2 9.5
Best-of-N - 1B 48.6 74.8 40.7 14.4
SD 8B 1B 47.0 83.4 40.1 16.1
RSD 8B 1B 50.0 83.9 41.8 15.7
RSD Majority 8B 1B 36.6 61.9 30.6 12.3
INFERSPEC GREEDY 8B 1B 50.0 84.5 41.9 16.9
INFERSPEC 8B 1B 51.6 85.1 43.9 17.2

decoding (SD): We also include speculative decoding with 7 speculative tokens, a technique aimed
at accelerating inference Leviathan et al. (2023). (4) RSD: Liao et al. (2025) leverages a PRM to
score intermediate steps and adaptively determine when to call the target model.

Setting: We perform all experiments on NVIDIA A100 GPUs with vLLM as the serving backend.
We define a reasoning step as a generation terminated by \n\n. For generating multiple samples, we
set temperature = 0.7, top p = 0.8, and n = 16. INFERSPEC refers to this multi-sample setting
combined with our self-consistency selector, which chooses the most representative reasoning step.
RSD Majority likewise employs this multi-sample setting, with each step scored by a PRM and the
highest-scoring candidate selected. In the greedy setting where temperature = 0, top p = 1, and
n = 1, we refer to our approach as INFERSPEC GREEDY. For both RSD and INFERSPEC, we set the
threshold parameter to τ = 0.7 and we set β = 0.3 for INFERSPEC. For details about hyperparameters
refer to Appendix A.2.2. Unless stated otherwise, all models used are Qwen-2.5-Math-Instruct.

4.2 PERFORMANCE COMPARISON

To address RQ1, we evaluate INFERSPEC on a broad set of challenging reasoning benchmarks, as
summarized in Table 1, and make the following observations: (1) Inference-time compute strategies
such as majority voting and Best-of-N, which rely on extensive draft sampling, typically underper-
form compared to the accuracy of a single target model. This underscores the critical role of larger
models in reasoning tasks, as their capabilities cannot be readily matched by smaller models even
with increased computation. (2) While target-only majority voting may match INFERSPEC in ac-
curacy, it incurs substantially higher computational cost as every reasoning step must be sampled
multiple times from the target, contrary to our objective of reducing target calls. (3) Although spec-
ulative decoding (SD) is theoretically unbiased, ensuring accuracy equivalent to the target model,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison with search-based methods on Qwen2.5-Math-Instruct. Beam Search and
Process Best-of-N use a 1.5B base model and a 1.5B PRM.

Method Setting MATH500 GSM8K

Draft Model (1.5B) - 73.8 85.0
Process Best-of-N N = 8 75.8 87.8
Process Best-of-N N = 16 76.0 87.9
Beam Search bs=4 78.2 88.9
Beam Search bs=8 78.2 88.4
RSD (1.5B/7B/1.5B) - 82.4 94.4
INFERSPEC GREEDY - 83.6 95.6
INFERSPEC maj@16 85.4 95.8

it often performs worse in practice. As also reported by Chen et al. (2023), this drop arises from
floating-point errors. Furthermore, when the draft model surpasses the target model, the strict un-
biased nature of SD can actually degrade performance relative to the draft. Hence, deploying SD
requires careful consideration of such cases. (4) Reward-guided speculative decoding (RSD) alle-
viates this limitation by incorporating a process reward model (PRM) to assess the quality of draft
reasoning steps. However, relying on an external verifier introduces both latency and computational
overhead. (5) INFERSPEC replaces PRMs with lightweight model-internal grounded verifiers to
evaluate the draft steps. Across all benchmarks, INFERSPEC consistently exceeds both the single tar-
get model and RSD, demonstrating the strength and efficiency of our approach. In Appendix A.2.3,
we show qualitative analysis of reasoning steps scored by PRM. Even though all draft-generated
steps receive high acceptance scores from the PRM, the final answer is still incorrect, highlighting
the need for stronger verification methods that ensure both step-wise soundness and final-answer
correctness. While LPBV captures confidence, it lacks grounding, so confident but ungrounded
steps frequently slip through. In contrast, INFERSPEC achieves higher accuracy, demonstrating that
ABGV is essential for rejecting ungrounded steps that appear locally plausible.

4.3 COMPARISON WITH SEARCH-BASED APPROACHES

We also compare INFERSPEC with beam search Chen et al. (2024a) and process Best-of-N, as re-
ported in Table 2. Our method consistently outperforms both search-based baselines. These findings
reveal an important observation: When reasoning steps become particularly complex, search-based
techniques face limitations, as combinatorial growth of candidate solutions makes it difficult to re-
liably identify optimal paths, resulting in degraded performance. In contrast, INFERSPEC leverages
the expressive power of larger models to generate strong candidate solutions. In addition, the incor-
poration of an ensemble verifier provides step-level feedback, mitigating the challenges of difficult
reasoning tasks. This highlights that moving beyond purely search-based strategies and augmenting

0 5 10 15
75

80

85

90

No. of samples

A
cc

ur
ac

y
on

M
A

T
H

50
0

InferSpec

RSD Majority

(a) Varying number of samples

MATH500 GSM8K GaoKao Olympiad
0

20

40

60

80

85.4
95.8 69.4

41.2

78.0
88.7 64.9

38.7

Ti
m

e
(i

n
m

in
ut

es
)

InferSpec

RSD Majority

(b) Runtime comparison

Figure 2: (a) Varying number of samples (b) Runtime comparison (y-axis) RSD Majority vs INFER-
SPEC with corresponding accuracy indicated on top of bars.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MATH500 GSM8K GaoKao Olympiad
0

20

40

60

80

85.4
95.8 69.4

41.2

84.8
95.7 68.6

40.2

Ti
m

e
(i

n
m

in
ut

es
)

Last

All

(a) Changing Layers

MATH500 GSM8K GaoKao Olympiad
0

20

40

60

80

85.4
95.8 69.4

41.2

84.6
95.4 67.3

40

Ti
m

e
(i

n
m

in
ut

es
)

YES

NO

(b) Sparsity in attention heads

Figure 3: Ablation studies: (a) changing layers (b) Sparsity in attention heads by INFERSPEC.
Runtime comparison (y-axis) with corresponding accuracy indicated on top of bars.

larger models with lightweight feedback mechanisms can deliver both higher efficiency and stronger
performance, particularly when the search space is vast or the reasoning task is highly complex.

4.4 EFFECT OF SAMPLE SIZE AND RUNTIME COMPARISON

To investigate RQ II, we evaluate INFERSPEC under varying sample sizes per reasoning step. As
shown in Figure 2(a), accuracy steadily improves as more diverse candidates are explored, with
gains saturating at higher counts. In contrast, RSD Majority exhibits diminishing returns and even
degrades performance with larger samples, due to accumulated noise from PRM. These findings
demonstrate that INFERSPEC takes advantage of additional candidate generations more effectively.

For RQ III, Figure 2(b) compares the runtime of RSD Majority and INFERSPEC, with the accu-
racy indicated on top of the bars. INFERSPEC consistently achieves both higher accuracy and lower
latency. For example, on GSM8K, INFERSPEC achieves an accuracy of 95.8% in 34 minutes, com-
pared to the accuracy of the RSD Majority 88.7% in more than 41 minutes. Together, these results
confirm that our ensemble verifier-guided speculative decoding framework improves reasoning reli-
ability while delivering superior efficiency.

4.5 ABLATION STUDIES

We perform ablation studies to examine key design choices in INFERSPEC, focusing on (a) the lay-
ers used to extract internal signals and (b) role of sparsity in attention heads, as shown in Figure 3.
Changing Layers: Figure 3(a) compares using attention from the last three layers versus aggregat-
ing across all layers. Although the latter yields marginal gains on some benchmarks (e.g. GSM8K),
it consistently adds runtime overhead. Leveraging only the last three layers strikes a better balance,
achieving higher accuracy with lower latency. We show other variants in Appendix A.2.1.
Sparsity in Attention Heads: We discard entries below 0.01 in attention heads. Figure 3(b) shows
that enforcing sparsity improves both accuracy and runtime. This suggests that sparsity sharpens the
focus of the verifier on relevant attention patterns, enhancing efficiency without loss of performance.

5 CONCLUSION AND FUTURE WORK

In this work, we propose INFERSPEC, an adaptive speculative decoding that improves both effi-
ciency and accuracy in multistep reasoning. By leveraging lightweight model-internal signals for
verification, along with a self-consistency selector that identifies semantically representative reason-
ing step across samples, INFERSPEC avoids dependence on external reward models and achieves
higher accuracy with reduced latency compared to state-of-the-art methods. In future, we plan to
extend INFERSPEC by incorporating additional internal signals such as entropy-based measures and
uncertainty calibration to refine verifier reliability. Another promising direction is applying INFER-
SPEC to domains beyond text reasoning, including code generation and multimodal tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

G. Bachmann, S. Anagnostidis, A. Pumarola, M. Georgopoulos, A. Sanakoyeu, Y. Du, E. Schönfeld,
A.K. Thabet, and J. Kohler. Judge decoding: Faster speculative sampling requires going beyond
model alignment. In 13th International Conference on Learning Representations (ICLR), 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mert Cemri, Nived Rajaraman, Rishabh Tiwari, Xiaoxuan Liu, Kurt Keutzer, Ion Stoica, Kannan
Ramchandran, Ahmad Beirami, and Ziteng Sun. Specs: Faster test-time scaling through specula-
tive drafts. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models, 2025.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. Advances in Neural Information Processing Systems, 37:27689–27724, 2024a.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226–86242, 2024c.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf
a comprehensive practical alignment recipe of iterative preference learning. Transactions on
Machine Learning Research, 2024, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12622–12642, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. Optq: Accurate post-
training quantization for generative pre-trained transformers. In 11th International Conference
on Learning Representations, 2023.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. In Proceedings of the 41st International Conference on Machine
Learning, pp. 14060–14079, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, pp. 28935–
28948. PMLR, 2024.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. In Forty-second
International Conference on Machine Learning (ICML), 2025.

Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan. Mario: Math reasoning with code
interpreter output-a reproducible pipeline. In Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 905–924, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024.

Michael Metel, Peng Lu, Boxing Chen, Mehdi Rezagholizadeh, and Ivan Kobyzev. Draft on the
fly: Adaptive self-speculative decoding using cosine similarity. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 2267–2272, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932–949, 2024.

S. o1 Team. Skywork-o1 open series, 2024. URL https://huggingface.co/Skywork.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

11

https://huggingface.co/Skywork.

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenting Qi, MA Mingyuan, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual rea-
soning makes smaller llms stronger problem-solver. In The Thirteenth International Conference
on Learning Representations, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, and Jian Yang et al. Qwen2.5 technical
report, 2025. URL https://arxiv.org/abs/2412.15115.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. CoRR, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222–30242, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Zhuofan Wen, Shangtong Gui, and Yang Feng. Speculative decoding with ctc-based draft model
for llm inference acceleration. Advances in Neural Information Processing Systems, 37:92082–
92100, 2024.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 7655–7671, 2024.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. In The Thirteenth
International Conference on Learning Representations, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Association for Computational Linguistics: NAACL
2024, pp. 858–875, 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11263–11282, 2024.

Jin Peng Zhou, Kaiwen Wang, Jonathan D Chang, Zhaolin Gao, Nathan Kallus, Kilian Q Wein-
berger, Kianté Brantley, and Wen Sun. q#: Provably optimal distributional rl for llm post-training.
CoRR, 2025.

Y. Zhu, H. Zhang, B. Wu, J. Li, Z. Zheng, P. Zhao, P. Chen, and Y. Bian. Measuring diversity in
synthetic datasets. In Forty-Second International Conference on Machine Learning, 2025.

12

https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASETS DESCRIPTION

An overview of the dataset statistics and examples are shown in Table 3.

Table 3: Overview of the Complex QA datasets used in this study.

Dataset #Test Example Question Description
What is the smallest positive perfect cube multi-step

MATH500 Hendrycks et al. (2021) 500 that can be written as the sum of three arithmetic word
consecutive integers? problems
The red car is 40% cheaper than the blue car. multi-step

GSM8K Cobbe et al. (2021) 1319 The price of the blue car is $100. How much arithmetic word
do both cars cost? problems
Suppose the universe set is U={0,1,2,4,6,8}. multi-step

GaoKao-2023-En Liao et al. (2024) 385 Two of its subsets are M={0,4,6}, N={0,1,6}. arithmetic word
Find M ∪ N̄. problems
A number is called Norwegian if it has three multi-step

OlympiadBench He et al. (2024) 675 distinct positive divisors whose sum is equal arithmetic word
to 2022. Determine smallest Norwegian number. problems

MATH500: A benchmark subset curated from the MATH dataset, consisting of 500 competition-
level mathematics problems spanning algebra, geometry, combinatorics, number theory, and proba-
bility. Each problem is accompanied by a detailed step-by-step solution, requiring multi-hop sym-
bolic and logical reasoning. We use the full 500 problems as the evaluation set.

GSM8K: A dataset of linguistically diverse grade-school math word problems designed to test
multi-step numerical reasoning. It comprises 8.5K questions, with a test set of 1,319 problems.
Each question includes annotated solutions with intermediate steps, encouraging models to demon-
strate faithful reasoning chains.

Gaokao-2023-En: Derived from the English-translated 2023 Gaokao (China’s national college en-
trance exam), this dataset contains high-school level math word problems with a strong emphasis on
reasoning over algebra, functions, and applied mathematics. It poses particular challenges due to its
formal problem style and complex solution trajectories. The evaluation set includes 385 problems.

OlympiadBench: A large-scale benchmark of problems drawn from global mathematics and sci-
ence Olympiads, covering topics such as advanced algebra, geometry, physics, and logical reason-
ing. The problems are highly challenging, requiring creative multi-step reasoning far beyond routine
computation. We evaluate on the test split of 675 questions.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 CHANGING LAYERS

We perform ablation studies to analyze key design choices in INFERSPEC, particularly the selection
of layers used to extract internal grounding signals. Figure 4 compares four settings: using attention
from (1) all layers, (2) the last three layers, (3) the middle three layers, and (4) the first three layers.
The results show that the first three layers perform noticeably worse than other variants, while the
middle three layers achieve higher accuracy but still lag behind the deeper layers. Both the last three
layers and all layers yield strong performance, but using all layers incurs higher runtime overhead.
Overall, the last three layers provide the best trade-off, delivering strong accuracy with lower latency.

A.2.2 TUNING OF β AND τ

We analyze the sensitivity of our approach to two hyperparameters: the step acceptance threshold τ
for our ensemble verifier, and the weighting factor β, which balances the log-probability and atten-
tion grounding score when computing the ensemble score. As shown in Table 4, accuracy remains
stable across different values of β, with β = 3 performing slightly better than higher values, sug-
gesting that a moderate weighting strikes a good balance between model confidence and grounding.
Table 5 reports results for varying τ . We find that τ = 0.7 achieves the most consistent gains across
datasets, while both lower (τ = 0.6) and higher values (τ = 0.8, 0.9) lead to small drops. Over-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MATH500 GSM8K GaoKao Olympiad

0

50

100

A
cc

ur
ac

y

All

Last

Middle

First

Figure 4: Changing Layers

Table 4: Accuracy with different βs. Overall, β = 0.3 works well for different tasks.

Method Target Model Draft Model Setting MATH500 GSM8K Gaokao
2023 En

Olympiad
Bench

Math Model, Draft and Target: Qwen2.5-Math-Instruct
Ours Majority 7B 1.5B β = 0.3 85.4 95.8 69.4 41.2
Ours Majority 7B 1.5B β = 0.5 85.0 95.7 68.5 40.4
Ours Majority 7B 1.5B β = 0.7 84.4 95.6 65.5 40.2

Table 5: Accuracy with different τs. Overall, τ = 0.7 works well for different tasks.

Method Target Model Draft Model Setting MATH500 GSM8K Gaokao
2023 En

Olympiad
Bench

Math Model, Draft and Target: Qwen2.5-Math-Instruct
Ours Majority 7B 1.5B τ = 0.6 83.6 93.5 67.4 39.7
Ours Majority 7B 1.5B τ = 0.7 85.4 95.8 69.4 41.2
Ours Majority 7B 1.5B τ = 0.8 84.2 94.6 68.7 40.4
Ours Majority 7B 1.5B τ = 0.9 85.1 95.6 69.2 41.0

all, our method is robust to hyperparameter choices, with β = 3 and τ = 0.7 serving as effective
defaults across tasks.

A.2.3 QUALITATIVE ANALYSIS

Table 6, 7 presents a qualitative example of reasoning steps scored by the PRM. Each intermedi-
ate step receives a high score, leading the verifier to accept the draft-generated reasoning without
intervention. However, despite this consistent acceptance, the reasoning chain ultimately produces
an incorrect final answer. This illustrates a key limitation of relying solely on PRM scores: while
they may capture local plausibility of individual steps, they do not guarantee global correctness of
the overall solution. Such cases highlight the need for more robust evaluation mechanisms that can
account for consistency across steps as well as correctness of the final outcome.

A.3 COMPLEXITY ANALYSIS - INFERSPEC

We compare the computational complexity of Speculative Decoding (SD), Reward-guided Specula-
tive Decoding (RSD), and INFERSPEC.

Let:

• T = number of reasoning steps,
• k = number of draft candidates sampled per step,
• d = hidden dimension of embeddings,
• H = number of attention heads,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Qualitative analysis of reasoning steps scored by PRM. Even though all draft-generated
steps receive high acceptance scores from the PRM, the final answer is still incorrect.

Question: A treasure hunter found a buried treasure chest filled with gems. There were 175 dia-
monds, 35 fewer rubies than diamonds, and twice the number of emeralds than the rubies. How
many of the gems were there in the chest?
Reasoning Steps PRM Scores
Step 1: Identify the number of diamonds in the chest. The treasure hunter
found 175 diamonds.

0.962108

Step 2: Calculate the number of rubies. There were 35 fewer rubies than
diamonds, so the number of rubies is 175 - 35 = 140.

0.962108

Step 3: Calculate the number of emeralds. The number of emeralds is twice
the number of rubies, so the number of emeralds is 2 * 140 = 280.

0.962108

Step 4: Calculate total number of gems. To find the total number of gems,
add the number of diamonds, rubies, and emeralds: 175 + 140 + 280 = 535.

0.961534

Step 5: The final answer is: \boxed{535} 0.962108

Table 7: Qualitative analysis of reasoning steps scored by PRM. Even though all draft-generated
steps receive high acceptance scores from the PRM, the final answer is still incorrect.

Question: Two girls each got 1/6 of the 24 liters of water. Then a boy got 6 liters of water. How
many liters of water were left?
Reasoning Steps PRM Scores
Step 1: Calculate the amount of water each girl received. Each girl got 1/6
of 24 liters of water, which is (1/6) * 24 = 4 liters.

0.92192

Step 2: Calculate the total amount of water the girls received. Since there
are two girls, the total amount of water they received is 2 * 4 = 8 liters.

0.92079

Step 3: Calculate the amount of water left after the boy got 6 liters. Subtract
the amount of water the boys received from the total amount of water the
girls received: 8 - 6 = 2 liters.

0.92079

Step 4: The final answer is: \boxed{2} 0.92079

• L = number of layers used in ABGV,
• Cdraft, Ctarget = per-step cost of draft and target models.

Speculative Decoding (SD).

Complexity = O(T · (k · Cdraft + (1− π) · k · Ctarget)) , (1)

where π is the acceptance probability.

Reward-guided Speculative Decoding (RSD). In addition to SD cost, RSD requires a pretrained
reward model (PRM) verifier:

Complexity = O(T · (k · Cdraft + (1− π) · k · Ctarget + CPRM)) . (2)

INFERSPEC. It includes draft sampling, self-consistency selector, and ensemble verification.

Complexity = O
(
T ·

(
k · Cdraft + k2d+ L̃H̃T 2 + (1− π) · k · Ctarget

))
, (3)

where L̃≪ L and H̃ ≪ H represent the reduced number of layers and heads used in ABGV under
sparsity/last-layer approximations.

It is not difficult to infer the following from the complexity analysis.

• INFERSPEC avoids the external PRM cost CPRM in RSD, reducing latency and compute.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Qualitative analysis of reasoning steps accepted by INFERSPEC, where consistent step
verification leads to the correct final answer.

Question: A treasure hunter found a buried treasure chest filled with gems. There were 175 dia-
monds, 35 fewer rubies than diamonds, and twice the number of emeralds than the rubies. How
many of the gems were there in the chest?
Reasoning Steps
Step 1: First, let’s identify the number of diamonds, which is given as 175.
Step 2: The number of rubies is 35 fewer than the number of diamonds, so we need to subtract 35
from 175 to find the number of rubies: 175 - 35 = 140 rubies.
Step 3: The number of emeralds is twice the number of rubies, so we need to multiply the number
of rubies by 2 to find the number of emeralds: 140 * 2 = 280 emeralds.
Step 4: To find the total number of gems in the chest, we need to add the number of diamonds,
rubies, and emeralds: 175 + 140 + 280 = 595 gems.
Step 5: The final answer is: \boxed{595}

Table 9: Qualitative analysis of reasoning steps accepted by INFERSPEC, where consistent step
verification leads to the correct final answer.

Question: Two girls each got 1/6 of the 24 liters of water. Then a boy got 6 liters of water. How
many liters of water were left?
Reasoning Steps
Step 1: First, let’s calculate the amount of water each girl got. Since they each got 1/6 of the 24
liters, we can calculate this as 24 * (1/6) = 4 liters per girl.
Step 2: Since there are two girls, the total amount of water they got is 4 * 2 = 8 liters.
Step 3: Now, let’s calculate the amount of water left after the girls got their share. We subtract the
amount they got from the total amount of water: 24 - 8 = 16 liters.
Step 4: Then, boy got 6 liters of water. We subtract this from remaining water: 16 - 6 = 10 liters.
Step 5: The final answer is: \boxed{10}

• With practical optimizations (L̃ ≈ 3, H̃ ≪ H), the ABGV overhead is negligible relative
to the forward draft / target passes.

• Empirically, INFERSPEC achieves up to 11% lower runtime than RSD while improving
accuracy by 1–3% in benchmarks.

A.4 LLM USAGE

Large Language Models (LLMs) were used in this work solely as general-purpose assistive tools.
Specifically, they were employed in two limited capacities: (i) to aid in polishing the writing for
clarity and readability, and (ii) to assist in retrieval and discovery tasks, such as identifying related
work. No part of the research design, algorithm development, theoretical analysis, or experimental
implementation relied on LLMs. Their role was restricted to supportive tasks.

16

	Introduction
	Related Work
	Our Proposed Approach
	Attention-Based Grounding Verification (ABGV)
	Log Probability-Based Verification (LPBV)
	InferSpec: Adaptive Inference-Time Compute with Ensemble Verifier-Guided Speculative Decoding
	Self-Consistency Selector to Identify the Most Consistent Candidate
	Formal Guarantees

	Experiments
	Experimental Setup
	Performance Comparison
	Comparison with Search-Based Approaches
	Effect of Sample Size and Runtime Comparison
	Ablation Studies

	Conclusion and Future Work
	Appendix
	Datasets Description
	Additional Experiments
	Changing Layers
	Tuning of and
	Qualitative Analysis

	Complexity Analysis - InferSpec
	LLM Usage

