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ABSTRACT

Reinforcement Learning (RL) has achieved notable success in tasks requiring
complex decision making, with offline RL offering the ability to train agents using
fixed datasets, thereby avoiding the risks and costs associated with online interac-
tions. However, offline RL is inherently limited by the quality of the dataset, which
can restrict an agent’s performance. Offline-to-online RL aims to bridge the gap
between the cost-efficiency of offline RL and the performance potential of online
RL by pre-training an agent offline before fine-tuning it through online interac-
tions. Despite its promise, recent studies show that offline pre-trained agents of-
ten underperform during online fine-tuning due to inaccurate value function, with
random initialization proving more effective in certain cases. In this work, we
propose a novel method, Online Pre-Training for Offline-to-Online RL (OPT), to
address the issue of inaccurate value estimation in offline pre-trained agents. OPT
introduces a new learning phase, Online Pre-Training, which allows the training of
a new value function that enhances the subsequent fine-tuning process. Implemen-
tation of OPT on TD3 and SPOT demonstrates an average 30% improvement in
performance across D4RL environments, such as MuJoCo, Antmaze, and Adroit.

1 INTRODUCTION

Reinforcement Learning (RL) has shown great potential in addressing complex decision-making
tasks across various fields (Mnih et al. 2015; Silver et al. 2017). In particular, offline RL (Levine
et al. 2020) offers the advantage of training an agent on the fixed dataset, thereby mitigating the
potential costs or risks associated with direct interactions in real-world environments - a significant
limitation of online RL. However, the effectiveness of offline RL is inherently constrained by the
quality of the dataset, which can impede the agent’s overall performance.

To overcome the cost challenge of online RL and the performance limitation of offline RL, the
offline-to-online RL approach has been introduced (Lee et al. 2022; Zhang et al. 2023; Yu & Zhang
2023). This approach entails training an agent sufficiently on an offline dataset, followed by fine-
tuning through additional interactions with the environment. This allows the agent to utilize the
knowledge acquired offline for online fine-tuning. Combining the strengths of both approaches,
offline-to-online RL reduces the need for extensive environment interactions, while enhancing the
agent’s performance through online fine-tuning.

Although offline-to-online RL offers clear advantages, prior studies (Zhang et al. 2023; Guo et al.
2023; Nakamoto et al. 2024; Zhang et al. 2024; Kong et al. 2024; Hu et al. 2024) have shown that
fine-tuning an offline pre-trained agent often results in worse performance compared to training
from scratch. This phenomenon, described by Nakamoto et al. 2024 as counter-intuitive trends, is
depicted in Figure 1, which compares the learning curves during the online phase for both fine-tuning
and training from scratch with the replay buffer initialized using the offline dataset. As shown in
Figure 1 (a), training from scratch outperforms fine-tuning from the very beginning of the learning
process, as also observed by (Ball et al. 2023). In Figure 1 (b), although the offline pre-trained
agent exhibits partial success, training from scratch eventually surpasses fine-tuning, highlighting
the inherent challenges in fine-tuning pre-trained agents in offline settings.

Previous studies (Nakamoto et al. 2024; Zhang et al. 2024) attribute this counter-intuitive trends
of online fine-tuning to issues stemming from inaccurate value estimation. In response, Nakamoto
et al. 2024 focuses on providing a lower bound for value updates to correct the value estimation.
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(a) (b)

Figure 1: Comparison between offline-to-online RL (yellow), from scratch (green), and our method
(purple). (a): A TD3+BC (Fujimoto & Gu 2021) pre-trained agent is fine-tuned with TD3 (Fujimoto
et al. 2018). (b): A SPOT pre-trained agent is fine-tuned with the same algorithm.

Meanwhile, Zhang et al. 2024 introduces perturbations in value updates, promoting smoother value
estimation. A notable characteristic of these approaches is their reliance on the same value function
across both the offline and online learning phases. However, we approach this issue from a different
angle. Rather than relying solely on the potentially flawed value function, we propose introducing
and utilizing an entirely new value function. To investigate this, we formulate two key research
questions that guide our exploration:

Q1. “Can adding a new value function resolve the issue of slow performance improvement?”

Q2. “How can we best leverage the new value function during online fine-tuning?”

Through a comprehensive analysis of these research questions, we propose Online Pre-Training for
Offline-to-Online RL (OPT), a novel approach that introduces a new value function to leverage it
during online fine-tuning. In response to the first research question, OPT introduces a new value
function, enhancing overall performance, as illustrated in Figure 1. For the second research ques-
tion, OPT incorporates an additional learning phase, termed Online Pre-Training, which focuses on
learning this new value function.

As OPT involves learning by adding a new value function, it can be broadly applied to value
function-based RL methods. We evaluate OPT across various D4RL environments, including Mu-
JoCo, Antmaze, and Adroit. OPT demonstrates an average 30% improvement within a limited
setting of 300k online interactions in the final normalized score, surpassing previous state-of-the-art
results.

2 BACKGROUND AND RELATED WORK

Reinforcement Learning (RL) is modeled as a Markov Decision Process (MDP) (Puterman 1990). In
this framework, at each time step, an agent selects an action a based on its current state s according
to its policy π(a|s). The environment transitions to a subsequent state s′ and provides a reward
r, following the transition probability p(s′|s, a) and reward function r(s, a), respectively. Over
successive interactions, the agent’s policy π is optimized to maximize the expected cumulative return
Eπ [

∑
t γ

tr(st, at)], where γ ∈ [0, 1) is the discount factor.

Offline RL focuses on training agents using a static dataset D = {(s, a, r, s′)}, usually generated by
various policies. To address the constraints of offline RL, which are often limited by the dataset’s
quality, offline-to-online RL introduces an additional phase of online fine-tuning. This hybrid ap-
proach enhances the agent’s performance by allowing further learning directly from interactions
with the environment.

Addressing Inaccurate Offline Value Estimation. Offline RL, reliant on a fixed dataset, is prone
to extrapolation error when the value function evaluates out-of-distribution (OOD) actions (Kumar
et al. 2020; Fujimoto et al. 2019). Several methods have been proposed to address this challenge:
some focus on training the value function to assign lower values to OOD actions (Wu et al. 2019;
Kostrikov et al. 2021a), while others aim to avoid OOD action evaluation altogether (Kostrikov et al.
2021b). These inaccurate value estimations in offline training not only degrade offline performance
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but can also adversely impact subsequent online fine-tuning (Yu & Zhang 2023; Zhang et al. 2024;
Nakamoto et al. 2024; Kong et al. 2024; Feng et al. 2024). Although constraints applied in offline
RL can be extended to online fine-tuning to mitigate this issue (Kostrikov et al. 2021b; Lyu et al.
2022; Wu et al. 2022), such strategies often impose excessive conservatism, limiting the potential
for performance enhancement.

Recent advances in offline-to-online RL have aimed to overcome this limitation arising from in-
accurate value estimations (Nakamoto et al. 2024; Zhang et al. 2024). One approach (Nakamoto
et al. 2024) addresses over-conservatism during the offline phase by providing a lower bound for
value updates. However, the conservative nature of this method continues to hinder policy improve-
ment. Another approach (Zhang et al. 2024) introduces perturbations to value updates and increases
their update frequency. While effective, this method incurs significantly higher computational costs
compared to standard techniques, making it less practical for general use.

Backbone Algorithms. Our proposed Online Pre-Training process using newly introduced value
function can be applied to various backbone algorithms. Among the many potential candidates, this
study utilizes TD3+BC (Fujimoto & Gu 2021) and SPOT (Wu et al. 2022) as the backbone algo-
rithms due to their simplicity and sample efficiency. TD3+BC (Fujimoto & Gu 2021) extends the
original TD3 (Fujimoto et al. 2018) algorithm by incorporating a behavior cloning (BC) regulariza-
tion term into the policy improvement. The value function is trained using temporal-difference (TD)
learning, with the loss functions for both the policy πϕ(s) and value function Qθ(s, a) defined as
follows:

Lπ(ϕ) = Es∼B [−Qθ(s, πϕ(s)) + α(πϕ(s)− a)2], (1)

LQ(θ) = E(s,a,r,s′)∼B [(Qθ(s, a)− (r + γQθ̄(s
′, πϕ(s

′))))2] (2)

where Qθ̄ denotes a delayed target value function and B is the replay buffer. SPOT (Wu et al. 2022)
extends of TD3+BC by replacing the BC regularization term with a pre-trained VAE, which is then
used to penalize OOD actions based on the uncertainty.

3 METHOD

In this section, we introduce Online Pre-Training for Offline-to-Online RL (OPT), a novel method
aimed at addressing the issue of inaccurate value estimation in offline-to-online RL. The proposed
method employs two value functions, Qoff-pt and Qon-pt, each serving distinct roles in the time do-
main. The method consists of three distinct stages of learning:

(i) Offline Pre-Training: As in conventional offline-to-online RL, Qoff-pt is trained on the offline
dataset, yielding the offline pre-trained policy πoff.

(ii) Online Pre-Training: The second value function, Qon-pt, is trained using both the offline
dataset and newly collected online samples.

(iii) Online Fine-Tuning: The policy is updated by utilizing bothQoff-pt andQon-pt, with each value
function continuously updated.

Figure 2 illustrates the difference between conventional offline-to-online learning (Figure 2a) and
our proposed method, OPT (Figure 2b). OPT introduces a new learning phase called Online Pre-
Training, making it distinct from the conventional two-stage offline-to-online RL methods by com-
prising three stages. The following sections focus on the Online Pre-Training and Online Fine-
Tuning phases, while the offline phase adheres to the standard offline RL process.

3.1 ONLINE PRE-TRAINING

In the proposed method, Qon-pt is introduced as an additional value function specifically designed
for online fine-tuning. One straightforward approach is to add a randomly initialized value function.
As Qon-pt begins learning from the online fine-tuning, it is expected to adapt well to the new data
encountered during online fine-tuning. However, since Qon-pt is required to train from scratch, it
often disrupts policy learning in the early stages. To prevent Qon-pt from disrupting policy learning,
we introduce a pre-training phase, termed Online Pre-Training, specifically designed to train Qon-pt.
The following sections explore the design of the Online Pre-Training method in detail.
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(a) Conventional Offline-to-Online RL

(b) Ours: Online Pre-Training for Offline-to-Online RL

Figure 2: Illustrations of two different learning methods: (a) Conventional Offline-to-Online RL
(b) Ours. OPT introduces a new learning phase, termed Online Pre-Training, between offline pre-
training and online fine-tuning. The illustration indicates whether the value function and policy are
in learning or frozen (not being trained) during each training phase.

Designing Datasets. As the initial stage of Online Pre-Training, the only available dataset is the
offline dataset Boff, which has already been fully leveraged to train Qoff-pt. Relying solely on Boff
causes Qon-pt to closely replicate Qoff-pt. To address this, we incorporate online samples by initiating
Online Pre-Training with the collection of Nτ samples in the online buffer Bon, generated by πoff.
To leverage Bon, one approach is to train Qon-pt with Bon. Since Qon-pt is trained based on πoff, this
prevents Qon-pt from disrupting policy learning in the initial stage of online fine-tuning. However,
as Bon is generated by the fixed policy πoff, relying solely on Bon risks overfitting. Therefore, to
address both issue of similarity to Qoff-pt and the risk of overfitting to πoff, a balanced approach
utilizing both Boff and Bon is necessary during training.

Designing Objective Function. By leveraging both datasets, the objective for Qon-pt is to ensure
its adaptability to the evolving policy samples, promoting continuous policy improvement and en-
hancing sample efficiency. To achieve this, we adopt a meta-adaptation strategy based on OEMA
(Guo et al. 2023). The objective function for Qon-pt is outlined as follows:

Lpretrain
Qon-pt (ψ) = Loff

Qon-pt(ψ) + Lon
Qon-pt(ψ − α∇Loff

Qon-pt(ψ)) (3)

where Loff
Qon-pt(ψ) = Es,a,r,s′∈Boff [(Q

on-pt
ψ (s, a)− (r + γQon-pt

ψ̄
(s′, πϕ(s

′))))2],

Lon
Qon-pt(ψ) = Es,a,r,s′∈Bon [(Q

on-pt
ψ (s, a)− (r + γQon-pt

ψ̄
(s′, πϕ(s

′))))2].

Here, Qon-pt
ψ̄

represents the target network. Equation (3) consists of two terms: the first term facil-
itates learning from Boff, while the second term serves as an objective to ensure that Qon-pt adapts
to Bon. Optimizing these terms allows Qon-pt to leverage Boff and align closely with the dynamics
of the current policy, enabling efficient adaptation to online samples during fine-tuning. During the
Online Pre-Training, only Qon-pt is updated, with no alterations made to other components, πoff and
Qoff-pt.
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Algorithm 1 OPT: Online Pre-Training for Offline-to-Online Reinforcement Learning

1: Inputs: Offline dataset Boff, offline trained agent {Qoff-pt
θ , πϕ}, online pre-training samples Nτ ,

online pre-training steps Npretrain, online fine-tuning steps Nfinetune, weighting coefficient κ
2: Initialize online replay buffer Bon, value function Qon-pt

ψ

// Online Pre-Training
3: Store Nτ transitions τ = (s, a, r, s′) in Bon via environment interaction with πϕ
4: for i = 1 to Npretrain do
5: Sample minibatch of transitions {τj}Bj=1 ∼ Boff, {τj}Bj=1 ∼ Bon

6: Update ψ minimizing Lpretrain
Qon-pt (ψ) by Equation 3

7: end for
// Online Fine-Tuning

8: Initialize balanced replay buffer BBR ← Boff ∪ Bon
9: for i = 1 to Nfinetune do

10: Sample minibatch of transitions τ ∼ BBR
11: Update θ and ψ minimizing LQoff-pt(θ) and LQon-pt(ψ) respectively by Equation 2
12: Update ϕ minimizing Lfinetune

π (ϕ) by Equation 4
13: end for

3.2 ONLINE FINE-TUNING

In online fine-tuning, by utilizing Qon-pt trained during Online Pre-Training, we facilitate effective
policy improvement. Throughout this phase, the bufferBon is continuously filled and the learning of
all three components Qoff-pt, Qon-pt and πϕ progresses. As in the conventional offline-to-online RL,
Qoff-pt is updated using TD learning, and similarly, Qon-pt, which was trained by Equation 3, is also
updated via TD learning.

Effectively BalancingQoff-pt andQon-pt. One of the key aspects of OPT lies in its approach to pol-
icy improvement, which effectively balancesQoff-pt andQon-pt during online fine-tuning. While most
previous works rely solely on a single value function, our method leverages both Qoff-pt and Qon-pt

for policy improvement. Since Qoff-pt is informative for the offline dataset and Qon-pt, pre-trained
via meta-adaptation strategy during Online Pre-Training, can be adapted to new data encountered
through online interactions, effectively leveraging both value functions is central to our online fine-
tuning strategy. The proposed loss function for policy improvement during online fine-tuning is
given by:

Lfinetune
π (ϕ) = Es∼B [−{(1− κ)Qoff-pt(s, πϕ(s)) + κQon-pt(s, πϕ(s))}], (4)

where πϕ is initialized as πoff and 0 < κ ≤ 1. κ is a weighting coefficient that balances the ratio
between Qoff-pt and Qon-pt. When the discrepancy between the offline dataset and newly introduced
online samples is minimal, Qoff-pt retains valuable information from the offline dataset. As a result,
a small κ is employed to more effectively leverage Qoff-pt. As online fine-tuning progresses, Qon-pt,
optimized through our meta-adaptation objective, quickly adapts to the online data. Consequently, κ
is incrementally increased to shift the reliance towards the more rapidly adapting Qon-pt. A detailed
analysis of κ is provided in Section 5.2.

Additionally, to promote the use of online samples, we employ balanced replay (Lee et al. 2022),
which prioritizes samples encountered during online interactions to further accelerate the adaptation
of Qon-pt. The overall learning phase of OPT is illustrated in Figure 2b, with the algorithm presented
in Algorithm 1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method through experimental
results. In Section 4.1, we describe our experimental setup and compare our method against existing
offline-to-online RL approaches across various environments. Section 4.2 explores the application
of our method to an alternative backbone algorithm.
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4.1 MAIN RESULTS

Experimental Setup. We evaluate the performance of OPT across three domains from the
D4RL benchmark (Fu et al. 2020). MuJoCo is a suite of locomotion tasks including datasets of
diverse quality for each environment. Antmaze is a set of navigation tasks where an ant robot is
controlled to navigate from a starting point to a goal location within a maze. Adroit is a set of robot
manipulation tasks that require controlling a five-finger robotic hand to achieve a specific goal in
each task. A detailed description of the environment and dataset is provided in Appendix B. For
all baselines, the offline phase comprises 1M gradient steps, and the online phase consists of 300k
environment steps. OPT carries out Online Pre-Training for the first 25k steps of the online phase,
followed by online fine-tuning for the remaining 275k steps thus, like the other baselines, it also
has a total 300k environment steps in the online phase. The implementation details are provided in
Appendix A.1.

Baselines. We compare OPT with the following baselines: (1) Off2On (Lee et al. 2022), an
ensemble-based method that incorporates balanced replay to promote the use of near-on-policy sam-
ples; (2) OEMA (Guo et al. 2023), which applies an optimistic strategy alongside a meta-adaptation
method for policy learning; (3) PEX (Zhang et al. 2023), which utilizes a set of policies, includ-
ing a frozen offline pre-trained policy and an additional learnable policy; (4) ACA (Yu & Zhang
2023), which post-process the offline pre-trained value function to align it with the policy; (5)
FamO2O (Wang et al. 2024), employing a state-adaptive policy improvement method; and (6) Cal-
QL (Nakamoto et al. 2024), which trains a value function to mitigate over-conservatism introduced
during the offline pre-training.

Table 1: Comparison of the normalized scores after online fine-tuning for each environment in
MuJoCo domain. r = random, m = medium, m-r = medium-replay. All results are reported as the
mean and standard deviation across five random seeds.

Environment TD3 Off2On OEMA PEX ACA FamO2O Cal-QL TD3 + OPT (Ours)

halfcheetah-r 96.9±4.9 92.6±5.6 78.9±13.0 60.9±5.0 92.0±2.5 36.9±3.5 32.8±8.0 89.0±2.1

hopper-r 84.4±30.1 95.3±9.1 49.1±28.2 48.5±38.9 81.1±27.2 11.8±2.0 17.7±26.0 109.5±3.1

walker2d-r 0.1±0.0 27.9±2.2 24.5±22.7 9.8±1.6 33.8±23.0 9.3±0.3 9.3±5.6 88.1±5.2

halfcheetah-m 96.1±1.8 103.3±1.5 58.5±33.0 70.4±2.3 80.6±1.0 49.6±0.3 76.9±2.1 96.6±1.7

hopper-m 84.5±30.3 106.3±1.2 107.7±2.8 86.1±26.3 102.8±0.5 77.7±7.8 100.6±0.8 112.0±1.3

walker2d-m 102.0±8.0 109.7±29.6 92.2±8.7 91.4±14.3 87.1±3.4 83.7±2.5 97.0±8.2 116.1±4.7

halfcheetah-m-r 87.5±1.5 95.6±1.6 30.8±27.6 55.4±1.2 66.2±2.8 48.3±0.6 62.1±1.0 92.2±1.2

hopper-m-r 90.9±25.4 101.6±14.8 108.8±1.8 95.3±7.2 105.8±0.9 102.1±0.7 101.4±2.1 112.7±1.1

walker2d-m-r 107.7±7.4 120.2±9.3 103.9±5.3 87.2±13.6 79.5±30.1 91.3±6.9 98.3±3.2 117.7±3.5

Total 747.2 852.5 654.4 605.0 728.9 510.1 596.1 933.9

Results on MuJoCo. In the MuJoCo, we implement OPT on the baseline which utilizes TD3+BC
for the offline phase, followed by TD3 in the online phase. Both TD3+OPT and TD3 are evaluated
using an update-to-data (UTD) ratio of 5 for consistency. The results in Table 1 indicate that OPT
demonstrates strong overall performance, notably surpassing the existing state-of-the-art (SOTA)
in several environments. The comparatively high total score further highlights OPT’s robustness,
illustrating its capability to perform consistently well across a range of environments and datasets. In
particular, the results for the walker2d-random-v2 dataset demonstrate the remarkable efficacy
of OPT, as it significantly outperforms existing approaches.

Results on Antmaze. In the Antmaze, we implement OPT within the SPOT, as TD3 showed
suboptimal performance in this domain. Table 2 shows that OPT consistently delivers superior
performance across all environments. When comparing to Cal-QL (Nakamoto et al. 2024), a recently
proposed method with the same objective of addressing inaccurate value estimation, the results in the
umaze-diverse and large-diverse environments demonstrate the efficacy of introducing a
new value function through Online Pre-Training in mitigating this issue.

Results on Adroit. In the Adroit, as with Antmaze, we apply OPT to the SPOT. Table 3
demonstrates that, unlike Cal-QL (Nakamoto et al. 2024), which struggles to learn from low-quality
datasets such as cloned due to its conservative nature, OPT manages to perform well even with
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Table 2: Comparison of the normalized scores after online fine-tuning for each environment in
Antmaze domain. All results are reported as the mean and standard deviation across five random
seeds.

Environment SPOT PEX ACA FamO2O Cal-QL SPOT + OPT (Ours)

umaze 98.4±1.8 95.2±1.6 92.0±4.6 94.6±2.0 90.1±10.8 99.8±0.4

umaze-diverse 55.2±32.7 34.8±30.0 92.0±7.8 39.8±23.2 75.2±35.0 97.4±0.4

medium-play 91.2±3.8 83.4±2.3 0.0±0.0 88.0±2.2 95.1±6.3 98.2±1.3

medium-diverse 91.6±3.4 86.6±4.9 0.0±0.0 69.0±31.8 96.3±4.8 98.4±1.3

large-play 60.4±21.4 56.0±3.8 0.0±0.0 53.8±7.6 75.0±14.7 78.2±4.4

large-diverse 69.4±23.7 60.4±6.8 0.0±0.0 53.6±7.2 74.4±11.8 90.6±3.7

Total 466.2 416.4 184.0 398.8 506.1 562.6

Table 3: Comparison of the normalized scores after online fine-tuning for each environment in
Adroit domain. All results are reported as the mean and standard deviation across five random
seeds.

Environment SPOT Cal-QL SPOT + OPT (Ours)

pen-cloned 117.1±13.4 -2.0±1.2 130.3±6.8

hammer-cloned 90.1±23.2 0.21±0.07 120.1±4.2

door-cloned 0.04±0.06 -0.03±0.00 50.4±29.2

relocate-cloned -0.19±0.04 -0.33±0.01 -0.11±0.06

Total 207.0 -2.1 300.6

these challenging datasets. In particular, the results in the door-cloned environment, where
SPOT fails to perform adequately, demonstrate the effectiveness of OPT.

4.2 EXTENDING OPT TO IQL

Figure 3: Aggregated return curves
for IQL and IQL+OPT, averaged
across all six environments in the
Antmaze domain.

So far, we have shown that OPT is an effective algorithm
for online fine-tuning when applied to TD3-based algorithms,
such as TD3 and SPOT. To further validate the versatility of
OPT across different baselines, we changed the baseline to
IQL. Unlike TD3, IQL employs a stochastic policy and uses
both a state-action value function and a state value function.
Accordingly, to implement OPT, we modified the training
loss, with detailed explanations provided in Appendix A.2.

The results in Figure 3 show that applying OPT yields no-
ticeable performance improvement compared to the baseline.
This suggests that OPT can be applied across various base-
line algorithms. Additional experiment results in different
domains, including MuJoCo and Adroit, are presented in Ap-
pendix E.

5 DISCUSSION

5.1 COMPARISON OPT WITH DIFFERENT INITIALIZATION METHODS

In Section 3.1, we explore various approaches for initializing Qon-pt. To further substantiate the
effectiveness of our initialization method through experimental results, we evaluate three approaches
for initializing Qon-pt: (1) Random Initialization, (2) Pre-trained with Bon, and (3) our proposed
method, OPT.
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Figure 4: Comparing normalized
score of OPT with different initial-
ization methods, averaging across
all 3 environments in the MuJoCo
domain.

Figure 4 illustrates that random initialization consistently un-
derperforms compared to OPT. This discrepancy, as discussed
in Section 3.1, can be attributed to the adverse impact of ran-
dom initialization, which hinders policy learning and con-
sequently leads to diminished performance. Similarly, the
results for pre-training with Bon demonstrate that learning
solely from Bon is insufficient to follow the performance of
OPT. In particular, the results on the random dataset, where
policy evolves more drastically as shown in Figure 5, the re-
sults demonstrate that an overfitted Qon-pt fails to learn with
this policy improvement. This underscores the importance of
bothBoff andBon for training. Detailed experiment results are
provided in Appendix C.3.

5.2 CORRELATION BETWEEN WEIGHTING COEFFICIENT (κ) AND DATASET

(a) Random (b) Medium-Replay (c) Medium

Figure 5: A t-SNE visualization of the offline dataset
(Boff) and the policy’s rollout samples at the beginning
(Binit) and end (Bfinal) of the online fine-tuning.

In our proposed method, we utilize κ to
assign the weights between Qoff-pt and
Qon-pt during online fine-tuning. Since the
quality of the dataset affects the overall
learning process, we adjust the κ schedul-
ing accordingly. To better understand the
scheduling approach, we visualize the dis-
tributional differences between the dataset
and the policy rollouts and examine their
association with κ scheduling. To this end,
we compare the state-action distributions
of the offline dataset and the samples gen-
erated by the policy using t-SNE (Van der
Maaten & Hinton 2008) in the walker2d
environment.

Figure 5 shows the comparison of the distribution between the offline dataset (Boff) and the rollout
samples of policy at both the beginning (Binit) and the end (Bfinal) of the online fine-tuning phase.
For the medium and medium-replay datasets, we observe that the distributions are similar at the
start of the online fine-tuning but diverse towards the end. In contrast, for the random dataset, a
difference between the two distributions is evident from the beginning. Since Qoff-pt is informative
for the offline dataset due to its training during offline pre-training, we initially assign it a higher
weight during the early stages of online fine-tuning for the medium and medium-replay datasets.
As the online fine-tuning progresses, the weight is gradually shifted toward Qon-pt. However, for
the random dataset, due to the substantial distribution difference, we primarily rely on Qon-pt from
the start of online fine-tuning. We provide the specific values of κ in Appendix D and present an
ablation study in Appendix C.2.

5.3 IMPACT OF ADDITION OF A NEW VALUE FUNCTION

Figure 6: Comparison of the nor-
malized score for OPT and its abla-
tion (without the addition of a new
value function), averaged across all
3 environments in the MuJoCo do-
main.

In our proposed algorithm, we introduce a new value func-
tion, which is trained during the Online Pre-Training and sub-
sequently utilized in the online fine-tuning. To evaluate the
impact of this addition, we examine the performance when
the new value function is excluded. Specifically, we assess the
outcome where Qoff-pt is trained during Online Pre-Training,
without introducing Qon-pt (denoted as w/o Qon-pt in Figure
6). Under this setup, policy improvement in online fine-tuning
is driven solely by Qoff-pt.

The results presented in Figure 6 indicate that the addition of a
new value function leads to improved performance regardless
of the dataset. Notably, this improvement is pronounced in the
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random dataset. Due to the characteristics of the random dataset, where successful demonstrations
are limited, Qoff-pt, trained extensively on this dataset, becomes significantly biased and fails to
benefit from Online Pre-Training.

5.4 WHAT IS THE EFFECT OF ONLINE PRE-TRAINING SAMPLES (Nτ )?

Figure 7: Comparing normalized
score with varying Nτ of OPT, av-
eraged across all 9 environments (3
tasks with 3 datasets each) in the
MuJoCo doamin

The Online Pre-Training phase involves two hyperparameters:
Nτ andNpretrain. In particular,Nτ represents the number of in-
teractions with the environment used to collect online samples
for Online Pre-Training. Since Nτ is also part of the environ-
ment steps within the online phase, determining the most effi-
cient value for Nτ is critical for optimizing sample efficiency
in offline-to-online RL. To investigate this, we conduct ex-
periments in the MuJoCo domain comparing the results when
Nτ is set to 1/4, 1/2, 2, and 4 times its current value (25000).
In these experiments, Npretrain is set to twice the value of Nτ ,
while the number of online fine-tuning steps is kept constant.

The results in Figure 7 demonstrate that increasing Nτ en-
hances the effectiveness of Online Pre-Training. However, be-
yond a certain threshold, further increases in Nτ do not lead
to additional performance gains. This is because during the environment interactions for Nτ , the
policy remained fixed, and once the amount of online data surpasses an optimal level, it no longer
contributes to Online Pre-Training. Since the primary objective of offline-to-online RL is to achieve
high performance with minimal environment interaction, these results suggest that OPT is most ef-
ficient when Nτ is set to 25000. Detailed results for each environment are presented in Appendix
C.4.

5.5 COMPARISON WITH RLPD

Table 4: Normalized score for each environment on the MuJoCo domain. The full results for other
domains, including Antmaze and Adroit, are provided in Appendix F.

Environment RLPD

Vanilla Off-to-On OPT (Ours)

halfcheetah-r 91.5 ±2.5 96.1 ±5.2 90.7 ±2.2

hopper-r 90.2 ±19.1 95.7 ±18.4 103.5 ±3.6

walker2d-r 87.7 ±14.1 74.3 ±13.9 79.2 ±10.0

halfcheetah-m 95.5 ±1.5 96.6 ±0.9 96.7 ±1.4

hopper-m 91.4 ±27.8 93.6 ±13.9 106.9 ±1.5

walker2d-m 121.6 ±2.3 124.1 ±2.4 122.8 ±3.0

halfcheetah-m-r 90.1 ±1.3 90.0 ±1.4 91.6 ±2.1

hopper-m-r 78.9 ±24.5 94.7 ±26.8 107.4 ±1.9

walker2d-m-r 119.0 ±2.2 122.5 ±2.7 120.9 ±2.3

MuJoCo total 866.0 887.6 918.7

Thus far, we proposed a method to integrate offline pre-trained agents into online fine-tuning ef-
fectively. Recently, several studies have emerged demonstrating strong performance using online
RL alone with offline datasets, without requiring an explicit offline phase (Song et al. 2022; Ball
et al. 2023). Among these, RLPD (Ball et al. 2023) has demonstrated state-of-the-art performances
through the use of ensemble techniques and a high UTD (update-to-data) ratio. To assess the perfor-
mance of integrating OPT with RLPD, we extend RLPD by incorporating an offline phase, followed
by online fine-tuning, and subsequently apply OPT to evaluate its effectiveness. Further implemen-
tation details are provided in Appendix A.3.

Table 4 reports the results of original RLPD (‘Vanilla’), RLPD with an additional offline phase (‘Off-
to-On’), and RLPD combined with OPT (‘OPT’). The experimental results demonstrate that inte-
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grating OPT with RLPD leads to performance improvements, surpassing both the baseline methods.
These results indicate that OPT is an effective algorithm capable of enhancing performance when
applied to existing state-of-the-art algorithms.

6 CONCLUSION

This paper introduced Online Pre-Training for Offline-to-Online RL (OPT), a novel method to im-
prove the fine-tuning of offline pre-trained agents. By incorporating an Online Pre-Training phase
to learn a new value function, OPT addresses the limitations of existing offline-to-online RL ap-
proaches. Our experiments across multiple D4RL environments demonstrated that OPT consistently
outperforms current methods and is versatile across different backbone algorithms. These findings
suggest that OPT is a robust and effective solution for enhancing performance in offline-to-online
RL. The key contribution of this work lies in the introduction of a new value function for online fine-
tuning, in contrast to existing methods that focus on modifying the original value function. However,
OPT has its limitations, particularly in the lack of analysis on alternative approaches to training the
new value function. Future research could explore different strategies for Online Pre-Training, of-
fering potential improvements to the offline-to-online RL framework.
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A IMPLEMENTATION

A.1 IMPLEMENTATION DETAILS FOR OPT

We implement OPT on top of each backbone algorithm’s code. TD3, RLPD are based on its official
implementation12, SPOT, IQL are built upon the CORL (Tarasov et al. 2024) library 3. The primary
modification introduced in our method is the addition of the Online Pre-Training phase. The Online
Pre-Training phase is implemented with modifications to OEMA code4’s meta-adaptation method,
adapted specifically for value function learning. Additionally, the balanced replay (Lee et al. 2022)
is implemented using the authors’ official implementation5. Aside from these changes, no other
alterations are made to the original code.

A.2 ADDITIONAL IMPLEMENTATION DETAILS FOR IQL

The proposed method is applicable to various baseline algorithms. Here, we present the implemen-
tation when applied to IQL. IQL trains the state value function and the state action value function as
follows:

LV (µ) = E(s,a)∼D [Lτ2(Qθ̄(s, a)− Vµ(s))] . (5)

LQ(θ) = E(s,a,r,s′)∼D

[
(r + γVµ(s

′)−Qθ(s, a))
2
]
. (6)

where Lτ2(u) = |τ − 1(u < 0)|u2 and τ ∈ (0, 1) is the expectile value, and Qθ̄ denotes a target
state action value function. Then, using the state action value function and state value function, the
policy is trained through Advantage Weighted Regression:

Lπ(ϕ) = E(s,a)∼D [exp(β(Qθ̄(s, a)− Vµ(s))) log πϕ(a|s)] (7)

where β ∈ [0,∞) is an inverse temperature. To apply the proposed method to IQL, we train both a
new state action value function (Qon-pt) and state value function (V on-pt) in the Online Pre-Training.
The state action value function is trained identically to Eq. 4, while the state value function is trained
as follows:

Lpretrain
V (µ) = Loff

V (µ) + Lon
V (µ− α∇Loff

V (µ)). (8)

In the online fine-tuning, policy improvement utilizes πoff, Qoff-pt, and V off-pt from offline pre-
training as well as Qon-pt and V on-pt from Online Pre-Training. The policy is trained using an advan-
tage weight obtained from Qoff-pt and V off-pt, and a separate weight obtained from Qon-pt and V on-pt.
These two sets of weights are then combined to effectively train the policy:

Lπ(ϕ) = E(s,a)∼D
[
exp

(
β
(
κ(Qoff-pt

θ̄
(s, a)− V off-pt

µ (s)) (9)

+(1− κ)(Qon-pt
ψ̄

(s, a)− V on-pt
ν (s))

))
log πϕ(a|s)

]
A.3 ADDITIONAL IMPLEMENTATION DETAILS FOR RLPD

To verify the effectiveness of the proposed method when applied to ensemble techniques and high
replay ratio, we conduct experiments by integrating OPT into RLPD. Since RLPD does not origi-
nally include an offline phase, we incorporate an additional offline phase into its implementation.
During the offline phase, we follow the RLPD learning method, performing 1M gradient steps. In
the online phase, we adhere to OPT by conducting Online Pre-Training for 25k environment steps,
followed by 275k environment steps. Given that the original RLPD employs symmetric sampling
in the online phase, where half of the samples are sampled from offline data and the other half from
online data, we also utilize symmetric sampling instead of balanced replay.

1https://github.com/sfujim/TD3
2https://github.com/ikostrikov/rlpd
3https://github.com/tinkoff-ai/CORL
4https://github.com/guosyjlu/OEMA
5https://github.com/shlee94/Off2OnRL
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A.4 BASELINE IMPLEMENTATION

For comparison with OPT, we re-run all baselines. The results for all baselines are obtained using
their official implementations.

• OFF2ON (Lee et al. 2022) : https://github.com/shlee94/Off2OnRL
• OEMA (Guo et al. 2023) : https://github.com/shlee94/Off2OnRL
• PEX (Zhang et al. 2023) : https://github.com/Haichao-Zhang/PEX
• ACA (Yu & Zhang 2023) : https://github.com/ZishunYu/Actor-Critic-Alignment
• FamO2O (Wang et al. 2024) : https://github.com/LeapLabTHU/FamO2O
• Cal-QL (Nakamoto et al. 2024) : https://github.com/nakamotoo/Cal-QL

B DETAILED DESCRIPTION OF THE ENVIRONMENT AND DATASET.

B.1 MUJOCO

MuJoCo consists of locomotion tasks and provides datasets of varying quality for each environment.
We conduct experiments on the halfcheetah, hopper, and walker2d environments. MuJoCo
environment are dense reward setting, and we use the “-v2” versions of the random, medium, and
medium-replay datasets for each environment.

B.2 ANTMAZE

Antmaze involves controlling an ant robot to navigate from the start of the maze to the goal. Antmaze
is a sparse reward environment where the agent receives a reward of +1 upon reaching the goal, and 0
otherwise. The maze is composed of three environments: umaze, medium, and large. For the dataset,
we use the “-v2” versions of umaze, umaze-diverse, medium-play, medium-diverse,
large-play, and large-diverse.

B.3 ADROIT

Adroit is a set of tasks controlling a hand robot with five fingers. Each environment has a differ-
ent objectives: in the pen environment, the task is twirling a pen; in the hammer environment,
hammering a nail; in the door environment, grabbing a door handle and opening it; and in the
relocate, locating a ball to goal region. We utilize the “-v1” version of the cloned dataset for
each environment.
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C FURTHER EXPERIMENTAL RESULTS

C.1 ABLATION ON REPLAY BUFFER

Table 5: Comparing normalized score for OPT
with balanced replay and online replay buffer.
Improvement(%) refers to the performance
gain when compared to the baseline.

Environment OPT with BR OPT with OR

halfcheetah-r 89.0 ±2.1 81.4 ±6.2

hopper-r 109.5 ±3.1 109.5 ±5.1

walker2d-r 88.1 ±5.2 89.7 ±21.4

halfcheetah-m 96.6 ±1.7 89.8 ±3.0

hopper-m 112.0 ±1.3 111.2 ±1.7

walker2d-m 116.1 ±4.7 113.9 ±8.2

halfcheetah-m-r 92.2 ±1.2 85.3 ±2.7

hopper-m-r 112.7 ±1.1 111.4 ±1.8

walker2d-m-r 117.7 ±3.5 109.1 ±9.1

Total 933.9 901.3
Improvement (%) 24.5 % 20.2 %

The proposed method employs balanced replay
(Lee et al. 2022) to enhance the use of on-
line samples during online fine-tuning. Since
the balanced replay has proven effective in
offline-to-online RL on its own, we conduct
experiments to assess its impact and depen-
dency within OPT. To align with OPT’s original
framework of rapid adaptation through more
frequent learning for online samples during on-
line fine-tuning, we test a setup that uniformly
samples from online data, a method we refer to
as Online Replay (OR).

The results in Table 5 demonstrate that the
performance gains of OPT are not solely at-
tributable to the effects of balanced replay. Fur-
thermore, replacing balanced replay with this
simpler Online Replay setup still results in sig-
nificant performance improvements compared
with the baseline. These findings indicate that
OPT’s performance stems not just from bal-
anced replay, but from other strategy that emphasizes learning from online samples, such as Online
Replay.

C.2 ABLATION ON κ

OPT adjusts the weights of Qoff-pt and Qon-pt during online fine-tuning through the coefficient κ. To
evaluate OPT’s sensitivity to κ values, we provide additional experimental results. The experiments
are conducted in the MuJoCo domain, excluding random datasets, as κ is fixed for these cases.
To analyze OPT’s sensitivity to κ, we examine an alternative linear scheduling approach where κ
transitions from 0.2 to 0.8.

Table 6: Results of the ablation study on κ. All experimental results are measured after 300k steps
of online fine-tuning, with 5 random seeds used for each experiment.

OPT (medium: 0.1 → 0.7
medium-replay: 0.1 → 0.9)

Scheduling (0.2 → 0.8)

ha-m 96.6 ±1.7 96.2±1.9

ho-m 112.0 ±1.3 111.3±0.9

wa-m 116.1±4.7 117.7±1.9

ha-m-r 92.2±1.2 92.7±2.5

ho-m-r 112.7±1.1 111.9±0.7

wa-m-r 117.7±3.5 114.2±6.0

Total 647.3 644.0

The results indicate that varying the κ scheduling has minimal impact on performance. This suggests
that the precise values of κ are less critical compared to its role in facilitating the transition from
Qoff-pt to Qon-pt, which is essential for effective adaptation.
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C.3 FULL RESULTS FOR COMPARISON OF DIFFERENT INITIALIZATION METHODS

In Section 5.1, we conduct an ablation study on Online Pre-Training. Below are the full results of
Figure 4.

Table 7: Results of the ablation study on Online Pre-Training. All experimental results are measured
after 300k steps of online fine-tuning, with 5 random seeds used for each experiment.

Environment OPT Random Initialization Pre-trained with Bon

halfcheetah-r 89.0±2.1 76.7±11.9 68.3±8.4

hopper-r 109.5±3.1 105.8±7.8 105.5±3.2

walker2d-r 88.1±5.2 74.8±10.5 73.4±28.9

halfcheetah-m 96.6±1.7 89.7±4.6 95.7±0.8

hopper-m 112.0±1.3 111.3±1.9 109.6±2.2

walker2d-m 116.1±4.7 101.0±9.2 114.7±2.2

halfcheetah-m-r 92.2±1.2 84.3±8.2 91.0±1.9

hopper-m-r 112.7±1.1 111.7±1.4 112.2±0.7

walker2d-m-r 117.7±3.5 104.8±5.2 111.6±8.4

Total 933.9 843.1 882.0

C.4 FULL RESULTS FOR COMPARISON OF DIFFERENT Nτ

In Section 5.4, we conduct an ablation study on Nτ . Below are the full results of Figure 7.

Table 8: Results of the ablation study on Nτ . All experimental results are measured after 300k steps
of online fine-tuning, with 5 random seeds used for each experiment.

6250 12500 25000 50000 100000

ha-r 66.4±9.2 79.9±4.8 89.0±2.1 93.6±2.1 93.7±2.8

ho-r 105.8±1.3 103.7±4.7 109.5±3.1 108.4±5.2 109.2±2.0

wa-r 75.9±8.1 72.9±9.5 88.1±5.2 92.4±8.2 93.9±4.0

ha-m 98.6±1.6 97.0±2.5 96.6±1.7 98.4±3.1 97.3±2.1

ho-m 105.8±2.5 108.7±2.0 112.0±1.3 110.2±1.6 110.9±2.0

wa-m 112.8±7.0 115.3±5.1 116.1±4.7 119.5±4.8 116.2±1.5

ha-m-r 89.9±3.4 90.4±1.4 92.2±1.2 92.0±1.8 92.6±2.8

ho-m-r 94.9±5.5 111.1±0.7 112.7±1.1 112.8±2.2 111.6±1.5

wa-m-r 111.2±2.3 113.0±1.8 117.7±3.5 113.2±2.7 115.4±2.8

Total 861.3 892.0 933.9 940.5 940.8
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D HYPER-PARAMETERS

In this paper, we present the results of applying OPT to various backbone algorithms. Aside from
the hyperparameters listed below, all other hyperparameters are adopted directly from the backbone
algorithms. In our proposed Online Pre-Training, we set Nτ to 25000 and Npretrain to 50000 for
all environments. Additionally, for the MuJoCo domain, we use TD3 with a UTD ratio of 5 as the
baseline. In the Adroit domain, we use SPOT as the baseline, trained with layer normalization (Ba
2016) applied to both the actor and critic networks.

As mentioned in Section 3.2, we use the parameter κ to assign higher weight to Qoff-pt during the
early stages of online fine-tuning, gradually shifting to give higher weight to Qon-pt as training pro-
gresses. We control κ through linear scheduling. Table 9 outlines the κ scheduling for each environ-
ment, where κinit represents the initial value of κ at the start of online phase, Tdecay specifies the
number of timesteps over which κ increases, and κend indicates the final value of κ after increase.
Notably, in the MuJoCo random environment, as demonstrated in Section 5.2 the value function
pre-trained offline exhibits significant bias, so it is not utilized during online fine-tuning.

Table 9: κ scheduling method for each environment.

Environment κinit Tdecay κend

halfcheetah-r 1 - 1
hopper-r 1 - 1

walker2d-r 1 - 1
halfcheetah-m 0.1 150000 0.7

hopper-m 0.1 150000 0.7
walker2d-m 0.1 150000 0.7

halfcheetah-m-r 0.1 150000 0.9
hopper-m-r 0.1 150000 0.9

walker2d-m-r 0.1 150000 0.9

umaze 0.1 100000 0.9
umaze-diverse 0.1 100000 0.9
medium-play 0.1 100000 0.9

medium-diverse 0.1 100000 0.9
large-play 0.1 100000 0.9

large-diverse 0.1 200000 0.9

pen-cloned 0.1 250000 0.9
hammer-cloned 0.1 250000 0.9

door-cloned 0.1 250000 0.9
relocate-cloned 0.1 250000 0.9
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E COMPARISON WITH BACKBONE ALGORITHM

Our proposed OPT is an algorithm applicable to value-based backbone algorithms. To evaluate
the performance improvement achieved by applying OPT, we compare it against the performance
of the backbone algorithms. Table 10 presents the performance of OPT when TD3, SPOT, and
IQL are used as the backbone algorithms across all environments. When based on TD3 and SPOT,
we observe an average performance improvement of 30%. Additionally, when based on IQL, we
observe an average performance improvement of 25%.

Table 10: Average normalized final evaluation score for each environment on the D4RL benchmark.
We denote the backbone algorithm as Vanilla and the result of the algorithm integrated with OPT
as Ours. All results are reported as the mean and standard deviation across five random seeds.

Environment TD3 IQL

Vanilla Ours Vanilla Ours

halfcheetah-r 96.9 ±4.9 89.0 ±2.1 33.3 ±2.5 45.2 ±5.3

hopper-r 84.4 ±30.1 109.5 ±3.1 10.6 ±1.5 15.2 ±6.7

walker2d-r 0.1 ±0.0 88.1 ±5.2 7.5 ±1.6 11.0 ±4.6

halfcheetah-m 96.1 ±1.8 96.6 ±1.7 50.2 ±0.2 55.5 ±0.5

hopper-m 84.5 ±30.3 112.0 ±1.3 61.8 ±4.9 94.2 ±10.4

walker2d-m 102.0 ±8.0 116.1 ±4.7 86.6 ±3.0 91.4 ±1.2

halfcheetah-m-r 87.5 ±1.5 92.2 ±1.2 46.2 ±0.4 50.2 ±1.8

hopper-m-r 90.9 ±25.4 112.7 ±1.1 95.5 ±10.2 89.8 ±25.5

walker2d-m-r 107.7 ±7.4 117.7 ±3.5 90.3 ±6.3 106.0 ±2.6

MuJoCo total 747.2 933.9 (+24.9%) 482.0 558.5 (+15.8%)

SPOT IQL

Vanilla Ours Vanilla Ours

umaze 98.4 ±1.8 99.8 ±0.4 90.4 ±5.3 92.8 ±2.9

umaze-diverse 55.2 ±32.7 97.4 ±0.4 30.4 ±17.6 90.4 ±9.4

medium-play 91.2 ±3.8 98.2 ±1.3 83.2 ±4.7 88.4 ±1.2

medium-diverse 91.6 ±3.4 98.4 ±1.3 83.2 ±2.3 89.6 ±2.7

large-play 60.4 ±21.4 78.2 ±4.4 53.0 ±6.3 65.8 ±2.4

large-diverse 69.4 ±23.7 90.6 ±3.7 51.8 ±4.9 64.6 ±7.1

Antmaze total 466.2 562.6 (+20.6%) 392.0 491.6 (+25.4%)

pen-cloned 117.1 ±13.4 130.3 ±6.8 90.7 ±9.4 100.3 ±6.0

hammer-cloned 90.2 ±23.2 120.1 ±4.2 14.8 ±6.9 23.7 ±18.0

door-cloned 0.05 ±0.06 50.4 ±29.2 7.6 ±3.4 26.7 ±9.3

relocate-cloned -0.19 ±0.04 -0.11 ±0.06 0.09 ±0.03 0.83 ±0.78

Adroit total 207.2 300.6 (+45.0 %) 113.1 151.5 (+33.9%)
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F FULL RESULTS OF RLPD

Table 11: Average normalized final evaluation score for each environment on the D4RL benchmark.
We denote the vanilla algorithm as Vanilla, the baseline algorithm within the offline-to-online
RL framework as Off-to-on, and the result of the algorithm integrated with OPT as Ours. All
results are reported as the mean and standard deviation across five random seeds.

Environment RLPD

Vanilla Off-to-on Ours

halfcheetah-r 91.5 ±2.5 96.1 ±5.2 90.7 ±2.2

hopper-r 90.2 ±19.1 95.7 ±18.4 103.5 ±3.6

walker2d-r 87.7 ±14.1 74.3 ±13.9 79.2 ±10.0

halfcheetah-m 95.5 ±1.5 96.6 ±0.9 96.7 ±1.4

hopper-m 91.4 ±27.8 93.6 ±13.9 106.9 ±1.5

walker2d-m 121.6 ±2.3 124.1 ±2.4 122.8 ±3.0

halfcheetah-m-r 90.1 ±1.3 90.0 ±1.4 91.6 ±2.1

hopper-m-r 78.9 ±24.5 94.7 ±26.8 107.4 ±1.9

walker2d-m-r 119.0 ±2.2 122.5 ±2.7 120.9 ±2.3

MuJoCo total 866.0 887.6 918.7

umaze 99.4 ±0.8 99.8 ±0.4 99.6 ±0.5

umaze-diverse 98.0 ±1.1 99.2 ±1.0 99.0 ±0.6

medium-play 97.6 ±1.4 97.4 ±1.4 99.6 ±0.6

medium-diverse 97.6 ±1.9 98.6 ±1.4 99.2 ±0.4

large-play 93.6 ±2.4 93.0 ±2.5 92.2 ±3.9

large-diverse 92.8 ±3.2 90.4 ±3.9 94.8 ±2.2

Antmaze total 579.0 578.4 584.4

pen-cloned 154.8 ±11.6 148.5 ±15.2 155.5 ±11.0

hammer-cloned 139.7 ±5.6 141.4 ±1.0 142.1 ±1.2

door-cloned 110.8 ±6.1 114.6 ±1.3 115.7 ±1.4

relocate-cloned 4.8 ±7.1 0.11 ±0.2 10.0 ±6.4

Adroit total 410.1 404.6 423.3
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G LEARNING CURVES

OEMA Backbone OFF2ONOPT

PEX ACA FamO2O Cal-QL

Figure 8: Learning curve of online phase over 300k steps. The solid line represents the mean
performance, while the shaded region depicts the standard deviation across five random seeds.
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