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Abstract

Event argument extraction (EAE) is a crucial001
task in information extraction. However, its002
performance heavily depends on expensive an-003
notated data, making data scarcity a persistent004
challenge. Data augmentation serves as an ef-005
fective approach to improving model perfor-006
mance in low-resource settings, yet research on007
applying LLMs for EAE augmentation remains008
preliminary. In this study, we pay attention to009
the boundary sensitivity of EAE and investigate010
four LLM-based augmentation strategies: argu-011
ment replacement, adjunction rewriting, their012
combination, and annotation generation. Our013
experiments highlight the significance and ef-014
fectiveness of enhancing argument diversity in015
low-resource EAE, with argument replacement016
demonstrating the best performance among all017
augmentation methods and surpassing the pre-018
vious LLM-based approach. Additionally, we019
conduct a comprehensive evaluation from mul-020
tiple perspectives, including task characteris-021
tics and data scale, providing valuable insights022
for the practical application of EAE in low-023
resource scenarios1.024

1 Introduction025

Event Argument Extraction (EAE) is a key subtask026

of Event Extraction (EE) that focuses on identi-027

fying and classifying participants involved in an028

event (Pouran Ben Veyseh et al., 2020; Parekh et al.,029

2023). As a complex NLP task, EAE requires a030

fine-grained semantic understanding of arguments031

and faces significant challenges, including the di-032

versity and imbalance of argument roles, as well as033

the flexibility of argument boundaries. Although034

recent advancements in LLMs have demonstrated035

strong capabilities across various NLP tasks, their036

performance on EAE remains inferior to that of037

fine-tuned models (Parekh et al., 2023; Ma et al.,038

2023; Sun et al., 2024). However, fine-tuning EAE039

1The code will be publicly available on GitHub.

Source Sentence：
The small, whitewashed chapel was the first Protestant 
church built in China.

Argument Replacement：
The small, whitewashed chapel was the first Anglican 
church built in Singapore.

Adjunction Rewriting:
The small, whitewashed chapel, which holds historical 
significance, was the first Protestant church built in 
China.

Argument Replacement & Adjunction Rewriting:
The small, whitewashed chapel stands proudly as the 
first Anglican church built in Singapore, reflecting the 
historical significance of the area.

Annotation Generation:
Built 1847 - 1849, this usually deserted Anglican 
foundation is Hong Kong ' s oldest church .

Event type: 
Building

Argument:
Place

Argument: 
Created Entity

Figure 1: Examples of different augmentation methods.

models relies heavily on annotated data, which 040

is expensive to obtain due to the complexity of 041

event annotation, particularly in specialised do- 042

mains such as healthcare. Consequently, data 043

scarcity remains a major challenge in developing 044

effective EAE models, especially in low-resource 045

settings. 046

Data augmentation is an effective approach to 047

mitigating data scarcity. However, boundary sen- 048

sitivity is a critical consideration when generating 049

data for EAE. Prior studies, which have been shown 050

to be effective in EAE, have primarily addressed 051

this by preserving argument positions while either 052

replacing argument spans (Hong et al., 2022; Wang 053

and Huang, 2024) or rewriting the surrounding con- 054

text (Yang et al., 2019; Gao et al., 2022). How- 055

ever, most prior research relies on knowledge base 056

matching for argument replacement or small lan- 057

guage models for adjunction rewriting, which intro- 058
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duces certain limitations. For instance, argument059

replacement is typically restricted to predefined en-060

tity types, whereas in real-world tasks, arguments061

often appear as spans of varying lengths rather than062

fixed entities.063

LLMs, with their extensive knowledge and064

strong text generation capabilities, offer a promis-065

ing solution for data augmentation in EAE. How-066

ever, research on LLM-based augmentation for067

EAE remains limited, with most studies overlook-068

ing the task’s inherent boundary sensitivity (Sun069

et al., 2024; Meng et al., 2024). We argue that070

using LLMs for argument relabeling is inherently071

constrained by their extraction performance, intro-072

ducing additional noise that may undermine aug-073

mentation effectiveness, as demonstrated by Sun074

et al. (2024).075

This study explores different ways to lever-076

age LLMs for EAE data augmentation in low-077

resource settings, providing a comprehensive078

evaluation from multiple perspectives. Specif-079

ically, we compare four LLM-based augmenta-080

tion strategies: argument replacement, adjunction081

rewriting, their combination, and annotation gen-082

eration (see examples in Figure 1). Among these,083

argument replacement, adjunction rewriting, and084

their combination are boundary-aware methods,085

as they preserve the positions of original argu-086

ments when generating new samples. In contrast,087

annotation generation investigates the impact of088

LLM-generated labels, which are widely used in089

previous methods, on augmentation effectiveness.090

Furthermore, argument replacement evaluates the091

LLM’s capability to enhance argument diversity,092

whereas adjunction rewriting assesses its ability093

to improve sentence representation diversity,094

which are two distinct yet essential directions for095

EAE data augmentation.096

We conduct experiments on two datasets with097

distinct characteristics: GENEVA (Parekh et al.,098

2023), a general-domain dataset covering hundreds099

of event and argument types, and PHEE (Sun100

et al., 2022), a medical-domain dataset with dense101

argument annotations but a limited set of types.102

Our experiments reveal the following findings:103

(i) Boundary-aware data augmentation methods104

all effectively enhance EAE performance, with ar-105

gument replacement yielding the most significant106

improvement. On the argument-diverse general–107

domain dataset GENEVA, it increases Micro F1108

by 8%. However, combining argument replace-109

ment with adjunction rewriting does not yield ad-110

ditional benefits, while using LLM for annota- 111

tion generation can lead to performance degrada- 112

tion. (ii) The impact of data scaling is substantially 113

greater on GENEVA than on PHEE, and augmen- 114

tation proves more effective on GENEVA. This 115

suggests that in low-resource EAE, the primary 116

challenge lies in learning diverse argument seman- 117

tics rather than handling complex argument struc- 118

tures or domain knowledge. Notably, LLM-based 119

argument augmentation effectively addresses this 120

challenge. (iii) Boundary-aware data augmentation 121

improves both Micro F1 and Macro F1, though the 122

relative gain in Micro F1 is higher. This indicates 123

that the proposed augmentation methods help mit- 124

igate argument imbalance but still leave room for 125

further improvement, warranting future research. 126

Additionally, we provide in-depth analysis from the 127

perspectives of extraction errors, augmentation 128

quality, and data scale, offering valuable insights 129

for EAE in low-resource scenarios. 130

2 Related Work 131

Event Argument Extraction Event Argument 132

Extraction (EAE) is a subtask of event extraction 133

(EE) that typically follows event detection. Unlike 134

event detection, EAE requires more fine-grained 135

semantic understanding and faces additional chal- 136

lenges due to the diversity and imbalance of argu- 137

ment roles, as well as the flexibility of argument 138

boundaries. Early EAE methods were predomi- 139

nantly classification-based, involving the selec- 140

tion of candidate argument spans followed by the 141

assignment of argument roles (Pouran Ben Vey- 142

seh et al., 2020; Ma et al., 2022b; He et al., 2023). 143

However, classification-based methods struggled 144

with overlapping arguments and have been sur- 145

passed by generation-based approaches in recent 146

years. Generation-based methods reframe EE as a 147

sequence generation task, either by filling manually 148

constructed natural language templates with argu- 149

ments (Paolini et al., 2021; Hsu et al., 2022) or by 150

transforming extraction targets into structured lan- 151

guage representations that are then linearised (Lu 152

et al., 2021, 2022). Recently, some studies have 153

further reformulated the EAE task into a Ques- 154

tion Answering (QA) paradigm, where argument 155

role definitions are converted into questions, and 156

the model generates answers (i.e., argument ex- 157

tractions) (Li et al., 2020; Du and Cardie, 2020; 158

Sun et al., 2022). QA-based EAE models can be 159

categorised into extractive and generative types 160
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based on their base models, i.e., encoder-only or161

encoder-decoder architectures. Based on our em-162

pirical observations, generative QA models out-163

perform extractive QA models and structured gen-164

eration methods in low-resource scenarios. With165

the advancement of LLMs, some studies have also166

explored LLM-based prompting and in-context167

learning approaches for EAE (He et al., 2024;168

Sun et al., 2024; Sainz et al., 2024). However, due169

to the complexity of the EAE task, LLMs still fall170

short of achieving the performance of fine-tuned171

models in this domain.172

Data Augmentation for EAE The EAE task173

often suffers from limited training resources due174

to annotation complexity, with data augmentation175

serving as a practical approach to alleviating low-176

resource challenges. General text augmentation177

techniques, such as text paraphrasing (Wei and178

Zou, 2019) and back translation (Shleifer, 2019),179

may alter the positions of arguments within a sen-180

tence, complicating label generation and introduc-181

ing noise. Effective EAE data augmentation should182

preserve boundary accuracy, while existing meth-183

ods fall into two main directions: (i) Enhancing184

argument diversity: This approach leverages ex-185

isting datasets (e.g., ACE (Doddington et al., 2004))186

or knowledge bases (e.g., Probase (Wu et al., 2012))187

to retrieve entity types for each argument role and188

replace arguments with other instances of the same189

type (Yang et al., 2019; Hong et al., 2022; Wang190

and Huang, 2024). However, it is constrained by191

predefined entity types, which limit the scope of192

replacements, and suffers from ambiguity in argu-193

ment-entity matching, which can result in substi-194

tutions that do not fully align with the sentence195

context. (ii) Enhancing sentence diversity: This196

approach rewrites adjunctions of the sentence while197

keeping arguments unchanged, typically through198

synonym replacement (Ma et al., 2022a) or mask–199

filling with a pre-trained language model (Yang200

et al., 2019; Gao et al., 2022). We argue that LLMs,201

with their strong reasoning abilities and extensive202

internal knowledge, are well-suited for EAE data203

augmentation and can more effectively address ex-204

isting challenges. However, their application in205

this area remains limited. While some studies have206

explored LLMs for EAE data augmentation, they207

have largely overlooked boundary sensitivity and208

shown only marginal improvements (Sun et al.,209

2024; Meng et al., 2024). In this work, we conduct210

a broader investigation into LLM-based augmen-211

tation strategies specifically tailored for EAE and 212

assess their effectiveness. 213

3 Method 214

In this section, we first define and formalise the 215

event argument extraction task and then present 216

four LLM-based data augmentation strategies ex- 217

plored in this work. 218

3.1 Task Formalisation 219

Event argument extraction is a subtask of event ex- 220

traction, where an event is typically characterised 221

by its type, trigger, and a set of arguments. Event 222

arguments represent specific pieces of information 223

related to the event, which can be either entities 224

or non-entity spans that provide contextual details. 225

The semantic scope of each argument is defined 226

by its role. The task of EAE is to extract the ap- 227

propriate argument for each role based on a given 228

sentence, an event type, and its trigger. 229

We formalise EAE as a QA-style text generation 230

task, derived from the QA-based event extraction 231

framework (Du and Cardie, 2020; Li et al., 2020). 232

Specifically, given a sentence s containing multiple 233

events {ei}, we define the set of arguments for each 234

event ei as Ai = {ai,j}, where each argument ai,j 235

is associated with a role ri,j . For each event ei and 236

each of its corresponding argument roles ri,j , we 237

construct the following input: 238

Sentence: <SENTENCE>; Event: <EVT_TYPE>; 239

Trigger: <EVT_TRIGGER>; <ARG_ROLE>: 240

where <SENTENCE> represents the sentence s, 241

<EVT_TYPE> denotes the event type of ei, 242

<EVT_TRIGGER> refers to the trigger word of ei, and 243

<ARG_ROLE> specifies the role ri,j of the argument 244

to be extracted. The model’s expected output is the 245

text span corresponding to the argument ai,j . In 246

principle, this framework can be fine-tuned based 247

on any language model, making it highly adaptable. 248

We use Flan-T5 (Chung et al., 2024) as our primary 249

experimental backbone due to its efficient perfor- 250

mance in low-resource EAE. We refer to this base 251

model as Flan-T5 EEQA. 252

3.2 LLM-based Data Augmentation 253

We investigate four LLM-based data augmentation 254

methods for event argument extraction: argument 255

replacement, adjunction rewriting, their combina- 256

tion, and annotation generation. Figure 1 presents 257

example instances generated by these methods. We 258

employ GPT-4o Mini (OpenAI, 2024) to generate 259

the augmented data. 260
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Argument Replacement Using LLMs for argu-261

ment replacement involves prompting the model to262

generate new arguments that align with the event263

schema’s role definitions and fit the sentence con-264

text while keeping the rest of the sentence un-265

changed. This approach leverages LLMs’ strong266

language understanding and extensive knowledge267

to generate diverse arguments, thereby enhancing268

the fine-tuned model’s ability to learn argument269

semantics. Unlike traditional knowledge bases,270

LLMs are not limited to predefined entities when271

generating new arguments. Moreover, maintaining272

the rest of the sentence unchanged helps preserve273

boundary accuracy, which is critical for EAE.274

To ensure that the LLM generates valid and eas-275

ily parsable samples, we standardise both input276

and output in JSON format and include a complete277

input-output example in the prompt to guide the278

LLM in adhering to the expected output structure.279

Specifically, the input consists of a sentence from280

the training set, the annotated event type, event trig-281

ger, and arguments, along with definitions of the282

event type and argument roles. The output includes283

the generated sentence, event type, event trigger,284

and corresponding new arguments. Although the285

event type and trigger should remain unchanged,286

we explicitly retain them in the output to reinforce287

the LLM’s adherence to this constraint. However,288

the LLM occasionally deviates from instructions,289

generating invalid samples. To ensure data qual-290

ity, we discard instances where the new argument291

or trigger word is missing from the generated sen-292

tence. The instruction prompt and input-output293

examples are provided in Appendix A.294

Adjunction Rewriting Using LLMs for adjunc-295

tion rewriting involves rewriting the rest of the296

sentence—i.e., adjunctions—while keeping the ar-297

guments unchanged. This approach aims to in-298

crease sentence diversity while ensuring argument299

boundary accuracy, thereby enhancing the fine-300

tuned model’s generalisation ability without com-301

promising precision. To ensure consistency and302

quality in the generated samples, we adopt the same303

prompt and input-output structure as in Argument304

Replacement, modifying only the instruction and305

example. We also apply filtering rules to remove306

invalid outputs.307

Argument Replacement & Adjunction Rewrit-308

ing The combination of argument replacement309

and adjunction rewriting progressively enhances310

sample diversity by first generating new arguments311

and then rewriting the rest of the sentence. To re- 312

duce costs in our experiments, we apply adjunction 313

rewriting to the outputs of argument replacement, 314

efficiently generating additional augmented data. 315

Annotation Generation Using LLMs for anno- 316

tation generation leverages their predictive capa- 317

bilities to create weakly supervised labels for un- 318

labeled source texts. The key advantage of this 319

approach is the unrestricted availability of source 320

data, allowing extensive sampling from domain- 321

specific texts to ensure authenticity and diversity. 322

However, despite LLMs’ strong reasoning abili- 323

ties, event extraction tasks often rely on complex 324

annotation rules and require precise boundary iden- 325

tification. As a result, LLMs struggle to generate 326

high-quality annotations within limited in-context 327

demonstrations, leading to significant label noise 328

that can ultimately degrade the accuracy of fine- 329

tuned models. 330

In our low-resource experimental setup, we aug- 331

ment data using samples from the full training 332

set that are excluded from the low-resource sub- 333

set, with LLM-generated predictions serving as 334

weak supervision labels. For annotation generation, 335

we follow Sun et al. (2024)’s approach, retrieving 336

the five most similar samples for each unlabeled 337

instance using the BM25 (Trotman et al., 2014) 338

algorithm. These retrieved samples, along with 339

their inputs and annotations, serve as in-context 340

demonstration examples to prompt the LLM for ar- 341

gument extraction. Given the limited training data 342

and the need for repeated trials in low-resource 343

settings, we adopt a cost-efficient strategy: we sam- 344

ple validation instances equal in size to the low- 345

resource training set as the retrieval corpus and 346

generate augmented labels for all training samples 347

in a single pass. During model training, we filter 348

out augmented samples that duplicate the training 349

instances to maintain data integrity. 350

4 Experimental Setup 351

This section provides fundamental information on 352

the experimental setup, with more details available 353

in Appendix B. 354

Datasets We conduct experiments on two 355

datasets: PHEE (Sun et al., 2022) and GENEVA 356

(Parekh et al., 2023). PHEE is a medical-domain 357

event extraction dataset annotated with two event 358

types—adverse event and potential therapeutic 359

event—each with 16 argument roles related to sub- 360
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GENEVA (n=200) GENEVA (Full) PHEE (n=200) PHEE (Full)

Micro_EM_F1 Micro_Token_F1 Micro_EM_F1 Micro_Token_F1 Micro_EM_F1 Micro_Token_F1 Micro_EM_F1 Micro_Token_F1

GPT-4o Mini 38.54 57.41 45.02 62.83 64.12 75.92 68.37 78.87
EEQA 25.26 ± 2.97 26.95 ± 1.93 57.72 55.06 45.20 ± 0.77 40.56 ± 0.82 53.57 46.95
UIE 45.08 ± 1.21 55.98 ± 1.58 75.19 82.60 67.91 ± 0.99 75.72 ± 1.12 76.60 82.97
Flan-T5 EEQA (ours) 50.15 ± 2.80 58.87 ± 3.98 73.33 80.13 69.78 ± 0.97 77.57 ± 1.22 75.02 82.09

Flan-T5 EEQA +
Synthesize-and-Label

54.33 ± 1.19 64.88 ± 1.26 72.49 80.37 69.23 ± 1.16 77.41 ± 1.50 71.57 79.29

Flan-T5 EEQA +
Argument Replacement (ours)

58.39 ± 1.30 67.68 ± 1.38 74.32 81.35 70.99 ± 0.42 79.17 ± 0.76 76.45 84.24

Table 1: Overall performance. For low-resource training, the mean ± standard deviation over five runs is reported
for fine-tuning methods, while GPT-4o Mini is evaluated on a single subset due to cost constraints.

ject, treatment, and effect. Although PHEE fol-361

lows a hierarchical argument annotation scheme,362

we treat all arguments as flat for consistency.363

GENEVA, in contrast, is a general-domain event364

extraction dataset containing 115 event types and365

220 argument roles, making it broader in scope366

than previous general-domain EE datasets such as367

ACE (Doddington et al., 2004). We choose these368

datasets for their complementary characteristics:369

PHEE represents a domain-specific dataset with a370

small number of event types but dense argument an-371

notations, while GENEVA is a large-scale dataset372

with diverse event types but fewer arguments per373

event (averaging four arguments per event). These374

differences allow us to evaluate model performance375

across varying event and argument distributions.376

Appendix C provides dataset statistics and annota-377

tion examples.378

Low-resource Training Low-resource training379

involves randomly sampling n event mentions to380

construct the training dataset (Parekh et al., 2023),381

while keeping the validation and test sets un-382

changed. Unlike few-shot training, which selects k383

samples per event type, low-resource training pre-384

serves the natural distribution of events and argu-385

ments, making it more representative of real-world386

scenarios. Therefore, we adopt it as the primary387

research setting in this study. We conduct experi-388

ments across different resource levels, ranging from389

low (n = 25) to moderate (n = 400), and compare390

the results with fully supervised training. For data391

augmentation, we generate additional samples at392

{1×, 2×, 4×} the size of the original training data393

per event mention.394

Evaluation Metrics Considering that arguments395

may consist of long spans, making exact matching396

difficult, we follow previous work (Sun et al., 2022)397

to evaluate both exact match (EM) and token-level398

match. EM_F1 measures the F1 score of predicted 399

spans that exactly match the ground truth, while 400

Token_ F1 computes the average token-overlap F1 401

score, allowing for evaluation of partial matches. In 402

addition, we also report Micro_F1 and Macro_F1. 403

Micro_F1 is computed over all arguments by 404

accumulating true positives (TP) before comput- 405

ing F1. For Macro_F1, we account for differ- 406

ent dataset characteristics—some being argument- 407

dense and others event-dense—by separately com- 408

puting Arg_Macro_F1, which is the average F1 409

score across argument types, and Evt_Macro_F1, 410

which is the average F1 score across event types. 411

Therefore, we evaluate model performance using 412

six metrics: {Micro_EM_F1, Micro_Token_F1, 413

Arg_Macro_EM_F1, Arg_Macro_Token_F1, 414

Evt_Macro_EM_F1, Evt_Macro_Token_F1}. 415

Baselines We select the following methods 416

as baselines for event argument extraction: 417

(i) GPT-4o Mini: We reproduce the method pro- 418

posed by Sun et al. (2024) and use GPT-4o Mini 419

(OpenAI, 2024) as the base model to establish 420

the LLM in-context learning (ICL) baseline. This 421

approach retrieves the five most similar training 422

samples for each test instance and uses them as 423

demonstrations to prompt the LLM for event ex- 424

traction. Specifically, for EAE, we include the 425

event type and trigger word in the input. In addi- 426

tion, when sufficient retrieval samples are available, 427

we prioritise demonstrations with the same event 428

type. (ii) EEQA: We adopt the method proposed 429

by Du and Cardie (2020) as a representative ex- 430

tractive QA-based approach for EE. Its core idea 431

aligns with our framework (subsection 3.1), lever- 432

aging label semantics as questions and employing a 433

question-answering objective to extract arguments. 434

However, EEQA uses an encoder-only backbone 435

(e.g., BERT), whereas our method adopts an en- 436

coder-decoder architecture (e.g., Flan-T5). We 437
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also experimented with a decoder-only model (e.g.,438

Llama3) but found that causal language models per-439

form poorly when fine-tuned via teacher-forcing440

in low-resource settings, often failing to generate441

reasonable answers. Consequently, we exclude442

causal language model results from our experi-443

ments. (iii) UIE: The UIE model (Lu et al., 2022)444

is a representative structured text generation model445

for information extraction that linearises event446

structures and trains within a seq-to-seq framework.447

Pre-trained on a large-scale structured information448

extraction dataset, UIE has demonstrated strong449

few-shot generalisation in prior studies. To adapt450

it for EAE, we incorporate event type and trigger451

word information into the input.452

For the data augmentation baseline, since most453

previous EAE data augmentation methods were454

based on small models and lacked open-source455

code (Yang et al., 2019; Gao et al., 2022; Meng456

et al., 2024), we compare against the approach by457

Sun et al. (2024), aligning with our focus on LLM-458

based augmentation. This approach inputs a sample459

and its annotated event into GPT-3.5, prompting460

it to generate a new sentence with a similar event461

structure and extract events from the generated text.462

To ensure a fair comparison, we implement their463

method using GPT-4o Mini, ensuring consistency464

with our strategies. Additionally, their original465

work applies a filtering strategy based on perplex-466

ity estimation from a fine-tuned model, but this467

results in extremely low data retention, discarding468

over two-thirds of the generated samples. For eval-469

uation, we instead apply the same filtering rules as470

used in our proposed methods. We denote this data471

augmentation method as Synthesize-and-Label.472

5 Results and Analysis473

5.1 Overall Performance474

Table 1 compares argument replacement, the best-475

performing EAE data augmentation method among476

the four proposed in this study (Section 5.2),477

against other baselines. Comprehensive results for478

all metrics are provided in Appendix D.479

Overall, our base model, Flan-T5 EEQA, out-480

performs all baselines, achieving the highest per-481

formance under low-resource conditions. The pro-482

posed argument replacement data augmentation483

method further enhances the base model, sur-484

passing the compared data augmentation base-485

line and demonstrating its effectiveness for low-486

resource EAE.487
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Figure 2: Comparison of data augmentation methods in
the low-resource setting (n=200), with scores averaged
over 5-fold experiments. All data augmentation meth-
ods shown use 4× augmented data.

Specifically, the performance gains from data 488

augmentation are more pronounced on the 489

GENEVA dataset, likely due to its broader set of 490

argument types, making it more data-hungry. Our 491

method consistently outperforms Synthesize-and- 492

Label (Sun et al., 2024) across all metrics, achiev- 493

ing over an 8% performance gain under the low- 494

resource setting in both Micro_EM_F1 and Mi- 495

cro_Token_F1 after augmentation. 496

In contrast, the impact of data augmentation on 497

the PHEE dataset is more limited, yielding smaller 498

performance gains. However, the performance 499

gap between low-resource (n=200) and full-data 500

(n=3000) training on PHEE is only 6%, compared 501

to 23% on GENEVA (n=4163 for full fine-tuning), 502

indicating lower data scarcity. Unlike GENEVA, 503

PHEE contains densely annotated arguments per 504

sentence but covers fewer event and argument types 505

overall. This suggests that when argument seman- 506

tics are more concentrated, fewer training resources 507

are needed to achieve competitive performance, 508

making data augmentation particularly beneficial 509

in extremely low-resource settings. 510

5.2 Comparison of Data Augmentation 511

Approaches 512

In this subsection, we analyse the differences 513

among the four LLM-based EAE data augmenta- 514

tion methods proposed in this study from various 515

perspectives. 516
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Extraction Performance Figure 2 presents the517

performance of different data augmentation strate-518

gies across multiple metrics.519

First, we observe that all boundary-aware aug-520

mentation methods, i.e., argument replacement, ad-521

junction rewriting, and their combination, improve522

performance across all metrics, while using LLM-523

based annotation generation for data augmentation524

degrades performance across most metrics. It is525

expected that the limited EAE extraction capability526

of LLMs inevitably introduces noise into gener-527

ated labels, undermining the effectiveness of data528

augmentation. However, boundary-aware methods529

mitigate this issue, allowing the generated samples530

to yield improvements even in exact matching eval-531

uation. This highlights the crucial role of preserv-532

ing boundary accuracy in effective EAE data533

augmentation.534

Second, both argument replacement and adjunc-535

tion rewriting prove effective for data augmenta-536

tion, with argument replacement yielding the high-537

est average performance across both datasets. This538

suggests that both argument and semantic di-539

versity are important for low-resource EAE,540

with argument semantics being more critical541

and benefiting more from data augmentation.542

One possible explanation is that even small lan-543

guage models acquire some degree of text represen-544

tation generalisation through pre-training, allow-545

ing them to present reasonable ability with limited546

training data. However, argument semantics are547

often task-specific and not sufficiently learned dur-548

ing pre-training, making them more dependent on549

data augmentation. Additionally, combining argu-550

ment replacement with adjunction rewriting does551

not yield additional gains, likely because seman-552

tic diversity is already enhanced as a byproduct553

of argument replacement, making the extra ad-554

junction rewriting step an unnecessary overhead555

without further benefits.556

Third, the impact of these augmentation meth-557

ods varies across different evaluation metrics.558

Performance gains are more pronounced in Mi-559

cro_F1 and Evt_Macro_F1, while improvements560

in Arg_Macro_F1 remain relatively marginal. This561

indicates that argument imbalance is more severe562

than event imbalance in low-resource EAE and563

current augmentation strategies enhance the ex-564

traction of rare arguments to some extent but565

do not fully resolve the data imbalance problem.566

Unmatch Partial
Match

Spurious
Argument

(Role Error)

Argument
Missing

(Role Error)
No
Augmentation 25 1052 1701 (579) 375 (74)

Argument
Replacement 15 863 902 (299) 543 (95)

Adjunction
Rewriting 19 918 864 (276) 604 (81)

Argument &
Adjunction 19 960 988 (306) 557 (87)

Annotation
Generation 29 1290 1587 (281) 264 (36)

Table 2: Argument extraction error analysis on the
GENEVA (n=200) test set for models trained with differ-
ent data augmentation (4x) methods. Values represent
averages over five runs.

Argument Extraction Error Analysis To anal- 567

yse the impact of different data augmentation meth- 568

ods on EAE, we developed an automated script to 569

classify extraction errors in models trained with 570

different augmented datasets. Table 2 reports error 571

statistics for GENEVA. Results for PHEE and error 572

type definitions are provided in Appendix E. 573

The results indicate that partial match and spu- 574

rious arguments are the most frequent errors, 575

whereas argument missing occurs less often, and 576

fully unmatched spans are rare. Among the four 577

data augmentation methods, argument replacement, 578

adjunction rewriting, and their combination sub- 579

stantially reduce partial match errors, whereas 580

LLM-based annotation generation increases them 581

in fine-tuned models, demonstrating the effective- 582

ness of boundary-aware methods in preserving 583

boundary accuracy of arguments. Additionally, 584

these boundary-aware strategies also significantly 585

reduce spurious arguments albeit slightly increase 586

argument missing, suggesting improved argument 587

semantic learning. In contrast, LLM-based annota- 588

tion generation fails to reduce spurious arguments 589

effectively. Notably, on the PHEE dataset, it even 590

increases spurious argument errors, underscoring 591

the risk of misalignment between the LLM’s inter- 592

nal knowledge and task-specific requirements. Fur- 593

thermore, some spurious argument and argument 594

missing errors result from role confusion, where 595

the model misclassifies argument types within the 596

same event. This is likely influenced by argument 597

co-occurrence patterns in the training data, but this 598

type of error remains relatively infrequent. 599

Quality of Augmented Data Our manual in- 600

spection of the augmented data reveals that LLM- 601

generated samples are generally semantically accu- 602
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Figure 3: Micro_EM_F1 scores for models trained with
varying data sizes and augmentation ratios using ‘argu-
ment replacement’. Scores are averaged over five runs.

rate and syntactically fluent. The newly generated603

arguments align well with the sentence context and604

definitions, while adjunction rewriting enhances605

sentence details beyond simple paraphrasing while606

preserving arguments.607

However, we still observed cases where the LLM608

deviates from instructions. First, it struggles to609

keep the event trigger unchanged when the trig-610

ger is part of a replaced argument and may omit611

it during adjunction rewriting. Another common612

issue is that the model sometimes generates ar-613

guments without an exact match in the sentence,614

mostly due to tokenization mismatches in prepro-615

cessing. For example, the input provided to the616

LLM may include tokenized text such as ‘Russia ’617

s’, while the model generates ‘Russia ’s’ as an argu-618

ment span. Additionally, we observed occasional619

hallucinations when LLM generates data for the620

PHEE dataset, where for certain two-word argu-621

ment types, such as ‘time elapsed’, the LLM some-622

times generates arguments incorrectly labelled as623

‘time_elapsed’. While these issues do not impact624

sentence-level semantics, they introduce noise in625

argument extraction. Optimisation to the prompt or626

additional preprocessing steps may mitigate these627

errors, but given their low occurrence rate, we sim-628

ply filtered these cases. Appendix F provides sta-629

tistical details on different error types.630

Specifically, for argument replacement, we ob-631

served that when an event contains multiple argu-632

ments, the LLM sometimes replaces only a subset633

(see Table A9 for examples). This likely occurs634

when certain arguments are semantically ambigu-635

ous or closely tied to the sentence context. While636

this does not generate incorrect samples, it may637

limit the effectiveness of data augmentation, worth638

further investigation in future work.639

5.3 Impact of Data Scale640

To assess the effectiveness and efficiency of data641

augmentation under varying resource conditions,642

we evaluate model performance across different 643

data sizes and augmentation ratios, as illustrated in 644

Figure 3. Analysing model performance across dif- 645

ferent augmentation ratios, we observe the follow- 646

ing: (i) The performance variation due to different 647

augmentation amounts is smaller than the differ- 648

ence between using and not using data augmenta- 649

tion. Additionally, adding an equivalent amount 650

of augmented data yields lower gains than adding 651

the same amount of original data, suggesting that 652

augmented data exhibits a degree of homogene- 653

ity, impacting augmentation efficiency. However, 654

this trade-off is necessary to maintain annotation 655

accuracy, and balancing accuracy with efficiency 656

remains a challenge for future research. (ii) Even 657

as the amount of original training data increases, 658

augmented data continues to provide noticeable 659

improvements. On the GENEVA dataset, this im- 660

provement remains consistent, whereas on PHEE, 661

it shows a declining trend. This suggests that for 662

argument extraction with extensive roles, while 663

increasing training data helps the model capture 664

a broader range of argument types, further im- 665

provements in learning argument semantics can 666

be achieved through augmentation with richer con- 667

texts. In contrast, for PHEE, where argument di- 668

versity is lower, this need diminishes as training 669

data increases. (iii) Higher augmentation ratios 670

stably improve performance. However, lower ra- 671

tios sometimes achieve comparable results, making 672

them a cost-effective alternative when computa- 673

tional resources are constrained. 674

6 Conclusion 675

This study explores multiple LLM-based data aug- 676

mentation strategies for low-resource EAE. Our 677

findings show that boundary-aware augmentation 678

are more effective, with LLM-based argument re- 679

placement achieving the greatest improvements. 680

This underscores the importance of preserving 681

boundary accuracy and enhancing argument diver- 682

sity in data augmentation for EAE. However, the 683

augmented data generated by argument replace- 684

ment exhibits a degree of homogeneity, potentially 685

limiting its effectiveness. Moreover, existing meth- 686

ods provide only marginal improvements in ex- 687

tracting rare arguments, highlighting the need for 688

further research to mitigate data imbalance and en- 689

hance augmentation efficiency. 690
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Limitations691

This study primarily focuses on directly apply-692

ing LLM-generated data for augmentation, using693

a simple filtering strategy to ensure data valid-694

ity. More advanced filtering techniques or noise-695

tolerant training approaches may further enhance696

the effectiveness of certain augmentation methods.697

However, due to space constraints, we leave these698

explorations for future work.699

Given computational limitations, we evaluate700

data augmentation strategies using only the best-701

performing base model under the low-resource702

setting. Nevertheless, as our proposed augmen-703

tation methods are model-agnostic, the conclusions704

drawn in this study should remain broadly appli-705

cable. Similarly, we assess data scaling only for706

argument replacement, as it is the most effective707

among our proposed methods, making a deeper708

investigation into its resource requirements particu-709

larly meaningful.710
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A Prompt Examples895

Table A1 presents the instruction prompt and input-896

output examples for the argument replacement aug-897

mentation method. In practice, the LLM receives898

both the instruction and a demonstration example899

adhering to the specified input-output format.900

B Experimental Details901

Data Generation: When generating argument902

replacement and adjunction rewriting augmented903

data, we generate five samples for each event men-904

tion in the training set. For argument replacement905

& adjunction rewriting augmentation, we apply ad-906

junction rewriting to each argument replacement907

sample, generating two additional samples. An-908

notation generation produces annotations for all909

samples in the training set. For all augmented data,910

we first filter out the error types defined in Ap-911

pendix E and then sample training data at different912

augmentation ratios.913

Model Training: When training Flan-T5 EEQA,914

we sample empty arguments for each event with a915

probability of 0.2 and train the model to generate916

"None", enabling it to recognise empty arguments917

during inference. We use Flan-T5-base for Flan-918

T5 EEQA, UIE-base for UIE, and Bert-base for919

EEQA. For both Flan-T5 EEQA and UIE training,920

we use a batch size of 16, a learning rate of 1 ×921

10−4, and apply early stopping if no improvement922

is observed on the validation set for 4 consecutive923

epochs. During inference, we perform beam search924

with a beam size of 2. EEQA training uses a batch925

size of 64 and a learning rate of 5 × 10−5. All926

hyperparameters are selected based on preliminary927

experiments on the validation set. All experiments928

are conducted on a single NVIDIA A100 GPU.929

C Supplementary Dataset Information930

Figure A1 presents annotated examples from the931

GENEVA and PHEE datasets. Table A2 provides932

statistical information for the GENEVA dataset,933

while Table A3 summarises the statistics for the934

PHEE dataset.935

D Supplementary Performance Tables936

Table A4 reports the low-resource performance937

across all metrics, while Table A5 presents the full938

fine-tuning results.939

Instruction:
You are an AI assistant tasked with generating augmented
data for an event argument extraction task.
Task Details:
1. Input: You will be given:
- A sentence with a labeled event and its arguments.
- The schema definition of the event, describing the roles
and expected types of its arguments.
2. Your Task:
- Replace the event’s arguments with new ones while keep-
ing the rest of the sentence unchanged.
- Ensure that the new arguments conform to the schema’s
definition and are contextually appropriate within the sen-
tence.
- Any part of the sentence except the arguments should
remain unchanged.
- The event trigger is the word in the sentence indicating the
occurence of the event, which should also be unchanged
and displayed in the sentence.
3. Output Requirements:
- Generate exactly 5 augmented samples for each input
sentence-event pair.
- Return the results in JSON format as shown in the exam-
ple.
- Represent discontinuous arguments in lists.

Input Example:

{
"sentence": "The biosecurity ...",
"event": {

"event_type": "scrutiny",
"trigger": "looked",
"arguments": {

"cognizer": ["The biosecurity
workshop" ...],

"ground": ["at threats ..."]
}

},
"schema": {

"event_type": "scrutiny",
"event_description": "...",
"arguments": {

"cognizer": "The Cognizer ...",
"ground": "The Cognizer ..."

}
}

}

Output Example:

{
"augmented_sentence": "The research

...",
"event_type": "scrutiny",
"trigger": "looked",
"arguments": {

"cognizer": ["The research
committee", ...],

"ground": ["at challenges ..."]
}

}

Table A1: Instruction prompt and input-output examples
for argument replacement.
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A52-year-old Black woman onphenytoin therapy forpost-traumatic epilepsy

developed transient hemiparesis contralateral to the injury.

Subject Treatment

EffectTrigger of:
Adverse Event

Drug Treatment DisorderAge Race Gender

The small, whitewashed chapel was the first Protestant church 
built in China.

Trigger of:
Building

Created EntityPlace

(a) An annotated example from the GENEVA dataset.

(b) An annotated example from the PHEE dataset.

Figure A1: Illustration of event annotations in the
GENEVA and PHEE datasets. The PHEE dataset fea-
tures hierarchical annotation, where main arguments
are highlighted with a coloured background, and sub-
arguments are indicated with coloured text.

# Event
Types

# Argument
Types

# Sent.
# Event

Mentions
# Argument

Mentions
Train 115 412 1,968 4,170 6,777
Dev 115 346 783 1,442 2,383
Test 115 389 993 1,893 3,109

Table A2: Statistics of the GENEVA dataset.

E Extraction Error Type Definitions and940

Statistics941

We categorize the following error types for evaluat-942

ing argument extraction:943

• Unmatch: The model extracts an argument944

with the same role as the ground truth but with945

entirely different spans.946

• Partial Match: The extracted argument par-947

tially overlaps with the ground truth, including948

cases where at least one span of a multi-span949

argument fully or partially matches the ground950

truth.951

• Spurious Argument: The extracted argument952

is assigned a role that has no corresponding an-953

notation in the ground truth. Specifically, we954

define a role error subclass, where a ground955

truth argument shares the same span as this956

predicted argument but is assigned a different957

role, indicating a potential misclassification958

by the model.959

• Argument Missing: The model fails to ex-960

tract an argument for a specific role present in961

the ground truth. Within this category, we also962

define a role error subclass, where a predicted963

argument shares the same span as this ground964

# Event
Types

# Argument
Types

# Sent.
# Event

Mentions
# Argument

Mentions
Train 2 32 2,898 3,004 16,081
Dev 2 32 961 1,003 5,509
Test 2 32 968 1,010 5,494

Table A3: Statistics of the PHEE dataset.

truth argument but is assigned a different role, 965

suggesting a probable misclassification that 966

led to its omission. 967

Table A6 presents the error type analysis for 968

models trained with different data augmentation 969

methods on the PHEE dataset. 970

F Supplementary of Augmented Data 971

Quality 972

Table A7 and Table A8 present the error type 973

statistics for different data augmentation methods 974

on the GENEVA and PHEE datasets. The error 975

types are defined as follows: Broken JSON in- 976

dicates that ChatGPT generated an unparseable 977

JSON format; Invalid Trigger refers to cases 978

where the event trigger in the augmented sample 979

does not appear in the corresponding sentence; In- 980

valid Role occurs when ChatGPT generates an 981

argument type that is not defined in the schema; 982

and Invalid Argument signifies that an argument 983

in the augmented sample cannot be matched to the 984

corresponding sentence. 985

Table A9 shows a generated sample for argument 986

replacement, where only a subset of arguments is 987

replaced. 988

G Potential Risks 989

Although our experiments demonstrate that lever- 990

aging LLMs for data augmentation can enhance 991

event argument extraction, the generated data may 992

introduce factually incorrect hallucinations, pos- 993

ing potential risks when applied to safety-critical 994

domains such as healthcare. 995

H License For Artifacts 996

The Flan-T5 model used in this study is licensed un- 997

der Apache-2.0. The GENEVA dataset is licensed 998

under Creative Commons Attribution 3.0 Unported, 999

and the PHEE dataset is under MIT License. Our 1000

use of previous models and data adheres to their 1001

intended purposes. Additionally, we use data gen- 1002

erated by ChatGPT solely for research purposes, 1003

in compliance with OpenAI’s Terms of Use and 1004

Usage Policies. 1005
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GENEVA
Micro_EM_F1 Micro_Token_F1 Arg_Macro_EM_F1 Arg_Macro_Token_F1 Evt_Macro_EM_F1 Evt_Macro_Token_F1

GPT-4o Mini 38.54 57.41 35.58 50.63 17.78 26.04
EEQA 25.26 ± 2.97 26.95 ± 1.93 23.93 ± 2.82 23.59 ± 2.32 16.78 ± 2.01 16.11 ± 1.74
UIE 45.08 ± 1.21 55.98 ± 1.58 40.87 ± 1.59 46.43 ± 1.78 25.04 ± 2.21 27.43 ± 2.73
Flan-T5 EEQA (ours) 50.15 ± 2.80 58.87 ± 3.98 48.98 ± 2.44 54.48 ± 2.91 38.09 ± 1.96 41.13 ± 2.33
Flan-T5 EEQA +
Synthesize-and-Label

54.33 ± 1.19 64.88 ± 1.26 51.44 ± 1.20 57.50 ± 1.12 39.09 ± 2.41 43.03 ± 2.30

Flan-T5 EEQA +
Argument Replacement (ours)

58.39 ± 1.30 67.68 ± 1.38 54.13 ± 1.28 58.97 ± 1.12 41.25 ± 2.66 44.22 ± 2.87

PHEE
GPT-4o Mini 64.12 75.92 57.29 71.36 48.30 61.07
EEQA 45.20 ± 0.77 40.56 ± 0.82 39.44 ± 0.65 36.95 ± 1.07 37.45 ± 2.89 34.50 ± 2.90
UIE 67.91 ± 0.99 75.72 ± 1.12 61.09 ± 1.16 70.46 ± 1.24 48.38 ± 0.93 55.04 ± 0.93
Flan-T5 EEQA (ours) 69.78 ± 0.97 77.57 ± 1.22 62.89 ± 1.01 71.74 ± 1.52 57.11 ± 1.69 62.98 ± 1.83
Flan-T5 EEQA +
Synthesize-and-Label

69.23 ± 1.16 77.41 ± 1.50 63.07 ± 1.26 72.65 ± 2.00 58.60 ± 1.87 65.77 ± 2.67

Flan-T5 EEQA +
Argument Replacement (ours)

70.99 ± 0.42 79.17 ± 0.76 64.81 ± 0.52 74.78 ± 0.77 57.76 ± 1.82 64.74 ± 2.57

Table A4: Low-resource (n=200) performance across all metrics. The mean ± standard deviation over five runs is
reported for fine-tuning methods, while GPT-4o Mini is evaluated on a single subset due to cost constraints.

GENEVA
Micro_EM_F1 Micro_Token_F1 Arg_Macro_EM_F1 Arg_Macro_Token_F1 Evt_Macro_EM_F1 Evt_Macro_Token_F1

GPT-4o Mini 45.02 62.83 42.04 55.41 25.18 34.47
EEQA 57.72 55.06 53.28 48.07 43.40 40.38
UIE 75.19 82.60 72.63 77.37 58.72 60.43
Flan-T5 EEQA (ours) 73.33 80.13 72.13 76.86 59.53 62.16
Flan-T5 EEQA +
Synthesize-and-Label

72.49 80.37 71.31 76.05 58.36 61.33

Flan-T5 EEQA +
Argument Replacement (ours)

74.32 81.35 71.99 76.41 60.58 62.93

PHEE
GPT-4o Mini 68.37 78.87 63.60 75.87 56.47 67.56
EEQA 53.57 46.95 48.65 44.17 48.30 43.15
UIE 76.60 82.97 71.13 79.32 65.01 70.04
Flan-T5 EEQA (ours) 75.02 82.09 68.76 77.84 65.19 72.60
Flan-T5 EEQA +
Synthesize-and-Label

71.57 79.29 65.72 74.55 62.41 68.26

Flan-T5 EEQA +
Argument Replacement (ours)

76.45 84.24 71.29 81.17 66.29 73.40

Table A5: Full fine-tuning performance across all metrics.

Unmatch Partial
Match

Spurious
Argument

(Role Error)

Argument
Missing

(Role Error)
No
Augmentation 11 1353 825 (243) 200 (33)

Argument
Replacement 13 1329 599 (152) 261 (44)

Adjunction
Rewriting 14 1425 662 (165) 248 (40)

Argument &
Adjunction 12 1409 709 (204) 217 (39)

Annotation
Generation 16 1553 1276 (445) 163 (50)

Table A6: Argument extraction error analysis on the
PHEE (n=200) test set for models trained with differ-
ent data augmentation (4x) methods. Values represent
averages over five runs.

Broken
Json

Invalid
Trigger

(#. Events)

Invalid
Role

Invalid
Argument
(#. Args)

Argument
Replacement 6 5,042 (20,820) 0 2,588 (32,310)

Adjunction
Rewriting 11 2,454 (20,795) 0 5,057 (32,275)

Argument &
Adjunction 13 4,224 (27,480) 0 6,919 (45,404)

Annotation
Generation 2 7 (4,163) 17 629 (7,732)

Table A7: Error statistics of augmented data for
GENEVA.

Broken
Json

Invalid
Trigger

(#. Events)

Invalid
Role

Invalid
Argument
(#. Args)

Argument
Replacement 5 50 (14,995) 1,000 194 (71,370)

Adjunction
Rewriting 2 1,661 (15,010) 892 4,577 (71,410)

Argument &
Adjunction 11 3,377 (29,590) 1,972 7,668 (140,556)

Annotation
Generation 4 0 (3,000) 0 767 (14,080)

Table A8: Error statistics of augmented data for PHEE.
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Input:

{
"sentence": "Surrounded by acres of

farmland hewn from the hard
desert , the adobe fort became a
focal point for the development
of Las Vegas for the next fifty
years .",

"event_type": "becoming",
"trigger": "became",
"arguments": {

"entity": [
"the adobe fort"

],
"final category": [

"a focal point for the
development of Las Vegas
for the next fifty

years"
]

}
}

Augmented Sample:

{
"augmented_sentence": "Surrounded by

acres of farmland hewn from the
hard desert , the historic

mansion became a focal point for
the growth of Las Vegas for the
next fifty years .",

"event_type": "becoming",
"trigger": "became",
"arguments": {

"entity": [
"the historic mansion"

],
"final category": [

"a focal point for the
growth of Las Vegas for
the next fifty years"

]
}

}

Table A9: Example of a generated sample for argu-
ment replacement, where only a subset of arguments is
replaced.
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