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ABSTRACT

Poorly timed traffic lights exacerbate traffic congestion and greenhouse gas emis-
sions. Traffic signal control with reinforcement learning (RL) algorithms has
shown great potential in dealing with such issues and improving the efficiency
of traffic systems. RL-based solutions can perform better than classic rule-based
methods, especially in dynamic environments. However, most of the existing RL-
based solutions are model-free methods and require a large number of interac-
tions with the environment, which can be very costly or even unacceptable in real-
world scenarios. Furthermore, the fairness of multi-intersection control has been
ignored in most of the previous works, which may lead to unfair congestion at
different intersections. In this work, we propose a novel Fairness-aware Model-
based Multi-agent Reinforcement Learning (FM2Light) method to improve the
sample efficiency, thus addressing the data-expensive training, and handle unfair
control in multi-intersection scenarios with a better reward design. With rigorous
experiments under different real-world scenarios, we demonstrate that our method
can achieve comparable asymptotic performance to model-free RL methods while
achieving much higher sample efficiency and greater fairness.

1 INTRODUCTION

Traffic congestion has become one of the bottlenecks hindering urban development. Stop-and-go
delays caused by signalized intersections account for 12–55% of citizens’ commuting time, accord-
ing to studies in urban areas Ault & Sharon (2021); Levinson (1998); Tirachini (2013). Traffic
congestion not only affects commuting efficiency but also exacerbates fuel consumption and pol-
lutant emissions induced by vehicle idling, which is detrimental to our environmental protection.
Traffic signal control, a potential solution that requires minimal infrastructure retrofit, is proved to
be of great significance in mitigating such issues and has been widely studied by researchers Ault
& Sharon (2021); Huang et al. (2021). It is reported that improved traffic signal controllers could
reduce CO2 emissions by 269,000 tons in a city the size of Atlanta Edelstein (2022).

Traditional pre-timed methods directly control traffic signals using simple timers, while they only
work effectively in areas with constant traffic patterns Jiang et al. (2021). With the increasing number
of vehicles on roads, modern traffic becomes more and more complicated and unpredictable. Recent
advances in intelligent and adaptive traffic signal controllers have shown their capability to handle
such problems. Particularly, reinforcement learning is one of the most powerful methods that attract
the attention of most researchers due to its ability to learn to properly control traffic signals based on
dynamic traffic conditions and received feedback, hence decreasing the total travel time of passing
vehicles.

Many previous studies on traffic signal control exploit different RL algorithms such as value-based
Thorpe & Anderson (1996); Abdulhai et al. (2003); Zheng et al. (2019), policy-based Rizzo et al.
(2019), and actor-critic Yang et al. (2019) algorithms. These methods significantly improve the
overall vehicle passing efficiency of a signalized intersection under complex traffic scenarios when
compared with traditional pre-timed controllers. Some research also applies RL algorithms to ad-
dress non-standard intersection conditions (roundabout Rizzo et al. (2019); Kunjir & Chawla (2022),
dynamic lanes Jiang et al. (2021), etc.) and demonstrate the merits of RL. However, most of these
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methods are limited to a single intersection, failing to take into account the impact on neighboring
intersections. The independent individual controller of each intersection might cause conflicting ef-
fects to each other due to a lack of cooperation, which can impede the overall travel efficiency of an
urban road network.

Using a centralized RL agent to handle multi-intersection control problems seems to be reasonable
but is infeasible in reality Chu et al. (2019) since the joint action space grows exponentially with the
increasing number of signalized intersections, which makes it difficult to explore the action space.
Many academics have recently turned to multi-agent RL (MARL) algorithms with decentralized ar-
chitectures to manage traffic lights in large-scale road networks, where each local RL agent controls
a single intersection through partial observation and constrained communication Chu et al. (2019);
Wang et al. (2020b); Kuyer et al. (2008); Zhang et al. (2022). The majority of existing MARL-
related works focus on solving the nonstationarity caused by the evolving actions of other RL agents
Chu et al. (2019) and the deficient generalization induced by the specialized learning environment
of every agent Devailly et al. (2021), and improving the agent communication Jiang et al. (2022).

Nonetheless, there are still two main problems with the existing traffic signal control methods. (1)
These algorithms require a great amount of training data collected through interactions with the en-
vironment, which is infeasible in reality due to the excessive training time and severe congestion that
might be induced during the learning process. Previous studies attempt to reduce required training
data by taking advantage of meta-learning methods Zang et al. (2020); Zhang et al. (2020); Huang
et al. (2021) and improve sample efficiency using model-based RL (MBRL) approaches Huang et al.
(2021); Hafner et al. (2020), but they can be only applied to single-intersection scenarios. (2) Fur-
thermore, given that each agent in the decentralized architectures focuses on its own cumulative
reward, the existing approaches ignore the fairness of controlling different intersections. Matthew
effect proposes the idea that the rich get richer and the poor get poorer Bol et al. (2018). In other
words, some intersections might experience extreme traffic congestion given the impact of other ad-
jacent intersections while others have much higher traffic efficiency. Therefore, fairness becomes a
significant factor that alleviates conflicting operations and enhances coordination. Fairness is a con-
cept that contains multiple aspects, e.g., Pareto-efficiency, equity, impartiality, and envy-freeness
Zimmer et al. (2021). There are existing works that consider fairness in traffic signal control, but
they are limited to the vehicle or lane level in an isolated intersection Raeis & Leon-Garcia (2021);
Li et al. (2020); Chen et al. (2013) or focused on a very simple synthetic scenario Zimmer et al.
(2021).

To address the sample deficiency and unfairness problems in the current MARL-based traffic signal
control algorithms, this paper proposes a fairness-aware model-based multi-agent reinforcement
learning algorithm, namely FM2Light. Specifically, an ensemble of probabilistic global dynamics
models of the environment are learned and the Dyna-style Sutton (1990) model-based method is
adopted to improve the policy optimization of an MARL algorithm. The fairness-aware reward is
designed to enhance both traffic efficiency and fairness among all the signalized intersections in the
road network.

The contribution of our work can be summarized as follows:

(i) We propose a novel model-based multi-agent reinforcement learning framework for controlling
multi-intersection traffic signals. The proposed FM2Light framework is adaptable to any model-free
MARL algorithms.

(ii) To the best of our knowledge, this is the first attempt to take fairness into account for the multi-
intersection traffic signal control of real-world scenarios to balance efficiency and fairness among
all intersections in a road network.

(iii) With rigorous experiments on various real-world traffic signal control scenarios, the proposed
FM2Light is proved to significantly enhance sample efficiency and fairness thereby alleviating re-
liance on enormous real-world interactions and ameliorating heavy traffic congestion.
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(a) Standard intersection. (b) 8 primary phases. (c) Multiple intersections.

Figure 1: Standard intersection with 12 incoming lanes and primary phases. (a) shows the structure
of the intersection while (b) shows the primary traffic phases of traffic flow. (c) shows a three-
intersection road network.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING-BASED TRAFFIC SIGNAL CONTROL

With the explosive growth of the number of cars and the rapid development of computing power,
reinforcement learning-based traffic signal control has gradually shown its superior potential over
traditional pre-timed controllers in handling more complex traffic scenarios Noaeen et al. (2022).
According to the scope of applied intersections, RL-based traffic signal control includes single-
intersection and multi-intersection methods. Many classical RL algorithms have been applied to
single-intersection control. The earliest work applies Sarsa Thorpe & Anderson (1996) and Q-
learning Abdulhai et al. (2003) and shows improved control performance. Recently, deep RL meth-
ods such as MetaLight Zang et al. (2020), GeneraLight Zhang et al. (2020), and ModelLight Huang
et al. (2021) were developed which can help further improve the traffic light control performance.
ModelLight Huang et al. (2021) further leverages model-based RL to improve the learning sample
efficiency. Offline reinforcement learning is also employed to address the control of complex sig-
nalized roundabout Kunjir & Chawla (2022). For multi-intersection scenarios within a given road
network of a city, control via multi-agent RL is one of the popular methods. Coordination among
multiple intersections is of great significance in the overall performance. MPLight Chen et al. (2020)
scales the decentralized control to a large-scale road network with 2510 signalized intersections via
parameter sharing and enables coordination with pressure-based reward. UniLight Jiang et al. (2022)
proposes a universal communication form to exploit prediction information across intersections. To
handle intersections with varied structures, AttendLight Oroojlooy et al. (2020) proposes a universal
controller with attention models, which enables direct control for intersections with any style.

2.2 MODEL-BASED MULTI-AGENT REINFORCEMENT LEARNING

Several recent works Krupnik et al. (2020); Wang et al. (2022) combine MBRL with MARL to
solve multi-agent control problems and improve the sample efficiency. Krupnik et al. (2020) learns
a multi-step dynamics model using a disentangled variational auto-encoder to help solve a 2-robot
manipulation task. Hierarchical predictive planning (HPP) Wang et al. (2020a) learns a predic-
tion model via self-supervision to predict agents’ motion thus facilitating agents’ planning. Van
Der Vaart et al. (2021) improves the convergence ability and sample efficiency of MARL by model-
ing system dynamics as tensors of low CP-rank. AORPO Zhang et al. (2021b) learns both dynamics
and opponent models for each agent to achieve decentralized multi-agent control. Work proposed
by Zhang et al. (2021a) further enhances exploration by adding a centralized exploration policy. The
latest MAMBA Egorov & Shpilman (2022) learns decentralized world models using only commu-
nication between agents.

3 PRELIMINARIES

3.1 TRAFFIC SIGNAL CONTROL PROBLEM

Traffic signal control refers to the selection of combinations of traffic lights at single or multiple
signalized intersections. Each intersection is composed of several approaches, lanes, traffic flows,
and signal phases. Approach and Lane The area where several approaches interact is defined as
an intersection Huang et al. (2021). Vehicles head towards an intersection through the incoming
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approaches while leaving an intersection through the outgoing approaches. Each approach can be
divided into different lanes which restrict the movements of vehicles, e.g. turning left, turning right,
and going straight. A standard intersection with four three-lane approaches is shown in Figure 1(a).
Signal Phase Signal phrases are designed to control vehicle movements at different lanes and pre-
vent conflicts Zhang et al. (2022). Each signal phase denotes a combination of non-conflicting traffic
signals in different lanes at the same time. Eight primary signal phases are presented in Figure 1(b).
Note that right-hand turn is not included in each phase since it generally provides limited restric-
tions. Traffic flow Traffic flow is formed by the continuous flow of vehicles on the road Zang et al.
(2020). Traffic flow is the number of vehicles passing through a lane at a specified location or section
per hour, which can be calculated by multiplying the traffic density and travel speed.

3.2 MULTI-AGENT REINFORCEMENT LEARNING

Traffic signal control can be formulated as a Markov Decision Process (MDP) ⟨S,A,P,R, γ⟩
composed of state S, action A, state transition P , reward function R, and discount factor γ
Noaeen et al. (2022). The control objective is to maximize the expected future discounted return
Eπ

[∑∞
t=0 γ

tri
(
sit, a

i
t

)]
under policy π at time t. The traffic signal control of multiple intersections

can be seen as playing a fully cooperative game, whose goal is to optimize the global objective. De-
centralized MARL is a potential solution, where each agent i controls an individual intersection and
maximizes its own expected return, without or with limited information shared with other agents.

4 METHODOLOGY

We propose a novel multi-intersection traffic signal controller based on fairness-aware model-based
multi-agent reinforcement learning, namely FM2Light. Unlike previous RL-based controllers, this
work leverages the learned global dynamics models to facilitate policy optimization hence signif-
icantly mitigating the reliance on interacting with the environment. Independent deep Q-network
(IDQN) Ault & Sharon (2021), a fully decentralized MARL algorithm where each agent controls
a single intersection, is adopted as the optimization method. The fairness-aware reward exploits
fairness measurement as a penalty to better balance traffic efficiency among different intersections.

Algorithm 1 FM2Light: Fairness-Aware Model-Based Multi-Agent Reinforcement Learning for
Traffic Signal Control
Require: Training episodes K; task horizon H; dynamics model update frequency M ; number

of imgaginary rollouts C; increment of the number of rollouts per episode c; imagined rollout
horizon T

1: Initialize policy πθi for agent i, dynamics model pϕj in the ensemble, real transition buffer
Dreal = ∅, and imagined transition buffer Dimg = ∅

2: for episode k = 1, ...,K do
3: Initialize environment
4: for timestep h = 1, ...,H do
5: Select joint actions via policy πθi of each agent
6: Implement selected actions in the environment
7: Add real transitions to Dreal

8: if h%M = 0 then
9: Update each dynamics models

{
pϕj

}
in the ensemble with real transitions randomly

sampled from Dreal

10: end if
11: end for
12: for C model rollouts do
13: Randomly sample an initial state s from Dreal

14: Generate T -step imagined short rollout from the ensemble of dynamics models
{
pϕj

}
using policy πθi of each agent; Add imagined transitions to Dimg

15: Update policy πθi of each agent with sampled transitions from Dreal ∪Dimg

16: end for
17: C = C + c
18: end for
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4.1 MARKOV DECISION PROCESS FORMULATION

Traffic signal control for a single intersection or multiple intersections can be formulated as an MDP.
This part defines the state, action, and fairness-aware reward function in the MDP setting.

State: Following the state settings in RESCO Ault & Sharon (2021), we utilize 4 state variables
including the current phase, the number of stopped vehicles, and the number and the average speed of
approaching vehicles at each signalized intersection. The joint state st :=

{
sit
}I

i=1
is a combination

of states of each intersection i, where I is the number of intersections in a road network.

Action: The joint action at :=
{
ait
}I

i=1
is defined as the selection of a set of non-conflicting phases

(green light) of all intersections for the next time step. A yellow phase is enforced as a constraint if
the selected phase is different from the currently enabled phase.

Fairness-Aware Reward: Given that total travel time can only be computed in hindsight, this work
attempts to minimize the total pressure

∑
pit at all intersections, where the pressure pit is defined as

the difference between the sum of queue lengths of all upstream lanes and those of downstream lanes
at intersection i at time step t Ault & Sharon (2021). Therefore, the primary reward for each agent
i is defined as rit = −pit. However, the independent agent of each intersection aims to maximize its
own cumulative rewards, which might cause conflicting effects on the adjacent intersections and lead
to extreme pressure at some intersections. To avoid locally extreme traffic congestion, we propose a
fairness-aware reward function to balance global efficiency and fairness. Specifically, we define the
utility Jiang & Lu (2019) of intersection i at time step t as the average reward over past time steps

ui
t =

1
t

∑t
τ=0r

i
τ (1)

Three important aspects are considered in our fairness-aware reward: impartiality, efficiency, and
equity. Impartiality means permutations of utilities make no impact on the results. Efficiency implies
that one specific solution should be selected as a priority if it is preferred by all agents. Equity
suggests that a transfer of rewards from richer to poorer agents results in a fairer solution, which is
based on Pigou-Dalton principle Dalton (1920). The fairness can be measured by the coefficient of
variation (CV) w.r.t. all the agents’ utilities Jiang & Lu (2019)

CV =

√√√√ 1

I − 1

I∑
i=1

(
ui
t − ūt

)2
ū2
t

(2)

However, it is infeasible to optimize CV with each independent agent under a decentralized structure
due to the moving-target problem Li et al. (2021). This work decomposes the fairness measurement
to each agent implicitly by incorporating a fairness penalty into the reward function for each agent
and proposing the fairness-aware reward

r̂it = rit − β|ui
t − ūt| (3)

where ūt is the average utility over all agents at time t, and β is the penalty coefficient. In the
fairness-aware reward, rit encourages each agent to minimize the pressure at the corresponding in-
tersection, while β|ui

t− ūt| represents the utility deviation from the mean, which penalizes the agent
for any deviating behaviour. The fairness-aware reward not only enables the balance between traffic
efficiency and fairness but also enhances coordination between agents’ policies in the decentralized
structure by allowing agents to coordinate with each other via ūt.

4.2 LEARNING GLOBAL DYNAMICS MODELS

To improve the sample efficiency and reduce the required interactions with the environment, this
work learns dynamics models to represent the control tasks’ dynamic function and then facilitates
policy optimization with the learned global dynamics models. For multi-intersection traffic signal
control tasks with complex and high-dimensional dynamics, expressive neural networks show better
representation capacity than Bayesian models such as Gaussian processes and simple time-varying
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linear models Chua et al. (2018). To further alleviate model bias and reduce the gap between the
performance of MBRL and MFRL, this work incorporates aleatoric uncertainty into MBRL via
probabilistic networks and captures epistemic uncertainty by learning an ensemble of dynamics
models Chua et al. (2018).

Specifically, the j-th dynamics model parameterized by ϕj in the ensemble outputs two Gaussian
distributions with diagonal covariances for the prediction of the next joint state and reward given the
current joint state and action, i.e.: pϕj

= Pr (st+1, r̂t+1 | st,at) = N
(
µϕj

(st,at) ,Σϕj
(st,at)

)
.

Learning the global dynamics model assumes access to global information, which might be difficult
for real-time traffic signal control Chu et al. (2019). However, this restriction is alleviated when each
global dynamics model is learned using supervised learning with stored non-real-time experience
{(s,a, s′, r̂)} from a reply buffer. Furthermore, centralized MARL algorithms generally suffer
from combinatorially large joint action space, while representing the dynamics models with neural
networks well handles this issue. The negative log-likelihood is selected as the loss function for
model learning

L(ϕj) = −
N∑

n=1

log f̃ϕj
(sn+1, r̂n+1 | sn,an) (4)

where N is the number of sampled real transitions. To decorrelate different models, each model is
randomly initialized and trained with a randomly sampled subset of real transitions. All dynamics
models are continuously retrained with newly collected real transitions to alleviate distributional
shift problems Clavera et al. (2018). In order to capture the spatial and temporal dependencies in
different lanes and intersections, we leverage long short-term memory (LSTM) to model the com-
plex dynamics in the multi-intersection environment. Standard approaches to stabilize the learning
process and avoid overfitting are adopted; especially, 1) standard normalizing the input features of
the neural networks, 2) early stopping the training process according to the validation loss, and 3)
applying dropout on LSTM and fully connected layers. With the learned ensemble of dynamics
models, we can either uniformly re-sample a model to make predictions via the selected model ev-
ery time step or directly output the expected prediction over models. To mitigate accumulated errors
caused by dynamics models, we follow the short rollouts technique by generating multiple imagined
short rollouts instead of a long-step rollout with the dynamics models Luo et al. (2022).

4.3 MODEL-BASED MULTI-AGENT REINFORCEMENT LEARNING

Given that centralized MARL suffers from the dimension curse of action space Li et al. (2021),
independent deep Q-network (IDQN) Ault & Sharon (2021), a fully decentralized MARL method,
is employed as our policy optimization algorithm. Each independent DQN agent i controls an in-
dividual intersection and optimizes its own policy by maximizing the cumulative reward. At time
step t, agent i observes the partial state sit, takes the optimal action ait, and then receives the local
reward r̂it+1. We use convolutional neural networks (CNNs) to aggregate state information over dif-
ferent lanes and output the approximated Q value for each candidate action according to the Bellman
Equation:

Q
(
sit, a

i
t

)
= r̂it+1 + γmaxQ

(
sit+1, a

i
t+1

)
(5)

The pseudo-code of the proposed FM2Light algorithm is presented in Algorithm 1. First, we ini-
tialize the policy for each agent and dynamics model in the ensemble (line 1). Then, for the model
update procedure, each agent implements its learned policy (line 5). The real transitions collected
from the environment are stored in the real transition buffer Dreal and used to update the ensem-
ble of dynamics models (line 7-9). In the following policy update iteration, the learned dynamics
models are utilized to generate multiple imagined short rollouts (line 13-14). Specifically, for each
rollout, we randomly sample an initial state from the real transition buffer and then collect a rollout
of imagined trajectories into buffer Dimg using the policy of each agent with a randomly sampled
dynamics model. Agents’ policies are then updated with the sampled transitions from both Dreal

and Dimg (line 15). A validation loss threshold is applied to avoid bad rollouts generated by un-
trusted dynamics models. That is, only when the validation loss is below a threshold, we can use the
dynamics models to generate imagined rollouts. As the dynamics models are generally getting better
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with more training data, the number of rollouts is incremented by c per episode. The implementation
details and hyperparameter settings can be found in Appendix A.1.

5 EXPERIMENTS

Following the comprehensive experimental settings in RESCO Ault & Sharon (2021), the experi-
ments are conducted using SUMO traffic simulator Lopez et al. (2018), on Intel(R) Core(TM) i9-
10900F CPU @ 2.80GHz with 32.0 GB RAM (2933MHz) and a single Nvidia GeForce RTX 3070
GPU. We also adopt two SUMO scenarios from real-world cities, Cologne and Ingolstadt (Col. and
Ing. for short), which are “TAPAS Cologne” Varschen & Wagner (2006) and “InTAS” Lobo et al.
(2020), respectively. Six different traffic signal control tasks are created: 1) a single intersection
control for each scenario, 2) 3-intersection and 7-intersection coordinated control for corridors of
Cologne and Ingolstadt, respectively (Corr. for short), 3) 8-intersection and 21-intersection coordi-
nated control within a downtown region of Cologne and Ingolstadt, respectively (Reg. for short).

Similar to RESCO, we employ several traditional and MARL-based methods as baselines (hyperpa-
rameters are set following RESCO Ault & Sharon (2021) and details can be found in Appendix A.1).

(1) Fixed Time controller selects joint phases according to a fixed cycle and held for a fixed duration;

(2) Max Pressure controller Chen et al. (2020) enables joint phases with the maximal joint pressure;

(3) IDQN (independent DQN) Ault et al. (2019) controls each intersection with an independent
DQN agent, which is also the policy optimization algorithm of our method. It uses minus waiting
time as the reward function while FM2Light adopts minus pressure instead for better performance;

(4) IPPO (independent proximal policy optimization) Ault & Sharon (2021) adopts the same net-
work structure as IDQN while using multiple PPO agents;

(5) MPLight Chen et al. (2020) uses pressure as the reward function and shares parameters over
all DQN agents. An extended MPLight Ault & Sharon (2021) with additional states as IDQN is
adopted for the control of the Ingolstadt single intersection to get better performance;

(6) FMA2C Ault & Sharon (2021) is built based on MA2C Chu et al. (2019) where each intersection
is controlled by an A2C agent. Neighborhood information as well as discounted reward and states
are proposed to improve coordination between agents.

Comparison of sample efficiency and fairness between different algorithms are presented in Subsec-
tion 5.1 and 5.2. Hyperparameter sensitivity analysis is shown in Appendix A.3.

5.1 COMPARISON OF SAMPLE EFFICIENCY

To compare the performance of these algorithms, four evaluation metrics: 1) approximated average
signal-induced delay, 2) average travel time 3) average waiting time at intersections, and 4) average
queue length over intersections, are used. Lower values for these metrics are better.

Figure 2 illustrates the learning curves w.r.t average queue length over 5 random seeds. More results
w.r.t other metrics can be found in Appendix A.2. It can be seen that FM2Light shows significantly
faster convergence speeds than other baselines. Especially, FM2Light requires fewer than half of the
training episodes or data of the best baseline, i.e., IDQN, to get comparable or even better results,
which demonstrates the improved sample efficiency over model-free MARL baselines. In real-
world traffic signal control, our proposed FM2Light algorithms can significantly reduce the required
interactions with the environment during policy training. Among the selected MARL baselines,
IDQN and MPLight are more sample-efficient than IPPO and FMA2C. Even though traditional
controllers, i.e., Fixed time and Max pressure, respectively achieve comparable results on certain
tasks, they are unable to adapt to other tasks.

Table 1 presents the results of the best performing episode of different algorithms averaged over 5
random seeds until convergence. It can be seen that FM2Light achieves comparable or even better
performance over other MFRL methods with fewer training data on all tasks except for Ingolstadt
Region (FM2Light still shows close results to the best method IDQN on the Ingolstadt Region
task and significantly outperforms other baselines). The number of training episodes in which the
best results occur shown in the parenthesis indicates that IPPO and IDQN require more than 1000
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(a) (b) (c)

(d) (e) (f)

Figure 2: Learning curves w.r.t. average queue length with means and variances over 5 random
seeds. The horizontal and vertical axes represent the number of episodes and average queue length,
respectively. The duration of an episode is 3600s. Parts of curves that are out of range are excluded
in the figures.

Table 1: Performance (mean ± standard deviation, training episodes in which the best result occurs
are in parentheses) of different methods on 6 tasks of 2 scenarios over 5 random seeds.

IDQN Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.
Avg. Delay 21.48±0.56(94) 31.19±0.97(93) 59.64±2.13(85) 26.05±0.57(94) 23.99±1.11(82) 22.06±0.36(98)
Avg. Trip Time 35.29±0.48(94) 68.69±0.72(93) 197.23±2.18(85) 43.59±0.52(94) 59.0±0.87(98) 86.02±0.39(97)
Avg. Wait 3.93±0.25(94) 8.71±0.56(93) 20.19±1.48(85) 7.98±0.35(94) 8.5±0.59(98) 5.46±0.2(98)
Avg. Queue 0.43±0.01(95) 0.67±0.03(93) 0.8±0.05(85) 2.09±0.1(94) 0.87±0.02(98) 0.38±0.02(97)
IPPO Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.
Avg. Delay 20.9±0.21(1052) 31.68±0.98(1373) 93.11±19.49(386) 43.24±11.83(475) 24.03±0.41(744) 21.62±0.13(1394)
Avg. Trip Time 35.08±0.26(1022) 69.11±0.77(1373) 233.71±8.4(372) 58.43±9.27(470) 59.52±0.26(744) 85.71±0.17(1394)
Avg. Wait 3.77±0.28(1347) 8.72±0.52(1373) 46.44±15.12(386) 19.52±6.62(470) 8.69±0.36(755) 5.19±0.17(1394)
Avg. Queue 0.47±0.02(1384) 0.74±0.0(1273) 1.89±0.56(475) 6.14±2.74(470) 0.98±0.1(755) 0.36±0.0(1320)
MPLight Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.
Avg. Delay 28.31±0.8(76) 48.21±4.24(59) 78.16±2.06(71) 28.74±1.67(83) 83.65±27.96(34) 60.42±20.17(35)
Avg. Trip Time 41.07±1.01(76) 76.58±1.42(74) 215.72±2.21(71) 45.85±1.14(83) 102.3±21.53(42) 123.93±20.43(35)
Avg. Wait 8.27±0.97(76) 15.05±1.73(70) 34.57±1.78(71) 8.61±0.65(98) 46.25±19.27(42) 30.34±15.48(35)
Avg. Queue 0.61±0.03(76) 1.34±0.06(74) 1.48±0.04(71) 2.45±0.24(83) 5.4±1.94(42) 2.33±0.97(35)
FMA2C Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.
Avg. Delay 27.0±1.5(1361) 51.39±0.54(1339) 90.29±1.69(1372) 30.79±0.3(1230) 26.86±0.17(1375) 33.88±0.49(1380)
Avg. Trip Time 40.52±1.11(1361) 86.66±1.63(855) 226.58±1.47(1372) 48.07±0.17(1391) 62.77±0.21(1375) 97.99±0.43(1380)
Avg. Wait 7.79±0.64(1361) 22.75±0.15(1126) 44.24±2.0(1234) 11.78±0.01(1368) 12.38±0.03(1375) 14.25±0.88(1355)
Avg. Queue 1.02±0.0(1189) 1.85±0.02(1203) 1.78±0.04(1267) 3.2±0.05(1391) 1.79±0.04(1389) 1.0±0.06(1355)
FM2Light Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.
Avg. Delay 21.31±10.69(33) 31.8±0.23(20) 64.12±2.63(16) 25.99±0.95(39) 24.14±1.27(25) 22.15±0.01(28)
Avg. Trip Time 35.43±3.1(24) 70.11±0.58(23) 202.36±3.09(16) 43.11±0.68(39) 58.21±0.08(29) 86.1±0.14(28)
Avg. Wait 3.83±20.4(33) 8.8±3.43(32) 26.12±2.31(16) 7.93±0.48(39) 8.45±0.02(29) 5.51±2.36(36)
Avg. Queue 0.46±4.48(33) 0.7±0.05(32) 1.03±0.01(16) 2.08±0.08(39) 0.82±0.03(23) 0.38±0.1(28)

and 80 episodes of interactions with the environment, respectively, to get a well-trained policy in
most of the tasks. Nonetheless, FM2Light achieves comparable performance to model-free MARL
baselines using between 2 and 50 times fewer data. The data complexity of our FM2Light algorithm
is 3 times less than IDQN on Ingolstadt tasks, and 2 times less than IDQN on Cologne tasks. In
most cases, our method achieves better performance than IPPO using 40-50× fewer data. MPLight
shows comparable sample efficiency to FM2Light in several tasks, but the results are far inferior to
FM2Light. These results highlight the benefits of our proposed FM2Light method, that is, we need
far fewer training data, i.e., interactions with the environment, to achieve comparable performance
to model-free MARL methods.
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(a) (b)

(c) (d)

Figure 3: Fairness comparison of different algorithms with means and variances over 5 random
seeds. FM2Light outperforms other baselines on all multi-intersection control tasks on both |CV|
and Max Queue.

5.2 COMPARISON OF FAIRNESS

To demonstrate improvements in traffic fairness at multiple signalized intersections, we employ three
metrics, coefficient of variation (CV) w.r.t. utility, and maximum and minimum average queue length
(Max Queue and Min Queue for short) across all intersections. Given that the reward function varies
by method, we unify the calculation of utility to be based on queue length. We use |CV| instead
as the evaluation metric since the reward (minus queue length) is non-positive. Lower |CV| means
greater fairness and lower Max Queue indicates less likelihood of congestion, while Min Queue
does not measure fairness but provides additional information.

As shown in Figure 3, our FM2Light outperforms all other baselines on all multi-intersection control
tasks on both fairness dimensions, yielding average improvements of 11.8% and 19.4% over the
best baseline with respect to |CV| and Max Queue, respectively. The FM2Light with the original
reward setting where fairness is not considered (FM2Light-wo-Fair) shows much worse results on
two fairness dimensions, which demonstrates the importance of fairness-aware reward. Even though
IDQN reaches the best asymptotic performance as shown in Section 5.1, it fails to consider fairness
over different intersections among the road network. The greater fairness of our FM2Light indicates
a better balance of efficiency across intersections, reducing the likelihood of severe congestion at
certain intersections.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a novel fairness-aware model-based multi-agent reinforcement learning
method, i.e., FM2Light, for addressing both single-intersection and multi-intersection traffic signal
control problems. Specifically, an ensemble of probabilistic networks is learned to represent the
global dynamics model of the environment and used to generate imagined transitions for improving
policy optimization. A novel fairness-aware reward function is presented to coordinate independent
agents in a decentralized structure and constrain fairness over intersections. Under several different
real-world traffic signal control tasks and scenarios, our experimental results demonstrate that the
proposed method can significantly reduce the required data collected from interactions with the
environment to obtain well-trained policies and improve fairness among intersections thus mitigating
severe congestion. In the future, we plan to further improve the data efficiency with a better state
representation.
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Table 2: Hyperparameter settings for reproduction.
Hyperparameter Value
Task horizon H 3600s
Time step 10s
Number of dynamics models in the ensemble 5
Initial number of imagined rollouts C 10
Rollout increment c 1
Imagine horizon T 18
Number of LSTM layers (model learning) 3
Learning rate (model learning) 0.001
Batch size (model learning) 64
Dropout rate (model learning) 0.3
Patience of early stopping (model learning) 10
Optimizer (model learning) Adam
Number of CNN layers (policy learning) 1
Number of fully connected layers (policy learning) 3
Learning rate (policy learning) 0.001
Batch size (policy learning) 32
Discount factor 0.99
Target network update frequency 500

A APPENDIX

A.1 IMPLEMENTATION DETAILS

The implementation details of our proposed FM2Light algorithm are described in this part. The
task horizon H for each specific task is 3600s. The time step for traffic signal control is set as 10s.
Therefore, we can get 360 real transitions per episode. 5 different dynamics models are learned
within the ensemble and updated once per episode. The initial number of imagined rollouts C is 10
and incremented by c = 1 per episode. T = 18 imagined transitions are generated for each short
rollout. Each dynamics model is represented by a 3-layer LSTM with 1024 hidden nodes, followed
by 2 fully connected layer-based heads outputting state and reward predictions, respectively. More
settings can be found in Table 2.

For MARL-based baselines: IDQN employs 1 CNN layer followed by 3 fully connected layers to
aggregate lane information for each agent. Hyperparameters are identical to the default settings
in the Preferred RL (PFRL) library Fujita et al. (2021) while adjusting the target network update
frequency to 500 steps per update according to the Atari environment setting. IPPO follows the
default settings in PFRL for the Atari environment. MPLight uses the same hyperparameters as
IDQN and employs the open-source implementation of FRAP Zheng et al. (2019) and the ChainerRL
library Fujita et al. (2021). FMA2C adopts the implementation and hyperparameter settings of the
open-source MA2C Chu et al. (2019).

A.2 LEARNING CURVES FOR OTHER METRICS

In this part, we present the learning curves w.r.t. average delay, trip time and waiting time with
means and variances over 5 random seeds. We can see that all metrics of the same algorithm follow
similar patterns. Therefore, we can easily get similar conclusion from any one of these metrics.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

Figure 7 and 8 illustrate the performance and fairness of FM2Light on Cologne Region task under
different penalty coefficients β, respectively. The value of β is chosen to be 0.9 for our FM2Light as
it is the value that generates the best performance in most evaluation metrics (queue length, delay,
and waiting time). Generally, |CV | gets better as β increases. However, Max Queue gets lower
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(a) (b) (c)

(d) (e) (f)

Figure 4: Learning curves w.r.t. average delay with means and variances over 5 random seeds. The
horizontal and vertical axes represent the number of episodes and average delay, respectively. The
duration of an episode is 3600s.

(a) (b) (c)

(d) (e) (f)

Figure 5: Learning curves w.r.t. average travel time with means and variances over 5 random seeds.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Learning curves w.r.t. average waiting time with means and variances over 5 random
seeds.

with larger β when β is smaller than 0.9, while further increasing results in higher Max Queue. This
might be due to that too large β degrades the overall performance, which can also be reflected in
Figure 7.
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(a) (b)

(c) (d)

Figure 7: Sensitivity analysis of penalty coefficient β. The horizontal and vertical axes represent the
values of β and values of performance metrics, respectively.

(a) (b) (c)

Figure 8: Sensitivity analysis of penalty coefficient β. The horizontal and vertical axes represent the
values of β and values of fairness metrics, respectively.
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