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ABSTRACT

Reinforcement Learning (RL) has achieved notable success in tasks requiring
complex decision making, with offline RL offering the ability to train agents using
fixed datasets, thereby avoiding the risks and costs associated with online interac-
tions. However, offline RL is inherently limited by the quality of the dataset, which
can restrict an agent’s performance. Offline-to-online RL aims to bridge the gap
between the cost-efficiency of offline RL and the performance potential of online
RL by pre-training an agent offline before fine-tuning it through online interac-
tions. Despite its promise, recent studies show that offline pre-trained agents of-
ten underperform during online fine-tuning due to inaccurate value function, with
random initialization proving more effective in certain cases. In this work, we
propose a novel method, Online Pre-Training for Offline-to-Online RL (OPT), to
address the issue of inaccurate value estimation in offline pre-trained agents. OPT
introduces a new learning phase, Online Pre-Training, which allows the training of
anew value function that enhances the subsequent fine-tuning process. Implemen-
tation of OPT on TD3 and SPOT demonstrates an average 30% improvement in
performance across D4RL environments, such as MuJoCo, Antmaze, and Adroit.

1 INTRODUCTION

Reinforcement Learning (RL) has shown great potential in addressing complex decision-making
tasks across various fields (Mnih et al.| 2015} [Silver et al.|[2017). In particular, offline RL (Levine
et al.|2020) offers the advantage of training an agent on the fixed dataset, thereby mitigating the
potential costs or risks associated with direct interactions in real-world environments - a significant
limitation of online RL. However, the effectiveness of offline RL is inherently constrained by the
quality of the dataset, which can impede the agent’s overall performance.

To overcome the cost challenge of online RL and the performance limitation of offline RL, the
offline-to-online RL approach has been introduced (Lee et al.|2022} Zhang et al.|2023};|Yu & Zhang
2023). This approach entails training an agent sufficiently on an offline dataset, followed by fine-
tuning through additional interactions with the environment. This allows the agent to utilize the
knowledge acquired offline for online fine-tuning. Combining the strengths of both approaches,
offline-to-online RL reduces the need for extensive environment interactions, while enhancing the
agent’s performance through online fine-tuning.

Although offline-to-online RL offers clear advantages, prior studies (Zhang et al.|2023; (Guo et al.
2023; Nakamoto et al.|2024; [Zhang et al.|2024; [Kong et al.|2024; |Hu et al.|2024)) have shown that
fine-tuning an offline pre-trained agent often results in worse performance compared to training
from scratch. This phenomenon, described by Nakamoto et al.|2024, as counter-intuitive trends, is
depicted in Figure[I] which compares the learning curves during the online phase for both fine-tuning
and training from scratch with the replay buffer initialized using the offline dataset. As shown in
Figure[l| (a), training from scratch outperforms fine-tuning from the very beginning of the learning
process, as also observed by (Ball et al|[2023). In Figure [I] (b), although the offline pre-trained
agent exhibits partial success, training from scratch eventually surpasses fine-tuning, highlighting
the inherent challenges in fine-tuning pre-trained agents in offline settings.

Previous studies (Nakamoto et al.|2024; |[Zhang et al.|[2024) attribute this counter-intuitive trends
of online fine-tuning to issues stemming from inaccurate value estimation. In response, Nakamoto
et al.||2024] focuses on providing a lower bound for value updates to correct the value estimation.
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Figure 1: Comparison between offline-to-online RL (yellow), from scratch (green), and our method
(purple). (a): A TD3+BC (Fujimoto & Gu|2021) pre-trained agent is fine-tuned with TD3 (Fujimoto
et al.[2018)). (b): A SPOT pre-trained agent is fine-tuned with the same algorithm.

Meanwhile, |Zhang et al.|2024]introduces perturbations in value updates, promoting smoother value
estimation. A notable characteristic of these approaches is their reliance on the same value function
across both the offline and online learning phases. However, we approach this issue from a different
angle. Rather than relying solely on the potentially flawed value function, we propose introducing
and utilizing an entirely new value function. To investigate this, we formulate two key research
questions that guide our exploration:

Ql. “Can adding a new value function resolve the issue of slow performance improvement?”

Q2. “How can we best leverage the new value function during online fine-tuning?”

Through a comprehensive analysis of these research questions, we propose Online Pre-Training for
Offline-to-Online RL (OPT), a novel approach that introduces a new value function to leverage it
during online fine-tuning. In response to the first research question, OPT introduces a new value
function, enhancing overall performance, as illustrated in Figure [I] For the second research ques-
tion, OPT incorporates an additional learning phase, termed Online Pre-Training, which focuses on
learning this new value function.

As OPT involves learning by adding a new value function, it can be broadly applied to value
function-based RL methods. We evaluate OPT across various D4RL environments, including Mu-
JoCo, Antmaze, and Adroit. OPT demonstrates an average 30% improvement within a limited
setting of 300k online interactions in the final normalized score, surpassing previous state-of-the-art
results.

2 BACKGROUND AND RELATED WORK

Reinforcement Learning (RL) is modeled as a Markov Decision Process (MDP) (Puterman|1990). In

this framework, at each time step, an agent selects an action a based on its current state s according

to its policy 7(a|s). The environment transitions to a subsequent state s’ and provides a reward

r, following the transition probability p(s’|s,a) and reward function r(s,a), respectively. Over

successive interactions, the agent’s policy 7 is optimized to maximize the expected cumulative return
= Doy i (se, ar)], where y € [0, 1) is the discount factor.

Offline RL focuses on training agents using a static dataset D = {(s, a,r, s’)}, usually generated by
various policies. To address the constraints of offline RL, which are often limited by the dataset’s
quality, offline-to-online RL introduces an additional phase of online fine-tuning. This hybrid ap-
proach enhances the agent’s performance by allowing further learning directly from interactions
with the environment.

Addressing Inaccurate Offline Value Estimation. Offline RL, reliant on a fixed dataset, is prone
to extrapolation error when the value function evaluates out-of-distribution (OOD) actions (Kumar
et al.[2020; |[Fujimoto et al.[2019). Several methods have been proposed to address this challenge:
some focus on training the value function to assign lower values to OOD actions (Wu et al.|2019;
Kostrikov et al.|[2021a)), while others aim to avoid OOD action evaluation altogether (Kostrikov et al.
2021b). These inaccurate value estimations in offline training not only degrade offline performance
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but can also adversely impact subsequent online fine-tuning (Yu & Zhang|2023} |Zhang et al.|2024;
Nakamoto et al.[2024; Kong et al.|2024; Feng et al.|[2024). Although constraints applied in offline
RL can be extended to online fine-tuning to mitigate this issue (Kostrikov et al.|2021b; |[Lyu et al.
2022; [Wu et al|2022)), such strategies often impose excessive conservatism, limiting the potential
for performance enhancement.

Recent advances in offline-to-online RL have aimed to overcome this limitation arising from in-
accurate value estimations (Nakamoto et al|[2024; Zhang et al.|2024). One approach (Nakamoto
et al.|2024)) addresses over-conservatism during the offline phase by providing a lower bound for
value updates. However, the conservative nature of this method continues to hinder policy improve-
ment. Another approach (Zhang et al.|2024) introduces perturbations to value updates and increases
their update frequency. While effective, this method incurs significantly higher computational costs
compared to standard techniques, making it less practical for general use.

Backbone Algorithms. Our proposed Online Pre-Training process using newly introduced value
function can be applied to various backbone algorithms. Among the many potential candidates, this
study utilizes TD3+BC (Fujimoto & Gu|2021) and SPOT (Wu et al.|2022) as the backbone algo-
rithms due to their simplicity and sample efficiency. TD3+BC (Fujimoto & Gu|[2021) extends the
original TD3 (Fujimoto et al.[2018)) algorithm by incorporating a behavior cloning (BC) regulariza-
tion term into the policy improvement. The value function is trained using temporal-difference (TD)
learning, with the loss functions for both the policy 7, (s) and value function Qg (s, a) defined as
follows:

L (¢) = Eeup[—Qo(s,m4(s)) + a(mg(s) — a)?], (1)
L(0) = E(sa,ms)~5[(Qa(s,a) — (r +79Q4(s", m4(5"))))?] 2)

where (5 denotes a delayed target value function and B is the replay buffer. SPOT (Wu et al.[2022)
extends of TD3+BC by replacing the BC regularization term with a pre-trained VAE, which is then
used to penalize OOD actions based on the uncertainty.

3 METHOD

In this section, we introduce Online Pre-Training for Offline-to-Online RL (OPT), a novel method
aimed at addressing the issue of inaccurate value estimation in offline-to-online RL. The proposed
method employs two value functions, Q°P and Q°"P', each serving distinct roles in the time do-
main. The method consists of three distinct stages of learning:

(i) Offline Pre-Training: As in conventional offline-to-online RL, QP! is trained on the offline
dataset, yielding the offline pre-trained policy 7°f.

(ii) Online Pre-Training: The second value function, Q°"?', is trained using both the offline
dataset and newly collected online samples.

(iii) Online Fine-Tuning: The policy is updated by utilizing both Q°?* and Q°"*', with each value
function continuously updated.

Figure 2] illustrates the difference between conventional offline-to-online learning (Figure [2a)) and
our proposed method, OPT (Figure 2b). OPT introduces a new learning phase called Online Pre-
Training, making it distinct from the conventional two-stage offline-to-online RL methods by com-
prising three stages. The following sections focus on the Online Pre-Training and Online Fine-
Tuning phases, while the offline phase adheres to the standard offline RL process.

3.1 ONLINE PRE-TRAINING

In the proposed method, Q°"?" is introduced as an additional value function specifically designed
for online fine-tuning. One straightforward approach is to add a randomly initialized value function.
As Q°"P' begins learning from the online fine-tuning, it is expected to adapt well to the new data
encountered during online fine-tuning. However, since Q°™P' is required to train from scratch, it
often disrupts policy learning in the early stages. To prevent Q°"P" from disrupting policy learning,
we introduce a pre-training phase, termed Online Pre-Training, specifically designed to train Q°"P".
The following sections explore the design of the Online Pre-Training method in detail.
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(b) Ours: Online Pre-Training for Offline-to-Online RL

Figure 2: Illustrations of two different learning methods: (a) Conventional Offline-to-Online RL
(b) Ours. OPT introduces a new learning phase, termed Online Pre-Training, between offline pre-
training and online fine-tuning. The illustration indicates whether the value function and policy are
in learning or frozen (not being trained) during each training phase.

Designing Datasets.  As the initial stage of Online Pre-Training, the only available dataset is the
offline dataset By, which has already been fully leveraged to train Q°P'. Relying solely on By
causes Q"' to closely replicate Q°P'. To address this, we incorporate online samples by initiating
Online Pre-Training with the collection of N, samples in the online buffer B,,, generated by 7°f.
To leverage By, one approach is to train Q" with By,. Since Q°"™" is trained based on 7 this
prevents Q°"P' from disrupting policy learning in the initial stage of online fine-tuning. However,
as B, is generated by the fixed policy 7°T, relying solely on B,, risks overfitting. Therefore, to
address both issue of similarity to Q°™P' and the risk of overfitting to 7°T, a balanced approach
utilizing both By and B,, is necessary during training.

Designing Objective Function. By leveraging both datasets, the objective for Q°™ ™" is to ensure
its adaptability to the evolving policy samples, promoting continuous policy improvement and en-
hancing sample efficiency. To achieve this, we adopt a meta-adaptation strategy based on OEMA
. The objective function for Q°"™ is outlined as follows:

LB (1) = L8 (V) + LB (Y — AV LI (1)) (3)

where Ly (1)) =
gon—pl(w) -

s B[ (QY T (5,0) — (r +9QF (s, me(s))))?],

E
Es a5 eBal(@y 7 (5,0) = (r + Q7P (s, m4(5))))?].

Here, ch-p: represents the target network. Equation (3) consists of two terms: the first term facil-

itates learning from By, while the second term serves as an objective to ensure that Q°"P" adapts
to Boy. Optimizing these terms allows Q°"P' to leverage B,y and align closely with the dynamics
of the current policy, enabling efficient adaptation to online samples during fine-tuning. During the
Online Pre-Training, only Q°"™ is updated, with no alterations made to other components, 7°T and

Qoff—pt
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Algorithm 1 OPT: Online Pre-Training for Offline-to-Online Reinforcement Learning

I: Inputs: Offline dataset By, offline trained agent {Q)" ™', 7,4}, online pre-training samples N,

online pre-training steps Npretrain, Online fine-tuning steps Ninewne, Weighting coefficient x
2: Initialize online replay buffer B,,, value function Qf;’pt
// Online Pre-Training
Store N, transitions 7 = (s, a,r, s") in By, via environment interaction with
for i = 1t0 Npreirain do
Sample minibatch of transitiAons {7; }le ~ Bos, {75 }le ~ Bon
Update v) minimizing Egi,ﬁm(w) by Equation
end for
// Online Fine-Tuning
8: Initialize balanced replay buffer Bgr < By U Bon
9: for i = 1 to Nfinetune do
10:  Sample minibatch of transitions 7 ~ Bgg
11:  Update 0 and 1) minimizing £ o (6) and Lo (1)) respectively by Equation
12:  Update ¢ minimizing £i"“n¢ () by Equation E]
13: end for

N A

3.2 ONLINE FINE-TUNING

In online fine-tuning, by utilizing Q°"* trained during Online Pre-Training, we facilitate effective
policy improvement. Throughout this phase, the buffer B,, is continuously filled and the learning of
all three components Q°Pt, QP and 4 progresses. As in the conventional offline-to-online RL,
Q°Pt is updated using TD learning, and similarly, Q°"P, which was trained by Equation is also
updated via TD learning.

Effectively Balancing Q°™ and Q°"P'. One of the key aspects of OPT lies in its approach to pol-
icy improvement, which effectively balances Q°TP' and Q°"P' during online fine-tuning. While most
previous works rely solely on a single value function, our method leverages both Q°P' and Q™
for policy improvement. Since Q°P' is informative for the offline dataset and Q™P', pre-trained
via meta-adaptation strategy during Online Pre-Training, can be adapted to new data encountered
through online interactions, effectively leveraging both value functions is central to our online fine-
tuning strategy. The proposed loss function for policy improvement during online fine-tuning is
given by:

LI () = By p[—{(1 — £)Q P (5,74 (5)) + £Q™P (s, 74 (5))}], “)

where 7 is initialized as 7°T and 0 < k < 1. & is a weighting coefficient that balances the ratio
between Q°Pt and Q°™P'. When the discrepancy between the offline dataset and newly introduced
online samples is minimal, Q°P' retains valuable information from the offline dataset. As a result,
a small « is employed to more effectively leverage Q°P'. As online fine-tuning progresses, Q°"P",
optimized through our meta-adaptation objective, quickly adapts to the online data. Consequently, x
is incrementally increased to shift the reliance towards the more rapidly adapting Q°"P'. A detailed
analysis of « is provided in Section[5.2]

Additionally, to promote the use of online samples, we employ balanced replay (Lee et al.|[2022),
which prioritizes samples encountered during online interactions to further accelerate the adaptation
of Q°"P, The overall learning phase of OPT is illustrated in Figure with the algorithm presented
in Algorithm

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method through experimental
results. In Section[4. 1] we describe our experimental setup and compare our method against existing
offline-to-online RL approaches across various environments. Section [4.2] explores the application
of our method to an alternative backbone algorithm.
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4.1 MAIN RESULTS

Experimental Setup. We evaluate the performance of OPT across three domains from the
D4RL benchmark (Fu et al./[2020). MuJoCo is a suite of locomotion tasks including datasets of
diverse quality for each environment. Antmaze is a set of navigation tasks where an ant robot is
controlled to navigate from a starting point to a goal location within a maze. Adroit is a set of robot
manipulation tasks that require controlling a five-finger robotic hand to achieve a specific goal in
each task. A detailed description of the environment and dataset is provided in Appendix [B] For
all baselines, the offline phase comprises 1M gradient steps, and the online phase consists of 300k
environment steps. OPT carries out Online Pre-Training for the first 25k steps of the online phase,
followed by online fine-tuning for the remaining 275k steps thus, like the other baselines, it also
has a total 300k environment steps in the online phase. The implementation details are provided in

Appendix [A.T]

Baselines. We compare OPT with the following baselines: (1) Off20n (Lee et al.[2022), an
ensemble-based method that incorporates balanced replay to promote the use of near-on-policy sam-
ples; (2) OEMA (Guo et al.[2023)), which applies an optimistic strategy alongside a meta-adaptation
method for policy learning; (3) PEX (Zhang et al||2023), which utilizes a set of policies, includ-
ing a frozen offline pre-trained policy and an additional learnable policy; (4) ACA (Yu & Zhang
2023)), which post-process the offline pre-trained value function to align it with the policy; (5)
FamO20 (Wang et al.[2024), employing a state-adaptive policy improvement method; and (6) Cal-
QL (Nakamoto et al.[2024])), which trains a value function to mitigate over-conservatism introduced
during the offline pre-training.

Table 1: Comparison of the normalized scores after online fine-tuning for each environment in
MuJoCo domain. r = random, m = medium, m-r = medium-replay. All results are reported as the
mean and standard deviation across five random seeds.

Environment ‘ TD3 Off20n OEMA PEX ACA FamO20 Cal-QL TD3 + OPT (Ours)

halfcheetah-r | 96.9+49 92.6456 78.9+130 609450 92.0+25 36.9+35 32.8480 89.0+2.1
hopper-r 84.4+301  953+91  49.1+282 48.5+389 8l.1+272 11.8420 17.7+260 109.5+3.1
walker2d-r 0.1+0.0 279422 2454227 9.8+16 33.84230 9.3+03 9.3+5.6 88.1+52
halfcheetah-m | 96.1+18 103.3+15 58.5+330 70.4+23 80.6+10 49.6+03 76.9+2.1 96.6+1.7

hopper-m 84.5+303 106.3+12 107.7+28 86.1+263 102.8+05 77.7+78 100.6+08 112.0+13
walker2d-m | 102.0+£80 109.7+296 92.2+87 91.4+143 87.1+34 83.7+25 97.0+82 116.1+4.7

halfcheetah-m-r | 87.5+15 95.6+16 30.8+276 554412 66.2+28 48.3+06 62.1+1.0 922412

hopper-m-r 90.94+254 101.6+148 108.8+1.8 95.3+72 105.8+09 102.1+07 101.4+2.1 112.7+1.1

walker2d-m-r | 107.74+74 120.2+93 103.9453 87.24+136 79.54301 91.3+69 98.3+32 117.7+35
Total \ 747.2 852.5 654.4 605.0 728.9 510.1 596.1 933.9

Results on MuJoCo. In the MuJoCo, we implement OPT on the baseline which utilizes TD3+BC
for the offline phase, followed by TD3 in the online phase. Both TD3+OPT and TD3 are evaluated
using an update-to-data (UTD) ratio of 5 for consistency. The results in Table |l|indicate that OPT
demonstrates strong overall performance, notably surpassing the existing state-of-the-art (SOTA)
in several environments. The comparatively high total score further highlights OPT’s robustness,
illustrating its capability to perform consistently well across a range of environments and datasets. In
particular, the results for the walker2d-random-v2 dataset demonstrate the remarkable efficacy
of OPT, as it significantly outperforms existing approaches.

Results on Antmaze. In the Antmaze, we implement OPT within the SPOT, as TD3 showed
suboptimal performance in this domain. Table [2] shows that OPT consistently delivers superior
performance across all environments. When comparing to Cal-QL (Nakamoto et al.2024), a recently
proposed method with the same objective of addressing inaccurate value estimation, the results in the
umaze-diverse and large-diverse environments demonstrate the efficacy of introducing a
new value function through Online Pre-Training in mitigating this issue.

Results on Adroit. In the Adroit, as with Antmaze, we apply OPT to the SPOT. Table [3|
demonstrates that, unlike Cal-QL (Nakamoto et al.|2024)), which struggles to learn from low-quality
datasets such as cloned due to its conservative nature, OPT manages to perform well even with
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Table 2: Comparison of the normalized scores after online fine-tuning for each environment in
Antmaze domain. All results are reported as the mean and standard deviation across five random
seeds.

Environment ‘ SPOT PEX ACA FamO20 Cal-QL SPOT + OPT (ours)

umaze 98.4+138 95.2+16  92.0+46  94.6x20  90.1+108 99.8+04
umaze-diverse 5524327 34.84300 92.0+78 39.84232  75.2+350 97.4+04
medium-play 91.2438  83.4+23  0.0+00 88.0+22  95.1+63 98.2+13
medium-diverse | 91.6+34  86.6+49 0.0+00  69.0+318  96.3+438 98.4+13
large-play 60.4+214  56.0+38  0.0+00 53.8+76  75.0+147 78.2+44
large-diverse 69.4+237  60.4+68  0.0400 53.6+72  74.4+118 90.6+3.7
Total \ 466.2 416.4 184.0 398.8 506.1 562.6

Table 3: Comparison of the normalized scores after online fine-tuning for each environment in
Adroit domain. All results are reported as the mean and standard deviation across five random
seeds.

Environment ‘ SPOT Cal-QL SPOT + OPT (Ours)

pen-cloned 117.1+134  -2.0+12 130.3+6.8
hammer-cloned | 90.1+232 0.21+0.07 120.1+42
door-cloned 0.04+006  -0.03+0.00 50.4+202
relocate-cloned | -0.194+004  -0.33+0.01 -0.11+0.06
Total \ 207.0 2.1 300.6

these challenging datasets. In particular, the results in the door—cloned environment, where
SPOT fails to perform adequately, demonstrate the effectiveness of OPT.

4.2 EXTENDING OPT 1O IQL

So far, we have shown that OPT is an effective algorithm ° 85 —ry Antmaze

for online fine-tuning when applied to TD3-based algorithms,  g80j _ | oLHOPT

such as TD3 and SPOT. To further validate the versatility of R 75

OPT across different baselines, we changed the baseline to g 79

IQL. Unlike TD3, IQL employs a stochastic policy and uses % 65

both a state-action value function and a state value function. £

Accordingly, to implement OPT, we modified the training 2 55

loss, with detailed explanations provided in Appendix[A.2] 5 i 5 3
The results in Figure 3] show that applying OPT yields no- Environment Steps (10°)

ticeable performance improvement compared to the baseline. Figure 3: Aggregated return curves
This suggests that OPT can be applied across various base- o IQL and IQL+OPT, averaged
line algorithms. Additional experiment results in different
domains, including MuJoCo and Adroit, are presented in Ap-

pendix [E]

across all six environments in the
Antmaze domain.

5 DISCUSSION

5.1 COMPARISON OPT WITH DIFFERENT INITIALIZATION METHODS

In Section we explore various approaches for initializing Q°"P'. To further substantiate the
effectiveness of our initialization method through experimental results, we evaluate three approaches
for initializing Q°™®': (1) Random Initialization, (2) Pre-trained with By,, and (3) our proposed
method, OPT.
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Figure [ illustrates that random initialization consistently un- 110 @) °
derperforms compared to OPT. This discrepancy, as discussed £ 105 | ®
in Section[3.1] can be attributed to the adverse impact of ran- & |, A A

dom initialization, which hinders policy learning and con- E Ps Q
sequently leads to diminished performance. Similarly, the 90 ® o ours)
results for pre-training with B,, demonstrate that learning % A [ Pre-trained with B,
solely from B,, is insufficient to follow the performance of = ® ] A Random Initialization
OPT. In particular, the results on the random dataset, where 80 ndom  medium _medium Total

-replay
Figure 4: Comparing normalized
score of OPT with different initial-
ization methods, averaging across
all 3 environments in the MuJoCo
domain.

policy evolves more drastically as shown in Figure 3] the re-
sults demonstrate that an overfitted Q°"P* fails to learn with
this policy improvement. This underscores the importance of
both B and By, for training. Detailed experiment results are
provided in Appendix [C.3]

5.2 CORRELATION BETWEEN WEIGHTING COEFFICIENT (k) AND DATASET

In our proposed method, we utilize s to ‘ © By © B Benal
assign the weights between Q°P! and
Q°"P* during online fine-tuning. Since the
quality of the dataset affects the overall
learning process, we adjust the x schedul-
ing accordingly. To better understand the
scheduling approach, we visualize the dis-
tributional differences between the dataset
and the policy rollouts and examine their
association with « scheduling. To this end, (a) Random  (b) Medium-Replay  (c) Medium
we compare the state-action distributions

of the offline dataset and the samples gen- Figure 5: A t-SNE visualization of the offline dataset
erated by the policy using t-SNE (Van der| (B,) and the policy’s rollout samples at the beginning
Maaten & Hinton|2008)) in the walker2d (Bijnit) and end (Bgpa ) of the online fine-tuning.
environment.

Figure E] shows the comparison of the distribution between the offline dataset (B,g) and the rollout
samples of policy at both the beginning (Bj,;;) and the end (B, ) of the online fine-tuning phase.
For the medium and medium-replay datasets, we observe that the distributions are similar at the
start of the online fine-tuning but diverse towards the end. In contrast, for the random dataset, a
difference between the two distributions is evident from the beginning. Since Q°™P' is informative
for the offline dataset due to its training during offline pre-training, we initially assign it a higher
weight during the early stages of online fine-tuning for the medium and medium-replay datasets.
As the online fine-tuning progresses, the weight is gradually shifted toward Q°"?'. However, for
the random dataset, due to the substantial distribution difference, we primarily rely on Q°"** from
the start of online fine-tuning. We provide the specific values of ~ in Appendix [D] and present an
ablation study in Appendix [C.2]

5.3 IMPACT OF ADDITION OF A NEW VALUE FUNCTION

OPT (ours)
In our proposed algorithm, we introduce a new value func- £ wo @
tion, which is trained during the Online Pre-Training and sub- &
sequently utilized in the online fine-tuning. To evaluate the g »
impact of this addition, we examine the performance when 7§
the new value function is excluded. Specifically, we assess the g N
outcome where QP! is trained during Online Pre-Training, 2 .
without introducing Q°"?* (denoted as w/o Q"™ in Figure random medium medium  Tote!
[6). Under this setup, policy improvement in online fine-tuning  Figure 6: Comparison of the nor-
is driven solely by Q°fPt, malized score for OPT and its abla-

tion (without the addition of a new
value function), averaged across all
3 environments in the MuJoCo do-
main.

The results presented in Figure[6]indicate that the addition of a
new value function leads to improved performance regardless
of the dataset. Notably, this improvement is pronounced in the
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random dataset. Due to the characteristics of the random dataset, where successful demonstrations
are limited, Q°™P!, trained extensively on this dataset, becomes significantly biased and fails to
benefit from Online Pre-Training.

5.4 WHAT IS THE EFFECT OF ONLINE PRE-TRAINING SAMPLES (/N..)?

The Online Pre-Training phase involves two hyperparameters: ¢ *1°

N and Nprerain. In particular, N represents the number of in- § 105 _8-—0—--9

teractions with the environment used to collect online samples ¥ 100 v -

for Online Pre-Training. Since N is also part of the environ- ~ § 95®

ment steps within the online phase, determining the most effi- g 90

cient value for IV is critical for optimizing sample efficiency 5 g5 baseline
S i ; ] ‘

in offline-to-online RL. To investigate this, we conduct ex- 8
periments in the MuJoCo domain comparing the results when
N, is set to 1/4, 1/2, 2, and 4 times its current value (25000).
In these experiments, Npreqain 1S set to twice the value of N,
while the number of online fine-tuning steps is kept constant.

%6250 12500 25000 50000100000
Nz
Figure 7: Comparing normalized
score with varying N, of OPT, av-
eraged across all 9 environments (3
The results in Figure [/| demonstrate that increasing IV en- tasks with 3 datasets each) in the
hances the effectiveness of Online Pre-Training. However, be- MuJoCo doamin
yond a certain threshold, further increases in [V do not lead
to additional performance gains. This is because during the environment interactions for N, the
policy remained fixed, and once the amount of online data surpasses an optimal level, it no longer
contributes to Online Pre-Training. Since the primary objective of offline-to-online RL is to achieve
high performance with minimal environment interaction, these results suggest that OPT is most ef-
ficient when IV is set to 25000. Detailed results for each environment are presented in Appendix
C.4

5.5 COMPARISON WITH RLPD

Table 4: Normalized score for each environment on the MuJoCo domain. The full results for other
domains, including Antmaze and Adroit, are provided in Appendix E}

Environment ‘ RLPD
‘ Vanilla Off-to-On OPT (Ours)

halfcheetah-r 91.5 +2.5 96.1 +5.2 90.7 +2.2
hopper-r 90.2 +19.1  95.7 +18.4  103.5 +3.6
walker2d-r 87.7 +14.1 743 +13.9  79.2 +10.0
halfcheetah-m 95.5 +1.5 96.6 +0.9 96.7 +1.4
hopper-m 914 +278 93.6 +13.9 1069 +1.5
walker2d-m 121.6 2.3 124.1 +2.4  122.8 +3.0
halfcheetah-m-r | 90.1 +1.3 90.0 +1.4 91.6 +2.1
hopper-m-r 78.9 +245 947 +26.8 107.4 +1.9
walker2d-m-r 119.0 +2.2 1225 +2.7 1209 +2.3

MuJoCo total ‘ 866.0 887.6 918.7

Thus far, we proposed a method to integrate offline pre-trained agents into online fine-tuning ef-
fectively. Recently, several studies have emerged demonstrating strong performance using online
RL alone with offline datasets, without requiring an explicit offline phase (Song et al.|[2022; |Ball
et al.|[2023). Among these, RLPD (Ball et al.|[2023)) has demonstrated state-of-the-art performances
through the use of ensemble techniques and a high UTD (update-to-data) ratio. To assess the perfor-
mance of integrating OPT with RLPD, we extend RLPD by incorporating an offline phase, followed
by online fine-tuning, and subsequently apply OPT to evaluate its effectiveness. Further implemen-
tation details are provided in Appendix[A.3]

Table[|reports the results of original RLPD (‘Vanilla’), RLPD with an additional offline phase (‘Off-
to-On’), and RLPD combined with OPT (‘OPT’). The experimental results demonstrate that inte-
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grating OPT with RLPD leads to performance improvements, surpassing both the baseline methods.
These results indicate that OPT is an effective algorithm capable of enhancing performance when
applied to existing state-of-the-art algorithms.

6 CONCLUSION

This paper introduced Online Pre-Training for Offline-to-Online RL (OPT), a novel method to im-
prove the fine-tuning of offline pre-trained agents. By incorporating an Online Pre-Training phase
to learn a new value function, OPT addresses the limitations of existing offline-to-online RL ap-
proaches. Our experiments across multiple D4RL environments demonstrated that OPT consistently
outperforms current methods and is versatile across different backbone algorithms. These findings
suggest that OPT is a robust and effective solution for enhancing performance in offline-to-online
RL. The key contribution of this work lies in the introduction of a new value function for online fine-
tuning, in contrast to existing methods that focus on modifying the original value function. However,
OPT has its limitations, particularly in the lack of analysis on alternative approaches to training the
new value function. Future research could explore different strategies for Online Pre-Training, of-
fering potential improvements to the offline-to-online RL framework.

REFERENCES
Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR,
2023.

Jiaheng Feng, Mingxiao Feng, Haolin Song, Wengang Zhou, and Hougiang Li. Suf: Stabilized
unconstrained fine-tuning for offline-to-online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11961-11969, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Siyuan Guo, Lixin Zou, Hechang Chen, Bohao Qu, Haotian Chi, S Yu Philip, and Yi Chang. Sample
efficient offline-to-online reinforcement learning. IEEE Transactions on Knowledge and Data
Engineering, 2023.

Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie Lv, Changjie Fan,
Qianchuan Zhao, and Chongjie Zhang. Bayesian design principles for offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2405.20984, 2024.

Rui Kong, Chenyang Wu, Chen-Xiao Gao, Zongzhang Zhang, and Ming Li. Efficient and stable
offline-to-online reinforcement learning via continual policy revitalization. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, pp. 43174325,
2024.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774-5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021b.

10



Under review as a conference paper at ICLR 2025

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191,
2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711-1724,
2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331-434, 1990.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid rl: Using both offline and online data can make 1l efficient. arXiv preprint
arXiv:2210.06718, 2022.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song,
and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforce-
ment learning. Advances in Neural Information Processing Systems, 36, 2024.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278-31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452-40474. PMLR, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of g-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 16908—16916, 2024.

11



Under review as a conference paper at ICLR 2025

A IMPLEMENTATION

A.1 IMPLEMENTATION DETAILS FOR OPT

We implement OPT on top of each backbone algorithm’s code. TD3, RLPD are based on its official
implementatiorﬂﬂ SPOT, IQL are built upon the CORL (Tarasov et al.[2024) library ﬂ The primary
modification introduced in our method is the addition of the Online Pre-Training phase. The Online
Pre-Training phase is implemented with modifications to OEMA codeE]’ s meta-adaptation method,
adapted specifically for value function learning. Additionally, the balanced replay (Lee et al.[2022)
is implemented using the authors’ official implementatio Aside from these changes, no other
alterations are made to the original code.

A.2 ADDITIONAL IMPLEMENTATION DETAILS FOR IQL

The proposed method is applicable to various baseline algorithms. Here, we present the implemen-
tation when applied to IQL. IQL trains the state value function and the state action value function as
follows:

Ly (1) = E(sa)~p [£3(Qp(s,a) — Viu(s))].- (5)

LQ (6) = E(s,a,r,s’)N'D |:(7" + ’YV}J«(S/) - Q@(Sv a))2 . (6)

where £} (u) = |7 — 1(u < 0)[u? and 7 € (0, 1) is the expectile value, and Q5 denotes a target
state action value function. Then, using the state action value function and state value function, the
policy is trained through Advantage Weighted Regression:

Lz () = E(s,a)~p [exp(B(Qg(s, a) — Viu(s))) log my(als)] Q)

where 5 € [0, 00) is an inverse temperature. To apply the proposed method to IQL, we train both a
new state action value function (Q°"P") and state value function (V°"™) in the Online Pre-Training.
The state action value function is trained identically to Eq. |4] while the state value function is trained
as follows:

£1‘);etrain(u) — £€€/ff(u) + ,C("P(/j, - aV/S({/ff(M))- ®)

In the online fine-tuning, policy improvement utilizes 7°T, Q°™P, and V°™P from offline pre-
training as well as Q°"P" and V" from Online Pre-Training. The policy is trained using an advan-
tage weight obtained from Q°TP' and V°P' and a separate weight obtained from Q°™P' and V",
These two sets of weights are then combined to effectively train the policy:

La(9) = E(s ayop [exp(B(k(QY ™ (5,a) — VTP (s)) )
+(1 = £)(QF™(s,a) = V" (5)))) log mg (als)]

A.3 ADDITIONAL IMPLEMENTATION DETAILS FOR RLPD

To verify the effectiveness of the proposed method when applied to ensemble techniques and high
replay ratio, we conduct experiments by integrating OPT into RLPD. Since RLPD does not origi-
nally include an offline phase, we incorporate an additional offline phase into its implementation.
During the offline phase, we follow the RLPD learning method, performing 1M gradient steps. In
the online phase, we adhere to OPT by conducting Online Pre-Training for 25k environment steps,
followed by 275k environment steps. Given that the original RLPD employs symmetric sampling
in the online phase, where half of the samples are sampled from offline data and the other half from
online data, we also utilize symmetric sampling instead of balanced replay.

Uhttps://github.com/sfujim/TD3
Zhttps://github.com/ikostrikov/rlpd
3https://github.com/tinkoff-ai/CORL
*https://github.com/guosyjlu/OEMA
>https://github.com/shlee94/Off20nRL

12
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A.4 BASELINE IMPLEMENTATION

For comparison with OPT, we re-run all baselines. The results for all baselines are obtained using
their official implementations.

* OFF20N (Lee et al.[2022) : https://github.com/shlee94/Off20nRL

* OEMA (Guo et al.|2023)) : https://github.com/shlee94/Off20nRL

PEX (Zhang et al.|2023) : https://github.com/Haichao-Zhang/PEX

* ACA (Yu & Zhang|2023)) : https://github.com/ZishunYu/Actor-Critic-Alignment
FamO20 (Wang et al.[|2024) : https://github.com/LeapLabTHU/FamO20
Cal-QL (Nakamoto et al.|2024) : https://github.com/nakamotoo/Cal-QL

B DETAILED DESCRIPTION OF THE ENVIRONMENT AND DATASET.

B.1 MulJoCo

MuJoCo consists of locomotion tasks and provides datasets of varying quality for each environment.
We conduct experiments on the halfcheetah, hopper, and walker2d environments. MuJoCo
environment are dense reward setting, and we use the “-v2” versions of the random, medium, and
medium-replay datasets for each environment.

B.2 ANTMAZE

Antmaze involves controlling an ant robot to navigate from the start of the maze to the goal. Antmaze
is a sparse reward environment where the agent receives a reward of +1 upon reaching the goal, and 0
otherwise. The maze is composed of three environments: umaze, medium, and large. For the dataset,
we use the “-v2” versions of umaze, umaze-diverse, medium-play, medium-diverse,
large-play, and large—-diverse.

B.3 ADROIT

Adroit is a set of tasks controlling a hand robot with five fingers. Each environment has a differ-
ent objectives: in the pen environment, the task is twirling a pen; in the hammer environment,
hammering a nail; in the door environment, grabbing a door handle and opening it; and in the
relocate, locating a ball to goal region. We utilize the “-v1” version of the cloned dataset for
each environment.

13
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C FURTHER EXPERIMENTAL RESULTS

C.1 ABLATION ON REPLAY BUFFER

The proposed method employs balanced replay
(Lee et al.| [2022) to enhance the use of on-
line samples during online fine-tuning. Since
the balanced replay has proven effective in
offline-to-online RL on its own, we conduct
experiments to assess its impact and depen-
dency within OPT. To align with OPT’s original
framework of rapid adaptation through more
frequent learning for online samples during on-
line fine-tuning, we test a setup that uniformly
samples from online data, a method we refer to
as Online Replay (OR).

The results in Table [3 demonstrate that the
performance gains of OPT are not solely at-
tributable to the effects of balanced replay. Fur-
thermore, replacing balanced replay with this
simpler Online Replay setup still results in sig-
nificant performance improvements compared
with the baseline. These findings indicate that
OPT’s performance stems not just from bal-

Table 5: Comparing normalized score for OPT
with balanced replay and online replay buffer.
Improvement (%) refers to the performance
gain when compared to the baseline.

Environment ‘ OPT with BR | OPT with OR

halfcheetah-r 89.0 +2.1 81.4 +6.2
hopper-r 109.5 +3.1 109.5 +s.1
walker2d-r 88.1 +52 89.7 +214
halfcheetah-m 96.6 +1.7 89.8 +3.0
hopper-m 112.0 +13 111.2 +17
walker2d-m 116.1 +47 113.9 432
halfcheetah-m-r 92.2 +12 85.3 +27
hopper-m-r 112.7 +1.1 111.4 +18
walker2d-m-r 117.7 +35 109.1 +9.1
Total 933.9 901.3
Improvement (%) 245 % 20.2 %

anced replay, but from other strategy that emphasizes learning from online samples, such as Online

Replay.

C.2 ABLATION ON K

OPT adjusts the weights of Q°P* and Q°™P' during online fine-tuning through the coefficient . To
evaluate OPT’s sensitivity to s values, we provide additional experimental results. The experiments
are conducted in the MuJoCo domain, excluding random datasets, as x is fixed for these cases.
To analyze OPT’s sensitivity to x, we examine an alternative linear scheduling approach where

transitions from 0.2 to 0.8.

Table 6: Results of the ablation study on . All experimental results are measured after 300k steps
of online fine-tuning, with 5 random seeds used for each experiment.

OPT (medium: 0.1 — 0.7 .
Schedul 0.2—0.8
medium-replay: 0.1 — 0.9) cheduling ( )
ha-m 96.6 +1.7 96.2+1.9
ho-m 112.0 13 111.3+09
wa-m 116.1+47 117.7+109
ha-m-r 92.2+12 92.7+25
ho-m-r 112.7+11 111.9+07
wa-m-1 117. 7435 114.2+60
Total 647.3 644.0

The results indicate that varying the « scheduling has minimal impact on performance. This suggests
that the precise values of « are less critical compared to its role in facilitating the transition from
QP to QO™ P!, which is essential for effective adaptation.

14
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C.3 FULL RESULTS FOR COMPARISON OF DIFFERENT INITIALIZATION METHODS

In Section[5.1} we conduct an ablation study on Online Pre-Training. Below are the full results of

Figure[d]

Table 7: Results of the ablation study on Online Pre-Training. All experimental results are measured
after 300k steps of online fine-tuning, with 5 random seeds used for each experiment.

Environment OPT Random Initialization  Pre-trained with B,
halfcheetah-r 89.0+2.1 76.7+11.9 68.3+384
hopper-r 109.5+3.1 105.8+7.8 105.5432
walker2d-r 88.1+52 74.8+105 73.4+289
halfcheetah-m 96.6+1.7 89.7+46 95.7+038
hopper-m 112.0+13 111.3+19 109.6+22
walker2d-m 116.1+47 101.049.2 114. 7422
halfcheetah-m-r | 92.2+1.2 84.3+82 91.0+19
hopper-m-r 112.7+11 111.7+14 112.2+07
walker2d-m-r 117. 7435 104.8+52 111.6484

Total 933.9 843.1 882.0

C.4 FULL RESULTS FOR COMPARISON OF DIFFERENT N.-

In Section 5.4, we conduct an ablation study on N,. Below are the full results of Figure 7.

Table 8: Results of the ablation study on N,.. All experimental results are measured after 300k steps

of online fine-tuning, with 5 random seeds used for each experiment.

6250 12500 25000 50000 100000
ha-r 66.4+9.2 79.9+438 89.0+2.1 93.6+2.1 93.7+238
ho-r 105.8+13  103. 7447 109.5+£3:1 1084452  109.2+20
wa-r 75.9+8.1 72.9+95 88.1+52 9244382 93.9+40
ha-m 98.6+16 97.0+25 96.6+1.7 98.443.1 97.342.1
ho-m 105.8425 108.7+20 112.0+13 1102416 110.9+20
wa-m 112.8+70 1153451 116.1+47 119.5+48 116.2+15

ha-m-r 89.9+34 90.4+14 92.2+12 92.0+1.8 92.6+2.8

ho-m-r | 94.94+s55 111.1x07 11274110 112.8+22  111.6+15

wa-m-r | 111.2423  113.0+18  117.7+35 1132427 115.4+238
Total 861.3 892.0 933.9 940.5 940.8
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D HYPER-PARAMETERS

In this paper, we present the results of applying OPT to various backbone algorithms. Aside from
the hyperparameters listed below, all other hyperparameters are adopted directly from the backbone
algorithms. In our proposed Online Pre-Training, we set N, to 25000 and Npretrain to 50000 for
all environments. Additionally, for the MuJoCo domain, we use TD3 with a UTD ratio of 5 as the
baseline. In the Adroit domain, we use SPOT as the baseline, trained with layer normalization (Ba
2016) applied to both the actor and critic networks.

As mentioned in Section we use the parameter & to assign higher weight to Q°P' during the
early stages of online fine-tuning, gradually shifting to give higher weight to Q°™®* as training pro-
gresses. We control « through linear scheduling. Table[9]outlines the x scheduling for each environ-
ment, where r;,;; represents the initial value of « at the start of online phase, Tyccq, Specifies the
number of timesteps over which « increases, and k.4 indicates the final value of « after increase.
Notably, in the MuJoCo random environment, as demonstrated in Section @] the value function
pre-trained offline exhibits significant bias, so it is not utilized during online fine-tuning.

Table 9: k scheduling method for each environment.

Environment ‘ Kinit ‘ Tiecay ‘ Kend

halfcheetah-r 1 - 1

hopper-r 1 - 1

walker2d-r 1 - 1
halfcheetah-m 0.1 150000 | 0.7
hopper-m 0.1 | 150000 | 0.7

walker2d-m 0.1 | 150000 | 0.7
halfcheetah-m-r | 0.1 150000 | 0.9
hopper-m-r 0.1 | 150000 | 0.9
walker2d-m-r 0.1 150000 | 0.9

umaze 0.1 100000 | 0.9
umaze-diverse 0.1 100000 | 0.9
medium-play 0.1 | 100000 | 0.9
medium-diverse | 0.1 100000 | 0.9
large-play 0.1 | 100000 | 0.9
large-diverse 0.1 | 200000 | 0.9

pen-cloned 0.1 | 250000 | 0.9
hammer-cloned | 0.1 | 250000 | 0.9
door-cloned 0.1 | 250000 | 0.9
relocate-cloned 0.1 | 250000 | 0.9
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E COMPARISON WITH BACKBONE ALGORITHM

Our proposed OPT is an algorithm applicable to value-based backbone algorithms. To evaluate
the performance improvement achieved by applying OPT, we compare it against the performance
of the backbone algorithms. Table [I0] presents the performance of OPT when TD3, SPOT, and
IQL are used as the backbone algorithms across all environments. When based on TD3 and SPOT,
we observe an average performance improvement of 30%. Additionally, when based on IQL, we
observe an average performance improvement of 25%.

Table 10: Average normalized final evaluation score for each environment on the D4RL benchmark.
We denote the backbone algorithm as Vanilla and the result of the algorithm integrated with OPT
as Ours. All results are reported as the mean and standard deviation across five random seeds.

Environment ‘ TD3 ‘ IQL
‘ Vanilla Ours ‘ Vanilla Ours
halfcheetah-r 96.9 +4.9 89.0 +2.1 333 +2.5 45.2 +5.3
hopper-r 84.4 +30.1 109.5 +3.1 10.6 +1.5 15.2 +6.7
walker2d-r 0.1 +0.0 88.1 +5.2 7.5 +1.6 11.0 +4.6
halfcheetah-m 96.1 +1.8 96.6 +1.7 50.2 +0.2 55.5 +o0.5
hopper-m 84.5 +30.3 112.0 +1.3 61.8 +4.9 94.2 +10.4
walker2d-m 102.0 +8.0 116.1 +4.7 86.6 +3.0 914 +1.2
halfcheetah-m-r 87.5 +1.5 92.2 1.2 46.2 +0.4 50.2 +1.8
hopper-m-r 90.9 +25.4 112.7 +1.1 95.5 +10.2 89.8 +25.5
walker2d-m-r 107.7 7.4 117.7 +3.5 90.3 +6.3 106.0 +2.6
MuJoCo total ‘ 747.2 933.9 (+24.9%) ‘ 482.0 558.5 (+15.8%)
| SPOT | IQL
‘ Vanilla Ours ‘ Vanilla Ours
umaze 98.4 +1.8 99.8 +0.4 90.4 +5.3 92.8 +2.9
umaze-diverse 55.2 £32.7 974 +0.4 30.4 +17.6 90.4 +9.4
medium-play 91.2 +3.8 98.2 +1.3 83.2 +4.7 88.4 +1.2
medium-diverse 91.6 +3.4 984 +1.3 83.2 +2.3 89.6 +2.7
large-play 60.4 +21.4 78.2 +4.4 53.0 +6.3 65.8 +2.4
large-diverse 69.4 +23.7 90.6 +£3.7 51.8 +4.9 64.6 £7.1
Antmaze total 466.2 562.6 (+20.6%) ‘ 392.0 491.6 (+25.4%)
pen-cloned 117.1 +13.4 130.3 +6.8 90.7 +9.4 100.3 +s6.0
hammer-cloned | 90.2 +23.2 120.1 +4.2 14.8 +6.9 23.7 +18.0
door-cloned 0.05 +o.06 50.4 +29.2 7.6 £3.4 26.7 +9.3
relocate-cloned | -0.19 +o.04 -0.11 +o.06 0.09 +o.03 0.83 +o0.78
Adroit total 207.2 300.6 (+45.0 %) ‘ 113.1 151.5 (+33.9%)
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F FuULL RESULTS OF RLPD

Table 11: Average normalized final evaluation score for each environment on the D4RL benchmark.
We denote the vanilla algorithm as Vanilla, the baseline algorithm within the offline-to-online
RL framework as Of f—to—on, and the result of the algorithm integrated with OPT as Ours. All
results are reported as the mean and standard deviation across five random seeds.

Environment ‘ RLPD
‘ Vanilla Off-to-on Ours
halfcheetah-r 91.5 +2.5 96.1 +5.2 90.7 +2.2
hopper-r 90.2 +19.1 95.7 +18.4 103.5 +3.6
walker2d-r 87.7 +141 74.3 +13.9 79.2 +10.0
halfcheetah-m 95.5 +1.5 96.6 +0.9 96.7 +1.4
hopper-m 91.4 +27.8 93.6 +13.9 106.9 +1.5
walker2d-m 121.6 +2.3 124.1 +2.4 122.8 £3.0
halfcheetah-m-r 90.1 +1.3 90.0 +1.4 91.6 +2.1
hopper-m-r 78.9 +24.5 94.7 +26.8 107.4 +1.9
walker2d-m-r 119.0 2.2 122.5 t2.7 120.9 +2.3
MulJoCo total 866.0 887.6 918.7
umaze 994 +o.8 99.8 +0.4 99.6 +0.5
umaze-diverse 98.0 +1.1 99.2 +1.0 99.0 +o0.6
medium-play 97.6 +1.4 97.4 +1.4 99.6 +o0.6
medium-diverse 97.6 +1.9 98.6 +1.4 99.2 +0.4
large-play 93.6 +2.4 93.0 +2.5 92.2 +3.9
large-diverse 92.8 +3.2 90.4 +3.9 94.8 +2.2
Antmaze total 579.0 578.4 584.4
pen-cloned 154.8 +11.6  148.5 £15.2  155.5 +11.0
hammer-cloned 139.7 +5.6 1414 +1.0 142.1 +1.2
door-cloned 110.8 +6.1 114.6 +1.3 115.7 +1.4
relocate-cloned 4.8 +7.1 0.11 +o.2 10.0 +6.4
Adroit total 410.1 404.6 423.3
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Figure 8: Learning curve of online phase over 300k steps. The solid line represents the mean
performance, while the shaded region depicts the standard deviation across five random seeds.
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