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Abstract

Event argument extraction (EAE) is a crucial
task in information extraction. However, its
performance heavily depends on expensive an-
notated data, making data scarcity a persistent
challenge. Data augmentation serves as an ef-
fective approach to improving model perfor-
mance in low-resource settings, yet research on
applying LLMs for EAE augmentation remains
preliminary. In this study, we pay attention to
the boundary sensitivity of EAE and investigate
four LLM-based augmentation strategies: argu-
ment replacement, adjunction rewriting, their
combination, and annotation generation. Our
experiments highlight the significance and ef-
fectiveness of enhancing argument diversity in
low-resource EAE, with argument replacement
demonstrating the best performance among all
augmentation methods and surpassing the pre-
vious LLM-based approach. Additionally, we
conduct a comprehensive evaluation from mul-
tiple perspectives, including task characteris-
tics and data scale, providing valuable insights
for the practical application of EAE in low-

resource scenariosl .

1 Introduction

Event Argument Extraction (EAE) is a key subtask
of Event Extraction (EE) that focuses on identi-
fying and classifying participants involved in an
event (Pouran Ben Veyseh et al., 2020; Parekh et al.,
2023). As a complex NLP task, EAE requires a
fine-grained semantic understanding of arguments
and faces significant challenges, including the di-
versity and imbalance of argument roles, as well as
the flexibility of argument boundaries. Although
recent advancements in LLMs have demonstrated
strong capabilities across various NLP tasks, their
performance on EAE remains inferior to that of
fine-tuned models (Parekh et al., 2023; Ma et al.,
2023; Sun et al., 2024). However, fine-tuning EAE

'The code will be publicly available on GitHub.

Source Sentence:
The small, whitewashed chapel was the first Protestant

church built . T
_r -~
Event type: Argument: Argument:
Building Place Created Entity

Argument Replacement:
The small, whitewashed chapel was the first Anglican
church built

Adjunction Rewriting:
The small, whitewashed chapel, which holds historical
significance, was the first Protestant church built

Argument Replacement & Adjunction Rewriting:
The small, whitewashed chapel stands proudly as the
first Anglican church built , reflecting the
historical significance of the area.

Annotation Generation:
Built 1847 - 1849, this usually deserted Anglican
foundation is Hong Kong ' s oldest church .

Figure 1: Examples of different augmentation methods.

models relies heavily on annotated data, which
is expensive to obtain due to the complexity of
event annotation, particularly in specialised do-
mains such as healthcare. Consequently, data
scarcity remains a major challenge in developing
effective EAE models, especially in low-resource
settings.

Data augmentation is an effective approach to
mitigating data scarcity. However, boundary sen-
sitivity is a critical consideration when generating
data for EAE. Prior studies, which have been shown
to be effective in EAE, have primarily addressed
this by preserving argument positions while either
replacing argument spans (Hong et al., 2022; Wang
and Huang, 2024) or rewriting the surrounding con-
text (Yang et al., 2019; Gao et al., 2022). How-
ever, most prior research relies on knowledge base
matching for argument replacement or small lan-
guage models for adjunction rewriting, which intro-



duces certain limitations. For instance, argument
replacement is typically restricted to predefined en-
tity types, whereas in real-world tasks, arguments
often appear as spans of varying lengths rather than
fixed entities.

LLMs, with their extensive knowledge and
strong text generation capabilities, offer a promis-
ing solution for data augmentation in EAE. How-
ever, research on LLM-based augmentation for
EAE remains limited, with most studies overlook-
ing the task’s inherent boundary sensitivity (Sun
et al., 2024; Meng et al., 2024). We argue that
using LLMs for argument relabeling is inherently
constrained by their extraction performance, intro-
ducing additional noise that may undermine aug-
mentation effectiveness, as demonstrated by Sun
et al. (2024).

This study explores different ways to lever-
age LLMs for EAE data augmentation in low-
resource settings, providing a comprehensive
evaluation from multiple perspectives. Specif-
ically, we compare four LLM-based augmenta-
tion strategies: argument replacement, adjunction
rewriting, their combination, and annotation gen-
eration (see examples in Figure 1). Among these,
argument replacement, adjunction rewriting, and
their combination are boundary-aware methods,
as they preserve the positions of original argu-
ments when generating new samples. In contrast,
annotation generation investigates the impact of
LLM-generated labels, which are widely used in
previous methods, on augmentation effectiveness.
Furthermore, argument replacement evaluates the
LLM'’s capability to enhance argument diversity,
whereas adjunction rewriting assesses its ability
to improve sentence representation diversity,
which are two distinct yet essential directions for
EAE data augmentation.

We conduct experiments on two datasets with
distinct characteristics: GENEVA (Parekh et al.,
2023), a general-domain dataset covering hundreds
of event and argument types, and PHEE (Sun
et al., 2022), a medical-domain dataset with dense
argument annotations but a limited set of types.
Our experiments reveal the following findings:
(i) Boundary-aware data augmentation methods
all effectively enhance EAE performance, with ar-
gument replacement yielding the most significant
improvement. On the argument-diverse general—
domain dataset GENEVA, it increases Micro F1
by 8%. However, combining argument replace-
ment with adjunction rewriting does not yield ad-

ditional benefits, while using LLM for annota-
tion generation can lead to performance degrada-
tion. (ii) The impact of data scaling is substantially
greater on GENEVA than on PHEE, and augmen-
tation proves more effective on GENEVA. This
suggests that in low-resource EAE, the primary
challenge lies in learning diverse argument seman-
tics rather than handling complex argument struc-
tures or domain knowledge. Notably, LLM-based
argument augmentation effectively addresses this
challenge. (iii) Boundary-aware data augmentation
improves both Micro F1 and Macro F1, though the
relative gain in Micro F1 is higher. This indicates
that the proposed augmentation methods help mit-
igate argument imbalance but still leave room for
further improvement, warranting future research.
Additionally, we provide in-depth analysis from the
perspectives of extraction errors, augmentation
quality, and data scale, offering valuable insights
for EAE in low-resource scenarios.

2 Related Work

Event Argument Extraction Event Argument
Extraction (EAE) is a subtask of event extraction
(EE) that typically follows event detection. Unlike
event detection, EAE requires more fine-grained
semantic understanding and faces additional chal-
lenges due to the diversity and imbalance of argu-
ment roles, as well as the flexibility of argument
boundaries. Early EAE methods were predomi-
nantly classification-based, involving the selec-
tion of candidate argument spans followed by the
assignment of argument roles (Pouran Ben Vey-
seh et al., 2020; Ma et al., 2022b; He et al., 2023).
However, classification-based methods struggled
with overlapping arguments and have been sur-
passed by generation-based approaches in recent
years. Generation-based methods reframe EE as a
sequence generation task, either by filling manually
constructed natural language templates with argu-
ments (Paolini et al., 2021; Hsu et al., 2022) or by
transforming extraction targets into structured lan-
guage representations that are then linearised (Lu
et al., 2021, 2022). Recently, some studies have
further reformulated the EAE task into a Ques-
tion Answering (QA) paradigm, where argument
role definitions are converted into questions, and
the model generates answers (i.e., argument ex-
tractions) (Li et al., 2020; Du and Cardie, 2020;
Sun et al., 2022). QA-based EAE models can be
categorised into extractive and generative types



based on their base models, i.e., encoder-only or
encoder-decoder architectures. Based on our em-
pirical observations, generative QA models out-
perform extractive QA models and structured gen-
eration methods in low-resource scenarios. With
the advancement of LLMs, some studies have also
explored LLM-based prompting and in-context
learning approaches for EAE (He et al., 2024;
Sun et al., 2024; Sainz et al., 2024). However, due
to the complexity of the EAE task, LLMs still fall
short of achieving the performance of fine-tuned
models in this domain.

Data Augmentation for EAE The EAE task
often suffers from limited training resources due
to annotation complexity, with data augmentation
serving as a practical approach to alleviating low-
resource challenges. General text augmentation
techniques, such as text paraphrasing (Wei and
Zou, 2019) and back translation (Shleifer, 2019),
may alter the positions of arguments within a sen-
tence, complicating label generation and introduc-
ing noise. Effective EAE data augmentation should
preserve boundary accuracy, while existing meth-
ods fall into two main directions: (i) Enhancing
argument diversity: This approach leverages ex-
isting datasets (e.g., ACE (Doddington et al., 2004))
or knowledge bases (e.g., Probase (Wu et al., 2012))
to retrieve entity types for each argument role and
replace arguments with other instances of the same
type (Yang et al., 2019; Hong et al., 2022; Wang
and Huang, 2024). However, it is constrained by
predefined entity types, which limit the scope of
replacements, and suffers from ambiguity in argu-
ment-entity matching, which can result in substi-
tutions that do not fully align with the sentence
context. (i) Enhancing sentence diversity: This
approach rewrites adjunctions of the sentence while
keeping arguments unchanged, typically through
synonym replacement (Ma et al., 2022a) or mask—
filling with a pre-trained language model (Yang
etal., 2019; Gao et al., 2022). We argue that LLMs,
with their strong reasoning abilities and extensive
internal knowledge, are well-suited for EAE data
augmentation and can more effectively address ex-
isting challenges. However, their application in
this area remains limited. While some studies have
explored LLMs for EAE data augmentation, they
have largely overlooked boundary sensitivity and
shown only marginal improvements (Sun et al.,
2024; Meng et al., 2024). In this work, we conduct
a broader investigation into LLM-based augmen-

tation strategies specifically tailored for EAE and
assess their effectiveness.

3 Method

In this section, we first define and formalise the
event argument extraction task and then present
four LLM-based data augmentation strategies ex-
plored in this work.

3.1 Task Formalisation

Event argument extraction is a subtask of event ex-
traction, where an event is typically characterised
by its type, trigger, and a set of arguments. Event
arguments represent specific pieces of information
related to the event, which can be either entities
or non-entity spans that provide contextual details.
The semantic scope of each argument is defined
by its role. The task of EAE is to extract the ap-
propriate argument for each role based on a given
sentence, an event type, and its trigger.

We formalise EAE as a QA-style text generation
task, derived from the QA-based event extraction
framework (Du and Cardie, 2020; Li et al., 2020).
Specifically, given a sentence s containing multiple
events {e; }, we define the set of arguments for each
event e; as A; = {a; j }, where each argument a; ;
is associated with a role r; ;. For each event e; and
each of its corresponding argument roles 7; ;, we
construct the following input:

Sentence: <SENTENCE>; Event: <EVT_TYPE>;
Trigger: <EVT_TRIGGER>; <ARG_ROLE>:
where <SENTENCE> represents the sentence s,
<EVT_TYPE> denotes the event type of e;,
<EVT_TRIGGER> refers to the trigger word of e;, and
<ARG_ROLE> specifies the role r; ; of the argument
to be extracted. The model’s expected output is the
text span corresponding to the argument a; ;. In
principle, this framework can be fine-tuned based
on any language model, making it highly adaptable.
We use Flan-T5 (Chung et al., 2024) as our primary
experimental backbone due to its efficient perfor-
mance in low-resource EAE. We refer to this base
model as Flan-T5 EEQA.

3.2 LLM-based Data Augmentation

We investigate four LLM-based data augmentation
methods for event argument extraction: argument
replacement, adjunction rewriting, their combina-
tion, and annotation generation. Figure 1 presents
example instances generated by these methods. We
employ GPT-40 Mini (OpenAl, 2024) to generate
the augmented data.



Argument Replacement Using LLMs for argu-
ment replacement involves prompting the model to
generate new arguments that align with the event
schema’s role definitions and fit the sentence con-
text while keeping the rest of the sentence un-
changed. This approach leverages LLMs’ strong
language understanding and extensive knowledge
to generate diverse arguments, thereby enhancing
the fine-tuned model’s ability to learn argument
semantics. Unlike traditional knowledge bases,
LLMs are not limited to predefined entities when
generating new arguments. Moreover, maintaining
the rest of the sentence unchanged helps preserve
boundary accuracy, which is critical for EAE.

To ensure that the LLM generates valid and eas-
ily parsable samples, we standardise both input
and output in JSON format and include a complete
input-output example in the prompt to guide the
LLM in adhering to the expected output structure.
Specifically, the input consists of a sentence from
the training set, the annotated event type, event trig-
ger, and arguments, along with definitions of the
event type and argument roles. The output includes
the generated sentence, event type, event trigger,
and corresponding new arguments. Although the
event type and trigger should remain unchanged,
we explicitly retain them in the output to reinforce
the LLM’s adherence to this constraint. However,
the LLM occasionally deviates from instructions,
generating invalid samples. To ensure data qual-
ity, we discard instances where the new argument
or trigger word is missing from the generated sen-
tence. The instruction prompt and input-output
examples are provided in Appendix A.

Adjunction Rewriting Using LLMs for adjunc-
tion rewriting involves rewriting the rest of the
sentence—i.e., adjunctions—while keeping the ar-
guments unchanged. This approach aims to in-
crease sentence diversity while ensuring argument
boundary accuracy, thereby enhancing the fine-
tuned model’s generalisation ability without com-
promising precision. To ensure consistency and
quality in the generated samples, we adopt the same
prompt and input-output structure as in Argument
Replacement, modifying only the instruction and
example. We also apply filtering rules to remove
invalid outputs.

Argument Replacement & Adjunction Rewrit-
ing The combination of argument replacement
and adjunction rewriting progressively enhances
sample diversity by first generating new arguments

and then rewriting the rest of the sentence. To re-
duce costs in our experiments, we apply adjunction
rewriting to the outputs of argument replacement,
efficiently generating additional augmented data.

Annotation Generation Using LLMs for anno-
tation generation leverages their predictive capa-
bilities to create weakly supervised labels for un-
labeled source texts. The key advantage of this
approach is the unrestricted availability of source
data, allowing extensive sampling from domain-
specific texts to ensure authenticity and diversity.
However, despite LLMs’ strong reasoning abili-
ties, event extraction tasks often rely on complex
annotation rules and require precise boundary iden-
tification. As a result, LLMs struggle to generate
high-quality annotations within limited in-context
demonstrations, leading to significant label noise
that can ultimately degrade the accuracy of fine-
tuned models.

In our low-resource experimental setup, we aug-
ment data using samples from the full training
set that are excluded from the low-resource sub-
set, with LLM-generated predictions serving as
weak supervision labels. For annotation generation,
we follow Sun et al. (2024)’s approach, retrieving
the five most similar samples for each unlabeled
instance using the BM25 (Trotman et al., 2014)
algorithm. These retrieved samples, along with
their inputs and annotations, serve as in-context
demonstration examples to prompt the LLM for ar-
gument extraction. Given the limited training data
and the need for repeated trials in low-resource
settings, we adopt a cost-efficient strategy: we sam-
ple validation instances equal in size to the low-
resource training set as the retrieval corpus and
generate augmented labels for all training samples
in a single pass. During model training, we filter
out augmented samples that duplicate the training
instances to maintain data integrity.

4 Experimental Setup

This section provides fundamental information on
the experimental setup, with more details available
in Appendix B.

Datasets We conduct experiments on two
datasets: PHEE (Sun et al., 2022) and GENEVA
(Parekh et al., 2023). PHEE is a medical-domain
event extraction dataset annotated with two event
types—adverse event and potential therapeutic
event—each with 16 argument roles related to sub-



GENEVA (n=200)

GENEVA (Full) |

PHEE (n=200) PHEE (Full)

Micro_EM_F1 Micro_Token_F1 Micro_EM_F1 Micro_Token_F1 ‘Micro_EM_Fl Micro_Token_F1 Micro_EM_F1 Micro_Token_F1

GPT-40 Mini 38.54 57.41 45.02 62.83 64.12 75.92 68.37 78.87
EEQA 2526 £297 2695+ 193 57.72 55.06 4520 £0.77  40.56 £ 0.82 53.57 46.95
UIE 45.08 £1.21 5598 +1.58 75.19 82.60 6791 £099 7572+ 1.12 76.60 82.97
Flan-T5 EEQA (ours) 50.15£2.80 58.87 £3.98 73.33 80.13 69.78 £097 77.57 £1.22 75.02 82.09
Flan—TS-EEQA * 5433 £1.19 64.88 £1.26 72.49 80.37 69.23 £1.16 7741 £ 1.50 71.57 79.29
Synthesize-and-Label

Flan-T5 EEQA + 58.39 +1.30  67.68 £ 1.38 74.32 81.35 7099 + 042  79.17 £+ 0.76 76.45 84.24
Argument Replacement (ours)

Table 1: Overall performance. For low-resource training, the mean + standard deviation over five runs is reported
for fine-tuning methods, while GPT-40 Mini is evaluated on a single subset due to cost constraints.

ject, treatment, and effect. Although PHEE fol-
lows a hierarchical argument annotation scheme,
we treat all arguments as flat for consistency.
GENEVA, in contrast, is a general-domain event
extraction dataset containing 115 event types and
220 argument roles, making it broader in scope
than previous general-domain EE datasets such as
ACE (Doddington et al., 2004). We choose these
datasets for their complementary characteristics:
PHEE represents a domain-specific dataset with a
small number of event types but dense argument an-
notations, while GENEVA is a large-scale dataset
with diverse event types but fewer arguments per
event (averaging four arguments per event). These
differences allow us to evaluate model performance
across varying event and argument distributions.
Appendix C provides dataset statistics and annota-
tion examples.

Low-resource Training Low-resource training
involves randomly sampling # event mentions to
construct the training dataset (Parekh et al., 2023),
while keeping the validation and test sets un-
changed. Unlike few-shot training, which selects k
samples per event type, low-resource training pre-
serves the natural distribution of events and argu-
ments, making it more representative of real-world
scenarios. Therefore, we adopt it as the primary
research setting in this study. We conduct experi-
ments across different resource levels, ranging from
low (n = 25) to moderate (n = 400), and compare
the results with fully supervised training. For data
augmentation, we generate additional samples at
{1x, 2%, 4x} the size of the original training data
per event mention.

Evaluation Metrics Considering that arguments
may consist of long spans, making exact matching
difficult, we follow previous work (Sun et al., 2022)
to evaluate both exact match (EM) and token-level

match. EM_F1 measures the F1 score of predicted
spans that exactly match the ground truth, while
Token_ F1 computes the average token-overlap F1
score, allowing for evaluation of partial matches. In
addition, we also report Micro_F1 and Macro_FI1.
Micro_F1 is computed over all arguments by
accumulating true positives (TP) before comput-
ing F1. For Macro_F1, we account for differ-
ent dataset characteristics—some being argument-
dense and others event-dense—by separately com-
puting Arg_Macro_F1, which is the average F1
score across argument types, and Evt_Macro_F1,
which is the average F1 score across event types.
Therefore, we evaluate model performance using
six metrics: {Micro_EM_F1, Micro_Token_F1,
Arg Macro_EM_F1, Arg_Macro_Token_F1,
Evt_Macro_EM_F1, Evt_Macro_Token_F1}.

Baselines We select the following methods
as baselines for event argument extraction:
(i) GPT-40 Mini: We reproduce the method pro-
posed by Sun et al. (2024) and use GPT-40 Mini
(OpenAl, 2024) as the base model to establish
the LLM in-context learning (ICL) baseline. This
approach retrieves the five most similar training
samples for each test instance and uses them as
demonstrations to prompt the LLLM for event ex-
traction. Specifically, for EAE, we include the
event type and trigger word in the input. In addi-
tion, when sufficient retrieval samples are available,
we prioritise demonstrations with the same event
type. (ii) EEQA: We adopt the method proposed
by Du and Cardie (2020) as a representative ex-
tractive QA-based approach for EE. Its core idea
aligns with our framework (subsection 3.1), lever-
aging label semantics as questions and employing a
question-answering objective to extract arguments.
However, EEQA uses an encoder-only backbone
(e.g., BERT), whereas our method adopts an en-
coder-decoder architecture (e.g., Flan-T5). We



also experimented with a decoder-only model (e.g.,
Llama3) but found that causal language models per-
form poorly when fine-tuned via teacher-forcing
in low-resource settings, often failing to generate
reasonable answers. Consequently, we exclude
causal language model results from our experi-
ments. (iii) UIE: The UIE model (Lu et al., 2022)
is a representative structured text generation model
for information extraction that linearises event
structures and trains within a seq-to-seq framework.
Pre-trained on a large-scale structured information
extraction dataset, UIE has demonstrated strong
few-shot generalisation in prior studies. To adapt
it for EAE, we incorporate event type and trigger
word information into the input.

For the data augmentation baseline, since most
previous EAE data augmentation methods were
based on small models and lacked open-source
code (Yang et al., 2019; Gao et al., 2022; Meng
et al., 2024), we compare against the approach by
Sun et al. (2024), aligning with our focus on LLM-
based augmentation. This approach inputs a sample
and its annotated event into GPT-3.5, prompting
it to generate a new sentence with a similar event
structure and extract events from the generated text.
To ensure a fair comparison, we implement their
method using GPT-40 Mini, ensuring consistency
with our strategies. Additionally, their original
work applies a filtering strategy based on perplex-
ity estimation from a fine-tuned model, but this
results in extremely low data retention, discarding
over two-thirds of the generated samples. For eval-
uation, we instead apply the same filtering rules as
used in our proposed methods. We denote this data
augmentation method as Synthesize-and-Label.

5 Results and Analysis

5.1 Overall Performance

Table 1 compares argument replacement, the best-
performing EAE data augmentation method among
the four proposed in this study (Section 5.2),
against other baselines. Comprehensive results for
all metrics are provided in Appendix D.

Overall, our base model, Flan-T5 EEQA, out-
performs all baselines, achieving the highest per-
formance under low-resource conditions. The pro-
posed argument replacement data augmentation
method further enhances the base model, sur-
passing the compared data augmentation base-
line and demonstrating its effectiveness for low-
resource EAE.

B No Augmentation B Annotation Generation

Argument Replacement

B Adjunction Rewriting
mmm Argument + Adjunction

70 GENEVA Dataset

o
S
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@
3
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PHEE Dataset

F1 Score

Figure 2: Comparison of data augmentation methods in
the low-resource setting (n=200), with scores averaged
over 5-fold experiments. All data augmentation meth-
ods shown use 4x augmented data.

Specifically, the performance gains from data
augmentation are more pronounced on the
GENEVA dataset, likely due to its broader set of
argument types, making it more data-hungry. Our
method consistently outperforms Synthesize-and-
Label (Sun et al., 2024) across all metrics, achiev-
ing over an 8% performance gain under the low-
resource setting in both Micro_EM_F1 and Mi-
cro_Token_F1 after augmentation.

In contrast, the impact of data augmentation on
the PHEE dataset is more limited, yielding smaller
performance gains. However, the performance
gap between low-resource (n=200) and full-data
(n=3000) training on PHEE is only 6%, compared
to 23% on GENEVA (n=4163 for full fine-tuning),
indicating lower data scarcity. Unlike GENEVA,
PHEE contains densely annotated arguments per
sentence but covers fewer event and argument types
overall. This suggests that when argument seman-
tics are more concentrated, fewer training resources
are needed to achieve competitive performance,
making data augmentation particularly beneficial
in extremely low-resource settings.

5.2 Comparison of Data Augmentation
Approaches

In this subsection, we analyse the differences
among the four LLM-based EAE data augmenta-
tion methods proposed in this study from various
perspectives.



Extraction Performance Figure 2 presents the
performance of different data augmentation strate-
gies across multiple metrics.

First, we observe that all boundary-aware aug-
mentation methods, i.e., argument replacement, ad-
Jjunction rewriting, and their combination, improve
performance across all metrics, while using LLM-
based annotation generation for data augmentation
degrades performance across most metrics. It is
expected that the limited EAE extraction capability
of LLMs inevitably introduces noise into gener-
ated labels, undermining the effectiveness of data
augmentation. However, boundary-aware methods
mitigate this issue, allowing the generated samples
to yield improvements even in exact matching eval-
uation. This highlights the crucial role of preserv-
ing boundary accuracy in effective EAE data
augmentation.

Second, both argument replacement and adjunc-
tion rewriting prove effective for data augmenta-
tion, with argument replacement yielding the high-
est average performance across both datasets. This
suggests that both argument and semantic di-
versity are important for low-resource EAE,
with argument semantics being more critical
and benefiting more from data augmentation.
One possible explanation is that even small lan-
guage models acquire some degree of text represen-
tation generalisation through pre-training, allow-
ing them to present reasonable ability with limited
training data. However, argument semantics are
often task-specific and not sufficiently learned dur-
ing pre-training, making them more dependent on
data augmentation. Additionally, combining argu-
ment replacement with adjunction rewriting does
not yield additional gains, likely because seman-
tic diversity is already enhanced as a byproduct
of argument replacement, making the extra ad-
junction rewriting step an unnecessary overhead
without further benefits.

Third, the impact of these augmentation meth-
ods varies across different evaluation metrics.
Performance gains are more pronounced in Mi-
cro_F1 and Evt_Macro_F1, while improvements
in Arg_Macro_F1 remain relatively marginal. This
indicates that argument imbalance is more severe
than event imbalance in low-resource EAE and
current augmentation strategies enhance the ex-
traction of rare arguments to some extent but
do not fully resolve the data imbalance problem.

Unmatch 1;/'}1;31 :Fglilrrlr(l);?t Al\r/ﬁlslgllr?; t

(Role Error) | (Role Error)
I:ﬁgmen wtion | 23 1052 | 1701 (579) | 375 (74)
g;ﬁ‘;gzgfem 15 863 | 902(299) | 543 (95)
ggi‘/‘r’i‘;ﬂ;’“ 19 918 | 864(276) | 604 (81)
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Table 2: Argument extraction error analysis on the
GENEVA (n=200) test set for models trained with differ-
ent data augmentation (4x) methods. Values represent
averages over five runs.

Argument Extraction Error Analysis To anal-
yse the impact of different data augmentation meth-
ods on EAE, we developed an automated script to
classify extraction errors in models trained with
different augmented datasets. Table 2 reports error
statistics for GENEVA. Results for PHEE and error
type definitions are provided in Appendix E.

The results indicate that partial match and spu-
rious arguments are the most frequent errors,
whereas argument missing occurs less often, and
fully unmatched spans are rare. Among the four
data augmentation methods, argument replacement,
adjunction rewriting, and their combination sub-
stantially reduce partial match errors, whereas
LLM-based annotation generation increases them
in fine-tuned models, demonstrating the effective-
ness of boundary-aware methods in preserving
boundary accuracy of arguments. Additionally,
these boundary-aware strategies also significantly
reduce spurious arguments albeit slightly increase
argument missing, suggesting improved argument
semantic learning. In contrast, LLM-based annota-
tion generation fails to reduce spurious arguments
effectively. Notably, on the PHEE dataset, it even
increases spurious argument errors, underscoring
the risk of misalignment between the LLM’s inter-
nal knowledge and task-specific requirements. Fur-
thermore, some spurious argument and argument
missing errors result from role confusion, where
the model misclassifies argument types within the
same event. This is likely influenced by argument
co-occurrence patterns in the training data, but this
type of error remains relatively infrequent.

Quality of Augmented Data Our manual in-
spection of the augmented data reveals that LLM-
generated samples are generally semantically accu-
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Figure 3: Micro_EM_F1 scores for models trained with
varying data sizes and augmentation ratios using ‘argu-
ment replacement’. Scores are averaged over five runs.

rate and syntactically fluent. The newly generated
arguments align well with the sentence context and
definitions, while adjunction rewriting enhances
sentence details beyond simple paraphrasing while
preserving arguments.

However, we still observed cases where the LLM
deviates from instructions. First, it struggles to
keep the event trigger unchanged when the trig-
ger is part of a replaced argument and may omit
it during adjunction rewriting. Another common
issue is that the model sometimes generates ar-
guments without an exact match in the sentence,
mostly due to tokenization mismatches in prepro-
cessing. For example, the input provided to the
LLM may include tokenized text such as ‘Russia ’
s’, while the model generates ‘Russia ’s’ as an argu-
ment span. Additionally, we observed occasional
hallucinations when LLLM generates data for the
PHEE dataset, where for certain two-word argu-
ment types, such as ‘time elapsed’, the LLM some-
times generates arguments incorrectly labelled as
‘time_elapsed’. While these issues do not impact
sentence-level semantics, they introduce noise in
argument extraction. Optimisation to the prompt or
additional preprocessing steps may mitigate these
errors, but given their low occurrence rate, we sim-
ply filtered these cases. Appendix F provides sta-
tistical details on different error types.

Specifically, for argument replacement, we ob-
served that when an event contains multiple argu-
ments, the LLM sometimes replaces only a subset
(see Table A9 for examples). This likely occurs
when certain arguments are semantically ambigu-
ous or closely tied to the sentence context. While
this does not generate incorrect samples, it may
limit the effectiveness of data augmentation, worth
further investigation in future work.

5.3 Impact of Data Scale

To assess the effectiveness and efficiency of data
augmentation under varying resource conditions,

we evaluate model performance across different
data sizes and augmentation ratios, as illustrated in
Figure 3. Analysing model performance across dif-
ferent augmentation ratios, we observe the follow-
ing: (i) The performance variation due to different
augmentation amounts is smaller than the differ-
ence between using and not using data augmenta-
tion. Additionally, adding an equivalent amount
of augmented data yields lower gains than adding
the same amount of original data, suggesting that
augmented data exhibits a degree of homogene-
ity, impacting augmentation efficiency. However,
this trade-off is necessary to maintain annotation
accuracy, and balancing accuracy with efficiency
remains a challenge for future research. (ii) Even
as the amount of original training data increases,
augmented data continues to provide noticeable
improvements. On the GENEVA dataset, this im-
provement remains consistent, whereas on PHEE,
it shows a declining trend. This suggests that for
argument extraction with extensive roles, while
increasing training data helps the model capture
a broader range of argument types, further im-
provements in learning argument semantics can
be achieved through augmentation with richer con-
texts. In contrast, for PHEE, where argument di-
versity is lower, this need diminishes as training
data increases. (iii) Higher augmentation ratios
stably improve performance. However, lower ra-
tios sometimes achieve comparable results, making
them a cost-effective alternative when computa-
tional resources are constrained.

6 Conclusion

This study explores multiple LLM-based data aug-
mentation strategies for low-resource EAE. Our
findings show that boundary-aware augmentation
are more effective, with LLM-based argument re-
placement achieving the greatest improvements.
This underscores the importance of preserving
boundary accuracy and enhancing argument diver-
sity in data augmentation for EAE. However, the
augmented data generated by argument replace-
ment exhibits a degree of homogeneity, potentially
limiting its effectiveness. Moreover, existing meth-
ods provide only marginal improvements in ex-
tracting rare arguments, highlighting the need for
further research to mitigate data imbalance and en-
hance augmentation efficiency.



Limitations

This study primarily focuses on directly apply-
ing LL.M-generated data for augmentation, using
a simple filtering strategy to ensure data valid-
ity. More advanced filtering techniques or noise-
tolerant training approaches may further enhance
the effectiveness of certain augmentation methods.
However, due to space constraints, we leave these
explorations for future work.

Given computational limitations, we evaluate
data augmentation strategies using only the best-
performing base model under the low-resource
setting. Nevertheless, as our proposed augmen-
tation methods are model-agnostic, the conclusions
drawn in this study should remain broadly appli-
cable. Similarly, we assess data scaling only for
argument replacement, as it is the most effective
among our proposed methods, making a deeper
investigation into its resource requirements particu-
larly meaningful.
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A Prompt Examples

Table A1 presents the instruction prompt and input-
output examples for the argument replacement aug-
mentation method. In practice, the LLM receives
both the instruction and a demonstration example
adhering to the specified input-output format.

B Experimental Details

Data Generation: When generating argument
replacement and adjunction rewriting augmented
data, we generate five samples for each event men-
tion in the training set. For argument replacement
& adjunction rewriting augmentation, we apply ad-
Jjunction rewriting to each argument replacement
sample, generating two additional samples. An-
notation generation produces annotations for all
samples in the training set. For all augmented data,
we first filter out the error types defined in Ap-
pendix E and then sample training data at different
augmentation ratios.

Model Training: When training Flan-T5 EEQA,
we sample empty arguments for each event with a
probability of 0.2 and train the model to generate
"None", enabling it to recognise empty arguments
during inference. We use Flan-T5-base for Flan-
T5 EEQA, UIE-base for UIE, and Bert-base for
EEQA. For both Flan-T5 EEQA and UIE training,
we use a batch size of 16, a learning rate of 1 x
1074, and apply early stopping if no improvement
is observed on the validation set for 4 consecutive
epochs. During inference, we perform beam search
with a beam size of 2. EEQA training uses a batch
size of 64 and a learning rate of 5 x 1075, All
hyperparameters are selected based on preliminary
experiments on the validation set. All experiments
are conducted on a single NVIDIA A100 GPU.

C Supplementary Dataset Information

Figure A1 presents annotated examples from the
GENEVA and PHEE datasets. Table A2 provides
statistical information for the GENEVA dataset,
while Table A3 summarises the statistics for the
PHEE dataset.

D Supplementary Performance Tables

Table A4 reports the low-resource performance
across all metrics, while Table AS presents the full
fine-tuning results.
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Instruction:

You are an Al assistant tasked with generating augmented
data for an event argument extraction task.

Task Details:

1. Input: You will be given:

- A sentence with a labeled event and its arguments.

- The schema definition of the event, describing the roles
and expected types of its arguments.

2. Your Task:

- Replace the event’s arguments with new ones while keep-
ing the rest of the sentence unchanged.

- Ensure that the new arguments conform to the schema’s
definition and are contextually appropriate within the sen-
tence.

- Any part of the sentence except the arguments should
remain unchanged.

- The event trigger is the word in the sentence indicating the
occurence of the event, which should also be unchanged
and displayed in the sentence.

3. Output Requirements:

- Generate exactly 5 augmented samples for each input
sentence-event pair.

- Return the results in JSON format as shown in the exam-
ple.

- Represent discontinuous arguments in lists.

Input Example:
{
"sentence”: "The biosecurity ...",
"event”: {
"event_type"”: "scrutiny”,
"trigger"”: "looked",
"arguments”": {
"cognizer": ["The biosecurity
workshop"” .1,
"ground”: ["at threats "]
3
3,
"schema": {
"event_type"”: "scrutiny”,
"event_description”: "...",
"arguments”: {
"cognizer": "The Cognizer ...",
"ground”: "The Cognizer "
}
}
}
Output Example:
{
"augmented_sentence”: "The research
"event_type"”: "scrutiny”,
"trigger"”: "looked",
"arguments”: {
"cognizer": ["The research

committee”, ...1,
"ground”: ["at challenges "]
}
}

Table Al: Instruction prompt and input-output examples
for argument replacement.



The small, whitewashed chapel was the first Protestant church

built .

t S~
Trigger of:
Building

Created Entity

(a) An annotated example from the GENEVA dataset.
Subject
l Age

v

A52-year-old Black woman on phenytoin therapy for post-traumatic epilepsy

Treatment

Race Gender Drug Treatment Disorder
' 4 v

developed transient hemiparesis contralateral to the injury.
t t

Trigger of:
Adverse Event

Effect

(b) An annotated example from the PHEE dataset.

Figure Al: Illustration of event annotations in the
GENEVA and PHEE datasets. The PHEE dataset fea-
tures hierarchical annotation, where main arguments
are highlighted with a coloured background, and sub-
arguments are indicated with coloured text.

#Event # Argument # Sent #Event  # Argument
Types Types * Mentions  Mentions
Train 115 412 1,968 4,170 6,777
Dev 115 346 783 1,442 2,383
Test 115 389 993 1,893 3,109

Table A2: Statistics of the GENEVA dataset.

E Extraction Error Type Definitions and
Statistics

We categorize the following error types for evaluat-
ing argument extraction:

* Unmatch: The model extracts an argument
with the same role as the ground truth but with
entirely different spans.

Partial Match: The extracted argument par-
tially overlaps with the ground truth, including
cases where at least one span of a multi-span
argument fully or partially matches the ground
truth.

Spurious Argument: The extracted argument
is assigned a role that has no corresponding an-
notation in the ground truth. Specifically, we
define a role error subclass, where a ground
truth argument shares the same span as this
predicted argument but is assigned a different
role, indicating a potential misclassification
by the model.

Argument Missing: The model fails to ex-
tract an argument for a specific role present in
the ground truth. Within this category, we also
define a role error subclass, where a predicted
argument shares the same span as this ground
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#Event # Argument # Sent. #Event  # Argument
Types Types Mentions ~ Mentions
Train 2 32 2,898 3,004 16,081
Dev 2 32 961 1,003 5,509
Test 2 32 968 1,010 5,494

Table A3: Statistics of the PHEE dataset.

truth argument but is assigned a different role,
suggesting a probable misclassification that
led to its omission.

Table A6 presents the error type analysis for
models trained with different data augmentation
methods on the PHEE dataset.

F Supplementary of Augmented Data
Quality

Table A7 and Table A8 present the error type
statistics for different data augmentation methods
on the GENEVA and PHEE datasets. The error
types are defined as follows: Broken JSON in-
dicates that ChatGPT generated an unparseable
JSON format; Invalid Trigger refers to cases
where the event trigger in the augmented sample
does not appear in the corresponding sentence; In-
valid Role occurs when ChatGPT generates an
argument type that is not defined in the schema;
and Invalid Argument signifies that an argument
in the augmented sample cannot be matched to the
corresponding sentence.

Table A9 shows a generated sample for argument
replacement, where only a subset of arguments is
replaced.

G Potential Risks

Although our experiments demonstrate that lever-
aging LLLMs for data augmentation can enhance
event argument extraction, the generated data may
introduce factually incorrect hallucinations, pos-
ing potential risks when applied to safety-critical
domains such as healthcare.

H License For Artifacts

The Flan-T5 model used in this study is licensed un-
der Apache-2.0. The GENEVA dataset is licensed
under Creative Commons Attribution 3.0 Unported,
and the PHEE dataset is under MIT License. Our
use of previous models and data adheres to their
intended purposes. Additionally, we use data gen-
erated by ChatGPT solely for research purposes,
in compliance with OpenAI’s Terms of Use and
Usage Policies.



GENEVA
Micro_EM_F1 Micro_Token_F1 Arg_Macro_EM_F1 Arg_Macro_Token_F1 Evt_Macro_EM_F1 Evt_Macro_Token_F1

GPT-40 Mini 38.54 57.41 35.58 50.63 17.78 26.04

EEQA 2526 £297 2695+ 193 23.93 £2.82 23.59 £2.32 16.78 £ 2.01 16.11 £+ 1.74
UIE 4508 £121 5598 £ 1.58 40.87 £ 1.59 46.43 £ 1.78 25.04 £2.21 2743 £2.73
Flan-T5 EEQA (ours) 50.15+£2.80 58.87 £3.98 48.98 +2.44 5448 £291 38.09 £ 1.96 41.13 £2.33

Flan-T5 EEQA +

. 5433 £1.19 6488 £1.26 51.44 £1.20 57.50 £ 1.12 39.09 + 241 43.03 +2.30
Synthesize-and-Label
Flan-T5 EEQA + 58.39 £1.30 67.68 + 1.38 54.13 £ 1.28 58.97 + 1.12 41.25 £ 2.66 44.22 + 2.87
Argument Replacement (ours)

PHEE

GPT-40 Mini 64.12 75.92 57.29 71.36 48.30 61.07
EEQA 4520 £0.77  40.56 £ 0.82 39.44 £ 0.65 36.95 £ 1.07 37.45 £ 2.89 34.50 £ 2.90
UIE 6791 £0.99 7572+ 1.12 61.09 £+ 1.16 70.46 £ 1.24 48.38 +0.93 55.04 £ 0.93
Flan-T5 EEQA (ours) 69.78 £0.97 77.57 £1.22 62.89 £+ 1.01 71.74 £ 1.52 57.11 £ 1.69 62.98 £+ 1.83
Flan—TSAEEQA + 69.23 £ 1.16  77.41 £ 1.50 63.07 £ 1.26 72.65 £ 2.00 58.60 + 1.87 65.77 £ 2.67
Synthesize-and-Label
Flan-T5 EEQA + 7099 + 042 79.17 £+ 0.76 64.81 £ 0.52 74.78 £+ 0.77 57.76 £+ 1.82 64.74 £ 2.57

Argument Replacement (ours)

Table A4: Low-resource (n=200) performance across all metrics. The mean + standard deviation over five runs is
reported for fine-tuning methods, while GPT-40 Mini is evaluated on a single subset due to cost constraints.

GENEVA
Micro_EM_F1 Micro_Token_F1 Arg_Macro_EM_F1 Arg_Macro_Token_F1 Evt_Macro_EM_F1 Evt_Macro_Token_F1

GPT-40 Mini 45.02 62.83 42.04 55.41 25.18 34.47
EEQA 57.72 55.06 53.28 48.07 43.40 40.38
UIE 75.19 82.60 72.63 77.37 58.72 60.43
Flan-T5 EEQA (ours) 73.33 80.13 72.13 76.86 59.53 62.16
Flan-T5 EEQA +

Synthesize-and-Label 72.49 80.37 71.31 76.05 58.36 61.33
Flan-TS EEQA + 74.32 81.35 71.99 76.41 60.58 62.93
Argument Replacement (ours)

PHEE

GPT-40 Mini 68.37 78.87 63.60 75.87 56.47 67.56
EEQA 53.57 46.95 48.65 44.17 48.30 43.15
UIE 76.60 82.97 71.13 79.32 65.01 70.04
Flan-T5 EEQA (ours) 75.02 82.09 68.76 77.84 65.19 72.60
Flan-T5 EEQA +

Synthesize-and-Label 71.57 79.29 65.72 74.55 62.41 68.26
Flan-TS EEQA + 76.45 84.24 71.29 81.17 66.29 73.40

Argument Replacement (ours)

Table AS: Full fine-tuning performance across all metrics.

Broken Inyahd Invalid Invalid
Json Trigger Role Argument
; (#. Events) (#. Args)
Argument
Replacement 6 5,042 (20,820) 0 2,588 (32,310)
. Spurious Argument Adjunction
Unmateh | P20 | A0 ent | Missing Rewiting 11 |2454(20795) | 0 |5,057 (32.275)
Match
(Role Error) | (Role Error) Argument &
No Adjunction 13 4,224 (27,480) 0 6,919 (45,404)
Augmentation 1 1353 825 (243) 200(33) Annotation
Ar, gurnent Generation 2 7(4163) 17 629(7,732)
B 13 1329 | 599 (152) | 261 (44)
Replacement
Adjunction 14 1425 | 662(165) | 248 (40) Table A7: Error statistics of augmented data for
Rewriting GENEVA
Argument & )
Adjunction 12 1409 709 (204) 217 (39)
Annotation 16 | 1553 | 1276(445) | 163 (50) Broken |  imvalid g | | Invalid
Generation Json Trigger Role Argument
(#. Events) (#. Args)
Table A6: Argument extraction error analysis on the Argument 5 50(14,995) | 1,000 | 194 (71,370)

Replacement

PHEE (n=200) test set for models trained with differ- Adjunction
ent data augmentation (4x) methods. Values represent Rewriting

2 1,661 (15,010) | 892 4,577 (71,410)

averages over five runs. Argumept & 1 3,377 (29,590) | 1,972 | 7,668 (140,556)
Adjunction
Annotation
Generation 4 0(3,000) 0 767 (14,080)

Table AS8: Error statistics of augmented data for PHEE.
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Input:

{

"sentence”: "Surrounded by acres of
farmland hewn from the hard
desert , the adobe fort became a

focal point for the development
of Las Vegas for the next fifty
years .",

"event_type"”: "becoming”,

"trigger": "became”,

"arguments”: {

"entity": [
"the adobe fort”
] ,
"final category”: [
"a focal point for the
development of Las Vegas
for the next fifty
years"”
]
}
3

Augmented Sample:

{

"augmented_sentence”: "Surrounded by
acres of farmland hewn from the
hard desert , the historic

mansion became a focal point for
the growth of Las Vegas for the
next fifty years .",

"event_type"”: "becoming”,

"trigger"”: "became”,

"arguments”: {

"entity": [
"the historic mansion”
] ,
"final category”: [
"a focal point for the
growth of Las Vegas for
the next fifty years”

Table A9: Example of a generated sample for argu-
ment replacement, where only a subset of arguments is
replaced.
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