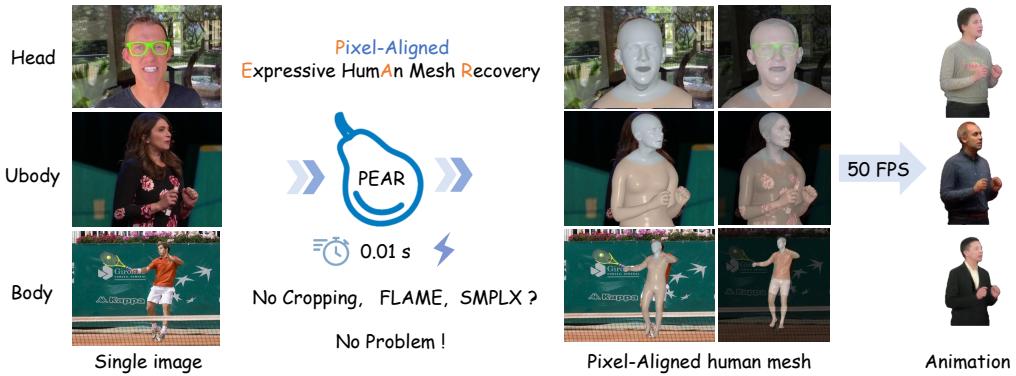


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 PEAR: PIXEL-ALIGNED EXPRESSIVE HUMAN MESH RECOVERY

005 **Anonymous authors**

006 Paper under double-blind review



021 Figure 1: We propose **PEAR**, which achieves pixel-level alignment over previous human mesh
022 recovery methods and demonstrates stronger generalization. It captures more accurate facial details,
023 adapts to diverse inputs, and performs pose recovery within 0.01s from a single image without
024 body-part cropping, providing significant convenience for downstream real-time animation tasks.

025 ABSTRACT

028 Reconstructing 3D human meshes from a single in-the-wild image remains a
029 fundamental challenge in computer vision. Existing methods often produce coarse
030 body poses and exhibit misalignments and unnatural artifacts in fine-grained
031 regions such as the face and hands, which can progressively accumulate and
032 lead to significant errors in downstream tasks. To address this issue, we
033 propose PEAR—a unified framework for human mesh recovery and rendering.
034 PEAR explicitly tackles two major limitations of current methods: inaccurate
035 localization of fine-grained human pose details and insufficient photometric
036 supervision for self-reconstruction. Specifically, we train a Transformer-based
037 model that can recover expressive 3D human geometry (SMPLX + FLAME) from
038 a single image without cropping specific body parts. This preprocessing-free
039 design enables real-time inference at over 100 FPS. Furthermore, we integrate
040 the model with a neural renderer to jointly optimize geometry and appearance,
041 which significantly enhances the reconstruction accuracy of fine-grained human
042 geometry and yields higher-quality rendering results. Lastly, we curate a
043 large-scale dataset of images and videos with human pose and keypoint
044 annotations to facilitate model training. Extensive experiments on multiple
045 benchmark datasets demonstrate that the proposed approach achieves significant
046 improvements in both geometric reconstruction accuracy and rendering quality.

047 1 INTRODUCTION

049 3D human pose estimation has been a long-standing research focus in computer vision, with
050 wide-ranging applications in robotic perception and interaction Fu et al. (2024); Li et al. (2024),
051 immersive gaming, and virtual human generation for film and live streaming. Recent advances
052 in this field have been largely driven by the introduction of parameterized human body models,
053 notably SMPL Loper et al. (2015), SMPLX Pavlakos et al. (2019a), and GHUM Xu et al. (2020).
These models offer compact representations that map high-dimensional human geometry into

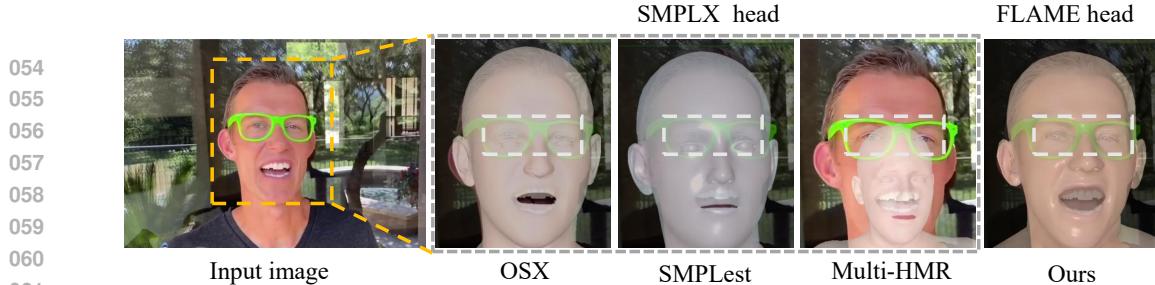


Figure 2: **SMPLX vs. FLAME**: In head modeling, SMPLX provides less expressive facial expressions than FLAME, while existing SMPLX-based methods are further limited by noticeable mesh-image misalignments.

low-dimensional controllable parameters, thus enabling direct regression of body parameters from single or multiple images and significantly advancing the development of 3D human pose estimation.

However, although these human models excel at capturing global body structure and large-scale poses, they are limited in modeling fine-grained details. In particular, they lack sufficient degrees of freedom to accurately represent subtle facial expressions, as shown in Fig. 2, making it difficult to convey rich emotional and interactive cues and thereby constraining practical applications. To address this limitation, GUAVA [Zhang et al. \(2025\)](#) proposes integrating the more expressive FLAME face model [Li et al. \(2017\)](#) with SMPLX [Pavlakos et al. \(2019a\)](#) by replacing the corresponding head vertices, which preserves the ability to model the full body while substantially enhancing facial expressiveness. GUAVA refers to this extended formulation as the expressive human model (EHM), which enables more natural capture of facial dynamics in full-body mesh reconstruction and provides stronger expressiveness and consistency for downstream tasks.

Moreover, we observe that current Human Mesh Recovery (HMR) methods primarily emphasize the alignment of the overall body structure and joint positions during pose estimation, while often neglecting alignment in fine-grained regions. This limitation becomes particularly evident in the mapping between 2D images and reconstructed meshes (see Fig. 2), where local misalignments frequently occur. For instance, in detail-rich regions such as the hands and face, the predicted meshes often deviate noticeably from the input images. Such discrepancies not only undermine the realism and naturalness of the reconstructions but can also be amplified in downstream applications that rely heavily on fine-grained fidelity. The root cause is that existing methods mainly rely on body parameter regression and keypoint supervision. Such supervision provides insufficient pixel-level constraints, making it difficult to achieve fine-grained alignment between the image and the human mesh. To mitigate this problem, prior works [Moon et al. \(2024a\)](#); [Zhang et al. \(2025\)](#) attempt to align the human mesh with the corresponding image through optimization-based strategies. However, these optimization-heavy approaches are computationally expensive, severely limiting their applicability in large-scale downstream tasks.

To address these issues, we propose Pixel-aligned Expressive Human Mesh Recovery (termed as **PEAR**), which builds on the recently introduced Expressive Human Model(EHM) and employs a transformer-based network to directly regress EHM parameters from a single image, enabling richer facial expression modeling. To further alleviate misalignments in fine-grained regions—often arising from supervision limited to joints and pose parameters—we integrate a neural renderer that introduces photometric loss for improved detail alignment. By jointly training both modules, our approach achieves more accurate human parameter estimation and higher-fidelity rendering.

Another key challenge of this work lies in the lack of image datasets annotated with EHM parameters. To address this, we decompose the EHM model into three components: body, face, and hand parameters. Specifically, we obtain pseudo ground-truth body supervision from the current datasets annotated with SMPL parameters, while pseudo ground-truth for the face and hands is derived through fitting algorithms [Zhang et al. \(2025\)](#). In summary, our contributions are as follows:

- (1) Our model predicts human meshes that are more pixel-aligned with the input images, avoiding the severe misalignments commonly observed in prior methods.
- (2) We propose the PEAR framework, which jointly estimates SMPLX and FLAME parameters to recover a more expressive human model.
- (3) Our method requires no additional tracking or cropping operations and, for the first time, achieves real-time 3D human reconstruction and animation, greatly facilitating downstream tasks.

108 (4) We construct a large-scale dataset of facial and hand parameters, suitable for training both
 109 SMPLX and FLAME models, which will be released to the community.
 110

111 2 RELATED WORK

112
113 Human Pose and Shape Estimation. Human pose estimation from images is a well-studied
 114 problem with numerous applications Tome et al. (2019); Zhu et al. (2024); Lin et al. (2023); Xiang
 115 et al. (2019); Mehta et al. (2017a); Pavlakos et al. (2019b). Early optimization-based approaches
 116 (e.g., SMPLify-X Pavlakos et al. (2019b)) estimate body parameters from a single image through
 117 iterative fitting, but these methods are often time-consuming. Human Mesh Recovery (HMR)
 118 Kanazawa et al. (2018) alleviates this limitation by directly regressing SMPL Loper et al. (2015)
 119 parameters with a CNN, significantly reducing inference time. This idea has inspired a series of
 120 follow-up methods such as SPIN Kolotouros et al. (2019) and PARE Kocabas et al. (2021), which
 121 further improved the accuracy of human pose estimation and extended parameter regression to
 122 models like SMPLX Pavlakos et al. (2019a) and MANO Romero et al. (2017). More recently,
 123 the emergence of ViT-based methods has led to notable gains in estimation accuracy. Following
 124 previous advances Lin et al. (2023); Baradel et al. (2024); Goel et al. (2023); Xia et al. (2025), we
 125 also adopt a transformer-based neural network for EHM regression.

126
127 Human Appearance Reconstruction. Traditional human reconstruction methods Danček et al.
 128 (2022); Chen et al. (2022); Yuan et al. (2022); Saito et al. (2019) have primarily focused on mesh
 129 reconstruction, covering various parts such as the body, face, and hands. CAR Liao et al. (2023),
 130 SITH Ho et al. (2024), and CanonicalFusion Shin et al. (2025) respectively reconstruct animatable
 131 human bodies from single-view and multi-view images. ICON Xiu et al. (2022) and ECON Xiu
 132 et al. (2023) reconstruct clothed humans through implicit and explicit normal-fusion approaches.
 133 In recent years, the emergence of neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS)
 134 Kerbl et al. (2023) has inspired numerous efforts Weng et al. (2022); Zhao et al. (2023); Yuan
 135 et al. (2024); Hu et al. (2024b); Lei et al. (2024); Liu et al. (2024) to combine human appearance
 136 with template models to achieve more realistic 3D reconstructions. Methods such as GART Lei
 137 et al. (2024), GaussianAvatar Hu et al. (2024a) and ExAvatar Moon et al. (2024b) are typically
 138 trained per individual ID, and thus lack generalization ability. More recently, approaches including
 139 Human-LRM Weng et al. (2024), Human-Splat Pan et al. (2024), LHM Qiu et al. (2025), and
 140 GUAVA Zhang et al. (2025) have focused on human appearance modeling with generalization
 141 capability. We refer to this class of methods as Neural Renderers, which can provide pixel-level
 142 supervisory signals. Recently, this field remains highly active, with numerous outstanding works
 143 Sun et al. (2024); Patel & Black (2025); Stathopoulos et al. (2024); Wang et al. (2025); Shen
 144 et al. (2025); Shin et al. (2025), focusing on expressive human pose estimation and 3D human
 145 reconstruction.

146 3 METHOD

147 We propose PEAR to address two major limitations of existing approaches: the inaccurate
 148 localization of fine-grained human pose details and the lack of sufficient photometric supervision
 149 for self-reconstruction. Prior SMPLX-based methods primarily emphasize body pose accuracy,
 150 often overlooking regions with richer details such as the face and hands. Moreover, relying solely on
 151 keypoint and parameter losses leads to misalignment in fine-grained localization. To overcome these
 152 issues, we leverage input data to introduce photometric supervision, and separately estimate FLAME
 153 parameters for more expressive facial modeling, thereby enabling more accurate and expressive
 154 human parameter estimation.

155 3.1 PRELIMINARY: EXPRESSIVE HUMAN MODEL

156 EHM was first introduced by GUAVA Zhang et al. (2025) to address SMPLX’s difficulty in capturing
 157 fine-grained facial expressions. Leveraging FLAME’s strong performance in this regard, EHM
 158 (Expressive Human Model) replaces the SMPLX head with FLAME, enabling more accurate facial
 159 expression representation. In our work, we adopt EHM as the target human model for parameter
 160 prediction, allowing the mesh to faithfully capture facial expressions without the stiffness observed
 161 in SMPLX.

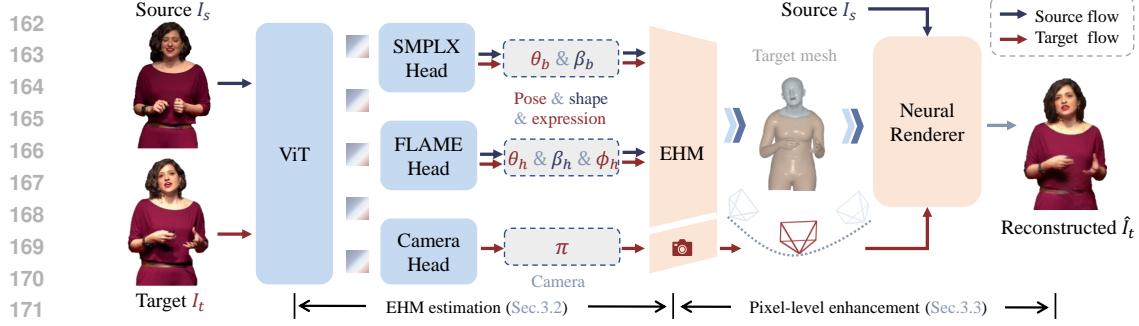


Figure 4: **Pipeline of PEAR.** PEAR is trained in two stages. In the first stage, we use single-frame images (employing only the target flow) to train a ViT-based architecture for estimating EHM parameters, including SMPLX body and FLAME head parameters. In the second stage, we use image pairs (from video datasets) as training units and incorporate a neural renderer to provide photometric supervision, thereby enabling joint training of the two modules and enhancing human detail reconstruction and rendering quality.

3.2 EXPRESSIVE HUMAN MESH ESTIMATION

Architecture. Our model architecture follows the design used in HMR2 [Goel et al. \(2023\)](#), employing a ViT backbone that takes a single RGB image as input. At the network output, multiple transformer heads are attached to regress SMPLX, FLAME, and camera parameters. While this architecture has previously been validated primarily for accurate body pose estimation [Goel et al. \(2023\)](#), our experiments demonstrate that **it is also capable of reconstructing fine-grained facial and hand details from low-resolution images** without requiring body-part cropping, thereby eliminating time-consuming preprocessing.

For the model outputs, we primarily regress two sets of parameters of EHM. **SMPLX**: pose parameters θ_b and shape parameters β_b . **FLAME**: pose parameters θ_h , shape parameters β_h , and expression parameters ϕ_h . The above process can be formulated as follows: given an input image I , the human pose model F_{vit} predicts $[\theta_b, \beta_b, \theta_h, \beta_h, \phi_h, \pi] = F_{vit}(I)$. Finally, the mean squared error (MSE) losses are applied to the SMPLX parameters:

$$\mathcal{L}_{body} = \|\theta_b - \theta_{b,smpl}^*\|_2^2 + \|\beta_b - \beta_{b,smpl}^*\|_2^2, \quad (1)$$

where $\theta_{b,smpl}^*$ and $\beta_{b,smpl}^*$ denote the ground-truth SMPLX pose parameters and shape parameters, respectively. For supervision of the FLAME parameters, we employ an L_1 loss:

$$\mathcal{L}_{head} = \|\theta_h - \theta_h^*\|_1 + \|\beta_h - \beta_h^*\|_1 + \|\phi_h - \phi_h^*\|_1. \quad (2)$$

Here, θ_h^* , β_h^* , and ϕ_h^* represent the ground-truth FLAME pose, shape, and expression parameters, respectively. We also incorporate 3D and 2D keypoints as supervision, using the L1 loss:

$$\mathcal{L}_{kp} = \|X - X^*\|_1 + \|\pi(X) - x^*\|_1, \quad (3)$$

where X^* and x^* denote the ground-truth 3D and 2D keypoints, respectively, and X represents the predicted 3D keypoints. $\pi(X)$ denotes the projection of the 3D points onto the image plane using camera parameters π . The 2D keypoints x^* include both body and facial landmarks. The 3D keypoint loss is computed only for samples with available 3D ground truth.

EHM Training Data Generation. One of the key challenges in training the expressive human pose model F_{vit} is the absence of image datasets that provide both SMPLX and FLAME annotations. To ensure accurate pose estimation for different body parts, we divide the human body into three components: body, hands, and face. For the body part, we leverage the SMPL annotations from existing datasets as pseudo ground-truth and adapt them into SMPLX body parameters with slight

216 adjustments. As shown in Fig. 3, directly replacing SMPL body poses parameters with SMPLX
 217 body poses results in inconsistencies due to an inherent offset between the two human models. To
 218 address this issue, we compute an offset $\Delta\theta$ through optimization to align their T-poses, thereby
 219 enabling the SMPLX body pose parameters to be directly derived from datasets annotated with
 220 SMPL. This can be formulated as

$$\theta_{b,smpnx}^* = \theta_{b,smp}^* + \Delta\theta, \quad (4)$$

223 where $\theta_{b,smpnx}^*$ and $\theta_{b,smp}^*$ represent the body pose parameters of SMPLX and SMPL, respectively.
 224 For the hands and face, we adopt the HAMER Pavlakos et al. (2024) and TEASER Liu et al. (2025)
 225 models to coarsely estimate the SMPLX hand pose parameters, as well as the FLAME facial shape
 226 β_h^* , expression ϕ_h^* , and pose θ_h^* . Subsequently, we extract body keypoints x_b^* and facial keypoints
 227 x_h^* using keypoint detection models, which are further refined following the strategy introduced in
 228 GUAVA Zhang et al. (2025).

229 3.3 PIXEL-LEVEL ENHANCEMENT

231 We observe that supervision solely based on body parameters and keypoints is insufficient for
 232 optimizing fine-grained regions of the human body. To address this, we further introduce a
 233 photometric loss to provide pixel-level supervision, ensuring that the predicted human model is
 234 more accurate in detailed regions and better aligned with the image pixels. Specifically, for video
 235 data, we randomly select two frames as the source and target, and feed them into the human pose
 236 estimation model F_{vit} to extract the human body model parameters as follows:

$$[\theta_b^s, \beta_b^s, \theta_h^s, \beta_h^s, \phi_h^s, \pi^s], [\theta_b^t, \beta_b^t, \theta_h^t, \beta_h^t, \phi_h^t, \pi^t] = F_{vit}(I_s), F_{vit}(I_t). \quad (5)$$

237 Subsequently, we combine the two sets of parameters into $\Phi = [\theta_b^t, \beta_b^s, \theta_h^t, \beta_h^s, \phi_h^t, \pi^t]$ based on
 238 which the final reconstructed image can be expressed as:

$$\hat{I}_t = F_{ren}(F_{ehm}(\Phi), I_s, \pi^t). \quad (6)$$

239 Here, F_{ehm} and F_{ren} denote the expressive human model and the neural renderer, respectively,
 240 where we adopt GUAVA Zhang et al. (2025) as the neural renderer. With this formulation, we can
 241 seamlessly introduce the photometric loss to provide pixel-level supervision:

$$\mathcal{L}_{photo} = \mathcal{L}_1(I_t, \hat{I}_t) + \mathcal{L}_{lpips}(I_t, \hat{I}_t). \quad (7)$$

242 By jointly training the two components, we achieve mutually reinforcing improvements: the human
 243 pose estimation model F_{vit} attains higher accuracy in human parameter estimation, while the neural
 244 renderer benefits from enhanced rendering performance, as evidenced by the results in Tab. 4.

245 3.4 IMPLEMENTATION DETAILS

246 In summary, our training pipeline consists of two stages. **In the first stage**, we train the ViT-based
 247 model F_{vit} on large-scale *image datasets* to estimate the parameters of the EHM model. This stage
 248 is conducted for approximately 200k iterations with a batch size of 320 on 8 NVIDIA A6000
 249 GPUs, taking about 7 days. **In the second stage**, we incorporate a neural renderer to introduce
 250 the photometric loss \mathcal{L}_{photo} , which further refines fine-grained human body details and enforces
 251 pixel-level alignment of the predicted EHM model. This stage is trained on *video datasets* for
 252 roughly 20k iterations with a batch size of 16 on 8 A6000 GPUs, requiring about 1 day.

253 4 EXPERIMENT

254 In this section, we conduct both qualitative and quantitative evaluations of our human reconstruction
 255 and rendering framework. First, compared with previous SMPLX-based approaches Zhang et al.
 256 (2023); Lin et al. (2023); Yin et al. (2025); Baradel et al. (2024), we demonstrate that PEAR not
 257 only exhibits strong generalization ability, enabling accurate human model estimation under diverse
 258 and complex environments, but also achieves more precise pose estimation in fine-grained body
 259 regions with improved pixel-level alignment (Sec. 4.2). Second, we further show the superior
 260 performance of our method in rendering-driven downstream applications (Sec. 4.3), highlighting
 261 its robustness and accuracy in human pose recovery. Finally, we present ablation studies to validate
 262 the effectiveness of our approach (Sec. 4.4).

270
271 Table 1: Quantitative comparison of
272 human heads.
273

Methods	UBody (GUAVA)		3DPW	
	MLE \downarrow ($\times 10^{-3}$ m)	LVE \downarrow ($\times 10^{-5}$ m)	MLE \downarrow ($\times 10^{-3}$ m)	LVE \downarrow ($\times 10^{-4}$ m)
SMIRK	2.81	8.02	4.25	2.77
TEASER	1.92	4.23	3.95	5.60
Ours	0.99	2.55	1.93	0.74

274
275 Table 2: Quantitative comparison of human hands
276 (PA-PVE) on the UBody (OSX) and EHF test dataset.
277

Method	Backbone	Reso.	EHF \downarrow	UBody \downarrow
PIXIE Feng et al. (2021) Hand4Whole Moon et al. (2022)	RN50	crop	11.1	12.2
	RN50	crop	10.8	8.9
OSX Lin et al. (2023)	ViT-L/16	256 \times 192	15.9	10.8
SMPLer-X Cai et al. (2023)	ViT-L/16	256 \times 192	15.0	10.3
Multi-HMR Baradel et al. (2024)	ViT-B/14	896 \times 896	12.2	8.8
Ours	ViT-B/16	256 \times 192	12.8	8.8

278 Table 3: Quantitative results on PCK. Our method achieves more accurate human pose estimation
279 compared to SMPLX-based approaches. *PyMAF-X trained on LSP dataset.
280

Methods	Model	COCO		LSP		PoseTrack	
		@0.05 \uparrow	@0.1 \uparrow	@0.05 \uparrow	@0.1 \uparrow	@0.05 \uparrow	@0.1 \uparrow
CLIFF Li et al. (2022)	SMPL	0.64	0.88	0.32	0.66	0.75	0.92
PARE Kocabas et al. (2021)	SMPL	0.72	0.91	0.27	0.66	0.79	0.93
HMR2 Goel et al. (2023)	SMPL	0.87	0.97	0.53	0.82	0.90	0.98
HSMR Xia et al. (2025)	SKEL	0.87	0.96	0.51	0.81	0.90	0.98
PyMAF-X* Zhang et al. (2023)	SMPLX	0.79	0.93	-	-	0.85	0.95
OSX Lin et al. (2023)	SMPLX	0.70	0.87	0.42	0.73	0.82	0.90
SMPLest-X Yin et al. (2025)	SMPLX	0.71	0.91	0.40	0.74	0.82	0.91
Ours	EHM	0.79	0.94	0.52	0.80	0.87	0.97

290 4.1 SETUP
291

292 **Dataset.** In the first stage, following prior work, we train on our processed large-scale image
293 datasets: Human3.6M Ionescu et al. (2014), MPI-INF-3DHP Mehta et al. (2017b), COCO Lin et al.
294 (2014), MPII Andriluka et al. (2014), InstaVariety Kanazawa et al. (2019), AVA Gu et al. (2018),
295 and AI Challenger Wu et al. (2017). In the second stage, we train on video datasets, including Ubody
296 (GUAVA) Zhang et al. (2025) and Seamless Interaction Agrawal et al. (2025).

297 **Baseline.** We report results on benchmarks commonly used for comparison with a wide range
298 of prior methods. Since our approach integrates both SMPLX and FLAME models, we evaluate
299 against SMPL- and SMPLX-based methods for body and hand reconstruction, and against dedicated
300 FLAME-based methods for face reconstruction.

301 4.2 POSE ACCURACY
302

303 **Head evaluation metrics.** For 3D head mesh modeling, we assess reconstruction accuracy using
304 key metrics such as lip vertex error (LVE) Richard et al. (2021) and mean vertex error (MVE),
305 which measure the deviation of mouth and overall facial vertices from the tracking results. Since no
306 dedicated benchmark exists, we follow the fitting strategy proposed in GUAVA to generate test
307 samples from the 3DPW von Marcard et al. (2018) and Ubody Zhang et al. (2025) test splits.
308 **Quantitative comparisons with SOTA learning-based methods TEASER and SMIRK (Tab. 1) shows**
309 **that our method captures high-quality facial expressions without face cropping, comparable to theirs.**
310

311 **Hand evaluation metrics.** Following prior works, we evaluate the Procrustes Alignment per-vertex
312 error (PA-PVE) metric for hands on the EHF and UBody-intra Lin et al. (2023) datasets, as shown
313 in Tab. 2. Among the baselines, PIXIE Feng et al. (2021) and Hand4Whole Moon et al. (2022)
314 require additional cropping of the hand region, while Multi-HMR Baradel et al. (2024) uses an input
315 resolution of 896 \times 896, which results in lower efficiency. In contrast, our method only requires an
316 input resolution of 256 \times 256 and achieves comparable performance without any extra processing.

317 **Body keypoint metrics.** We evaluate 2D image alignment of the generated human poses by
318 reporting Percentage of Correct Keypoints (PCK) of reprojected keypoints at different thresholds
319 as shown in Tab. 3. **Our method performs slightly worse than specialized body pose estimation**
320 **approaches such as HSMR and HMR2, since they only focus on simple body pose without**
321 **modeling complex facial and hand details. Nevertheless, our approach significantly outperforms**
322 **other SMPLX-based methods. Fig. 7 shows PEAR under more complex poses.**

323 **Human mesh visualization.** As shown in Fig. 5, our method captures richer facial details and
324 achieves better pixel-level alignment on both UBody and WholeBody images, demonstrating strong

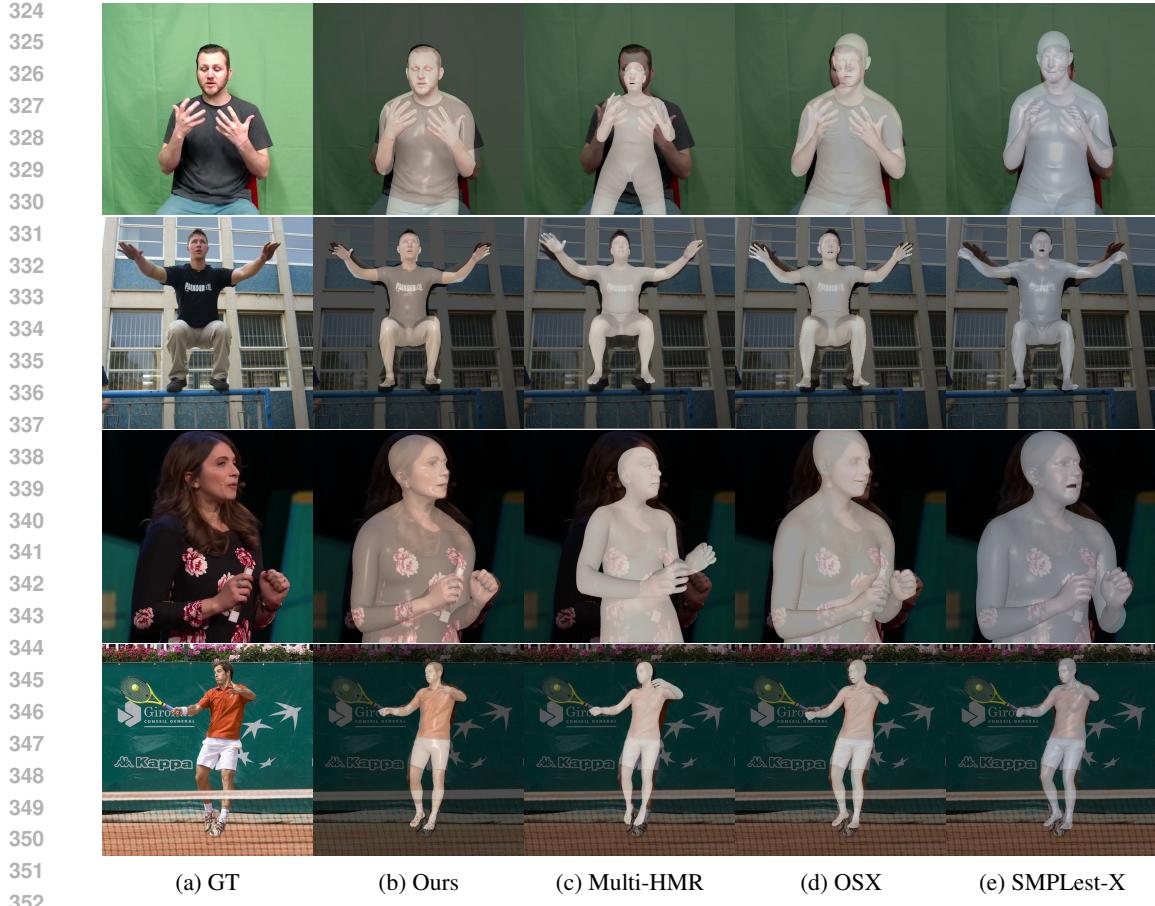


Figure 5: Qualitative results. We compare PEAR with several smplx-based sota approaches.

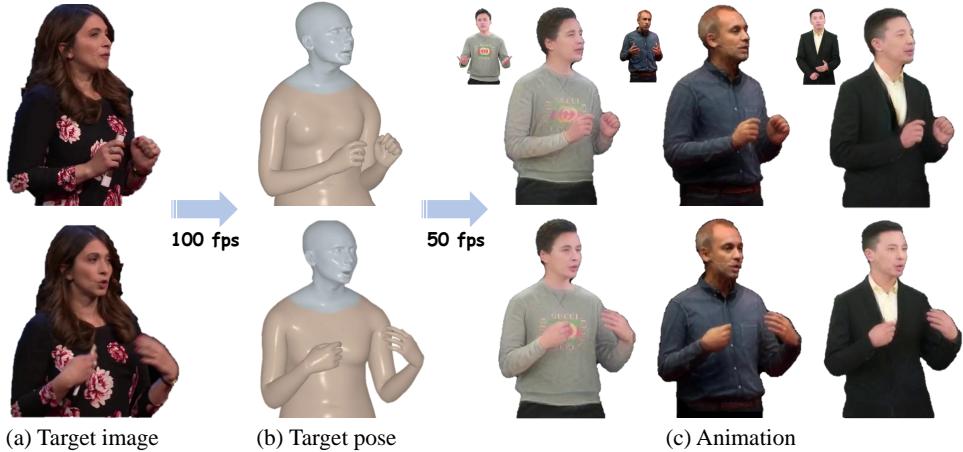


Figure 6: Downstream Applications. Unlike previous approaches, our method does not require explicit cropping of the face or hands, and can achieve high-quality human pose estimation from a single low-resolution image. This provides a faster interface for downstream applications.

generalization in human pose estimation. On the other hand, unlike OSX and SMPLest-X, our model does not require explicit cropping of the face and hands, nor does it need high-resolution input images like Multi-HMR. It can accurately infer parameters for all human body parts from a single low-resolution image of 256×192 in one feed-forward pass, saving more than $10 \times$ the inference time, providing a faster interface for downstream applications.

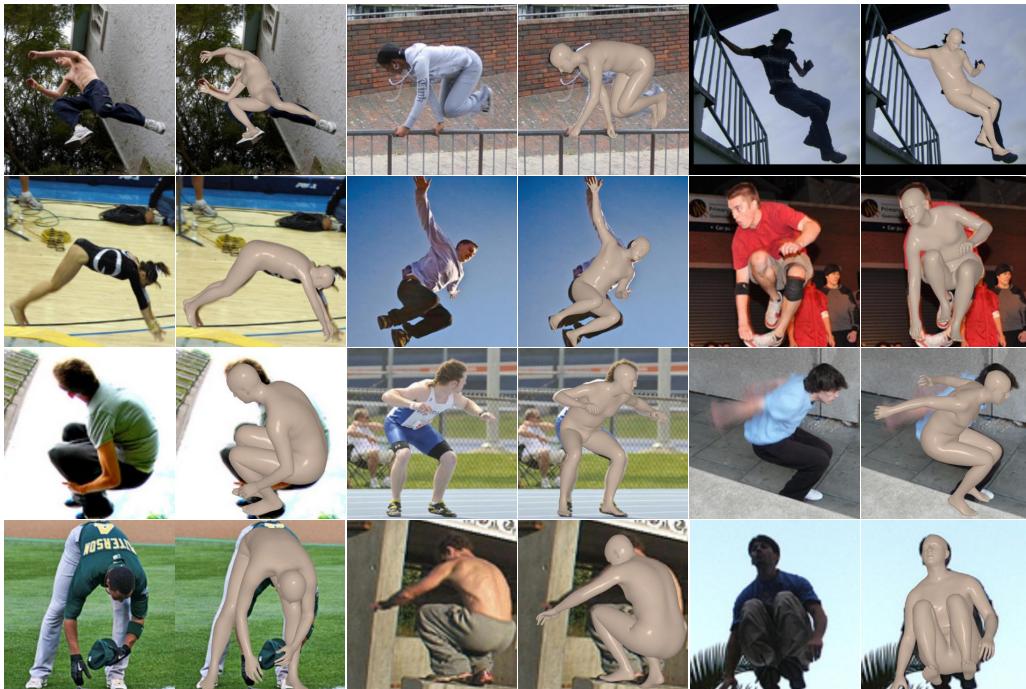


Figure 7: We further visualize the performance of our model on the LSP-Extend dataset, which poses significant challenges for human pose estimation methods.

Table 4: Quantitative results. *Tracking* denotes EHM parameter estimation via an optimization-based approach Zhang et al. (2025). *M1/R1* and *M2/R2* refer to the human pose model F_{vit} and neural renderer F_{ren} before and after stage 2 (pixel-level enhancement). **Time 1** indicates human pose estimation per image, and **Time 2** the performance driving time (excluding human reconstruction time 0.1s).

Type	EHM Param.	Renderer	PSNR↑	SSIM ↑	LPIPS↓	Time 1 ↓	Time 2 ↓	Total Time ↓
A	Tracking	R1	24.68	0.892	0.0824	2 min	0.01s	2 min
B	M1	R1	24.15	0.882	0.0883	-	-	-
C	M2	R1	25.36	0.898	0.0793	-	-	-
D	M2	R2	25.50	0.901	0.0784	0.01s	0.01s	0.02s

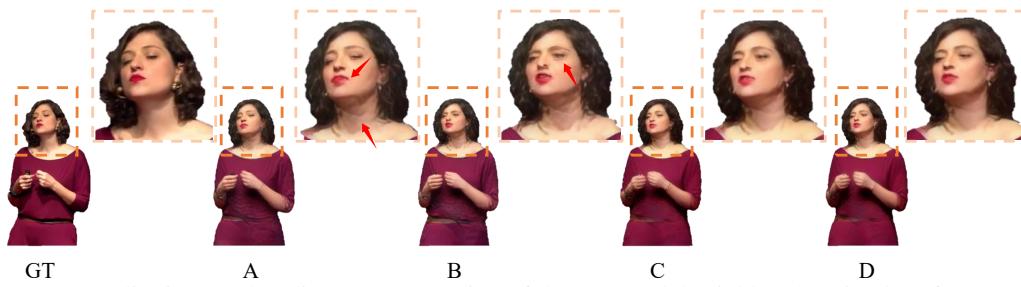


Figure 8: Qualitative results: direct concatenation of the two models yields suboptimal performance (Type B), while joint training improves outcomes (Types C and D).

Figure 9: Ablation on two-stage training. Joint training improves fine-grained body part alignment (left: w/o joint training, right: w joint training).

Table 5: Ablation study results (in meters) on 4 different datasets. $\text{MLE} (\times 10^{-4})$ and $\text{LVE} (\times 10^{-5})$ measure facial expression accuracy; PA-PVE measures hand vertex accuracy. Stage 1: F_{vit} training; Stage 2: pixel-level enhancement.

Methods	UBody		3DPW		EHF	UBody-intra
	MLE↓	LVE↓	MLE↓	LVE↓		
	PA-PVE↓	PA-PVE↓	PA-PVE↓	PA-PVE↓		
stage 1	11.0	2.72	6.21	1.10	13.3	9.5
+ stage 2	9.92	2.55	1.93	0.74	12.8	8.8

4.3 RENDERING QUALITY

We incorporate a neural renderer [Zhang et al. \(2025\)](#) into our framework, not only to provide pixel-level supervision but also to enable mutually reinforcing improvements through joint training of the two modules. To validate this, we conduct cross experiments using widely adopted metrics, including PSNR, SSIM, and LPIPS. As shown in Tab. 4 and Fig. 8, type B, simply concatenating the two modules (the human pose estimation model F_{vit} and the neural renderer F_{ren}) sequentially yields suboptimal results, whereas type C and D demonstrate that joint training improves the rendering performance of both modules.

Moreover, the EHM parameters predicted by our model achieve higher rendering quality than those obtained through tracking [Zhang et al. \(2025\)](#). This demonstrates that our approach enables real-time, second-scale human performance driving, as shown in Fig. 6, without requiring parameter tracking as in methods such as LHM [Qiu et al. \(2025\)](#) and GUAVA [Zhang et al. \(2025\)](#).

4.4 ABLATION

We conduct comprehensive ablation studies on the proposed two-stage training scheme. First, we examine the impact on rendering quality, as reported in Tab. 4 and Fig. 8. The results show that directly concatenating the two modules yields only limited performance, whereas joint training enables the modules to complement each other, leading to noticeable improvements in rendering fidelity. Beyond rendering, we further evaluate the accuracy of human body reconstruction. As shown in Tab. 5 and Fig. 9, the joint training strategy significantly enhances the recovery of fine-grained details, particularly in regions such as the hands and face. These improvements confirm our hypothesis that stage-2 pixel-level supervision effectively enforces a tighter alignment between the input images and the reconstructed meshes, thereby producing more realistic results.

5 DISCUSSION

One of our primary goals is to address the pixel-level misalignment issue that is prevalent in existing HMR approaches. This problem not only undermines the realism and naturalness of the reconstructions but also becomes particularly detrimental in downstream applications that demand high precision. To alleviate this, we incorporate a large amount of training data with only 2D annotations. However, such supervision often leads to degraded 3D evaluation metrics (e.g., MPJPE). We attribute this to the inherent ambiguity of recovering 3D pose from 2D images: a single human image may correspond to multiple plausible 3D poses. Introducing additional 2D annotations as supervision biases the predicted human poses toward fitting the 2D labels, leading to a deviation from the 3D annotations. Nevertheless, the 3D poses predicted by our model remain plausible. This phenomenon has also been validated in HMR2 [Goel et al. \(2023\)](#).

6 CONCLUSION

In this paper, we present PEAR, the first human mesh recovery framework that simultaneously regresses both SMPLX and FLAME parameters, addressing two key limitations of prior approaches. First, previous HMR methods often fail to achieve pixel-level alignment in the image plane, leading to misaligned human meshes and constraining their applicability in high-precision downstream tasks. Second, SMPLX exhibits limited capacity in modeling facial details, making it inadequate for representing diverse expressions. To overcome these challenges, PEAR takes a single image as input and jointly estimates SMPLX and FLAME parameters, thereby producing more expressive human meshes. Overall, our method elevates the accuracy of HMR to the pixel level and significantly enhances the fidelity and applicability of human mesh representations in downstream applications.

486 REFERENCES
487

488 Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, and Michael Zollhoefer. Seamless interaction:
489 Dyadic audiovisual motion modeling and large-scale dataset. 2025.

490 Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2D human pose
491 estimation: New benchmark and state of the art analysis. In *CVPR*, 2014.

492

493 Fabien Baradel, Matthieu Armando, Salma Galaaoui, Romain Brégier, Philippe Weinzaepfel,
494 Grégory Rogez, and Thomas Lucas. Multi-hmr: Multi-person whole-body human mesh recovery
495 in a single shot. In *European Conference on Computer Vision*, pp. 202–218. Springer, 2024.

496

497 Zhongang Cai, Wanqi Yin, Ailing Zeng, Chen Wei, Qingping Sun, Wang Yanjun, Hui En Pang,
498 Haiyi Mei, Mingyuan Zhang, Lei Zhang, et al. Smpler-x: Scaling up expressive human pose and
499 shape estimation. *Advances in Neural Information Processing Systems*, 36:11454–11468, 2023.

500

501 Xingyu Chen, Yufeng Liu, Yajiao Dong, Xiong Zhang, Chongyang Ma, Yanmin Xiong, Yuan Zhang,
502 and Xiaoyan Guo. Mobrecon: Mobile-friendly hand mesh reconstruction from monocular image.
503 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
504 20544–20554, 2022.

505

506 Radek Daněček, Michael J Black, and Timo Bolkart. Emoca: Emotion driven monocular face
507 capture and animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
508 Pattern Recognition*, pp. 20311–20322, 2022.

509

510 Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios Tzionas, and Michael J. Black. Collaborative
511 regression of expressive bodies using moderation. In *International Conference on 3D Vision
(3DV)*, 2021.

512

513 Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein, and Chelsea Finn. HumanPlus: Humanoid
514 shadowing and imitation from humans. In *CoRL*, 2024.

515

516 Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
517 Humans in 4D: Reconstructing and tracking humans with transformers. In *ICCV*, 2023.

518

519 Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra
520 Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and
Jitendra Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. In
CVPR, 2018.

521

522 Hsuan-I Ho, Jie Song, and Otmar Hilliges. Sith: Single-view textured human reconstruction with
523 image-conditioned diffusion. In *Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)*, 2024.

524

525 Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
526 Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
527 animatable 3d gaussians. In *Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition*, pp. 634–644, 2024a.

528

529 Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articulated gaussian splatting from monocular
530 human videos. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition*, pp. 20418–20431, 2024b.

531

532 Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
533 datasets and predictive methods for 3d human sensing in natural environments. *IEEE Transactions
on Pattern Analysis and Machine Intelligence*, 36(7):1325–1339, jul 2014.

534

535 Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-end recovery of
536 human shape and pose. In *CVPR*, 2018.

537

538 Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jitendra Malik. Learning 3D human dynamics
539 from video. In *CVPR*, 2019.

540 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
 541 splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

542

543 Muhammed Kocabas, Chun-Hao P Huang, Otmar Hilliges, and Michael J Black. PARE: Part
 544 attention regressor for 3D human body estimation. In *ICCV*, 2021.

545

546 Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. Learning to
 547 reconstruct 3d human pose and shape via model-fitting in the loop. In *ICCV*, 2019.

548

549 Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
 550 articulated template models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 551 *pattern recognition*, pp. 19876–19887, 2024.

552

553 Jinhan Li, Yifeng Zhu, Yuqi Xie, Zhenyu Jiang, Mingyo Seo, Georgios Pavlakos, and Yuke Zhu.
 554 OKAMI: Teaching humanoid robots manipulation skills through single video imitation. In *CoRL*,
 555 2024.

556

557 Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning a model of facial
 558 shape and expression from 4d scans. *ACM Trans. Graph.*, 36(6):194–1, 2017.

559

560 Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu, and Youliang Yan. CLIFF: Carrying
 561 location information in full frames into human pose and shape estimation. In *ECCV*, 2022.

562

563 Tingting Liao, Xiaomei Zhang, Yuliang Xiu, Hongwei Yi, Xudong Liu, Guo-Jun Qi, Yong Zhang,
 564 Xuan Wang, Xiangyu Zhu, and Zhen Lei. High-Fidelity Clothed Avatar Reconstruction from
 565 a Single Image. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 566 *Recognition (CVPR)*, June 2023.

567

568 Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li. One-stage 3d whole-body mesh
 569 recovery with component aware transformer. In *Proceedings of the IEEE/CVF Conference on*
 570 *Computer Vision and Pattern Recognition*, pp. 21159–21168, 2023.

571

572 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 573 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In *ECCV*, 2014.

574

575 Yang Liu, Xiang Huang, Minghan Qin, Qinwei Lin, and Haoqian Wang. Animatable 3d gaussian:
 576 Fast and high-quality reconstruction of multiple human avatars. In *Proceedings of the 32nd ACM*
 577 *International Conference on Multimedia*, pp. 1120–1129, 2024.

578

579 Yunfei Liu, Lei Zhu, Lijian Lin, Ye Zhu, Ailing Zhang, and Yu Li. Teaser: Token enhanced spatial
 580 modeling for expressions reconstruction. *arXiv preprint arXiv:2502.10982*, 2025.

581

582 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
 583 SMPL: A skinned multi-person linear model. *ACM Trans. Graphics (Proc. SIGGRAPH Asia)*,
 584 34(6):248:1–248:16, October 2015.

585

586 Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu,
 587 and Christian Theobalt. Monocular 3D human pose estimation in the wild using improved CNN
 588 supervision. In *3DV*, 2017a.

589

590 Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu,
 591 and Christian Theobalt. Monocular 3d human pose estimation in the wild using improved cnn
 592 supervision. In *3D Vision (3DV), 2017 Fifth International Conference on*. IEEE, 2017b. doi: 1.
 593 URL http://gvv.mpi-inf.mpg.de/3dhp_dataset.

594

595 Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Accurate 3d hand pose estimation for
 596 whole-body 3d human mesh estimation. In *Computer Vision and Pattern Recognition Workshop*
 597 (*CVPRW*), 2022.

598

599 Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito. Expressive whole-body 3d gaussian
 600 avatar. In *ECCV*, 2024a.

601

602 Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito. Expressive whole-body 3d gaussian
 603 avatar. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024b.

594 Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong
 595 Mu, and Yebin Liu. Humansplat: Generalizable single-image human gaussian splatting with
 596 structure priors. *Advances in Neural Information Processing Systems*, 37:74383–74410, 2024.

597

598 Priyanka Patel and Michael J Black. Camerahmr: Aligning people with perspective. In *2025
 599 International Conference on 3D Vision (3DV)*, pp. 1562–1571. IEEE, 2025.

600 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman,
 601 Dimitrios Tzionas, and Michael J. Black. Expressive body capture: 3d hands, face, and body
 602 from a single image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
 603 (CVPR)*, 2019a.

604

605 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
 606 Tzionas, and Michael J Black. Expressive body capture: 3D hands, face, and body from a single
 607 image. In *CVPR*, 2019b.

608 Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo Kanazawa, David Fouhey, and Jitendra
 609 Malik. Reconstructing hands in 3D with transformers. In *CVPR*, 2024.

610

611 Lingteng Qiu, Xiaodong Gu, Peihao Li, Qi Zuo, Weichao Shen, Junfei Zhang, Kejie Qiu, Weihao
 612 Yuan, Guanying Chen, Zilong Dong, et al. Lhm: Large animatable human reconstruction model
 613 from a single image in seconds. *arXiv preprint arXiv:2503.10625*, 2025.

614 Alexander Richard, Michael Zollhöfer, Yandong Wen, Fernando De la Torre, and Yaser Sheikh.
 615 Meshtalk: 3d face animation from speech using cross-modality disentanglement. In *Proceedings
 616 of the IEEE/CVF international conference on computer vision*, pp. 1173–1182, 2021.

617

618 Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing
 619 hands and bodies together. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*, 36(6),
 620 November 2017.

621 Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li.
 622 Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In *The IEEE
 623 International Conference on Computer Vision (ICCV)*, October 2019.

624

625 Wenhao Shen, Wanqi Yin, Xiaofeng Yang, Cheng Chen, Chaoyue Song, Zhongang Cai, Lei Yang,
 626 Hao Wang, and Guosheng Lin. Adhmr: Aligning diffusion-based human mesh recovery via direct
 627 preference optimization. *arXiv preprint arXiv:2505.10250*, 2025.

628 Jisu Shin, Junmyeong Lee, Seongmin Lee, Min-Gyu Park, Ju-Mi Kang, Ju Hong Yoon, and Hae-Gon
 629 Jeon. Canonicalfusion: Generating drivable 3d human avatars from multiple images. In *European
 630 Conference on Computer Vision*, pp. 38–56. Springer, 2025.

631

632 Anastasis Stathopoulos, Ligong Han, and Dimitris Metaxas. Score-guided diffusion for 3d
 633 human recovery. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 634 recognition*, pp. 906–915, 2024.

635

636 Qingping Sun, Yanjun Wang, Ailing Zeng, Wanqi Yin, Chen Wei, Wenjia Wang, Haiyi Mei,
 637 Chi-Sing Leung, Ziwei Liu, Lei Yang, et al. Aios: All-in-one-stage expressive human pose and
 638 shape estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 639 recognition*, pp. 1834–1843, 2024.

640

641 Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. xR-EgoPose: Egocentric 3D
 642 human pose from an HMD camera. In *ICCV*, 2019.

643

644 Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and Gerard Pons-Moll.
 645 Recovering accurate 3d human pose in the wild using imus and a moving camera. In *European
 646 Conference on Computer Vision (ECCV)*, sep 2018.

647

648 Yufu Wang, Yu Sun, Priyanka Patel, Kostas Daniilidis, Michael J Black, and Muhammed Kocabas.
 649 Promphmr: Promptable human mesh recovery. In *Proceedings of the Computer Vision and
 650 Pattern Recognition Conference*, pp. 1148–1159, 2025.

648 Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira
 649 Kemelmacher-Shlizerman. HumanNeRF: Free-viewpoint rendering of moving people from
 650 monocular video. In *CVPR*, 2022.

651 Zhenzhen Weng, Jingyuan Liu, Hao Tan, Zhan Xu, Yang Zhou, Serena Yeung-Levy, and Jimei Yang.
 652 Template-free single-view 3d human digitalization with diffusion-guided lrm. *arXiv preprint*
 653 *arXiv:2401.12175*, 2024.

654 Jiahong Wu, He Zheng, Bo Zhao, Yixin Li, Baoming Yan, Rui Liang, Wenjia Wang, Shipei Zhou,
 655 Guosen Lin, Yanwei Fu, Yizhou Wang, and Yonggang Wang. AI Challenger: A large-scale dataset
 656 for going deeper in image understanding. *arXiv preprint arXiv:1711.06475*, 2017.

658 Yan Xia, Xiaowei Zhou, Etienne Vouga, Qixing Huang, and Georgios Pavlakos. Reconstructing
 659 humans with a biomechanically accurate skeleton. In *CVPR*, 2025.

660 Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular total capture: Posing face, body, and
 661 hands in the wild. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 662 *recognition*, pp. 10965–10974, 2019.

663 Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J. Black. ICON: Implicit Clothed
 664 humans Obtained from Normals. In *Proceedings of the IEEE/CVF Conference on Computer*
 665 *Vision and Pattern Recognition (CVPR)*, pp. 13296–13306, June 2022.

666 Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael J. Black. ECON: Explicit
 667 Clothed humans Optimized via Normal integration. In *Proceedings of the IEEE/CVF Conference*
 668 *on Computer Vision and Pattern Recognition (CVPR)*, June 2023.

669 Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T Freeman, Rahul Sukthankar, and
 670 Cristian Sminchisescu. GHUM & GHUML: Generative 3D human shape and articulated pose
 671 models. In *CVPR*, 2020.

672 Wanqi Yin, Zhongang Cai, Ruisi Wang, Ailing Zeng, Chen Wei, Qingping Sun, Haiyi Mei, Yanjun
 673 Wang, Hui En Pang, Mingyuan Zhang, et al. Smplest-x: Ultimate scaling for expressive human
 674 pose and shape estimation. *arXiv preprint arXiv:2501.09782*, 2025.

675 Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan Kautz. Glamr: Global occlusion-aware
 676 human mesh recovery with dynamic cameras. In *Proceedings of the IEEE/CVF conference on*
 677 *computer vision and pattern recognition*, pp. 11038–11049, 2022.

678 Ye Yuan, Xueteng Li, Yangyi Huang, Shalini De Mello, Koki Nagano, Jan Kautz, and Umar Iqbal.
 679 Gavatar: Animatable 3d gaussian avatars with implicit mesh learning. In *Proceedings of the*
 680 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 896–905, 2024.

681 Dongbin Zhang, Yunfei Liu, Lijian Lin, Ye Zhu, Yang Li, Minghan Qin, Yu Li, and Haoqian Wang.
 682 Guava: Generalizable upper body 3d gaussian avatar. *arXiv preprint arXiv:2505.03351*, 2025.

683 Hongwen Zhang, Yating Tian, Yuxiang Zhang, Mengcheng Li, Liang An, Zhenan Sun, and Yebin
 684 Liu. PyMAF-X: Towards well-aligned full-body model regression from monocular images. *PAMI*,
 685 2023.

686 Xiaochen Zhao, Lizhen Wang, Jingxiang Sun, Hongwen Zhang, Jinli Suo, and Yebin Liu. Havatar:
 687 High-fidelity head avatar via facial model conditioned neural radiance field. *ACM Transactions*
 688 *on Graphics*, 43(1):1–16, 2023.

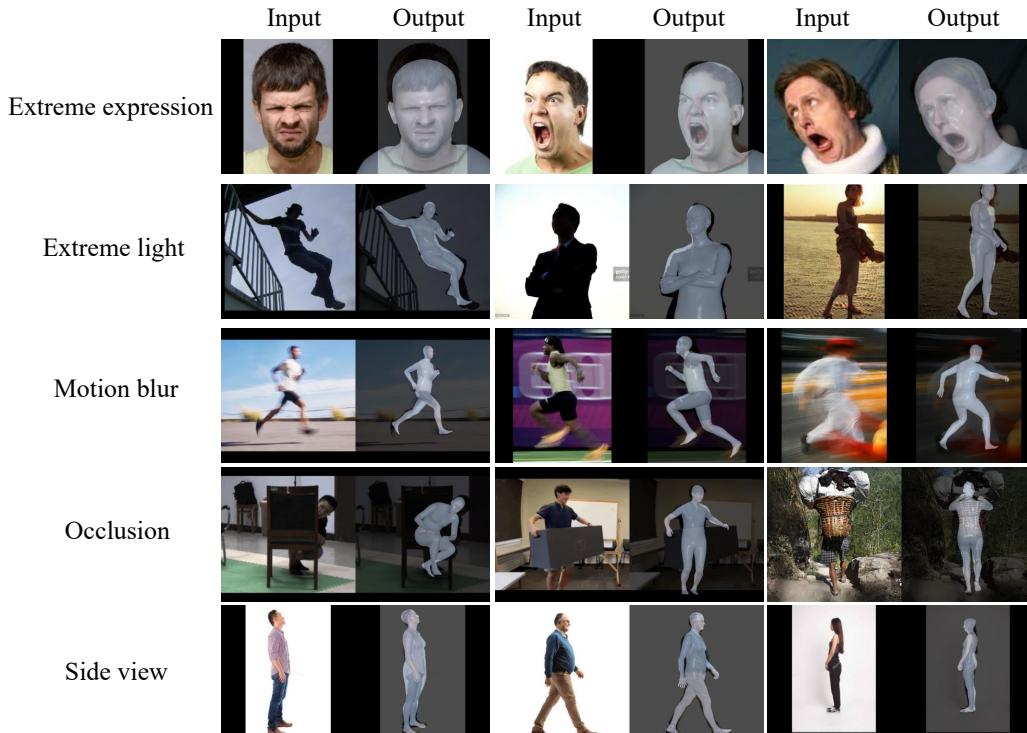
689 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Qingkun Su, Yinghui Xu, Xun Cao, Yao Yao,
 690 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3D
 691 parametric guidance. In *ECCV*, 2024.

692

693 **A APPENDIX**

694 **A.1 USE OF LLMs**

695 701 We only used LLMs as a language polishing tool, without involving them in method design,
 702 experimental design, or any other aspects.

702 A.2 ETHICS STATEMENT
703704 This research project has been approved by the relevant ethics committee or institution and has been
705 conducted in strict accordance with ethical guidelines. The rights and privacy of participants were
706 respected and protected, and personal information was kept confidential.707 1. Informed Consent: All participants were informed of the purpose, procedures, risks, and benefits
708 of the study, either verbally or in writing, and their informed consent was obtained.
709
710 2. Data Confidentiality and Privacy Protection: Appropriate measures were taken to safeguard
711 participants' personal information and privacy.
712
713 3. Use of Research Data: The use of research data adhered strictly to principles of legality and
714 transparency, ensuring proper use and interpretation of the data.715 A.3 REPRODUCIBILITY STATEMENT
716717 We ensure that our method is fully reproducible, and we will publicly release the training data, code,
718 and model weights upon paper acceptance.719 **For more visual results, please refer to the supplementary material we provide.**
720721 A.4 MORE EXPERIMENTS
722723 Following Reviewer fZ77 and Reviewer 7qEi, we have added more examples of extreme cases, such
724 as extreme expressions, lighting variations, motion blur, and occlusions, to give readers a better
725 understanding of the limitations of our method.751
752 Figure 10: **Extreme cases.**
753
754
755

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779

Method	Backbone	Image Processed	Body ↓	Hand ↓	Infer Time ↑
Hand4Whole	RN50	Crops	90.2	47.2	-
PyMAF-X	HRNet48	Crops	84.0	45.1	-
Multi-HMR	ViT-L	896×896	-	40.7	5 FPS
Ours	ViT-B	256×192	81.9	41.2	100 FPS

Table 6: MVE evaluation on the AGORA dataset

780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809