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ABSTRACT

U-Nets are among the most widely used architectures in computer vision,
renowned for their exceptional performance in applications such as image seg-
mentation, denoising, and diffusion modeling. However, a theoretical explanation
of the U-Net architecture design has not yet been fully established.
This paper introduces a novel interpretation of the U-Net architecture by studying
certain generative hierarchical models, which are tree-structured graphical mod-
els extensively utilized in both language and image domains. With their encoder-
decoder structure, long skip connections, and pooling and up-sampling layers,
we demonstrate how U-Nets can naturally implement the belief propagation de-
noising algorithm in such generative hierarchical models, thereby efficiently ap-
proximating the denoising functions. This leads to an efficient sample complex-
ity bound for learning the denoising function using U-Nets within these models.
Additionally, we discuss the broader implications of these findings for diffusion
models in generative hierarchical models. We also demonstrate that the conven-
tional architecture of convolutional neural networks (ConvNets) is ideally suited
for classification tasks within these models. This offers a unified view of the roles
of ConvNets and U-Nets, highlighting the versatility of generative hierarchical
models in modeling complex data distributions.

1 INTRODUCTION

U-Nets are one of the most prominent network architectures in computer vision, primarily employed
for tasks such as image segmentation, denoising (Ronneberger et al., 2015; Zhou et al., 2018; Sid-
dique et al., 2021; Oktay et al., 2018), and diffusion modeling (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2020). These networks are structured as encoder-decoder
convolutional neural networks equipped with long skip connections, and their input and output typ-
ically maintain the same dimensions. While U-Nets have demonstrated exceptional performance
across a variety of applications, the theoretical foundations of their key components—including the
encoder-decoder structure, long skip connections, and the pooling and up-sampling layers—remain
inadequately understood. Notably, long skip connections have a significant impact on performance
as shown in empirical studies (Drozdzal et al., 2016; Wang et al., 2022). Existing explanations, often
anecdotal, suggest their efficacy stems from improved information propagation and reduction of the
vanishing gradient issue, but a thorough theoretical exploration is still lacking.

In this paper, we introduce a novel interpretation of the U-Net architecture, viewing it through the
lens of neural network approximation. We posit that:

U-Nets naturally approximate the belief propagation denoising algorithm
in certain generative hierarchical models.

The generative hierarchical model discussed herein is a tree-structured graphical model, which has
been widely employed in language and image generative modeling (Chomsky, 1959; Lee, 1996;
Allen-Zhu & Li, 2023; Li et al., 2000; Willsky, 2002; Jin & Geman, 2006). We detail the precise
definition of such generative hierarchical models in Section 2. A series of recent work (Mossel,
2016; Sclocchi et al., 2024; Tomasini & Wyart, 2024; Petrini et al., 2023; Kadkhodaie et al., 2023a)
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have pioneered the use of generative hierarchical models in studying classification tasks and dif-
fusion models. Kadkhodaie et al. (2023a) has empirically shown that U-Nets can effectively learn
the denoising function for these models. Furthermore, as noted by Sclocchi et al. (2024), the belief
propagation denoising algorithm, which computes the denoising function in these models exactly,
includes a downward process and an upward process, with the latter reusing the intermediate results
from the downward process. In Section 4, we demonstrate how the belief propagation algorithm
naturally induces the encoder-decoder structure, the long skip connections, and the pooling and up-
sampling operations of the U-Nets. This gives rise to an efficient sample complexity bound for
learning the denoising function in generative hierarchical models using U-Nets.

In addition to our main findings, in Section 3, we demonstrate that the standard architecture of con-
volutional neural networks (ConvNets) is well-suited for classification tasks within the same gener-
ative hierarchical model. We provide efficient sample complexity results to support this assertion.
This offers a unified perspective on the role of both ConvNets and U-Nets in image classification
and denoising tasks, and also highlights the versatility of generative hierarchical models in modeling
data distributions across language and image domains.

2 THE GENERATIVE HIERARCHICAL MODEL

To define the generative hierarchical model, we start by introducing some key notations. Consider
a tree T = (V, E) with a height of L, where we conventionally designate the root of the tree r
as layer 0. For each node v ∈ V , we denote pa(v) as the parent of v, C(v) as the children of v,
and N (v) as the siblings of v. We denote V(ℓ) as the set of nodes at layer ℓ. We assume that for
any v ∈ V(ℓ−1), the number of children is precisely m(ℓ) for ℓ ∈ [L]. The leaf nodes v ∈ V(L)

have no children. Additionally, for each v ∈ V(ℓ), we assume an ordering function (a bijection)
ι : C(v) → [m(ℓ)], ensuring that any child v′ ∈ C(v) possesses a unique rank ι(v′) ∈ [m(ℓ)]. We
denote the number of nodes at layer ℓ as d(ℓ), and the number of nodes at layer L as d = d(L). We
further denote m = (m(ℓ))ℓ∈[L], and ∥m∥1 =

∑L
ℓ=1m

(ℓ). By these definitions and assumptions,
we have d(ℓ) =

∏
1≤s≤ℓm

(s), and 1 = d(0) ≤ d(1) ≤ · · · ≤ d(L) = d.

For each layer ℓ = 0, . . . , L, every tree node v ∈ V(ℓ) is associated with a variable x(ℓ)v ∈ [S] for
some S ∈ N≥2. (For simplicity, we use the same variable space [S] across all layers, although our
framework can accommodate variations across different layers ℓ.) We denote x(ℓ) = (x

(ℓ)
v )v∈V(ℓ) ∈

[S]d
(ℓ)

as the variables at layer ℓ. The variables at the leaves, x = x(L) ∈ [S]d are considered
the observed covariates, exemplified by the pixel representation of an image. Conversely, the root
node variable y = x

(0)
r ∈ [S] is treated as the associated label. Variables for the intermediate layers

{x(ℓ)}1≤ℓ≤L−1 remain unobserved.

The generative hierarchical model. We consider a specific type of generative hierarchical model
(GHM)1 , which is a joint distribution µ⋆ over variables

(y = x(0) ∈ [S], x(1) ∈ [S]d
(1)

, . . . , x(L−1) ∈ [S]d
(L−1)

, x(L) = x ∈ [S]d),

associated with a set of functions {ψ(ℓ) : [S]× [S]m
(ℓ) → R≥0}ℓ∈[L], defined as

µ⋆(y,x
(1), . . . ,x(L−1),x)

∝ ψ(1)(y,x(1)) ·
(∏

v∈V(1) ψ(2)(x
(1)
v , x

(2)
C(v))

)
· · ·

(∏
v∈V(L−1) ψ(L)(x

(L−1)
v , xC(v))

)
.

(GHM)

The formula specifies that any two nodes v1, v2 ∈ V(ℓ) within the same level uses the same function
ψ(ℓ), thereby embedding specific invariance properties into µ⋆. Consequently, this GHM ensures
that (xv)v⪰v1

d
= (xv)v⪰v2 for any v1, v2 ∈ V(ℓ). The notation v ⪰ v1 denotes that v is either

1We define “generative hierarchical models” as general probabilistic models with a hierarchical structure.
The specific model discussed in this paper is an instance of such generative hierarchical models. These mod-
els are also known by various other names, including “hierarchical generative models”, “latent hierarchical
models”, “Bayesian hierarchical models”, “hierarchical Markov random fields”, among others.
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Figure 1: Left: The generative hierarchical model with 3 layers and m(1) = 3, m(2) = 3, and
m(3) = 2 children in each layer. Right: A 3-layer convolutional neural network.

identical to or a descendant of v1. We will explore later how this invariance property interacts with
the convolutional structure of the neural networks to be introduced.

Throughout the paper, we impose a specific assumption on the ψ functions in GHM, namely that
each ψ function can be factorized into a product of functions that depend solely on the ordering of
the child. This assumption is essential for enabling convolutional neural networks to approximate
the associated belief propagation algorithm.

Assumption 1 (Factorization of ψ). For each layer ℓ ∈ [L] and node v ∈ V(ℓ−1), we have

ψ(ℓ)(x
(ℓ−1)
v , x

(ℓ)
C(v)) =

∏
v′∈C(v) ψ

(ℓ)
ι(v′)(x

(ℓ−1)
v , x

(ℓ)
v′ ). (1)

We also state a technical assumption concerning the boundedness of these ψ functions of GHM.

Assumption 2 (Boundedness of ψ). For any layer ℓ ∈ [L] and child node rank ι ∈ [m(ℓ)], the
transition probabilities are bounded as follows:

1/K ≤ min
x,x′

ψ(ℓ)
ι (x, x′) ≤ max

x,x′
ψ(ℓ)
ι (x, x′) ≤ K. (2)

It is helpful to think about the joint distribution µ⋆ as a tree-structured Markov process, which admits
the factorization

µ⋆(y,x
(1), . . . ,x(L−1),x)

= µ⋆(y)µ⋆(x
(1)|y) ·

(∏
v∈V(1) µ⋆(x

(2)
C(v)|x

(1)
v )

)
· · ·

(∏
v∈V(L−1) µ⋆(xC(v)|x

(L−1)
v )

)
,

(3)

where we abuse the notation to denote µ⋆(x
(ℓ)
C(v)|x

(ℓ−1)
v ) as the conditional probability of x(ℓ)C(v)

given x(ℓ−1)
v , and µ⋆(y) as the marginal probability of y. Indeed, any graphical model specified as

in Eq. (1) can be cast into the form of (3). Furthermore, It can be checked that Eq. (3) coincides
with (GHM) upon taking ψ(ℓ)(x

(ℓ−1)
v , x

(ℓ)
C(v)) = µ⋆(x

(ℓ)
C(v)|x

(ℓ−1)
v ) for ℓ ≥ 1, and ψ(1)(y,x(1)) =

µ⋆(y)µ⋆(x
(1)|y). In this scenario, the factorization assumption (1) implies that (xℓv′)v′∈C(v) given

x
(ℓ−1)
v are conditionally independent. We include a schematic plot of the generative hierarchical

model with 3 layers as in Figure 1(left).

GHMs as natural models for languages and images. In the field of linguistics, GHMs are very
similar to context-free grammars (CFGs) (Chomsky, 1959; Lee, 1996; Allen-Zhu & Li, 2023). The
generative process of a context-free grammar involves creating valid strings or sentences based on a
given set of production rules (the ψ functions) that dictate how symbols can be extended to form new
strings. Starting with an initial symbol (the label y), the generation proceeds iteratively by applying
production rules until all symbols belong to the terminal set, thus forming a complete sentence (the
covariate x).

In computer vision, GHMs are often utilized to model natural images (Li et al., 2000; Willsky, 2002;
Jin & Geman, 2006), where they are sometimes referred to as multi-resolution Markov models. The
hypothetical image generation process begins with a high-level concept of the image (represented
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by the label y), which is then iteratively refined using a production rule (the ψ function). This
refinement continues through successive resolution levels until the detail reaches the pixel level,
resulting in the final image (the covariate x).

We remark that a series of studies (Sclocchi et al., 2024; Tomasini & Wyart, 2024; Petrini et al.,
2023; Kadkhodaie et al., 2023a) have provided both theoretical and empirical evidence supporting
the efficacy of GHMs as powerful tools for modeling the properties of combinatorial data.

3 THE WARM-UP PROBLEM: CLASSIFICATION IN GHMS

In this section, we consider the warm-up problem of classification within the GHM. In the subse-
quent section, we will investigate the denoising task, where the results and intuitions will be similar
and parallel to those presented in this section.

In the classification task, consider the scenario where we observe a set of iid samples {(xi, yi)}i∈[n]

drawn from µ⋆ under the GHM. Our objective is to learn a probabilistic classifier µ̂(y|x) from this
dataset. With a suitable loss function, the optimal classifier is the Bayes classifier µ⋆(y|x), which
represents the true conditional probability of y given x. We aim to examine the sample complexity of
learning this classifier through empirical risk minimization over the class of convolutional networks.

The ConvNet architecture. We here introduce the convolutional neural network (ConvNet) ar-
chitecture used for classification, represented as µNN(·|x) ∈ ∆([S]) for input x ∈ [S]d. Initially,
we set h(L)

v = xv ∈ [S] for each node v ∈ V(L). The operational flow of the network unfolds as
follows:

q(ℓ)v = NN
(ℓ)
ι(v)(h

(ℓ)
v ) ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

h(ℓ−1)
v = normalize

(∑
v′∈C(v) q

(ℓ)
v′

)
∈ RS , ℓ ∈ [L], v ∈ V(ℓ−1),

µNN(·|x) = softmax(h(0)r ) ∈ ∆([S]).

(ConvNet)

The functions NN
(ℓ)
ι(v) : RS

(ℓ)
in → RS (which adjust their input dimensionality S(ℓ)

in based on layer

depth, S(ℓ)
in = (S+1) ·1{ℓ ̸= L}+2 ·1{ℓ = L}) and normalize : RS → RS are defined as follows:

NN(ℓ)
ι (h) =W

(ℓ)
1,ι · ReLU(W

(ℓ)
2,ι · ReLU(W

(ℓ)
3,ι · [h; 1])), (4)

normalize(h)s = hs −maxs′∈[S] hs′ . (5)

The dimensions of the weight matrices within the ConvNet are specified as follows:

W =
{
{W (ℓ)

1,ι ∈ RS×D}ι∈[m(ℓ)], {W
(ℓ)
2,ι ∈ RD×D}ι∈[m(ℓ)], {W

(ℓ)
3,ι ∈ RD×S

(ℓ)
in }ι∈[m(ℓ)]

}
ℓ∈[L]

.

(6)
Furthermore, we denote µW

NN as the ConvNet classifier µNN parameterized by W . A schematic
illustration of a ConvNet with 3 layers is provided in Figure 1(right).
Remark 1 (An explanation of the “ConvNet” architecture). We remark that the neural network
layers described in (ConvNet) are different from the “convolution operations” typically seen in
practice. The convolution operations used in practice involve computing the inner products be-
tween convolutional filters and image patches, whereas in (ConvNet) and (4), a point-wise product
is employed instead. Despite this, these layers are still referred to as convolutional layers because
the mapping from {h(ℓ)v }v∈V(ℓ) to {q(ℓ)v }v∈V(ℓ) , as per the first line of (ConvNet), preserves the
translation-invariance property. Specifically, we use the same function NN(ℓ)

ι across different inputs
h
(ℓ)
v1 and h

(ℓ)
v2 as long as ι(v1) = ι(v2) = ι.

Additionally, the “normalization operator” defined in (5) differs from commonly used ones. We
adopt this specific form for technical reasons, to effectively control the approximation error.

Despite these differences from standard convolutional networks, (ConvNet) represents an iterative
composition of convolutional layers, pooling layers, and normalization layers, aligning closely with
the architecture of convolutional networks used in practice. Figure 1(right) shows the sequence of
these operations in detail.
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The ERM estimator. In the classification task, we employ empirical risk minimization over
ConvNets as outlined in the following equation:

Ŵ = arg min
W∈Wd,m,L,S,D,B

{
R̂(µW

NN) =
1

n

n∑
i=1

loss(yi, µ
W
NN(·|xi))

}
, (7)

where, for simplicity of analysis, we opt for the square loss rather than the more commonly used
cross-entropy loss:

loss(y, µW
NN(·|x)) =

∑S
s=1

(
1{y = s} − µW

NN(s|x)
)2

. (8)

The parameter space for the ConvNets is defined as:

Wd,m,L,S,D,B :=
{
W as defined in (6) : |||W ||| := max

j∈[3]
max
ℓ∈[L]

max
ι∈[m(ℓ)]

∥W (ℓ)
j,ι ∥op ≤ B

}
. (9)

We anticipate that the empirical risk minimizer, µŴ
NN, could learn the Bayes classifier µ⋆, as the

global minimizer of the population risk over all conditional distributions yields the Bayes classifier:

µ⋆(·|·) = argmin
µ

{
R(µ) = E[loss(y, µ(·|x))]

}
.

In our theoretical analysis, we measure the discrepancy between µŴ
NN and µ⋆ using the squared

Euclidean distance:

D2
2(µ, µ⋆) = Ex∼µ⋆

[∑S
s=1

(
µ(s|x)− µ⋆(s|x)

)2]
. (10)

Sample complexity bound. The subsequent theorem establishes the bound of the D2
2-distance

between the ConvNet estimator µŴ
NN and the true Bayes classifier µ⋆.

Theorem 1 (Learning to classify using ConvNets). Let Assumption 1 and 2 hold. Let Wd,m,L,S,D,B

be the set defined as in Eq. (9), where D ≥ S2K2d · 3L and B = Poly(d, S,K, 3L, D). Let Ŵ be
the empirical risk minimizer as in Eq. (7). Then with probability at least 1− η, we have

D2
2(µ

Ŵ
NN, µ⋆) ≤ C·

(S4K4d2 · 32L

D2
+

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DS · 3L) + log(1/η)

n

)
.

(11)

The proof of Theorem 1 is detailed in Section E.

Remark 2. To ensure the D2
2-distance is less than ϵ2, Theorem 1 requires to take

D = Θ(S2K2d3L/ϵ), n = Θ̃(LS4K4d232L∥m∥1/ϵ6), (12)

where Θ̃ hides a logarithmic factor log(d∥m∥1S · 3L/(ηϵ)). The dependency on any of the param-
eters (S, d, 3L,K, ∥m∥1, ϵ) could potentially be refined by imposing additional assumptions on the
ψ functions or through a more detailed analysis of approximation and generalization. This question
of improving rates remains open for future work.

Consider a simplified scenario where S = 2, K is constant, and m(ℓ) = m ≥ 3 for each ℓ ∈ [L],
leading to d = mL. In this setup, the sample complexity gives

n = Θ̃(L2m · d2+2 logm 3/ϵ6) ≤ Θ̃(L2m · d4/ϵ6), (13)

exhibiting a polynomial dependence on d and 1/ϵ. Such polynomial scaling aligns with existing
literature (Poggio et al., 2017; Malach & Shalev-Shwartz, 2020; Schmidt-Hieber, 2020; Allen-Zhu
& Li, 2022; Petrini et al., 2023), which indicates that learning hierarchical models using multi-
layer networks avoids the curse of dimensionality. Theorem 1 serves as a warm-up result in the
classification context. In Section 4, we aim to extend similar methodologies to address denoising
problems, employing analogous proof strategies.

5
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Proof strategy. The proof strategy begins by decomposing the squared distance between the
learned model and the true Bayes classifier into approximation and generalization error terms. The
generalization error is bounded using a standard chaining argument, leading to a rate of Õ(

√
dp/n),

where dp denotes the number of ConvNet parameters. The focus then shifts to controlling the ap-
proximation error. This is done by first introducing the belief propagation and message passing
algorithm for computing the Bayes classifier, and subsequently showing that ConvNets can approxi-
mate this algorithm effectively. A detailed outline of the proof strategy is provided in Appendix A.1,
with the complete proof presented in Appendix E.

4 DENOISING AND DIFFUSION IN GHMS

In this section, we consider the denoising task within the GHM. Consider the joint distribution
of noisy and clean covariates (z,x), generated from the following: x ∼ µ⋆ represents the clean
covariates, and z = x + g where g ∼ N (0, Id) denotes the independent isotropic Gaussian noise.
For simplicity in notation and with a slight abuse of notations, we continue to refer to the joint
distribution of (z,x) as µ⋆.

We consider a scenario where a set of iid samples {(zi,xi)}i∈[n] ∼iid µ⋆ is drawn from the distri-
bution. Our objective is to learn a denoiser m(z) from this dataset. With a suitable loss function,
the optimal denoiser is the Bayes denoiser m⋆(z) = E(x,z)∼µ⋆

[x|z], which calculates the poste-
rior expectation of x given z. We aim to examine the sample complexity of learning this denoiser
through empirical risk minimization over the class of U-Nets. The approaches and results of this
section closely align with those discussed in Section 3 on the classification task.

The U-Net architecture. We here introduce the U-Net architecture used for denoising, repre-
sented as mNN(z) ∈ Rd for input z ∈ Rd. Initially, we set h(L)

↓,v = (−(x− zv)
2/2)x∈[S] ∈ RS for

v ∈ V(L) for each node v ∈ V(L). The operational flow of the network unfolds as follows:

q
(ℓ)
↓,v = NN

(ℓ)
↓,ι(v)(normalize(h

(ℓ)
↓,v)) ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

h
(ℓ−1)
↓,v =

∑
v′∈C(v) q

(ℓ)
↓,v′ ∈ RS , ℓ ∈ [L], v ∈ V(ℓ−1),

u
(ℓ)
↑,v = b

(ℓ−1)
↑,pa(v) ∈ RS , (with b

(0)
↑,r = h

(0)
↓,r) ℓ ∈ [L], v ∈ V(ℓ),

b
(ℓ)
↑,v = NN

(ℓ)
↑,ι(v)(normalize(u

(ℓ)
↑,v − q

(ℓ)
↓,v)) + h

(ℓ)
↓,v ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

mNN(z)v =
∑

s∈[S] s · softmax(b
(L)
↑,v )s, v ∈ V(L).

(UNet)

The functions {NN
(ℓ)
↓,ι,NN

(ℓ)
↑,ι : RS → RS}ℓ∈[L] and normalize : RS → RS are defined as follows:

NN(ℓ)
⋄,ι(h)s =W

(ℓ)
1,⋄,ι · ReLU(W

(ℓ)
2,⋄,ι · ReLU(W

(ℓ)
3,⋄,ι · [h; 1])), s ∈ [S], ⋄ ∈ {↓, ↑}, ℓ ∈ [L], ι ∈ [m(ℓ)],

(14)
normalize(h)s = hs −maxs′∈[S] hs′ . (15)

The dimensions of the weight matrices within the U-Net are specified as follows:

W =
{
{W (ℓ)

1,⋄,ι ∈ RS×D}ι∈[m(ℓ)], {W
(ℓ)
2,⋄,ι ∈ RD×D}ι∈[m(ℓ)], {W

(ℓ)
3,⋄,ι ∈ RD×(S+1)}ι∈[m(ℓ)]

}
ℓ∈[L],⋄∈{↓,↑}
(16)

Furthermore, we denote mW
NN as the U-Net denoiser mNN parameterized by W . A schematic

illustration of a U-Net with 3 layers is provided in Figure 2.
Remark 3 (An explanation of the “U-Net” architecture). As noted in our discussion of the con-
volutional network as in Remark 1, the “convolutional layers” and the “normalization operator”
described in (UNet) are different from practical implementations. However, we continue to use these
terms because they retain core characteristics of their practical counterparts.

An important feature of (UNet) is its encoder-decoder architecture and the inclusion of long skip
connections, which closely mirror practical implementations. Specifically, the encoder sequence
in (UNet) progresses as h

(L)
↓ → q

(L)
↓ → h

(L−1)
↓ → · · · → q

(1)
↓ → h

(0)
↓ , consisting of a series

6
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𝗁(3)
↓ 𝗁(3)

↓ 𝗊(3)
↓

𝖭𝖭(3)
↓

AP

𝗁(2)
↓ 𝗁(2)

↓ 𝗊(2)
↓

𝖭𝖭(2)
↓

AP

𝗁(1)
↓ 𝗁(1)

↓ 𝗊(1)
↓

𝖭𝖭(1)
↓ 𝗁(1)

↓ 𝗊(1)
↓ 𝗎(1)

↑

𝗁(0)
↓

𝖭𝖭(1)
↑ 𝖻(1)

↑

AP US

US

𝗁(2)
↓ 𝗊(2)

↓ 𝗎(2)
↑

𝖭𝖭(2)
↑ 𝖻(2)

↑

US

𝗁(3)
↓ 𝗊(3)

↓ 𝗎(3)
↑

𝖭𝖭(3)
↑ m(z)z SKIP

SKIP

SKIP

Figure 2: A U-Net with L = 3. “AP” stands for average-pooling. “US” stands for up-sampling.
“SKIP” stands for long skip connections.

of convolutional, average pooling, and normalization layers. This part of the architecture is the
same as (ConvNet) for the classification task. The decoder sequence ascends as b

(0)
↑ → u

(1)
↑ →

b
(1)
↑ → · · · → b

(L−1
↑ → u

(L)
↑ → mNN, consisting of a series of convolutional, up-sampling, and

normalization layers. Moreover, the computation of b(ℓ)↑ utilizes u
(ℓ)
↑ from the upward sequence,

and (h
(ℓ)
↓ , q

(ℓ)
↓ ) from the downward process, which is enabled by the long skip connections. This

encoder-decoder architecture and the long skip connections are effectively visualized in Figure 2.

The ERM estimator. In the denoising task, we employ empirical risk minimization over U-Nets
as outlined in the following equation:

Ŵ = arg min
W∈Wd,m,L,S,D,B

{
R̂(mW

NN) =
1

nd

n∑
i=1

∥xi −mW
NN(zi)∥22

}
. (17)

The parameter space for the U-Nets is defined as:

Wd,m,L,S,D,B :=
{
W as defined in (16) : |||W ||| := max

⋄∈{↓,↑}
max
j∈[3]

max
ℓ∈[L]

max
ι∈[m(ℓ)]

∥W (ℓ)
j,ι ∥op ≤ B

}
.

(18)
We anticipate that the empirical risk minimizer, mŴ

NN, could learn the Bayes denoiser m⋆, as the
global minimizer of the population risk over all functions yields the Bayes denoiser:

m⋆(·) = argmin
m

{
R(m) = E(x,z)∼µ⋆

[d−1∥x−m(z)∥22]
}
.

In our theoretical analysis, we measure the discrepancy between mŴ
NN and m⋆ using the squared

Euclidean distance:
D2

2(m,m⋆) = Ez∼µ⋆

[
d−1∥m−m⋆(z)∥22

]
. (19)

Sample complexity bound. The subsequent theorem establishes the bound of the D2
2-distance

between the U-Net estimator mŴ
NN and the true Bayes denoiser m⋆.

Theorem 2 (Learning to denoise using U-Nets). Let Assumption 1 and 2 hold. Let Wd,m,L,S,D,B

be the set defined as in Eq. (18), where B = Poly(d, S,K, 18L, D). Let Ŵ be the empirical risk
minimizer as in Eq. (17). Then with probability at least 1− η, we have

D2
2(m

Ŵ
NN,m⋆) ≤ C·

(S6K4d2 · 182L

D2
+S2·

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DS · 18L) + log(1/η)

n

)
.

The proof of Theorem 2 is detailed in Section H.
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Remark 4. To ensure the D2
2-distance is less than ϵ2, Theorem 2 requires to take

D = Θ(S3K2d18L/ϵ), n = Θ̃(LS10K4d2182L∥m∥1/ϵ6), (20)

where Θ̃ hides a logarithmic factor log(d∥m∥1S · 18L/(ηϵ)). Similar to Theorem 1, the depen-
dency on any of the parameters (S, d, 18L,K, ∥m∥1, ϵ) could potentially be refined by imposing
additional assumptions on the ψ functions or through a more detailed analysis of approximation
and generalization. This question of improving rates remains open for future work.

Consider a simplified scenario where S = 2, K is constant, and m(ℓ) = m ≥ 3 for each ℓ ∈ [L],
leading to d = mL. In this setup, the sample complexity gives

n = Θ̃(L2m · d2+2 logm 18/ϵ6) ≤ Θ̃(L2m · d8/ϵ6), (21)
exhibiting a polynomial dependence on d and 1/ϵ. Although the degree of the polynomial is substan-
tial and potentially improvable, this gives the first polynomial sample complexity result for learning
the Bayes denoiser in a hierarchical model using the U-Nets.

Connection to the task of diffusion generative modeling. The denoising task examined in this
section is closely related to the diffusion model approach (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2020) to generative modeling. Diffusion models involve
learning a generative model from a dataset of n independent and identically distributed samples
{xi}ni=1, drawn from an unknown data distribution µ⋆ ∈ P([S]d). The goal is to generate new
samples x̂ ∼ µ̂ that match the distribution µ⋆. Most diffusion model formulations involve a series
of steps that are closely related to the denoising task described earlier. Here, we illustrate how they
work using a variant of diffusion models, the stochastic localization process (Eldan, 2013; El Alaoui
et al., 2022; Montanari & Wu, 2023; Celentano, 2022; Montanari, 2023):

• Step 1. Fit approximate denoising functions m̂t : Rd → Rd for t ∈ [0, T ]. This is done
by minimizing the empirical risk over a class of neural networks F (i.e., the denoising task
discussed in this section):

m̂t ≡ arg min
NNt∈F

1

nd

n∑
i=1

∥xi −NNt(t · xi +
√
t · gi)∥22, gi ∼iid N (0, Id). (ERM)

• Step 2. Simulate a discretized version of a stochastic differential equation (SDE) starting from
zero, whose drift term gives the approximate denoising function:

dzt = m̂t(zt) · dt+ dBt, t ∈ [0, T ], z0 = 0, (SDE)
and generate an approximate sample x̂ = zT /T ∈ Rd at the final time T .

Standard analysis shows that by replacing the fitted denoising functions m̂t(z) with the true denois-
ing functions mt(z) in Eq. (SDE) and allowing T → ∞, we can effectively recover the original
data distribution µ⋆. Consequently, the quality of samples generated from diffusion models hinges
on two critical factors: (1) How well the fitted denoising functions m̂t (ERM) approximate the
true denoising functions mt; (2) How accurately the SDE discretization scheme approximates the
continuous process as in (SDE).

Recent work has made substantial progress in addressing these two theoretical questions: controlling
the SDE discretization error, assuming a reliable denoising function estimator is available (Chen
et al., 2022a; 2023a; Lee et al., 2023; Li et al., 2023; Benton et al., 2023); and controlling the
denoising function approximation error through neural networks (Oko et al., 2023; Chen et al.,
2023b; Mei & Wu, 2023). However, these works have not explained the benefit of employing U-Net
in image diffusion modeling, which is the primary focus of the current work. Indeed, by integrating
the sample complexity bounds for learning denoising functions, as established in Theorem 2, with
standard SDE discretization error bounds, such as the result established in Benton et al. (2023), it is
straightforward to derive an end-to-end error bound for the sampling process of diffusion models in
GHMs, similar to the strategy of Oko et al. (2023); Chen et al. (2023b); Mei & Wu (2023)2.

2We note that the stochastic localization formulation is equivalent to the DDPM diffusion model, differ-
ing only in parametrization (Montanari, 2023). In the DDPM model, U-Nets serve to approximate the score
function. The score function is a linear combination of the denoising function with an identity map, as per
Tweedie’s formula. Consequently, Theorem 2 can be readily adapted to establish a sample complexity bound
for learning this score function.
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Proof strategy. The proof strategy for the denoising task parallels that of the classification task.
The squared distance between the learned model and the true Bayes denoiser is decomposed into
approximation and generalization error terms. The generalization error is bounded via a standard
parameter counting argument. The approximation error is controlled by first introducing the belief
propagation and message passing algorithm for computing the Bayes denoiser and then showing
that U-Nets can effectively approximate this algorithm. A detailed outline of the proof strategy is
provided in Appendix A.2, with the complete proof presented in Appendix H.

5 FURTHER RELATED WORK

Generative hierarchical models. Hierarchical modeling of data distributions has been proposed
in a series of works (Mossel, 2016; Poggio et al., 2017; Malach & Shalev-Shwartz, 2020; Schmidt-
Hieber, 2020; Allen-Zhu & Li, 2022; Petrini et al., 2023; Sclocchi et al., 2024; Tomasini & Wyart,
2024; Cagnetta & Wyart, 2024; Garnier-Brun et al., 2024; Kadkhodaie et al., 2023a;b). While the hi-
erarchical models in Poggio et al. (2017); Malach & Shalev-Shwartz (2020); Schmidt-Hieber (2020);
Allen-Zhu & Li (2022) remain deterministic, Mossel (2016); Petrini et al. (2023); Sclocchi et al.
(2024); Tomasini & Wyart (2024); Cagnetta & Wyart (2024); Garnier-Brun et al. (2024) studied the
generative version of hierarchical models. The diffusion model for multi-scale image distribution
representations has been empirically examined in Kadkhodaie et al. (2023a;b), which demonstrated
that U-Nets are effective in modeling denoising algorithms. The theoretical and empirical evidence
presented in Sclocchi et al. (2024); Tomasini & Wyart (2024); Petrini et al. (2023) underscores the
effectiveness of generative hierarchical models in capturing the combinatorial properties of image
datasets. Given their significant relevance to this work, we delve deeper into these studies.

Contributions of Petrini et al. (2023); Sclocchi et al. (2024); Tomasini & Wyart (2024). The
series of works on hierarchical generative models (Petrini et al., 2023; Sclocchi et al., 2024; Tomasini
& Wyart, 2024) inspired the current study. Sclocchi et al. (2024) first pointed out that the belief prop-
agation denoising algorithm of hierarchical models consists of downward and upward processes.
Through mean-field analysis on a random generative hierarchical model, they identified a phase
transition phenomenon, aligning with empirical observations in diffusion models, thereby providing
strong evidence of the efficacy of these models in handling combinatorial data properties. Petrini
et al. (2023), on the other hand, first introduced these models in a classification context. Petrini et al.
(2023); Tomasini & Wyart (2024) demonstrated that learning hierarchical models using multi-layer
networks circumvents the curse of dimensionality. Specifically, they theoretically and empirically
characterized the sample complexity, showing that it remains polynomial in dimension when learn-
ing convolutional networks under random generative rules. On the other hand, in the absence of
correlations, they showed that the sample complexity is again exponential in the dimension, even
for hierarchical generative models. This learning incapability is not captured by our analysis which
does not consider optimization.

ConvNets and U-Nets and their implicit bias. Convolutional networks (LeCun et al., 1989;
1998; Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016) have become the state-of-the-
art architecture for image classification and have been the backbone for many computer vision tasks.
U-Nets (Ronneberger et al., 2015; Zhou et al., 2018; Siddique et al., 2021; Oktay et al., 2018) have
been particularly well-suited for image segmentation and denoising tasks (Ronneberger et al., 2015),
and have served as the backbone architecture for diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2020). A series of theoretical works has explained the
inductive bias of CNNs (Bruna & Mallat, 2013; Gunasekar et al., 2018; Bietti & Mairal, 2019b;a;
Scetbon & Harchaoui, 2020; Li et al., 2020; Bietti, 2021; Mei et al., 2021; Misiakiewicz & Mei,
2022; Cagnetta et al., 2023; Favero et al., 2021; Bietti et al., 2021; Xiao, 2022; Petrini et al., 2023;
Tomasini & Wyart, 2024; Wang & Wu, 2024). However, they mostly focused on the classification
and regression setting and were not concerned with the role of U-Nets in denoising tasks. The
implicit bias of U-Nets has been theoretically investigated in Williams et al. (2024); Falck et al.
(2022), where they found that the U-Nets are conjugate to the ResNets. In contrast, we demonstrate
that U-Nets can effectively approximate the belief propagation denoising algorithms of GHMs. We
note that Cui et al. (2023) analyzed the learning dynamics for a simple U-Net in diffusion models.
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Neural networks approximation of algorithms. A recent line of work has investigated the ex-
pressiveness of neural networks through an algorithm approximation viewpoint (Wei et al., 2022;
Bai et al., 2024; Giannou et al., 2023; Liu et al., 2022a; Marwah et al., 2021; 2023; Lin et al., 2023;
Mei & Wu, 2023). In particular, Wei et al. (2022); Bai et al. (2024); Giannou et al. (2023); Liu
et al. (2022a); Lin et al. (2023) demonstrate that transformers can efficiently approximate several
algorithm classes, such as gradient descent, reinforcement learning algorithms, and even Turing ma-
chines. In the context of diffusion models, Mei & Wu (2023) shows that ResNets can efficiently
approximate the score function of high-dimensional graphical models by approximating the varia-
tional inference algorithm. Our work is closely related to Mei & Wu (2023), except that we study
neural network approximation in a different statistical model and network architecture.

From a practical viewpoint, a line of work has focused on neural network denoising by unrolling
iterative denoising algorithms into deep networks (Gregor & LeCun, 2010; Zheng et al., 2015; Zhang
& Ghanem, 2018; Papyan et al., 2017; Ma et al., 2021; Chen et al., 2018; Borgerding et al., 2017;
Monga et al., 2021; Yu et al., 2023a;b). While this literature has primarily focused on devising better
denoising algorithms, our work leverages this perspective to develop neural network approximation
theory and explain existing network architectures.

Related theory of diffusion models. In recent years, diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020) have emerged as a leading approach
for generative modeling. Neural network-based score function approximation has been recently
studied from the function approximation viewpoint in Oko et al. (2023); Chen et al. (2023b); Yuan
et al. (2023); Shah et al. (2023); Biroli & Mézard (2023), and from the algorithm approximation
viewpoint in Mei & Wu (2023). Theoretical studies of other aspects of diffusion models include
Liu et al. (2022b); Li et al. (2023); Lee et al. (2023); Chen et al. (2022b; 2023d; 2022a; 2023c;a);
Benton et al. (2023); El Alaoui et al. (2022); Montanari & Wu (2023); Celentano (2022); Ghio et al.
(2023); Biroli & Mézard (2023); Biroli et al. (2024); Cui et al. (2023); Fu et al. (2024); Wu et al.
(2024). For a comprehensive introduction to the theory of diffusion models, see the recent review
(Chen et al., 2024).

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced a novel interpretation of the U-Net architecture through the lens of
generative hierarchical models. We demonstrated that their belief propagation denoising algorithm
naturally induces the encoder-decoder structure, the long skip connections, and the pooling and up-
sampling operations of the U-Nets. We also provided an efficient sample complexity bound for
learning the denoising function with U-Nets. Furthermore, we discussed the broader implications of
these findings for diffusion models. We also showed that ConvNets are well-suited for classification
tasks within these models. Our study offers a unified perspective on the roles of ConvNets and
U-Nets, highlighting the versatility of generative hierarchical models in capturing complex data
distributions across language and image domains.

The results presented in this paper offer considerable scope for enhancement. We initially assumed
that the covariates x lie in the discrete space [S]d, and extending these results to continuous spaces
would be an intriguing direction for future research. Additionally, the dependencies of the sample
complexity bound on d and 1/ϵ may be amenable to improvement through more careful analysis.
Moreover, the convolution operations employed in this paper are different from those commonly
employed in practical settings. It would be worthwhile to explore graphical models where the be-
lief propagation algorithm aligns more naturally with ConvNets and U-Nets that utilize standard
convolution operations.

On the practical side, our theoretical findings generated a hypothesis of the functionality of each
layer of the U-Nets. Verifying these hypotheses in pre-trained U-Nets, such as those used in stable
diffusion models, using interpretability methods, could yield valuable insights. Furthermore, ex-
tending these results to include conditional denoising functions represents an exciting direction for
future research. Finally, we hope that the insights provided in this paper could guide the design of
innovative network architectures.
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A PROOF STRATEGY

A.1 PROOF STRATEGY: CONVNETS APPROXIMATE THE BELIEF PROPAGATION ALGORITHM

Lemma 17 introduces a decomposition of D2
2(µ

Ŵ
NN, µ⋆) into two components, approximation error

and generalization error:

D2
2(µ

Ŵ
NN, µ⋆) ≤ inf

W∈W
D2

2(µ
W
NN, µ⋆)︸ ︷︷ ︸

approximation error

+2 · sup
W∈W

∣∣∣R̂(µW
NN)− R(µW

NN)
∣∣∣︸ ︷︷ ︸

generalization error

.

The bound of generalization error follows a standard approach: employing a chaining argument, the
error is controlled by Õ(

√
dp/n), where dp represents the number of parameters in the ConvNet

class.

In the following, we describe our strategy to control the approximation error: we first present the
belief propagation and message passing algorithm for computing the Bayes classifier µ⋆, and then
demonstrate that ConvNets are capable of effectively approximating this message passing algorithm.

The belief propagation and message passing algorithm. The belief propagation algorithm
operates on input x ∈ [S]d and iteratively calculates the beliefs {ν(ℓ)v ∈ ∆([S])}ℓ∈{0,...,L},v∈V(ℓ) as
follows:

ν(L)
v (x(L)

v ) = 1{x(L)
v = xv},

ν(ℓ)v (x(ℓ)v ) ∝
∑

x
(ℓ+1)

C(v)

∏
v′∈C(v)

(
ψ
(ℓ+1)
ι(v′) (x

(ℓ)
v , x

(ℓ+1)
v′ )ν

(ℓ+1)
v′ (x

(ℓ+1)
v′ )

)
, ℓ = L− 1, . . . , 0,

µBP(y|x) = ν(0)r (y).
(BP-CLS)

Classical results in graphical models verify that the belief propagation algorithm accurately com-
putes the Bayes classifier in this tree graph.
Lemma 1 (BP calculates the Bayes classifier exactly (Pearl, 1982; Wainwright et al., 2008; Mezard
& Montanari, 2009)). When applying the belief propagation algorithm (BP-CLS) starting with x ∈
[S]d, it holds that µ⋆(·|x) = µBP(·|x).

The belief propagation algorithm can be streamlined into a message passing algorithm, starting with
the initialization h(L)

v = xv for each node v in the highest layer V(L). The operations are defined as
follows:

q(ℓ)v = f
(ℓ)
ι(v)(h

(ℓ)
v ) ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

h(ℓ−1)
v = normalize

(∑
v′∈C(v) q

(ℓ)
v′

)
∈ RS , ℓ ∈ [L], v ∈ V(ℓ−1),

µMP(y|x) = softmax(h(0)r ).

(MP-CLS)

The functions f (L)
ι : [S] → RS , {f (ℓ)ι : RS → RS}ℓ∈[L−1] are defined as:

f (L)
ι (x)s = logψ(L)

ι (s, x), x ∈ [S], s ∈ [S],

f (ℓ)ι (h)s = log
∑

a∈[S] ψ
(ℓ)
ι (s, a)eha , h ∈ RS , s ∈ [S], ℓ ∈ [L− 1].

(22)

We note that the normalization operator in (MP-CLS) is non-essential and could be dropped; how-
ever, we include it to ensure the formulation closely mirrors (ConvNet), offering a technical benefit.

The subsequent proposition affirms that message passing is essentially equivalent to belief propaga-
tion:
Proposition 3 (BP reduces to MP). Consider the belief propagation algorithm and the message
passing algorithm, both starting from x ∈ [S]d, as in Eq. (BP-CLS) and (MP-CLS). Then we have
ν
(ℓ)
v (·) = softmax(h

(ℓ)
v ) for all 0 ≤ ℓ ≤ L − 1 and v ∈ V(ℓ). In particular, we have µBP(·|x) =

µMP(·|x) = µ⋆(·|x).

The proof of Proposition 3 is presented in Section C.
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Approximating message passing with ConvNets. By comparing the message passing algorithm
(MP-CLS) alongside the ConvNet (ConvNet), the primary distinction lies in the nonlinear functions
used: f (ℓ)ι versus NN(ℓ)

ι . Given the expression f (ℓ)ι (h)s = log
∑

a∈[S] ψ
(ℓ)
ι (s, a)eha , it becomes ev-

ident that approximating the logarithmic and exponential functions using one-hidden-layer networks
enables f (ℓ)ι (h) to be effectively approximated by a two-hidden-layer neural network. This leads to
the following theorem:

Theorem 4 (ConvNets approximation of Bayes classifier). Let Assumption 1 and 2 hold. For any
δ > 0, take

D = 4⌈S2K2d · 3L/δ⌉, B = Poly(d, S,K, 3L, 1/δ).

Then there exists W ∈ Wd,m,L,S,D,B as in Eq. (9), such that defining µW
NN as in Eq. (ConvNet), we

have
max

y∈[S],x∈[S]d

∣∣∣ logµ⋆(y|x)− logµW
NN(y|x)

∣∣∣ ≤ δ.

The proof of Theorem 4 is detailed in Section D.

A.2 PROOF STRATEGY: U-NETS APPROXIMATE THE BELIEF PROPAGATION ALGORITHM

The proof strategy for the denoising task closely aligns with that of the classification task as detailed
in Section A.1.

Lemma 22 introduces a decomposition of D2
2(m

Ŵ
NN,m⋆) into two components, approximation error

and generalization error:

D2
2(m

Ŵ
NN,m⋆) ≤ inf

W∈W
D2

2(m
W
NN,m⋆)︸ ︷︷ ︸

approximation error

+2 · sup
W∈W

∣∣∣R̂(mW
NN)− R(mW

NN)
∣∣∣︸ ︷︷ ︸

generalization error

.

The bound of generalization error follows a standard approach: employing a chaining argument, the
error is controlled by Õ(

√
dp/n), where dp represents the number of parameters in the U-Net class.

In the following, we describe our strategy to control the approximation error: we first present the
belief propagation and message passing algorithm for computing the Bayes denoiser m⋆, and then
demonstrate that U-Nets are capable of effectively approximating this message passing algorithm.

The belief propagation and message passing algorithm. The belief propagation algorithm
operates on input z ∈ Rd and iteratively calculates the beliefs {ν(ℓ)↓,v, ν

(ℓ)
↑,v ∈ ∆([S])}ℓ∈{0,...,L},v∈V(ℓ)

as follows:

ν
(L)
↓,v (x

(L)
v ) = ψ(L+1)(x(L)

v , zv),

ν
(ℓ)
↓,v(x

(ℓ)
v ) ∝

∑
x
(ℓ+1)

C(v)

∏
v′∈C(v)

(
ψ
(ℓ+1)
ι(v′) (x

(ℓ)
v , x

(ℓ+1)
v′ )ν

(ℓ+1)
↓,v′ (x

(ℓ+1)
v′ )

)
, ℓ = L− 1, . . . , 0,

ν
(0)
↑,r (x

(0)
r ) ∝ 1,

ν
(ℓ)
↑,v(x

(ℓ)
v ) ∝

∑
x
(ℓ−1)

pa(v)
,x

(ℓ)

N(v)

ψ(ℓ)(x
(ℓ−1)
pa(v) , x

(ℓ)
C(pa(v)))ν

(ℓ−1)
↑,pa(v)(x

(ℓ−1)
pa(v) )

∏
v′∈N (v) ν

(ℓ)
↓,v′(x

(ℓ)
v′ ), ℓ = 1, . . . , L,

ν(L)
v (x(L)

v ) ∝ ν↑,L(x
(L)
v )ψ(L+1)(x(L)

v , zv),

mBP(z)v =
∑

x
(L)
v
x
(L)
v ν

(L)
v (x

(L)
v ), (BP-DNS)

where ψ(L+1)(x
(L)
v , zv) := exp{−(x

(L)
v −zv)2/2}. Classical results in graphical models verify that

the belief propagation algorithm accurately computes the Bayes denoiser in this tree graph.

Lemma 2 (BP calculates the Bayes denoiser exactly (Pearl, 1982; Wainwright et al., 2008; Mezard
& Montanari, 2009)). When applying the belief propagation algorithm (BP-DNS) starting with z ∈
Rd, it holds that µ⋆(xv|z) = ν

(L)
v (xv) for v ∈ V(L), so that mBP(z) = m(z).

We remark that the downward-upward structure of belief propagation in generative hierarchical
models has been pointed out in the literature (Sclocchi et al., 2024).
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The belief propagation algorithm can be streamlined into a message passing algorithm, starting with
the initialization h(L)

↓,v = (−(x− zv)
2/2)x∈[S] ∈ RS for each node v in the highest layer V(L). The

operations are defined as follows:

q
(ℓ)
↓,v = f

(ℓ)
↓,ι(v)(normalize(h

(ℓ)
↓,v)) ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

h
(ℓ−1)
↓,v =

∑
v′∈C(v) q

(ℓ)
↓,v′ ∈ RS , ℓ ∈ [L], v ∈ V(ℓ−1),

u
(ℓ)
↑,v = b

(ℓ−1)
↑,pa(v) ∈ RS , (with b(0)↑,r = h

(0)
↓,r) ℓ ∈ [L], v ∈ V(ℓ),

b
(ℓ)
↑,v = f

(ℓ)
↑,ι(v)(normalize(u

(ℓ)
↑,v − q

(ℓ)
↓,v)) + h

(ℓ)
↓,v ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

mMP(z)v =
∑

s∈[S] s · softmax(b
(L)
↑,v )s, v ∈ V(L).

(MP-DNS)

The functions {f (ℓ)↓,ι , f
(ℓ)
↑,ι : RS → RS}ℓ∈[L] are defined as

f
(ℓ)
↓,ι (h)s = log

∑
a∈[S] ψ

(ℓ)
ι (s, a)eha , h ∈ RS , s ∈ [S], ℓ ∈ [L],

f
(ℓ)
↑,ι (h)s = log

∑
a∈[S] ψ

(ℓ)
ι (a, s)eha , h ∈ RS , s ∈ [S], ℓ ∈ [L].

(23)

We note that the normalization operator in (MP-DNS) is non-essential and could be dropped; how-
ever, we include it to ensure the formulation closely mirrors (UNet), offering a technical benefit.

The subsequent proposition affirms that message passing is essentially equivalent to belief propaga-
tion:
Proposition 5 (BP reduces to MP). Consider the belief propagation algorithm and the message
passing algorithm, both with input z ∈ Rd, as in Eq. (BP-DNS) and (MP-DNS). Then we have
ν
(ℓ)
↓,v(·) = softmax(h

(ℓ)
↓,v) and ν(ℓ)↑,v(·) = softmax(b

(ℓ)
↑,v − h

(ℓ)
↓,v), and ν(L)

v (·) = softmax(b
(L)
↑,v ). In

particular, mMP(z) = mBP(z) = m(z).

The proof of Proposition 5 is presented in Section F.

Approximating message passing with ConvNets. By comparing the message passing algorithm
(MP-DNS) alongside the U-Net (UNet), the primary distinction lies in the nonlinear functions used:
f
(ℓ)
⋄,ι versus NN(ℓ)

⋄,ι. Notably, f (ℓ)⋄,ι entails a log-sum-exponential structure. This structure suggests that
approximating the logarithmic and exponential functions with one-hidden-layer neural networks can
allow f

(ℓ)
⋄,ι (h) to be effectively approximated by a two-hidden-layer neural network. This leads to

the following theorem:
Theorem 6 (U-Nets approximation of Bayes denoiser). Let Assumption 1 and 2 hold. For any
δ > 0, take

D = 4⌈S3K2d · 18L/δ⌉, B = Poly(d, S,K, 18L, 1/δ).

Then there exists W ∈ Wd,m,L,S,D,B as in Eq. (18), such that defining mW
NN as in Eq. (UNet), we

have
sup
z∈Rd

∥m(z)−mNN(z)∥∞ ≤ δ.

The proof of Theorem 6 is detailed in Section G.

B TECHNICAL PRELIMINARIES

We here present a bound on the supremum of sub-Gaussian processes, whose proof was based on
the chaining argument.
Lemma 3 (Proposition A.4 of (Bai et al., 2024)). Suppose that {Xw}w∈Θ is a zero-mean random
process given by

Xw ≡ 1

n

n∑
i=1

f(zi;w)− Ez[f(z;w)],

where z1, · · · , zn are i.i.d samples from a distribution Pz such that the following assumption holds:
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(a) The index set Θ is equipped with a distance ρ and diameter Bp. Further, assume that for
some constant Ap, for any ball Θ′ of radius r in Θ, the covering number admits upper bound
logN(∆;Θ′, ρ) ≤ dp log(2Apr/∆) for all 0 < ∆ ≤ 2r.

(b) For any fixed w ∈ Θ and z sampled from Pz , the random variable f(z;w) − Ez[f(z;w)] is a
σ-sub-Gaussian random variable (E[eλ[f(z;w)−Ez′ [f(z

′;w)]]] ≤ eλ
2σ2/2 for any λ ∈ R).

(c) For any w,w′ ∈ Θ and z sampled from Pz , the random variable f(z;w) − f(z;w′) is a
σ′ρ(w,w′)-sub-Gaussian random variable (E[eλ[f(z;w)−f(z;w′)]] ≤ eλ

2(σ′)2ρ2(w,w′)/2 for any
λ ∈ R).

Then with probability at least 1− η, it holds that

sup
w∈Θ

|Xw| ≤ Cσ

√
dp · log(2Ap(1 +Bpσ′/σ)) + log(1/η)

n
,

where C is a universal constant.

We next present a simple inequality used in the proof of Theorem 1.
Lemma 4 (From log ratio bound to square distance bound). Let p and q be two probability measures
on ∆([S]) such that

max
y∈[S]

∣∣∣ log p(y)− log q(y)
∣∣∣ ≤ δ.

Then we have ∑S
s=1(p(s)− q(s))2 ≤ (eδ − 1)2.

Proof of Lemma 4. The lemma is by the fact that |p(y) − q(y)| ≤ (exp{| log p(y) − log q(y)|} −
1) · p(y).

C PROOF OF PROPOSITION 3

Proof of Proposition 3. By Eq. (MP-CLS) and (22), defining ν
(ℓ)
v (·) = softmax(h

(ℓ)
v ), then for

ℓ ≤ L− 2, we get

ν(ℓ)v (x(ℓ)v ) ∝
∏

v′∈C(v)

( ∑
a∈[S]

ψ
(ℓ+1)
ι(v′) (x(ℓ)v , a)e(h

(ℓ+1)
v )a

)
∝

∑
x
(ℓ+1)

C(v)

∏
v′∈C(v)

(
ψ
(ℓ+1)
ι(v′) (x(ℓ)v , x

(ℓ+1)
v′ )ν

(ℓ+1)
v′ (x

(ℓ+1)
v′ )

)
.

This coincides with the update rule in Eq. (BP-CLS). For ℓ = L− 1, we get

ν(L−1)
v (x(L−1)

v ) ∝
∏

v′∈C(v)

( ∑
a∈[S]

ψ
(L)
ι(v′)(x

(L−1)
v , a)1{a = xv′}

)
∝

∏
v′∈C(v)

ψ
(L)
ι(v′)(x

(L−1)
v , xv′).

This again coincides with the update rule in Eq. (BP-CLS). This finishes the proof of Proposition 3.

D PROOF OF THEOREM 4

Proof of Theorem 4. By Lemma 13, takeM (ℓ)
1 = ⌈2SKd3L/δ⌉+1 andM (ℓ)

2 = ⌈2SK2d3L/δ⌉+1.
Then there exists {(aj , wj , bj)}j∈[M

(ℓ)
1 ]

and {(āj , w̄j , b̄j)}j∈[M
(ℓ)
2 ]

with

sup
j

|aj | ≤ 2SK, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ SK, sup
j

|āj | ≤ 2, sup
j

|w̄j | ≤ 1, sup
j

|b̄j | ≤ log(4·3LSdK2/δ),

such that defining

logδ⋆(x) =
∑M

(ℓ)
1

j=1 aj · ReLU(wjx+ bj), expδ⋆(x) =
∑M

(ℓ)
2

j=1 āj · ReLU(w̄jx+ b̄j),
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and defining f (ℓ)ι (h), f̄
(ℓ)
ι (h) ∈ RS by

f
(ℓ)
ι (h)i = log

∑S
j=1 ψ

(ℓ)
ι (i, j) exp(hj), f̄

(ℓ)
ι (h)i = logδ⋆

∑S
j=1 ψ

(ℓ)
ι (i, j) expδ⋆(hj), ∀i ∈ [S],

we have
sup

maxi hi=0
∥f (ℓ)ι (h)− f̄ (ℓ)ι (h)∥∞ ≤ δ/(d3L). (24)

In addition, by Lemma 15, take M (L)
1 = ⌈3LdK/δ⌉ + 1 and M

(L)
2 = 3. Then there exists

{(a(L)
j , w

(L)
j , b

(L)
j )}

j∈[M
(L)
1 ]

and {(ā(L)
j , w̄

(L)
j , b̄

(L)
j )}

j∈[M
(L)
2 ]

with

sup
j

|a(L)
j | ≤ 2K, sup

j
|w(L)

j | ≤ 1, sup
j

|b(L)
j | ≤ SK, sup

j
|ā(L)

j | ≤ 4, sup
j

|w̄(L)
j | ≤ 1, sup

j
|b̄(L)

j | ≤ 1,

such that defining

logδ(x) =
∑M

(L)
1

j=1 a
(L)
j · ReLU(w

(L)
j x+ b

(L)
j ), Ind(x) =

∑M
(L)
2

j=1 ā
(L)
j · ReLU(w̄

(L)
j x+ b̄

(L)
j ),

and defining f (L)
ι (h), f̄

(L)
ι (h) ∈ RS by

f
(L)
ι (x)i = log

∑S
j=1 ψ

(L)
ι (i, j)1(x = j), f̄

(L)
ι (x)i = logδ

∑S
j=1 ψ

(L)
ι (i, j)Ind(x−j), ∀i ∈ [S],

we have
sup
x∈[S]

∥f (L)
ι (x)− f̄ (L)

ι (x)∥∞ ≤ δ/(d3L). (25)

By Eq. (24) and (25) and Lemma 5, taking h
(0)
r ∈ RS to be as defined in Eq. (MP-CLS) and

h̄
(0)
r ∈ RS to be as defined in Eq. (A-MP-CLS) with {f̄ (ℓ)ι }ℓ∈[L],ι∈[m(ℓ)] as defined above, we have

∥h(0)r − h̄(0)r ∥∞ ≤ [δ/(d3L)]×
∏

1≤ℓ≤L

(2m(ℓ) + 1) ≤ δ.

As a consequence, we just need to show that the approximate version of message passing algorithm
as in Eq. (A-MP-CLS) could be cast as a neural network.

Indeed, by Lemma 14, there exist two-hidden-layer neural networks (for ℓ ∈ [L− 1] and ι ∈ [m(ℓ)])

NN
W

(ℓ)
1,ι ,W

(ℓ)
2,ι ,W

(ℓ)
3,ι

(h) =W
(ℓ)
1,ι · ReLU(W

(ℓ)
2,ι · ReLU(W

(ℓ)
3,ι · [h; 1])),

with W (ℓ)
1,ι ∈ RS×SM

(ℓ)
1 , W (ℓ)

2,ι ∈ RSM
(ℓ)
1 ×(SM

(ℓ)
2 +1), W (ℓ)

3,ι ∈ R(SM
(ℓ)
2 +1)×(S+1), and

∥W (ℓ)
1,ι ∥max ≤ 2SK, ∥W (ℓ)

2,ι ∥max ≤ Poly(SKM
(ℓ)
1 M

(ℓ)
2 ), ∥W (ℓ)

3,ι ∥max ≤ log(4SK2/δ).

such that
NN

W
(ℓ)
1,ι ,W

(ℓ)
2,ι ,W

(ℓ)
3,ι

(h) = f̄ (ℓ)ι (h), ∀h ∈ RS such that max
j
hj = 0.

Furthermore, by Lemma 16, there exist two-hidden-layer neural networks (for ι ∈ [m(L)])

NN
W

(L)
1,ι ,W

(L)
2,ι ,W

(L)
3,ι

(x) =W
(L)
1,ι · ReLU(W

(L)
2,ι · ReLU(W

(L)
3,ι · [x; 1])),

with W (L)
1,ι ∈ RS×SM

(L)
1 , W (L)

2,ι ∈ RSM
(L)
1 ×(SM

(L)
2 +1), W (L)

3,ι ∈ R(SM
(L)
2 +1)×2,

∥W (L)
1,ι ∥max ≤ 2K, ∥W (L)

2,ι ∥max ≤ Poly(SKM
(L)
1 M

(L)
2 ), ∥W (L)

3,ι ∥max ≤ 1.

such that
NN

W
(L)
1,ι ,W

(L)
2,ι ,W

(L)
3,ι

(x) = f̄ (L)
ι (x), ∀x ∈ [S].

This proves that the approximate version of message passing as in Eq. (A-MP-CLS) can be cast into
the convolutional neural network as in Eq. (ConvNet) with proper choice of dimension

D ≥ max
ℓ∈[L]

{SM (ℓ)
1 , SM

(ℓ)
2 + 1} = S ×

(
⌈2SK2d3L/δ⌉+ 1

)
+ 1,

and norm of the weights. This finishes the proof of Theorem 4.
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D.1 AUXILLARY LEMMAS

Lemma 5 (Error propagation of the approximate version of message passing in classification). As-
sume we have functions f (ℓ)ι and f̄ (ℓ)ι such that

∥f (L)
ι (x)− f̄ (L)

ι (x)∥∞ ≤ δ, ∀x ∈ [S],

∥f (ℓ)ι (h)− f̄ (ℓ)ι (h)∥∞ ≤ δ, ∀h ∈ RS such that max
j∈[S]

hj = 0, ∀ℓ ≤ L− 1.
(26)

Furthermore, consider the following approximate version of message passing algorithm with initial-
ization h̄(L)

v = xv for v ∈ V(L):

q̄(ℓ)v = f̄
(ℓ)
ι(v)(h̄

(ℓ)
v ) ∈ RS , ℓ ∈ [L− 1], v ∈ V(ℓ),

h̄(ℓ−1)
v = normalize

(∑
v′∈C(v) q̄

(ℓ)
v′

)
∈ RS , ℓ ∈ [L− 1], v ∈ V(ℓ−1).

(A-MP-CLS)

Taking h(0)r ∈ RS to be as defined in Eq. (MP-CLS) and h̄(0)r ∈ RS to be as defined in Eq. (A-MP-
CLS), we have

∥h(0)r − h̄(0)r ∥∞ ≤ δ ×
∏

1≤ℓ≤L

(2m(ℓ) + 1).

Proof of Lemma 5. We prove this lemma by induction, aiming to show that for any ℓ ∈ [L − 1] we
have

∥h̄(ℓ)v − h
(ℓ)
v ∥∞ ≤ 2m(ℓ+1)

∏L
k=ℓ+2(2m

(k) + 1)δ, ∀v ∈ V(ℓ). (27)

To prove the formula for ℓ = L− 1, since h(L)
v = h̄

(L)
v , by Eq. (26), we get

∥q̄(L)
v − q(L)

v ∥∞ ≤ δ, ∀v ∈ V(L).

By Lemma 7, we get

∥h(L−1)
v − h̄

(L−1)
v ∥∞ ≤ 2

∥∥∥∑v′∈C(v)(q̄
(L)
v′ − q

(L)
v′ )

∥∥∥
∞

≤ 2m(L)δ, ∀v ∈ V(L−1).

This proves the formula (27) for ℓ = L− 1.

Assuming that (27) holds at the layer ℓ, by the update formula, we have

∥q̄(ℓ)v − q(ℓ)v ∥∞ = ∥f̄ (ℓ)ι(v)(h̄
(ℓ)
v )− f

(ℓ)
ι(v)(h

(ℓ)
v )∥∞

≤ ∥f̄ (ℓ)ι(v)(h̄
(ℓ)
v )− f

(ℓ)
ι(v)(h̄

(ℓ)
v )∥∞ + ∥f (ℓ)ι(v)(h

(ℓ)
v )− f

(ℓ)
ι(v)(h̄

(ℓ)
v )∥∞

≤ δ + 2m(ℓ+1)
∏L

k=ℓ+2(2m
(k) + 1)δ ≤

∏L
k=ℓ+1(2m

(k) + 1)δ,

where the middle inequality is by the assumption of f (ℓ)ι and by Lemma 6. By Lemma 7, we get

∥h̄(ℓ−1)
v − h

(ℓ−1)
v ∥∞ ≤ 2m(ℓ)

∏L
k=ℓ+1(2m

(k) + 1)δ, ∀v ∈ V(ℓ).

This proves Lemma 5 by the induction argument.

Lemma 6 (Non-expansiveness of log-sum-exponential). For h ∈ RS and Ψ ∈ RS×S , define f(h) ∈
RS by

f(h)i = log
∑S

j=1 Ψij exp(hj), ∀i ∈ [S].

Then for h1, h2 ∈ RS , we have

∥f(h1)− f(h2)∥∞ ≤ ∥h1 − h2∥∞.

Proof of Lemma 6. Fix i ∈ [S]. We have

∇hf(h)i =
( Ψij exp(hj)∑

k∈[S] Ψik exp(hk)

)
j∈[S]

,

so that ∥∇hf(h)i∥1 = 1. By intermediate value theorem, we have

|f(h1)i − f(h2)i| = |∇hf(ξ)
T
i (h1 − h2)| ≤ ∥∇hf(ξ)

T
i ∥1∥h1 − h2∥∞ = ∥h1 − h2∥∞.

This proves Lemma 6.
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Lemma 7 (Lipschitzness of the normalization operator). For h ∈ RS , define normalize(h) ∈ RS

by
normalize(h)i = hi −maxj hj , ∀i ∈ [S].

Then for h1, h2 ∈ RS , we have

∥normalize(h1)− normalize(h2)∥∞ ≤ 2∥h1 − h2∥∞.

Proof of Lemma 7. Note we have the following inequality

|max
j
h1,j −max

j
h2,j | ≤ ∥h1 − h2∥∞,

so that

|normalize(h1)i − normalize(h2)i| ≤ ∥h1 − h2∥∞ + |max
j
h1,j −max

j
h2,j | ≤ 2∥h1 − h2∥∞.

This completes the proof of Lemma 7.

Lemma 8 (ReLU approximation of the exponential function). For any δ > 0, takeM = ⌈1/δ⌉+1 ∈
N. Then there exists {(aj , wj , bj)}j∈[M ] with

sup
j

|aj | ≤ 2, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ logM, (28)

such that defining expδ : R → R by

expδ(x) =
∑M

j=1 aj · ReLU(wjx+ bj),

we have expδ is non-decreasing on (−∞, 0], and

sup
x∈(−∞,0]

| exp(x)− expδ(x)| ≤ δ, expδ(0) = 1.

Proof of Lemma 8. Define ej = j/(M −1), bj = − log(ej) for j ∈ [M −1], a1 = (e2− e1)/(b2−
b1) and aj = (ej+1− ej)/(bj+1− bj)− (ej − ej−1)/(bj − bj−1) for 2 ≤ j ≤M − 2. Furthermore,
define

expδ(x) =

M−2∑
j=1

ajReLU(x+ bj) + ReLU(−x+ e1)− ReLU(−x).

Then we have expδ(−bj) = ej for j ∈ [M − 1], and expδ is piece-wise linear and non-decreasing
on (−∞, 0]. Note that we also have exp(−bj) = ej for j ∈ [M − 1], and exp is increasing on
(−∞, 0]. This proves that supx∈(−∞,0] | exp(x)− expδ(x)| ≤ δ. Furthermore, it is easy to see that
expδ(0) = 1 and expδ is non-decreasing on (−∞, 0]. Finally, since exp is 1-Lipschitz, it is easy
to see that supj∈[M ] |aj | ≤ 2. It is also easy to see the other parts of Eq. (28) are satisfied, and this
proves Lemma 8.

Lemma 9 (ReLU approximation of the logarithm function). For any A > 0, δ > 0, take M =
⌈2A/δ⌉+ 1 ∈ N. Then there exists {(aj , wj , bj)}j∈[M ] with

sup
j

|aj | ≤ 2A, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ A, (29)

such that defining logδ : R → R by

logδ(x) =
∑M

j=1 aj · ReLU(wjx+ bj),

we have logδ is non-decreasing on [1/A,A], and

sup
x∈[1/A,A]

| log(x)− logδ(x)| ≤ δ.

Proof of Lemma 9. The proof of Lemma 9 is similar to Lemma 8.
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Lemma 10 (ReLU approximation of indicator function). Define

Ind(x) = 2ReLU(x− 1/2) + 2ReLU(x+ 1/2)− 4ReLU(x),

we have
1(x = j) = Ind(x− j), ∀j, x ∈ Z.

Proof of Lemma 10. The lemma holds by direct calculation.

Lemma 11 (Log-sum-exponential approximation). Assume logδ1 : R → R and expδ2 : R → R are
such that,

sup
x∈[1/K,SK]

| log(x)− logδ1(x)| ≤ δ1, sup
x∈(−∞,0]

| exp(x)− expδ2(x)| ≤ δ2,

expδ2(0) = 1, expδ2 is non-decreasing on (−∞, 0].

Assume that 1/K ≤ minij Ψij ≤ maxij Ψij ≤ K. Define f(h), fδ1,δ2(h) ∈ RS by

f(h)i = log
∑S

j=1 Ψij exp(hj), fδ1,δ2(h)i = logδ1
∑S

j=1 Ψij expδ2(hj), ∀i ∈ [S].

Then we have
sup

maxi hi=0
∥f(h)− fδ1,δ2(h)∥∞ ≤ δ1 + SK2δ2.

Proof of Lemma 11. We have

|f(h)i − fδ1,δ2(h)i| = | log⟨Ψi:, exp(h)⟩ − logδ1⟨Ψi:, expδ2(h)⟩|
≤ | log⟨Ψi:, expδ2(h)⟩ − logδ1⟨Ψi:, expδ2(h)⟩|+ | log⟨Ψi:, exp(h)⟩ − log⟨Ψi:, expδ2(h)⟩|.

For the first term, since expδ2(h) ≤ 1 for all h ≤ 0, we have ⟨Ψi:, expδ2(h)⟩ ≤ Smaxij Ψij ≤ SK.
Furthermore, since maxi hi = 0 and expδ2(0) = 1, we have ⟨Ψi:, expδ2(h)⟩ ≥ minij Ψij ≥ 1/K.
As a consequence, by assumption, we have

| log⟨Ψi:, expδ2(h)⟩ − logδ1⟨Ψi:, expδ2(h)⟩| ≤ δ1.

For the second term, since both ⟨Ψi:, exp(h)⟩ and ⟨Ψi:, expδ2(h)⟩ are within [1/K, SK] on which
log function has Lipschitz constant K, we have

| log⟨Ψi:, exp(h)⟩ − log⟨Ψi:, expδ2(h)⟩| ≤ SKmax
ij

Ψij · ∥ exp(h)− expδ2(h)∥∞ ≤ SK2δ2.

This finishes the proof of Lemma 11.

Lemma 12 (Log-Psi approximation). Assume logδ : R → R is such that,

sup
x∈[1/K,K]

| log(x)− logδ(x)| ≤ δ.

Assume that 1/K ≤ minij Ψij ≤ maxij Ψij ≤ K. For x ∈ [S], define f(x), fδ(x) ∈ RS by

f(x)i = log
∑S

j=1 Ψij1(x = j), fδ(x)i = logδ
∑S

j=1 Ψij1(x = j), ∀i ∈ [S].

Then we have
sup
x∈[S]

∥f(x)− fδ(x)∥∞ ≤ δ.

Proof of Lemma 12. For any fixed x ∈ [S] and i ∈ [S], we have

|f(x)i − fδ(x)i| = | logΨix − logδ Ψix| ≤ δ,

where the last inequality is by assumption. This proves Lemma 12.
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Lemma 13 (ReLU approximation of log-sum-exponential). Assume that 1/K ≤ minij Ψij ≤
maxij Ψij ≤ K. For any δ > 0, take M1 = ⌈2SK/δ⌉ + 1 and M2 = ⌈2SK2/δ⌉ + 1. Then
there exists {(aj , wj , bj)}j∈[M1] and {(āj , w̄j , b̄j)}j∈[M2] with

sup
j

|aj | ≤ 2SK, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ SK, sup
j

|āj | ≤ 2, sup
j

|w̄j | ≤ 1, sup
j

|b̄j | ≤ log(4SK2/δ),

such that defining

logδ⋆(x) =
∑M1

j=1 aj · ReLU(wjx+ bj), expδ⋆(x) =
∑M2

j=1 āj · ReLU(w̄jx+ b̄j),

and defining f(h), fδ(h) ∈ RS by

f(h)i = log
∑S

j=1 Ψij exp(hj), fδ(h)i = logδ⋆
∑S

j=1 Ψij expδ⋆(hj), ∀i ∈ [S],

we have
sup

maxi hi=0
∥f(h)− fδ(h)∥∞ ≤ δ.

Proof of Lemma 13. Lemma 9 implies that taking M1 = ⌈2SK/δ⌉ + 1, there exists
{(aj , wj , bj)}j∈[M1] with

sup
j

|aj | ≤ 2SK, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ SK,

such that defining
logδ⋆(x) =

∑M1

j=1 aj · ReLU(wjx+ bj),

we have
sup

1/(SK)≤x≤SK

| log(x)− logδ⋆(x)| ≤ δ/2.

Lemma 8 implies that taking M2 = ⌈2SK2/δ⌉+ 1, there exists {(āj , w̄j , b̄j)}j∈[M2] with

sup
j

|āj | ≤ 2, sup
j

|w̄j | ≤ 1, sup
j

|b̄j | ≤ log(4SK2/δ),

such that defining
expδ⋆(x) =

∑M2

j=1 āj · ReLU(w̄jx+ b̄j),

we have expδ⋆ is non-decreasing on (−∞, 0], and

sup
x∈(−∞,0]

| exp(x)− expδ⋆(x)| ≤ δ/(2SK2), expδ⋆(0) = 1.

As a consequence, the condition of Lemma 11 is satisfied with δ1 = δ/2 and δ2 = δ/(2SK2), so
that we have

sup
maxi hi=0

∥f(h)− fδ(h)∥∞ ≤ δ1 + SK2δ2 = δ.

This finishes the proof of Lemma 13.

Lemma 14 (Existence of ReLU network approximating log-sum-exponential). Let fδ be the func-
tion as defined in Lemma 13. Then there exists a two-hidden-layer neural network

NNW1,W2,W3(h) =W1 · ReLU(W2 · ReLU(W3 · [h; 1])),

with W1 ∈ RS×SM1 , W2 ∈ RSM1×(SM2+1), W3 ∈ R(SM2+1)×(S+1), and

∥W1∥max ≤ 2SK, ∥W2∥max ≤ Poly(SKM1M2), ∥W3∥max ≤ log(4SK2/δ).

such that
NNW1,W2,W3(h) = fδ(h), ∀h ∈ RS such that max

j
hj = 0.
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Proof of Lemma 14. Define

W 2 =


āT1:M2

0 · · · 0 0
0 āT1:M2

· · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · āT1:M2

0
0 0 · · · 0 1

 ∈ R(S+1)×(SM2+1),

W3 =


w̄1:M2

0 · · · 0 b̄1:M2

0 w̄1:M2
· · · 0 b̄1:M2

· · · · · · · · · · · · · · ·
0 0 · · · w̄1:M2

b̄1:M2

0 0 · · · 0 1

 ∈ R(SM2+1)×(S+1),

then we have
[expδ⋆(h); 1] =W 2 · ReLU(W3 · [h; 1]).

Define

W1 =


aT1:M1

0 · · · 0
0 aT1:M1

· · · 0
· · · · · · · · · · · ·
0 0 · · · aT1:M1

 ∈ RS×SM1 ,

W̃2 =

w1:M1
0 · · · 0 b1:M1

0 w1:M1
· · · 0 b1:M1

· · · · · · · · · · · · · · ·
0 0 · · · w1:M1

b̄1:M1

 ∈ RSM1×(S+1),

then we have
logδ⋆(h) =W1 · ReLU(W̃2 · [h; 1]).

As a consequence, we have
f⋆(h) = logδ⋆ Ψexpδ⋆(h) =W1·ReLU(W̃2·diag(Ψ, 1)·W 2·ReLU(W3·[h; 1])) =W1·ReLU(W2·ReLU(W3·[h; 1])),
where we define W2 = W̃2 · diag(Ψ, 1) ·W 2. It is also direct to upper bound ∥W1∥max, ∥W2∥max,
and ∥W3∥max. This finishes the proof of Lemma 14.

Lemma 15 (ReLU approximation of log-Psi). Assume that 1/K ≤ minij Ψij ≤ maxij Ψij ≤ K.
For any δ > 0, take M1 = ⌈K/δ⌉ + 1 and M2 = 3. Then there exists {(aj , wj , bj)}j∈[M1] and
{(āj , w̄j , b̄j)}j∈[M2] with

sup
j

|aj | ≤ 2K, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ SK, sup
j

|āj | ≤ 4, sup
j

|w̄j | ≤ 1, sup
j

|b̄j | ≤ 1,

such that defining

logδ(x) =
∑M1

j=1 aj · ReLU(wjx+ bj), Ind(x) =
∑M2

j=1 āj · ReLU(wjx+ bj),

and defining f(x), fδ(x) ∈ RS by

f(x)i = log
∑S

j=1 Ψij1(x = j), fδ(x)i = logδ
∑S

j=1 ΨijInd(x− j), ∀i ∈ [S],

we have
sup
x∈[S]

∥f(x)− fδ(x)∥∞ ≤ δ.

Proof of Lemma 15. The proof of the lemma is similar to the proof of Lemma 13, using a combina-
tion of Lemma 10, 9, and 12.

Lemma 16 (Existence of ReLU network approximating log-Psi). Let fδ be the function as defined
in Lemma 15. Then there exists a two-hidden-layer neural network

NNW1,W2,W3
(x) =W1 · ReLU(W2 · ReLU(W3 · [x; 1])),

with W1 ∈ RS×SM1 , W2 ∈ RSM1×(SM2+1), W3 ∈ R(SM2+1)×(S+1), and
∥W1∥max ≤ 2K, ∥W2∥max ≤ Poly(SKM1M2), ∥W3∥max ≤ 1.

such that
NNW1,W2,W3

(x) = fδ(x), ∀x ∈ [S].

Proof of Lemma 16. The proof of Lemma 16 is similar to the proof of Lemma 14.
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E PROOF OF THEOREM 1

Proof of Theorem 1. By Lemma 17, we have the error decomposition

D2
2(µ

Ŵ
NN, µ⋆) ≤ infW∈W D2

2(µ
W
NN, µ⋆) + 2 · supW∈W

∣∣∣R̂(µW
NN)− R(µW

NN)
∣∣∣.

To control the first term (the approximation error), by Theorem 4, there exists W ∈ Wd,m,L,S,D,B as
in Eq. (9) with norm bound B = Poly(d, S,K, 3L, D), such that defining µW

NN as in Eq. (ConvNet),
we have

max
y∈[S],x∈[S]d

∣∣∣ logµ⋆(y|x)− logµW
NN(y|x)

∣∣∣ ≤ C · S
2K2d · 3L

D
.

Furthermore, by Lemma 4, when D ≥ S2K2d · 3L, we have

inf
W∈W

D2
2(µ

W
NN, µ⋆) ≤ C

(
e

S2K2d·3L
D − 1

)2

≤ C
S4K4d2 · 32L

D2
.

To control the second term (the generalization error), by Proposition 7, with probability at least 1−η,
we have

sup
W∈Wd,m,L,S,D,B

∣∣∣R̂(µW
NN)−R(µW

NN)
∣∣∣ ≤ C·

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DSB · 3L) + log(1/η)

n
.

Combining the above two equations proves Theorem 1.

E.1 ERROR DECOMPOSITION

Lemma 17. Consider the setting of Theorem 1. We have decomposition

D2
2(µ

Ŵ
NN, µ⋆) ≤ infW∈W D2

2(µ
W
NN, µ⋆) + 2 · supW∈W

∣∣∣R̂(µW
NN)− R(µW

NN)
∣∣∣.

Proof of Lemma 17. We have that for any conditional distribution µ1(·|·), there is decomposition

D2
2(µ1, µ⋆) = Ex∼µ⋆

[ S∑
s=1

(
µ1(s|x)− µ⋆(s|x)

)2]
= E(x,y)∼µ⋆

[ S∑
s=1

(µ1(s|x)− 1{y = s})2
]
− E(x,y)∼µ⋆

[ S∑
s=1

(µ⋆(s|x)− 1{y = s})2
]
= R(µ1)− R(µ⋆).

Define
W⋆ = arg min

W∈W
R(µW

NN) = arg min
W∈W

D2
2(µ

W
NN, µ⋆).

Then we have

D2
2(µ

Ŵ
NN, µ⋆) = R(µŴ

NN)− R(µ⋆)

= R(µŴ
NN)− R̂(µŴ

NN) + R̂(µŴ
NN)− R̂(µW⋆

NN ) + R̂(µW⋆

NN )− R(µW⋆

NN ) + R(µW⋆

NN )− R(µ⋆)

≤ 2 · sup
W∈W

∣∣∣R(µW
NN)− R̂(µW

NN)
∣∣∣+ D2

2(µ
W⋆

NN , µ⋆)

This proves Lemma 17.

E.2 RESULTS ON GENERALIZATION

Proposition 7 (Generalization error of the classification problem). Let Wd,m,L,S,D,B be the set
defined as in Eq. (9). Then, with probability at least 1− η, we have

sup
W∈Wd,m,L,S,D,B

∣∣∣R̂(µW
NN)−R(µW

NN)
∣∣∣ ≤ C·

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DSB · 3L) + log(1/η)

n
.
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Proof of Proposition 7. In Lemma 3, we can take z = (y,x), w = W , Θ = Wd,m,L,S,D,B ,
ρ(w,w′) = |||W −W ′|||, and f(zi;w) = loss(y, µW

NN(·|x)). Therefore, to show Proposition 7,
we just need to apply Lemma 3 by checking (a), (b), (c).

Check (a). We note that the index set Θ := Wd,m,L,S,D,B equipped with ρ(w,w′) :=
|||W −W ′||| has diameter Bp := 2B. Further note that Wd,m,L,S,D,B has a dimension bounded
by dp := D(D + 2S + 1)∥m∥1. According to Example 5.8 of (Wainwright, 2019), it holds that
logN(∆;Wd,m,L,S,D,B , |||·|||) ≤ dp · log(1 + 2r/∆) for any 0 < ∆ ≤ 2r. This verifies (a).

Check (b). Since f(zi;w) = loss(y, µW
NN(·|x)) is 2-bounded. As a consequence, f(z, w) −

Ez[f(z, w)] is a sub-Gaussian random variable with the sub-Gaussian parameter to be a universal
constant.

Check (c). Lemma 20 implies that

|f(z;w1)− f(z;w2)| ≤ σ′ · |||W1 −W2|||, σ′ := 12∥m∥1(3B3)L · d · S3/2 · (S +D).

As a consequence, f(z;w1)− f(z;w2) is σ′ρ(w1, w2) = σ′|||W1 −W2||| sub-Gaussian.

Therefore, we apply Lemma 3 to conclude the proof of Proposition 7.

E.3 AUXILLARY LEMMAS

Lemma 18 (Norm bound in the chain rule in classification settings). Consider the ConvNet as in
Eq. (ConvNet). Assume that |||W ||| ≤ B. Then for any ℓ, v, ι, and ⋆ ∈ [3], we have

∥h(L)
v ∥2 ≤ S3/2,

∥q(ℓ)v ∥2 ≤ B3 · (∥h(ℓ)v ∥2 + 1),

∥h(ℓ−1)
v ∥2 ≤ 2m(ℓ) · max

v′∈C(v)
∥q(ℓ)v′ ∥2,

max
i∈[S]

∥∇
W

(k)
⋆,ι

q
(ℓ)
v,i∥op ≤ B3 ·max

i∈[S]
∥∇

W
(k)
⋆,ι

h
(ℓ)
v,i∥op, ∀k ≥ ℓ+ 1,

max
i∈[S]

∥∇
W

(ℓ)
⋆,ι

q
(ℓ)
v,i∥op ≤ B2 · ∥h(ℓ)v ∥2,

max
i∈[S]

∥∇
W

(k)
⋆,ι

h
(ℓ−1)
v,i ∥op ≤ 2m(ℓ) · max

v′∈C(v)
max
i∈[S]

∥∇
W

(k)
⋆,ι

q
(ℓ)
v′,i∥op, ∀k ≥ ℓ,

max
i∈[S]

∥∇
W

(ℓ)
⋆,ι

softmax(h(0)r )i∥op ≤ max
i∈[S]

∥∇
W

(ℓ)
⋆,ι

h
(0)
r,i ∥op.

Proof of Lemma 18. The proof of the lemma uses the chain rule, the 1-Lipschitzness of ReLU, the
2-Lipschitzness of normalize, and the 1-Lipschitzness of softmax.

Lemma 19. Consider the ConvNet as in Eq. (ConvNet). Assume that |||W ||| ≤ B. Then we have

max
x∈[S]d

max
⋆∈[3]

max
ℓ∈[L]

max
ι∈[m(ℓ)]

max
i∈[S]

∥∇
W

(ℓ)
⋆,ι

softmax(h(0)r )i∥op ≤ (3B3)L · d · S3/2.

Proof of Lemma 19. This lemma is implied by Lemma 18 and an induction argument.

Lemma 20. Consider the ConvNet as in Eq. (ConvNet). Assume that |||W ||| ≤ B. Then we have

max
y,x

∣∣∣µW
NN(y|x)− µW

NN(y|x)
∣∣∣ ≤ 3∥m∥1(3B3)L · d · S3/2 · (S +D) · |||W −W |||.

Therefore, we have∣∣∣loss(y, µW
NN(·|x))− loss(y, µW

NN(·|x))
∣∣∣ ≤ 12∥m∥1(3B3)L · d · S3/2 · (S +D) · |||W −W |||.

Proof of Lemma 20. The first inequality is by the fact that

max
y,x

∣∣∣µW
NN(y|x)− µW

NN(y|x)
∣∣∣

≤
∑
⋆∈[3]

∑
ℓ∈[L]

∑
ι∈[m(ℓ)]

min{nrow(W (ℓ)
⋆,ι ),ncol(W

(ℓ)
⋆,ι )}∥∇W

(ℓ)
⋆,ι

softmax(h(0)r )i∥op∥W (ℓ)
⋆,ι −W

(ℓ)

⋆,ι∥op,

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where we have used the inequality that trace(ATB) ≤ {nrow(A),ncol(A)}∥A∥op∥B∥op.

To prove the second equation, we have∣∣∣loss(y, µW
NN(·|x))− loss(y, µW

NN(·|x))
∣∣∣ = ∣∣∣ S∑

s=1

(
1{y = s} − µW

NN(s|x)
)2

−
S∑

s=1

(
1{y = s} − µW

NN(s|x)
)2∣∣∣

≤
S∑

s=1

∣∣∣1{y = s} − µW
NN(s|x) + 1{y = s} − µW

NN(s|x)
∣∣∣ · ∣∣∣µW

NN(s|x)− µW
NN(s|x)

∣∣∣ ≤ 4 ·max
s

∣∣∣µW
NN(s|x)− µW

NN(s|x)
∣∣∣.

This completes the proof of Lemma 20.

F PROOF OF PROPOSITION 5

Proof of Proposition 5. By Eq. (MP-DNS) and (23), defining ν(ℓ)↓,v(·) = softmax(h
(ℓ)
↓,v), then for

ℓ ≤ L− 1, we get

ν
(ℓ)
↓,v(x

(ℓ)
v ) ∝

∏
v′∈C(v)

( ∑
a∈[S]

ψ
(ℓ+1)
ι(v′) (x(ℓ)v , a)e(h

(ℓ+1)
↓,v )a

)
∝

∑
x
(ℓ+1)

C(v)

∏
v′∈C(v)

(
ψ
(ℓ+1)
ι(v′) (x(ℓ)v , x

(ℓ+1)
v′ )ν

(ℓ+1)
↓,v′ (x

(ℓ+1)
v′ )

)
.

This coincides with the update rule of ν(ℓ)↓,v as in Eq. (BP-DNS).

Furthermore, defining ν(ℓ)↑,v(·) = softmax(b
(ℓ)
↑,v − h

(ℓ)
↓,v), then for ℓ = 0, 1, . . . , L, we get

ν
(ℓ)
↑,v(x

(ℓ)
v ) ∝

∑
b∈[S]

ψ
(ℓ+1)
ι(v) (b, x(ℓ)v )ν

(ℓ+1)
↑,pa(v)(b)

∏
v′∈N (v)

( ∑
a∈[S]

ψ
(ℓ+1)
ι(v′) (b, a)e(h

(ℓ+1)
↓,v )a

)
∝

∑
x
(ℓ−1)

pa(v)
,x

(ℓ)

N(v)

ψ(ℓ)(x
(ℓ−1)
pa(v) , x

(ℓ)
C(pa(v)))ν

(ℓ−1)
↑,pa(v)(x

(ℓ−1)
pa(v) )

∏
v′∈N (v)

ν
(ℓ)
↓,v′(x

(ℓ)
v′ ).

This coincides with the update rule of ν(ℓ)↑,v as in Eq. (BP-DNS).

Finally, defining ν(L)
v (·) = softmax(b

(L)
↑,v ), we get

ν(L)
v (x(L)

v ) ∝
∑
b∈[S]

ψ
(L)
ι(v)(b, x

(L)
v )ν

(L)
↑,pa(v)(b)

∏
v′∈N (v)

( ∑
a∈[S]

ψ
(L)
ι(v′)(b, a)e

(h
(L)
↓,v )a

)
× ν

(L)
↓,v (x

(L)
v )

∝ ν
(L)
↑,v (x

(L)
v )ψ(L+1)(x(L)

v , zv).

This coincides with the formula of ν(L)
v as in Eq. (BP-DNS).

This finishes the proof of Proposition 5.

G PROOF OF THEOREM 6

Proof of Theorem 6. By Lemma 13, takeM1 = ⌈2S2Kd18L/δ⌉+1 andM2 = ⌈2S2K2d18L/δ⌉+
1. Then there exists {(aj , wj , bj)}j∈[M1] and {(āj , w̄j , b̄j)}j∈[M2] with

sup
j

|aj | ≤ 2SK, sup
j

|wj | ≤ 1, sup
j

|bj | ≤ SK, sup
j

|āj | ≤ 2, sup
j

|w̄j | ≤ 1, sup
j

|b̄j | ≤ log(4·18LS2dK2/δ),

such that defining

logδ⋆(x) =
∑M1

j=1 aj · ReLU(wjx+ bj), expδ⋆(x) =
∑M2

j=1 āj · ReLU(w̄jx+ b̄j),
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and defining f (ℓ)⋄,ι (h), f̄
(ℓ)
⋄,ι (h) ∈ RS for ⋄ ∈ {↓, ↑} by

f
(ℓ)
↓,ι (h)i = log

∑S
j=1 ψ

(ℓ)
ι (i, j) exp(hj), f̄

(ℓ)
↓,ι (h)i = logδ⋆

∑S
j=1 ψ

(ℓ)
ι (i, j) expδ⋆(hj), ∀i ∈ [S],

f
(ℓ)
↑,ι (h)i = log

∑S
j=1 ψ

(ℓ)
ι (j, i) exp(hj), f̄

(ℓ)
↑,ι (h)i = logδ⋆

∑S
j=1 ψ

(ℓ)
ι (j, i) expδ⋆(hj), ∀i ∈ [S],

we have
sup

maxi hi=0
∥f (ℓ)⋄,ι (h)− f̄

(ℓ)
⋄,ι (h)∥∞ ≤ δ/(d18LS). (30)

By Eq. (30) and Lemma 21, taking b(L)
↑,v ∈ RS to be as defined in Eq. (MP-DNS) and b̄(L)

↑,v ∈ RS to

be as defined in Eq. (A-MP-DNS) with {f̄ (ℓ)⋄,ι }ℓ∈[L],ι∈[m(ℓ)] as defined above, we have

∥b(L)
↑,v − b̄

(L)
↑,v ∥∞ ≤ [δ/(d18LS)]× 18Ld = δ/S,

which gives
sup
z∈Rd

∥m(z)−mNN(z)∥∞ ≤ S · ∥b(L)
↑,v − b̄

(L)
↑,v ∥∞ ≤ δ.

As a consequence, we just need to show that the approximate version of message passing algorithm
as in Eq. (A-MP-DNS) could be cast as a neural network.

Indeed, by Lemma 14, there exist two-hidden-layer neural networks (for ⋄ ∈ {↓, ↑}, ℓ ∈ [L], and
ι ∈ [m(ℓ)])

NN
W

(ℓ)
1,⋄,ι,W

(ℓ)
2,⋄,ι,W

(ℓ)
3,⋄,ι

(h) =W
(ℓ)
1,⋄,ι · ReLU(W

(ℓ)
2,⋄,ι · ReLU(W

(ℓ)
3,⋄,ι · [h; 1])),

with W (ℓ)
1,⋄,ι ∈ RS×SM1 , W (ℓ)

2,⋄,ι ∈ RSM1×(SM2+1), W (ℓ)
3,⋄,ι ∈ R(SM2+1)×(S+1), and

∥W (ℓ)
1,⋄,ι∥max ≤ 2SK, ∥W (ℓ)

2,⋄,ι∥max ≤ Poly(SKM1M2), ∥W (ℓ)
3,⋄,ι∥max ≤ log(4S2d18LK2/δ).

such that
NN

W
(ℓ)
1,⋄,ι,W

(ℓ)
2,⋄,ι,W

(ℓ)
3,⋄,ι

(h) = f̄
(ℓ)
⋄,ι (h), ∀h ∈ RS such that max

j
hj = 0.

This proves that the approximate version of message passing as in Eq. (A-MP-DNS) coincides with
the U-Net as in Eq. (UNet) with proper choice of dimension

D ≥ max
ℓ∈[L]

{SM (ℓ)
1 , SM

(ℓ)
2 + 1} = S ×

(
⌈2S2K2d18L/δ⌉+ 1

)
+ 1

and norm of the weights. This finishes the proof of Theorem 6.

G.1 AUXILLARY LEMMAS

Lemma 21 (Error propagation of the approximate version of message passing in denoising). Assume
we have functions {f (ℓ)↓,ι , f

(ℓ)
↑,ι } and {f̄ (ℓ)↓,ι , f̄

(ℓ)
↑,ι } such that

∥f (ℓ)⋄,ι (h)− f̄
(ℓ)
⋄,ι (h)∥∞ ≤ δ, ∀h ∈ RS such that max

j∈[S]
hj = 0, ⋄ ∈ {↓, ↑}. (31)

Furthermore, consider the following approximate version of message passing algorithm with initial-
ization h(L)

↓,v = (−(x− zv)
2/2)x∈[S] ∈ RS for v ∈ V(L), defined as below

q̄
(ℓ)
↓,v = f̄

(ℓ)
↓,ι(v)(normalize(h̄

(ℓ)
↓,v)) ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

h̄
(ℓ−1)
↓,v =

∑
v′∈C(v) q̄

(ℓ)
↓,v′ ∈ RS , ℓ ∈ [L], v ∈ V(ℓ−1),

ū
(ℓ)
↑,v = b̄

(ℓ−1)
↑,pa(v) ∈ RS , (with b̄(0)↑,r = h̄

(0)
↓,r) ℓ ∈ [L], v ∈ V(ℓ),

b̄
(ℓ)
↑,v = f̄

(ℓ)
↑,ι(v)(normalize(ū

(ℓ)
↑,v − q̄

(ℓ)
↓,v)) + h̄

(ℓ)
↓,v ∈ RS , ℓ ∈ [L], v ∈ V(ℓ),

m̄MP(z)v =
∑

s∈[S] s · softmax(b̄
(L)
↑,v )s, v ∈ V(L).

(A-MP-DNS)
Taking b(L)

↑,v ∈ RS to be as defined in Eq. (MP-DNS) and b̄(L)
↑,v ∈ RS to be as defined in Eq. (A-MP-

DNS), we have
max

v∈V(L)
∥b(L)

↑,v − b̄
(L)
↑,v ∥∞ ≤ δ × 18L · d.
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Proof of Lemma 21.

Step 1. Downward induction. In the first step, we aim to show that for any ℓ ∈ [L− 1] we have

∥h̄(ℓ)↓,v − h
(ℓ)
↓,v∥∞ ≤ m(ℓ+1)

∏L
k=ℓ+2(2m

(k) + 1)δ, ∀v ∈ V(ℓ). (32)

To prove the formula for ℓ = L−1, since normalize(h
(L)
↓,v ) = normalize(h̄

(L)
↓,v ), by Eq. (31), we get

∥q̄(L)
↓,v − q

(L)
↓,v ∥∞ ≤ δ, ∀v ∈ V(L).

Hence we get

∥h(L−1)
↓,v − h̄

(L−1)
↓,v ∥∞ =

∥∥∥∑v′∈C(v)(q̄
(L)
↓,v′ − q

(L)
↓,v′)

∥∥∥
∞

≤ m(L)δ, ∀v ∈ V(L−1).

This proves the formula (32) for ℓ = L− 1.

Assuming that (32) holds at the layer ℓ, by the update formula, we have

∥q̄(ℓ)↓,v − q
(ℓ)
↓,v∥∞ = ∥f̄ (ℓ)↓,ι(v)(normalize(h̄

(ℓ)
↓,v))− f

(ℓ)
↓,ι(v)(normalize(h

(ℓ)
↓,v))∥∞

≤ ∥f̄ (ℓ)↓,ι(v)(normalize(h̄
(ℓ)
↓,v))− f

(ℓ)
↓,ι(v)(normalize(h̄

(ℓ)
↓,v))∥∞ + ∥f (ℓ)↓,ι(v)(normalize(h

(ℓ)
↓,v))− f

(ℓ)
↓,ι(v)(normalize(h̄

(ℓ)
↓,v))∥∞

≤ δ + 2m(ℓ+1)
∏L

k=ℓ+2(2m
(k) + 1)δ ≤

∏L
k=ℓ+1(2m

(k) + 1)δ,

where the middle inequality is by the assumption of f (ℓ)↓,ι and by Lemma 6 and Lemma 7. Hence we
get

∥h̄(ℓ−1)
↓,v − h

(ℓ−1)
↓,v ∥∞ ≤ m(ℓ)

∏L
k=ℓ+1(2m

(k) + 1)δ, ∀v ∈ V(ℓ).

This proves Eq. (32) by the induction argument.

Step 2. Upward induction. The downward induction argument proves that, for Γ =
∏L

k=1(2m
(k)+

1), we have

∥q̄(ℓ)↓,v − q
(ℓ)
↓,v∥∞, ∥h̄

(ℓ)
↓,v − h

(ℓ)
↓,v∥∞ ≤ Γδ, ∀ℓ = 0, 1, . . . , L, ∀v ∈ V(ℓ).

In this step, we aim to show that for any ℓ = 0, 1, . . . , L, we have

∥b̄(ℓ)↑,v − b
(ℓ)
↑,v∥∞ ≤ 6ℓ · Γ · δ, ∀v ∈ V(ℓ). (33)

To prove this formula for ℓ = 0, note that b(0)↑,r = h
(0)
↓,r and b̄(0)↑,r = h̄

(0)
↓,r , we have

∥b̄(0)↑,r − b
(0)
↑,r∥∞ = ∥h̄(0)↓,r − h

(0)
↓,r∥∞ ≤ Γ · δ.

This proves the formula (33) for ℓ = 0.

Assuming that (33) holds at layer ℓ− 1, by the update formula, we have

∥b(ℓ)↑,v − b̄
(ℓ)
↑,v∥∞

≤ ∥f (ℓ)↑,ι(v)(normalize(b
(ℓ−1)
↑,pa(v) − q

(ℓ)
↓,v))− f̄

(ℓ)
↑,ι(v)(normalize(b̄

(ℓ−1)
↑,pa(v) − q̄

(ℓ)
↓,v))∥∞ + ∥h(ℓ)↓,v − h̄

(ℓ)
↓,v∥∞

≤ ∥f (ℓ)↑,ι(v)(normalize(b
(ℓ−1)
↑,pa(v) − q

(ℓ)
↓,v))− f

(ℓ)
↑,ι(v)(normalize(b̄

(ℓ−1)
↑,pa(v) − q̄

(ℓ)
↓,v))∥∞

+ ∥f (ℓ)↑,ι(v)(normalize(b̄
(ℓ−1)
↑,pa(v) − q̄

(ℓ)
↓,v))− f̄

(ℓ)
↑,ι(v)(normalize(b̄

(ℓ−1)
↑,pa(v) − q̄

(ℓ)
↓,v))∥∞ + ∥h(ℓ)↓,v − h̄

(ℓ)
↓,v∥∞

≤ ∥normalize(b
(ℓ−1)
↑,pa(v) − q

(ℓ)
↓,v)− normalize(b̄

(ℓ−1)
↑,pa(v) − q̄

(ℓ)
↓,v)∥∞ + δ + Γ · δ

≤ 4 · 6ℓ−1 · Γ · δ + δ + Γ · δ ≤ 6ℓ · Γ · δ.

This proves Eq. (33) by the induction argument. This proves the Lemma 21 by observing that
Γ ≤ 3L

∏L
ℓ=1m

(ℓ) = 3L · d.
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H PROOF OF THEOREM 2

Proof of Theorem 2. By Lemma 22, we have the error decomposition

D2
2(m

Ŵ
NN,m) ≤ infW∈W D2

2(m
W
NN,m) + 2 · supW∈W

∣∣∣R̂(mW
NN)− R(mW

NN)
∣∣∣.

To control the first term (the approximation error), by Theorem 6, there exists W ∈ Wd,m,L,S,D,B as
in Eq. (18) with norm bound B = Poly(d, S,K, 18L, D), such that defining mW

NN as in Eq. (UNet),
we have

sup
z∈Rd

∥m(z)−mNN(z)∥∞ ≤ C · S
3K2d · 18L

D
.

Therefore, we have

inf
W∈W

D2
2(m

W
NN,m) ≤ sup

z
∥m(z)−mNN(z)∥2∞ ≤ C · S

6K4d2 · 182L

D2
.

To control the second term (the generalization error), by Proposition 8, with probability at least 1−η,
we have

sup
W∈Wd,m,L,S,D,B

∣∣∣R̂(mW
NN)−R(mW

NN)
∣∣∣ ≤ C·S2·

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DSB · 18L) + log(1/η)

n
.

Combining the above two equations proves Theorem 2.

H.1 ERROR DECOMPOSITION

Lemma 22. Consider the setting of Theorem 2. We have decomposition

D2
2(m

Ŵ
NN,m) ≤ infW∈W D2

2(m
W
NN,m) + 2 · supW∈W

∣∣∣R̂(mW
NN)− R(mW

NN)
∣∣∣.

Proof of Lemma 22. We have that for any conditional expectation m1(z), there is decomposition

D2
2(m1,m) = E(x,z)∼µ⋆

[
d−1∥m1(z)−m(z)∥22

]
= E(x,z)∼µ⋆

[
d−1∥m1(z)− x∥22

]
− E(x,z)∼µ⋆

[
d−1∥m1(z)− x∥22

]
= R(m1)− R(m).

Define
W⋆ = arg min

W∈W
R(mW

NN) = arg min
W∈W

D2
2(m

W
NN,m).

Then we have

D2
2(m

Ŵ
NN,m) = R(mŴ

NN)− R(m)

= R(mŴ
NN)− R̂(mŴ

NN) + R̂(mŴ
NN)− R̂(mW⋆

NN ) + R̂(mW⋆

NN )− R(mW⋆

NN ) + R(mW⋆

NN )− R(m)

≤ 2 · sup
W∈W

∣∣∣R(mW
NN)− R̂(mW

NN)
∣∣∣+ D2

2(m
W⋆

NN ,m)

This proves Lemma 22.

H.2 RESULTS ON GENERALIZATION

Proposition 8 (Generalization error of the denoising problem). Let Wd,m,L,S,D,B be the set defined
as in Eq. (9). Then, with probability at least 1− η, we have

sup
W∈Wd,m,L,S,D,B

∣∣∣R̂(µW
NN)−R(µW

NN)
∣∣∣ ≤ C·S2·

√
LD(D + 2S + 1)∥m∥1 log(d∥m∥1DSB · 18L) + log(1/η)

n
.
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Proof of Proposition 8. In Lemma 3, we can take z = (z,x), w = W , Θ = Wd,m,L,S,D,B ,
ρ(w,w′) = |||W −W ′|||, and f(zi;w) = ∥x − mW

NN(z)∥22. Therefore, to show Proposition 8,
we just need to apply Lemma 3 by checking (a), (b), (c).

Check (a). We note that the index set Θ := Wd,m,L,S,D,B equipped with ρ(w,w′) :=
|||W −W ′||| has diameter Bp := 2B. Further note that Wd,m,L,S,D,B has a dimension bounded
by dp := 2D(D + 2S + 1)∥m∥1. According to Example 5.8 of (Wainwright, 2019), it holds that
logN(∆;Wd,m,L,S,D,B , |||·|||) ≤ dp · log(1 + 2r/∆) for any 0 < ∆ ≤ 2r. This verifies (a).

Check (b). Since f(zi;w) = d−1∥x − mW
NN(z)∥22 is S2-bounded. As a consequence, f(z, w) −

Ez[f(z, w)] is a sub-Gaussian random variable with the sub-Gaussian parameter to be C · S2.

Check (c). Lemma 25 implies that

|f(z;w1)− f(z;w2)| ≤ Lp · |||W1 −W2|||, Lp := 12∥m∥118LB6L · d · S3
( ∑

v∈V(L)

(S + |zv|)
)
· (S +D).

Since z d
= x+g where (x, g) ∼ µ⋆×N (0, Id), and ∥x∥1 ≤ Sd, ∥g∥1 is Cd-sub-Gaussian. Hence

∥z∥1 is CSd-sub-Gausssian, and hence f(z;w1)− f(z;w2) is σ′ρ(w1, w2) sub-Gaussian with

σ′ = C∥m∥118LB6L · d2 · S4 · (S +D).

Therefore, we apply Lemma 3 to conclude the proof of Proposition 8.

H.3 AUXILLARY LEMMAS

Lemma 23 (Norm bound in the chain rule in denoising settings). Consider the U-Net as in
Eq. (UNet) with modified input h(L)

↓,v = (−x2/2 + xzv)x∈[S] ∈ RS (Since we will immediately nor-

malize the input, this input is effectively the same as the input h(L)
↓,v = (−(x− zv)

2/2)x∈[S] ∈ RS).
Assume that |||W ||| ≤ B. Then for any ℓ, v, ι, and ⋆ ∈ [3], we have

∥h(L)
↓,v ∥2 ≤ S3 + S2|zv|,

∥q(ℓ)↓,v∥2 ≤ B3 · (2 · ∥h(ℓ)↓,v∥2 + 1),

∥h(ℓ−1)
↓,v ∥2 ≤m(ℓ) · max

v′∈C(v)
∥q(ℓ)↓,v′∥2,

∥b(0)↑,r∥2 = ∥h(0)↓,r∥2,

∥b(ℓ)↑,v∥2 ≤ B3 · (2∥b(ℓ−1)
↑,pa(v)∥2 + 2∥q(ℓ)↓,v∥2 + 1) + ∥h(ℓ)↓,v∥2,

max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

q
(ℓ)
↓,v,i∥op ≤ 2B3 ·max

i∈[S]
∥∇

W
(k)
⋆,↓,ι

h
(ℓ)
↓,v,i∥op, ∀k ≥ ℓ+ 1,

max
i∈[S]

∥∇
W

(ℓ)
⋆,↓,ι

q
(ℓ)
↓,v,i∥op ≤ 2B2 · ∥h(ℓ)↓,v∥2,

max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

h
(ℓ−1)
↓,v,i ∥op ≤m(ℓ) · max

v′∈C(v)
max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

q
(ℓ)
↓,v′,i∥op, ∀k ≥ ℓ,

max
i∈[S]

∥∇
W

(k)
⋆,↑,ι

b
(ℓ)
↑,v,i∥op ≤ 2B3 ·max

i∈[S]
∥∇

W
(k)
⋆,↑,ι

b
(ℓ−1)
↑,pa(v),i∥op, ∀k ≥ ℓ+ 1,

max
i∈[S]

∥∇
W

(ℓ)
⋆,↑,ι

b
(ℓ)
↑,v,i∥op ≤ 2B2 · (∥b(ℓ−1)

↑,pa(v)∥2 + ∥q(ℓ)↓,v∥2),

max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

b
(ℓ)
↑,v,i∥op ≤ 2B3 ·

(
max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

b
(ℓ−1)
↑,pa(v),i∥op

+max
i∈[S]

∥∇
W

(k)
⋆,↓,ι

q
(ℓ)
↓,v,i∥op

)
+max

i∈[S]
∥∇

W
(k)
⋆,↓,ι

h
(ℓ)
↓,v,i∥op, ∀k ∈ [L],

∥∇
W

(k)
⋆,⋄,ι

mW
NN(z)v∥op ≤ S ·max

i∈[S]
∥∇

W
(k)
⋆,⋄,ι

b
(L)
↑,v,i∥op, ∀k ∈ [L], ⋄ ∈ {↓, ↑}.

Proof of Lemma 23. The proof of the lemma uses the chain rule, the 1-Lipschitzness of ReLU, the
2-Lipschitzness of normalize, and the 1-Lipschitzness of softmax.
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Lemma 24. Consider the U-Net as in Eq. (UNet). Assume that |||W ||| ≤ B. Then for any v ∈ V(L),
we have

max
⋄∈{↓,↑}

max
z∈Rd

max
⋆∈[3]

max
ℓ∈[L]

max
ι∈[m(ℓ)]

∥∇
W

(ℓ)
⋆,⋄,ι

mW
NN(z)v∥op ≤ 18LB6L · d · S3(S + |zv|).

Proof of Lemma 24. This lemma is implied by Lemma 23 and an induction argument.

Lemma 25. Consider the ConvNet as in Eq. (UNet). Assume that |||W ||| ≤ B. Then for any
v ∈ V(L), we have

max
z

∣∣∣mW
NN(z)v −mW

NN(z)v

∣∣∣ ≤ 6∥m∥118LB6L · d · S3(S + |zv|) · (S +D) · |||W −W |||.

Therefore, we have

max
z

d−1
∣∣∣∥x−mW

NN(z)∥22 − ∥x−mW
NN(z)∥22

∣∣∣ ≤ 12∥m∥118LB6L · d · S3
( ∑

v∈V(L)

(S + |zv|)
)
· (S +D) · |||W −W |||.

Proof of Lemma 25. The first inequality is by the fact that

max
z

∣∣∣mW
NN(z)v −mW

NN(z)v

∣∣∣
≤

∑
⋄∈{↓,↑}

∑
⋆∈[3]

∑
ℓ∈[L]

∑
ι∈[m(ℓ)]

min{nrow(W (ℓ)
⋆,⋄,ι),ncol(W

(ℓ)
⋆,⋄,ι)}∥∇W

(ℓ)
⋆,⋄,ι

mW̃
NN(z)v∥op∥W

(ℓ)
⋆,⋄,ι −W

(ℓ)

⋆,⋄,ι∥op,

where we have used the inequality that trace(ATB) ≤ {nrow(A),ncol(A)}∥A∥op∥B∥op.

To prove the second inequality, we have

max
z

∣∣∣∥x−mW
NN(z)∥22 − ∥x−mW

NN(z)∥22
∣∣∣

≤ max
z

∥2x−mW
NN(z)−mW

NN(z)∥∞∥mW
NN(z)−mW

NN(z)∥1

≤ 2dmax
z

∥mW
NN(z)−mW

NN(z)∥1.

This completes the proof of Lemma 25.
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